
Fast Multipole Method as a Matrix-Free
Hierarchical Low-Rank Approximation

Rio Yokota, Huda Ibeid, and David Keyes

Abstract There has been a large increase in the amount of work on hierarchical
low-rank approximation methods, where the interest is shared by multiple commu-
nities that previously did not intersect. This objective of this article is two-fold;
to provide a thorough review of the recent advancements in this field from both
analytical and algebraic perspectives, and to present a comparative benchmark of
two highly optimized implementations of contrasting methods for some simple yet
representative test cases. The first half of this paper has the form of a survey paper, to
achieve the former objective.We categorize the recent advances in this field from the
perspective of compute-memory tradeoff, which has not been considered in much
detail in this area. Benchmark tests reveal that there is a large difference in the
memory consumption and performance between the different methods.

1 Introduction

The fast multipole method (FMM) was originally developed as an algorithm
to bring down the O.N2/ complexity of the direct N-body problem to O.N/

by approximating the hierarchically decomposed far field with multipole/local
expansions. In its original form, the applicability of FMM is limited to problems
that have a Green’s function solution, for which the multipole/local expansions
can be calculated analytically. Their function is also limited to matrix-vector
multiplications, in contrast to the algebraic variants that can perform matrix-matrix
multiplication and factorizations. However, these restrictions no longer apply to the
FMM since the kernel independent FMM [103] does not require a Green’s function,
and inverse FMM [2] can be used as the inverse operator instead of the forward
mat-vec. Therefore the FMM can be used for a wide range of scientific applications,

R. Yokota (�)
Tokyo Institute of Technology, 2-12-1 O-okayama Meguro-ku, Tokyo, Japan
e-mail: rioyokota@gsic.titech.ac.jp

H. Ibeid • D. Keyes
King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, Saudi Arabia
e-mail: huda.ibeid@kaust.edu.sa; david.keyes@kaust.edu.sa

© Springer International Publishing AG 2017
T. Sakurai et al. (eds.), Eigenvalue Problems: Algorithms, Software
and Applications in Petascale Computing, Lecture Notes in Computational Science
and Engineering 117, https://doi.org/10.1007/978-3-319-62426-6_17

267

mailto:rioyokota@gsic.titech.ac.jp
mailto:huda.ibeid@kaust.edu.sa
mailto:david.keyes@kaust.edu.sa
https://doi.org/10.1007/978-3-319-62426-6_17


268 R. Yokota et al.

which can be broadly classified into elliptic partial differential equations (PDE)
and kernel summation. Integral form of elliptic PDEs can be further categorized
into boundary integrals for homogeneous problems, discrete volume integrals, and
continuous volume integrals.

Scientific applications of FMM for boundary integrals include acoustics [59, 97],
biomolecular electrostatics [105], electromagnetics [33, 42], fluid dynamics for
Euler [96] and Stokes [88] flows, geomechanics [92], and seismology [22, 95].
Application areas of FMM for discrete volume integrals are astrophysics [14],
Brownian dynamics [75], classical molecular dynamics [84], density functional
theory [90], vortex dynamics [106], and force directed graph layout [107]. FMM
for continuous volume integrals have been used to solve Schrödinger [108] and
Stokes [79] equations. More generalized forms of FMM can be used as fast kernel
summation for Bayesian inversion [3], Kalman filtering [74], Machine learning
[49, 72], and radial basis function interpolation [54].

All of these applications have in common the key feature that they are global
problems where the calculation at every location depends on the values everywhere
else. Elliptic PDEs that represent a state of equilibrium, many iterations with global
inner products for their solution, dense matrices in boundary integral problems, all-
to-all interaction in N-body problems, and kernel summations with global support
are all different manifestations of the same source of global data dependency.Due to
this global data dependency, their concurrent execution on future computer architec-
tures with heterogeneous and deep memory hierarchy is one of the main challenges
of exascale computing. For global problems that require uniform resolution, FFT
is often the method of choice, despite its suboptimal communication costs. The
methods we describe here have an advantage for global problems that require
non-uniform resolution. For such non-uniform global problems multigrid methods
are known to do quite well. Whether the reduced synchronization and increased
arithmetic intensity of the FMM will become advantageous compared to multigrid
on future architectures is something that is yet to be determined.

Many of the original FMM researchers have now moved on to develop algebraic
variants of FMM, such as H -matrix [55], H 2-matrix [57], hierarchically semi-
separable (HSS) [26], hierarchically block-separable (HBS) [82], and hierarchically
off-diagonal low-rank (HODLR) [1] matrices. The differences between these
methods are concisely summarized by Ambikasaran and Darve [2]. These algebraic
generalizations of the FMM can perform addition, multiplication, and even factor-
ization of dense matrices with near linear complexity. This transition from analytic
to algebraic did not happen suddenly, and semi-analytic variants were developed
along the way [39, 103]. Optimization techniques for the FMM such as compressed
translation operators and their precomputation, also fall somewhere between the
analytic and algebraic extremes.

