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Abstract In the present paper, we propose an extension of the Sakurai-Sugiura
projection method (SSPM) for a circumference region on the complex plane.
The SSPM finds eigenvalues in a specified region on the complex plane and the
corresponding eigenvectors by using numerical quadrature. The original SSPM has
also been extended to compute the eigenpairs near the circumference of a circle
on the complex plane. However these extensions can result in division by zero,
if the eigenvalues are located at the quadrature points set on the circumference.
Here, we propose a new extension of the SSPM, in order to avoid a decrease in
the computational accuracy of the eigenpairs resulting from locating the quadrature
points near the eigenvalues. We implement the proposed method in the SLEPc
library, and examine its performance on a supercomputer cluster with many-core
architecture.

1 Introduction

We consider a generalized eigenvalue problem Ax D �Bx, where A;B 2 Cn�n,
� 2 C is an eigenvalue, and x 2 Cnnf0g is an eigenvector. Eigenvalue problems
arise in many scientific applications such as in quantum transport models, where
the self-energy is required to describe the charge injection and extraction effect of
the contact. To compute the self-energy exactly, one needs to compute all of the
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eigenpairs, however it is enough for practical applications to compute only some
of the eigenpairs. In [9], it is necessary to obtain the eigenvalues � D eik� near
the circumference of a circle on the complex plane j�j D 1 and corresponding
eigenvectors, where � is the lattice period length, and k is the wave number.

The shift-invert Arnoldi method is a widely used method for obtaining interior
eigenpairs[12]. This method computes eigenvalues close to a shift point and the
corresponding eigenvectors. It is hard to obtain eigenpairs near the circumference
with the shift-invert Arnoldi method. The Sakurai-Sugiura projection method
(SSPM)[7, 8, 13] has been proposed for computing eigenvalues in a given region,
and the corresponding eigenvectors, with contour integration. The SSPM finds
eigenvalues in a domain surrounded by an integration path, by solving linear systems
of equations at the quadrature points with numerical quadrature. An extension of
the SSPM for calculating eigenvalues in the arc-shaped region by dividing the
circumference of a circle into several arcs, and computing the eigenpairs for each
line was proposed in [10]. This extension allows effective parallel computing of the
eigenpairs in each arc. However, the quadrature points are set on the arc, and when
the eigenpairs are located at the quadrature points, division by zero arises in the
calculations.

In this paper, we present an alternative extension of the SSPM by setting two
arcs, which avoids a decrease in the computational accuracy of the eigenpairs
resulting from locating the quadrature points near the eigenvalues, and allows
parallel computation.

We test the proposed method in SLEPc (the Scalable Library for Eigenvalue
Problem Computations) [5].

This paper is organized as follows. In Sect. 2, we review the SSPM and an
extension of the method for arcs. In Sect. 3, we propose an extension of the SSPM
for the partial ring region and implement it in SLEPc. In Sect. 4, we discuss the
results of the numerical experiments, and our conclusions are presented in Sect. 5.

2 An Extension of the SSPM for Arcs

In this section, we introduce the SSPM for generalized eigenvalue problems[13] and
show an extension of the SSPM for the ring region on the complex plane[10]. The
extension divides the ring region into several arcs, and calculates the eigenpairs near
each arc. In the extension, we construct a subspace that contains the eigenvectors
associated with the eigenvalues near the arc.

First, we introduce the SSPM. Let � be a positively oriented closed Jordan curve
on the complex plane. The SSPM approximates eigenvalues inside of the closed
Jordan curve � and corresponding eigenvectors, using a two-step procedure. The
first step is to construct the subspace with a filtering for eigenvectors, and the second
step is to extract the eigenpairs inside the closed Jordan curve.