The spectrum that spans purely analytic and purely algebraic forms of these
hierarchical low-rank approximation methods, represents the tradeoff between
computation (Flops) and memory (Bytes). The purely analytic FMM is a matrix-
free H 2-matrix-vector product, and due to its matrix-free nature it has very high
arithmetic intensity (Flop/Byte) [9]. On the other end we have the purely algebraic



Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation 269

methods, which precompute and store the entire hierarchical matrix. This results
in more storage and more data movement, both vertically and horizontally in
the memory hierarchy. When the cost of data movement increases faster than
arithmetic operations on future architectures, the methods that compute more to
store/move less will become advantageous. Therefore, it is important to consider
the whole spectrum of hierarchical low-rank approximation methods, and choose
the appropriate method for a given pair of application and architecture.

There have been few attempts to quantitatively investigate the tradeoff between
the analytic and algebraic hierarchical low-rank approximationmethods. Previously,
the applicability of the analytic variants were limited to problems with Green’s
functions, and could only be used for matrix-vector products but not to solve
the matrix. With the advent of the kernel-independent FMM (KIFMM) [103] and
inverse FMM (IFMM) [2], these restrictions no longer apply to the analytic variants.
Furthermore, the common argument for using the algebraic variants because they
can operate directly on the matrix without the need to pass geometric information
is not very convincing. Major libraries like PETSc offer interfaces to insert one’s
own matrix free preconditioner as a function, and passing geometric information
is something that users are willing to do if the result is increased performance.
Therefore, there is no strong reason from the user’s perspective to be monolithically
inclined to use the algebraic variants. It is rather a matter of choosing the method
with the right balance between its analytic (Flops) and algebraic (Bytes) features.

The topic of investigating the tradeoff between analytic and algebraic hierarchical
low-rank approximation methods is too broad to cover in a page-constrained article.
In the present work, we limit our investigation to the compute-memory tradeoff in
a comparison between FMM and HSS for Laplace and Helmholtz kernels. We also
investigate the use of FMM as a preconditioner for iterative solutions to the Laplace
and Helmholtz problems with finite elements, for which we compare with geometric
and algebraic multigrid methods.

2 Hierarchical Low-Rank Approximation: Analytic
or Algebraic?

In this section we review the full spectrum of hierarchical low-rank approximations
starting from the analytic side and proceeding to the algebraic side. The spectrum is
depicted in Fig. 1, where various techniques like between the analytic and algebraic
extremes. One can choose the appropriate method for a given architecture to achieve
the best performance.



270 R. Yokota et al.

Algebraic Geometric / Analytic

Compute [Flops]Memory [Bytes]

Sampling

Randomization

Precomputation

Use of symmetry

Kernel independent

Black-box

Compressed operators

Diagonalization

Fig. 1 The compute-memory tradeoff between the analytic and algebraic hierarchical low-rank
approximation methods. Various techniques lie between the analytic and algebraic extremes

2.1 Analytic Low-Rank Approximation

On the analytic end of the spectrum, we have classical methods such as the
Treecode [10], FMM [8, 50], and panel clustering methods [56]. These methods
have extremely high arithmetic intensity (Flop/Byte) due to their matrix-free nature,
and are compute-bound on most modern architectures. One important fact is that
these are not brute force methods that do unnecessary Flops, but are (near) linear
complexitymethods that are only doing useful Flops, but they are still able to remain
compute-bound. This is very different from achieving high Flops counts on dense
matrix-matrixmultiplication or LU decomposition that haveO.N3/ complexity. The
methods we describe in this section can approximate the same dense linear algebra
calculation in O.N/ or O.N logN/ time.

As an example of the absolute performance of the analytic variants, we refer
to the Treecode implementation—Bonsai, which scales to the full node of Titan
using 18,600 GPUs achieving 24.77 PFlops [14]. Bonsai’s performance comes not
only from its matrix-free nature, but also from domain specific optimizations for
hardcoded quadrupoles and an assumption that all charges are positive. Therefore,
this kind of performance cannot be transferred to other applications that require
higher accuracy. However, viewing these methods as a preconditioner instead of a
direct solver significantly reduces the accuracy requirements [5, 67].

2.2 Fast Translation Operators

A large part of the calculation time of FMM is spent on the translation of multipole
expansions to local expansions (or their equivalent charges). Therefore, much work
has focused on developing fast translation operators to accelerate this part of the
FMM. Rotation of spherical harmonics [94], Block FFT [37], Planewaves [51] are
analytic options for fast translation operators.

These translation operators are applied to a pair of boxes in the FMM tree
structure that satisfy a certain proximity threshold. This proximity is usually defined
as the parent’s neighbors’ children that are non-neighbors. This produces a list of



Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation 271

boxes that are far enough that the multipole/local expansion converges, but are
close enough that the expansion does not converge for the their parents. Such an
interaction list can contain up to 63 � 33 D 189 source boxes for each target box.
Out of these 189 boxes, the ones that are further from the target box can perform the
translation operation using their parent box as the source without loss of accuracy.
There are a few variants for these techniques that reduce the interaction list size
such as the level-skip M2L method [93] and 8, 4, 2-box method [95]. There are
also methods that use the dual tree traversal along with the multipole acceptance
criterion to construct optimal interaction lists [35], which automates the process of
finding the optimal interaction list size.

Another technique to accelerate the translation operators is the use of variable
expansion order, as proposed in the very fast multipole method (VFMM) [87],
Gaussian VFMM [21], optimal parameter FMM [29], and error controlled FMM
[32]. There are two main reasons why spatially varying the expansion order in the
translation operators is beneficial. One is because not all boxes in the interaction list
are of equal distance, and the boxes that are further from each other can afford to
use lower expansion order, while retaining the accuracy. The other reason is because
some parts of the domain may have smaller values, and the contribution from that
part can afford to use lower expansion order without sacrificing the overall accuracy.

The translation operators can be stored as matrices that operate on the vector
of expansion coefficients. Therefore, singular value decomposition (SVD) can
be used to compress this matrix [43] and BLAS can be used to maximize the
cache utilization [40]. Some methods use a combination of these techniques like
Chebychevwith SVD [39] and planewavewith adaptive cross approximation (ACA)
and SVD [61]. The use of SVD is a systematic and optimal way of achieving what
the variable expansion order techniques in the previous paragraph were trying to
do manually. Precomputing these translation matrices and storing them is a typical
optimization technique in many FMM implementations [78].

One important connection to make here is that these matrices for the translation
operators are precisely what H 2-matrices and HSS matrices store in the off-
diagonal blocks after compression. One can think of FMM as a method that has
the analytical form to generate these small matrices in the off-diagonal blocks,
without relying on numerical low-rank approximation methods. To complete this
analogy, we point out that the dense diagonal blocks in H 2-matrices and HSS
matrices are simply storing the direct operator (Green’s function) in FMM. Noticing
this equivalence leads to many possibilities of hybridization among the analytic
and algebraic variants. Possibly the most profound is the following. Those that
are familiar with FMM know that translation operators for boxes with the same
relative positioning are identical. This suggests that many of the entries in the
off-diagonal blocks of H 2-matrices and HSS matrices are identical. For matrices
that are generated from a mesh that has a regular structure even the diagonal
blocks would be identical, which is what happens in FMMs for continuous volume
integrals [78]. This leads to O.1/ storage for the matrix entries at every level of the
hierarchy, so the total storage cost of these hierarchical matrices could be reduced to
O.logN/ if the identical entires are not stored redundantly. This aspect is currently



272 R. Yokota et al.

underutilized in the algebraic variants, but seems obvious from the analytic side. By
making use of the translational invariance and rotational symmetry of the interaction
list one can reduce the amount of storage even further [31, 34, 91]. This also results
in blocking techniques for better cache utilization.

2.3 Semi-analytical FMM

The methods described in the previous subsection all require the existence of an
analytical form of the multipole/local translation operator, which is kernel depen-
dent. There are a class of methods that remove this restriction by using equivalent
charges instead of multipole expansions [7, 15, 77]. A well known implementation
of this method is the kernel independent FMM (KIFMM) code [103]. There are also
variants that use Chebychev polynomials [36], and a representative implementation
of this is the Black-box FMM [39]. As the name of these codes suggest, these
variants of the FMM have reduced requirements for the information that has to be
provided by the user. The translation operators are kernel-independent, which frees
the user from the most difficult task of having to provide an analytical form of the
translation operators. For example, if one wants to calculate the Matérn function
for covariance matrices, or multiquadrics for radial basis function interpolation,
one simply needs to provide these functions and the location of the points and the
FMM will handle the rest. It is important to note that these methods are not entirely
kernel independent or black-box because the user still needs to provide the kernel
dependent analytic form of the original equation they wish to calculate. Using the
vocabulary of the algebraic variants, one could say that these analytical expressions
for the hierarchical matrices are kernel independent only for the off-diagonal blocks,
and for the diagonal blocks the analytical form is kernel dependent.