We now introduce the procedure for constructing the subspace. Suppose that m
eigenvalues are located inside � , let V be a n � L matrix, the column vectors of
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which are linearly independent, and let S D ŒS0; S1; : : : ; SM�1� where Sk are n � L
matrices be n � LM matrices which are determined through contour integration,

Sk D 1

2�i

I
�

zk .zB � A/�1 BVdz; for k D 0; 1; : : : ;M � 1; (1)

where zB�A is a regular matrix pencil on z 2 � , andM is chosen such that LM > m.
We assume that the matrix pencil �B � A is diagonalizable for any �; regular

matrices X D .x1; x2; : : : ; xn/ and Y D . y1; y2; : : : ; yn/ that satisfy Y
H.�B�A/X D

.�I � �/ exist, where � is the diagonal matrix with elements �1; �2; : : : ; �n on the
diagonal. From the residue theorem,

Sk D
nX

iD1

fk.�i/xiyHi BV;

where yi and xi are the left and right eigenvector of �B � A respectively, and fk.�i/

is a filter function that satisfies

fk.x/ D 1

2�i

I
�

zk

z � x
dz D

�
xk; x 2 G;

0; otherwise;

where G is the interior region of � . Eigenvalues outside � are filtered out with the
filter function fk.�i/. Thus the components of S in the direction of eigenvectors with
eigenvalues outside � are reduced.

In the case that the Jordan curve � is a circle with a center 	 and a radius 
, an
N-point trapezoidal rule can be applied to compute (1) numerically, that is

Sk � OSk D
NX
jD1

wj�
k
j Xj; (2)

where

zj D 	 C 
e
2�i
N . jC 1

2 /; wj D zj � 	


N
; �j D zj � 	



; j D 0; 1; : : : ;N � 1;

are quadrature points, normalized quadrature points and corresponding weights,
respectively, and Xj; j D 0; 1; : : : ;N � 1 are the solutions of linear systems with
multiple right-hand side vectors,

�
zjB � A

�
Xj D BV; j D 0; 1; : : : ;N � 1: (3)

The filter function fk.x/ is approximated by the N-point trapezoidal rule as

fk.x/ � Of .x/xk D
NX
jD1

wj

zj � x
xk; 0 � k � N � 1; (4)
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where Of .x/ is a rational function. The rational function Of .x/ and eigenvectors in OSk
depend on zj;wj; �j and N. In this case, the rational function Of .x/ decays outside
the circle[7, 11]. Thus the components of OSk in the direction of eigenvectors with
eigenvalues outside � are small.

Next, we introduce the procedure for the approximation of eigenpairs using the
Rayleigh-Ritz approach for the SSPM[7]. Let the singular value decomposition
(SVD) of OS D ŒOS0; OS1; : : : ; OSM�1� 2 Cn�.LM/ be OS D Q˙WH, where Q D
Œq1; q2; : : : ; qLM� 2 Cn�LM ; ˙ D diag.�1; �2; : : : ; �LM/; �1 � �2 � : : : � �LM

and W 2 CLM�LM . We omit singular values less than ı, and construct OQ D
Œq1; q2; : : : ; qK � 2 Cn�K , where K > m, and �K � ı � �KC1. We solve the small
eigenvalue problem

.˛i OQHB OQ � OQHA OQ/ui D 0; OQHA OQ; OQHB OQ 2 C
K�K ;

where ˛i is the eigenvalue of the matrix pencil ˛i OQHB OQ � OQHA OQ and ui is the
eigenvector corresponding to ˛i. Then the eigenvalues of the matrix pencil A � �B
are approximated by �i � ˛i, and the corresponding approximate eigenvectors are
given by xi � OQui for i D 1; 2; : : : ;K. Some approximated eigenvalues may appear
outside � . We keep eigenvalue �i inside � for i D 1; 2; : : : ; Qm, where Qm is the
number of approximated eigenvalues inside � , and discard the rest.

We can compute the eigenpairs in a specific circle by using the SSPM. When
many eigenvalues exist in the circle, we have to set a large value for LM, and thus the
computational cost for computing the eigenpairs is high. In some applications, the
eigenpairs near the circumference of the circle are also required. When computing
these eigenpairs, the computational cost can be reduced with an extension of the
SSPM for the arc as follows[10]. In the extension, the procedure for constructing
the subspace is different, but the procedure for extracting eigenpairs remains the
same.

Let L be the arc with center 	 , radius 
, starting angle 
a and ending angle 
b,

L W z D 	 C 
ei
 ; 
a � 
 � 
b;

where 0 � 
a < 
b � 2� . Quadrature points zj, normalized quadrature points �j and
corresponding weights wj are given by

zj D 	 C 
ei
j ; �j D cos

�
2j C 1

2N
�

�
; wj D TN�1.�j/

N
; j D 0; 1; : : : ;N � 1;

(5)

where, Tk.x/ is the Chebyshev polynomial of the first kind of degree k, and 
j D

a C .
b � 
a/

�jC1

2
. �j are N Chebyshev points in the interval Œ�1; 1�, and zj are

points in L. The matrices OSk in (2) are computed with zj; �j;wj in (5). According
to [10], the rational function Of .x/ in (4) with zj; �j;wj in (5) decays outside the arc



Numerical Integral Eigensolver for a Ring Region on the Complex Plane 23

L. Thus the eigenvectors associated with the eigenvalues outside L are filtered out.
Then we extract the eigenpairs using a Rayleigh-Ritz approach, and we can obtain
the eigenpairs near L.

For computing the eigenpairs in a ring region, we divide the circumference of
the ring into D arcs Ld; d D 1; 2; : : : ;D with 


.d/
a ; 


.d/
b ; d D 1; 2; : : : ;D. Then we

compute the eigenpairs on each arc.

3 Extension of the SSPM for the Partial Ring Region

In the extension of the SSPM, quadrature points may lie on the arc. Division by
zero arises when eigenpairs are located at quadrature points. Therefore, to avoid
division by zero, quadrature points should be located sufficiently far from the arc.
The filter function, which is approximated by the rational function, is dependent
on the quadrature points, and decays outside of the arc. Thus components of
eigenvectors in OS decrease when eigenvalues are farther from quadrature points.
When the eigenpairs are located away from the quadrature points, the accuracy of
the approximated eigenpairs is reduced. We propose an alternative extension of the
SSPM, which avoids a decrease in the computational accuracy of the eigenpairs
resulting from locating the quadrature points near the eigenvalues. The proposed
method uses alternative formulations for zj; �j;wj, and derive the filter function
which decays outside of the partial ring region.

Let L˙ be two arcs such that

L
˙ W z D 	 C 
˙ei
 ; 
a � 
 � 
b;

where 	 is the center, and 
C; 
� are the outer and inner radii of the arcs that
satisfy 
C > 
�, and 
a; 
b are the starting and ending angles that satisfy 0 � 
a <


b � 2 � .
Quadrature points zj; j D 0; 1; : : : ;N � 1 are Chebyshev points on LC and L�,

zj D
(
zC
j ; .0 � j < NC/

z�
j�NC ; .NC � j < NC C N�/

;

where zC
j are NC Chebyshev points on L

C, and z�
j are N� Chebyshev points

on L
� defined by (5), and N D NC C N�. In the SSPM, a weight for the

quadrature fw0;w1; : : : ;wN�1g is set to satisfy the following equation for computing
the eigenpairs inside � [14],

N�1X
jD0

wj�
k
j D

�
1; .k D �1/

0; .k D 0; 1; : : : ;N � 2/
: (6)
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In the proposed method, we compute the eigenpairs between two arcs. The weights
for a quadrature wj are defined by barycentric weight [2],

wj D .�1/NC1

QN�1
kD0 .�k/QN�1

kD0;k¤i.�k � �k/
;

where

�j D 2.zj � 	/


1 C 
2

; j D 0; 1; : : : ;N � 1:

The barycentric weight is used for computing weight for quadrature, which satis-
fies (6). Then, we construct the matrix OSk by (2). The procedure after constructing
OSk is then the same as the SSPM in Sect. 2.

Figures 1 and 2 show schematics of the quadrature points in the SSPM for an
arc and a partial ring region, and Figs. 3 and 4 show rational functions Of .x/ defined
by (4) in each extension for N D 32 quadrature points. In Fig. 3, we set 	 D 0,

 D 1, 
a D 0 and 
b D � . In Fig. 4, we set 	 D 0, 
C D 1:01, 
� D 0:99,

a D 0, 
b D � , NC D 24 and N� D 8. In the extension for arcs as well as for the
partial ring region, the rational function Of .x/ decays outside of the two arcs. Thus

Fig. 1 Quadrature points for
the SSPM for the arc

Fig. 2 Quadrature points for
the proposed method
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Fig. 3 Filter function for the SSPM for the arc
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Fig. 4 Filter function for the proposed method

the components of OSk in the direction of eigenvectors associated with eigenvalues
outside � are small.

Figures 6 and 7 show the rational functions Of .x/ on the two lines in Fig. 5.
We compute absolute value of the rational function for the SSPM for the arc and
the proposed method with NC D 24;N� D 8 and N˙ D 16. The parameters
	; 
; 
˙; 
a and 
b are the same as in Figs. 3 and 4. In Figs. 6 and 7, the horizontal
axis indicates angle of the line1 and imaginary axis, respectively. In Fig. 6, we
can see that the gap between maximum value and minimum value of the rational
function for the proposed method is smaller than the gap for the SSPM for the arc.
The rational function for the proposed method with NC D 24;N� D 8 are similar
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Fig. 6 Absolute value of the filter function on the line1

to that with N˙ D 16. Thus the components of OSk in the direction of eigenvectors
associated with eigenvalues near the arc for the proposed method is more equable
than that for the SSPM for arc. In Fig. 7, we can see that the rational functions for the
proposed method decays outside of the circle more rapidly than that for the SSPM
for arc. However, the rational functions for the proposed method decays inside of
the circle more slowly than that for the SSPM for arc. The rational function for the
proposed method with NC D 24;N� D 8 are similar to that with N˙ D 16. Thus
the components of OSk in the direction of eigenvectors associated with eigenvalues
outside the circle for the proposed method are smaller than that for the SSPM
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Fig. 7 Absolute value of the filter function on the line2

for arc, and the components of OSk in the direction of eigenvectors associated with
eigenvalues inside the circle for the proposed method are larger than that for the
SSPM for arc.

In the proposed method, we compute the eigenpairs in a partial ring region. To
do this, we divide the ring region into D partial ring regions by 


.d/
a ; 


.d/
b ; d D

1; 2; : : : ;D. Then we compute the eigenpairs using the proposed method in each
partial ring region.

The SSPM has potential for hierarchical parallelism: (I) each region can be
computed independently, (II) linear systems at each quadrature point can be solved
independently, (III) multiple right-hand sides of the linear systems can be solved
simultaneously. Therefore we can assign different tasks for solving the linear
systems to each parallel processor. Parallel implementations of the SSPM have
been developed, such as Bloss[6], z-Pares[4] and CISS (Contour Integral Spectral
Slicing). In CISS, the parallelism of (I) and (II) is implemented in SLEPc, along
with an extension for the arc.

4 Numerical Example

In this section, we present numerical examples of the proposed method. We
implement the proposed method in SLEPc, and compare the performance of the
proposed method with that of the extension for the arc.

Experiments are performed on the supercomputer cluster of many-core architec-
ture COMA (PACS-IX) at the Center for Computational Sciences, the University
of Tsukuba. COMA has a total of 393 nodes providing 1.001 PFLOPS at optimum
performance. Each node has dual CPU (Intel Xeon E5-2670v2), dual MIC (Intel
Xeon Phi 7110P), and 64 GB memory, and the CPU has 10 cores and the MIC has
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61 cores. The linear systems are solved by a direct method, in particular PCLU in
PETSc library[1].

First, we compare the accuracy of the two extensions. Four test matrices A;B
were used in the numerical experiments: (I) 1000 � 1000 diagonal matrix A and
identity matrix B. The diagonal elements of A are 950 complex values, real and
imaginary part of which are random between Œ0; 0:4�, and 50 complex values,
real and imaginary part of which are random between Œ0:5; 1:1� (SAMPLE). (II)
501 � 501 diagonal matrix A and identity matrix B. The diagonal elements of A
are 500 complex values, that are spaced equiangularly on the circle with a center
0 and a radius 1 on the complex plane, and 1 complex value which is close to
quadrature point .z1C10�10/ in the SSPM for the arc (SAMPLE2). (III) 5000�5000

matrix A taken from the matrix market[3] and identity matrix B (OLM5000). (IV)
11;520�11;520matrix A;B derived from computation of the self-energy of a silicon
nanowire with a 6�6 nm2 cross section[9] (SI11520). In both extensions, we divide
the ring region into D D 4 partial ring regions, and we set 
˙ D 
 ˙ ˇ. Parameters
for the ring region, starting angles and ending angles are given in Table 1. The
remaining parameters for both extensions were NC D 24, N� D 8, N D 32,
L D 32,M D 8 and ı D 10�12.

Table 2 shows the accuracy of the two extensions. max(res) and min(res) are the
maximum and minimum values of the residuals kAxi � �iBxik2=.kAkF C j�ijkBkF/,
respectively. The proposed method shows similar accuracy to the SSPM for the arc
for the case (I), (III) and (IV). In the case (II), we can see that the maximum value
of the residuals of the proposed method is smaller than that of the SSPM for the arc.
Because 1 eigenvalue is very close to the quadrature point for the SSPM for the arc,
a component of OSk in the direction of eigenvector associated with eigenvalue near
the quadrature point becomes large, and other components become small relatively.
These results indicate that the accuracy of residuals become lowwhen the eigenpairs

Table 1 Parameters for the proposed method and the extension for the arc

	 
 ˇ Œ

.1/
a ; 


.1/
b � Œ


.2/
a ; 


.2/
b � Œ


.3/
a ; 


.3/
b � Œ


.4/
a ; 


.4/
b �

SAMPLE 0 0:8 0:3 Œ0; 0:5�� Œ0:5�; �� Œ�; 1:5�� Œ1:5�; 2��

SAMPLE2 0 1 0:01 Œ0; 0:5�� Œ0:5�; �� Œ�; 1:5�� Œ1:5�; 2��

OLM5000[3] �5 6:6 0:1 Œ0; 0:5�� Œ0:5�; �� Œ�; 1:5�� Œ1:5�; 2��

SI11520[9] �1 1 0:03 Œ0; 0:38�� Œ0:38�; �� Œ�; 1:62�� Œ1:62�; 2��

Table 2 Accuracy of the two extensions

Arc Partial ring region

Total Total Exact number
of Qm Max (res) Min (res) of Qm Max (res) Min (res) of eigenpairs

SAMPLE 50 5:5 � 10�8 3:7 � 10�15 50 3:2 � 10�8 4:2 � 10�13 50

SAMPLE2 501 1:8 � 10�6 1:5 � 10�15 501 2:2 � 10�10 8:6 � 10�13 501

OLM5000[3] 26 1:2 � 10�16 8:9 � 10�18 26 1:1 � 10�16 1:6 � 10�17 26

SI11520[9] 332 3:9 � 10�11 2:3 � 10�14 332 7:2 � 10�9 4:4 � 10�13 332
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Table 3 Computational time for the proposed method for different numbers of processes

# processes 1 2 4 8 16 32 64 128

Total 308,800 153,170 76,623 40,601 23,439 15,268 10,463 8245

Ideal 308,800 151,300 75,650 37,825 18,913 9456 4728 2364

1

10

100

1000

1 2 4 8 16 32 64 128 

T
im

e 
(s

ec
) 

# process

Linear system SVD Projection Construct S Misc Ideal Total

Fig. 8 Details of the computational time for the proposed method with different numbers of
processes (SI11520[9])

are closed at the quadrature points, and the proposed method improves the accuracy
by locating the quadrature points sufficiently far from the arc.

Next, we evaluate the parallel performance of the proposed method. We investi-
gate how the computational time varies as the number of processes increases. We
use test matrix SI11520[9] in this experiment. We implement the proposed method
in SLEPc. Here, the number of processes is set to 1; 2; 4; 8; 16; 32; 64 and 128, and
other parameter values are the same as in the above experiment.

Table 3 shows the computational time for the proposed method with different
numbers of processes. Total is the computational time for the proposed method,
and Ideal is the ideal time (Total of 1 process)=(# processes). Figure 8 shows the
details of the computational time. In Table 3 and Fig. 8, we can see that the proposed
method has a good scaling for solving linear systems in (3), but is saturated for
constructing OS in (2) and computing the SVD due to the increase in communication
time for each process. Thus the computational time for the proposedmethod is close
to the ideal time for up to 8 processes but increases for 16 or more processes.

5 Conclusion

In the present paper, we presented an extension of the SSPM for a partial ring
region. The filter function for the extension is similar to that for the existing SSPM
for the arc. We implemented the SSPM for a partial ring region using SLEPc, and
demonstrated that the method can be parallelized. The performance of the method
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was examined on a supercomputer cluster with many-core architecture. The results
showed that the accuracy of the proposedmethod was similar to that of the SSPM for
an arc, and the proposed method improves the accuracy by locating the quadrature
points sufficiently far from the arc. We demonstrate that our implementation on
SLEPc has efficient parallelism. As an area for future work, we intend to develop
the SSPM to avoid the loss in efficiency due to the communication time between
computers.
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