FMM for continuous volume integrals [38] also has important features when con-
sidering the analytic-algebraic tradeoff. The volume integrals are often combined
with boundary integrals, as well [104]. One can think of these methods as an FMM
that includes the discretization process [70]. Unlike the FMM for discrete particles,
these methods have the ability to impose regular underlying geometry. This enables
the use of precomputation of the direct interaction matrix in the analytic variants
[78], and reduces the storage requirements of the dense diagonal blocks in the
algebraic variants.

2.4 Algebraic Low-Rank Approximation

There are many variants of algebraic low-rank approximation methods. They can be
categorized based on whether they are hierarchical, whether they use weak admissi-
bility, or if the basis is nested, as shown in Table 1. For the definition of admissibility
see [45]. Starting from the top, H -matrices [12, 55] are hierarchical, usually use



Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation 273

Table 1 Categorization of algebraic low-rank approximation methods

Method Hierarchical Weak admissibility Nested basis

H -matrix [55] Yes Maybe No

H 2-matrix [57] Yes Maybe Yes

HODLR [1] Yes Yes No

HSS [26]/HBS [82] Yes Yes Yes

BLR [4] No Yes No

standard or strong admissibility, and no nested basis. The analytic counterpart of
the H -matrix is the Treecode. The H 2-matrices [16, 57] are also hierarchical and
use standard or strong admissibility, but unlikeH -matrices use a nested basis. This
brings the complexity down from O.NlogN/ to O.N/. The analytic counterpart of
the H 2-matrix is the FMM. The next three entries in Table 1 do not have analytic
counterparts because analytic low-rank approximations do not converge under weak
admissibility conditions. Hierarchical off-diagonal low-rank (HODLR) matrices
[1, 6], are basically H -matrices with weak admissibility conditions. Similarly,
hierarchically semi-separable (HSS) [26, 101], and hierarchically block-separable
(HBS) [82] matrices are H 2-matrices with weak admissibility conditions. The
block low-rank (BLR) matrices [4] are a non-hierarchical version of the HODLR,
with just the bottom level. A summary of implementations and their characteristics
are presented in [89].

For methods that do not have weak admissibility, it is common to use geometrical
information to calculate the standard/strong admissibility condition. This depen-
dence on the geometry of the algebraic variants is not ideal. There have been various
proposals for algebraic clustering methods [46, 71, 85]. This problem requires even
more advanced solutions for high dimension problems [80]. Stronger admissibility
is also problem for parallelization since it results in more communication. There
have been studies on how to partition hierarchical matrices on distributed memory
[68]. There are also methods to reduce the amount of memory consumption during
the construction of HSS matrices [73].

The categorization in Table 1 is for the hierarchical matrix structure, and any low-
rank approximation method can be used with each of them during the compression
phase. The singular value decomposition is the most naïve and expensive way to
calculate a low-rank approximation. QR or LU decompositions can be used to
find the numerical rank by using appropriate pivoting. Rank-revealing QR [24] has
been proposed along with efficient pivoting strategies [25, 53, 64]. Rank-revealing
LU [23] also requires efficient pivoting strategies [65, 66, 83]. Rank-revealing LU
is typically faster than rank-revealing QR [86]. There are other methods like the
pseudo-skeletal method [44] and adaptive cross approximation (ACA) [11, 13],
which do not yield the optimal low-rank factorizations but have a much lower
cost. ACA has a better pivoting strategy than pseudo-skeletal methods, but can
still fail because of bad pivots [18]. The hybrid cross approximation (HCA) [17]
has the same proven convergence as standard interpolation but also the same



274 R. Yokota et al.

efficiency as ACA. Yet another class of low-rank approximation is the interpolative
decomposition (ID) [28, 82], where a few of its columns are used to form a well-
conditioned basis for the remaining columns. ID can be combined with randomized
methods [76], which has much lower complexity. For a nice review on these
randomized methods see [58].

3 Low-Rank Approximation for Factorization

3.1 Sparse Matrix Factorization

Hierarchical low-rank approximation methods can be used as direct solvers with
controllable accuracy. This makes them useful as preconditioners within a Krylov
subspace method, which in turn reduces the accuracy requirements of the low-rank
approximation. High accuracy and completely algebraic methods are demanding in
terms of memory consumption and amount of communication, so they are unlikely
to be the optimal choice unless they are the only solution to that problem.

There are two ways to use hierarchical low-rank approximations for factorization
of a sparse matrix. The first way is to perform the LU decomposition on the
sparse matrix, and use hierarchical low-rank approximations for the dense blocks
that appear during the process [98, 100, 101]. The other way is to represent the
sparse matrix with a hierarchical low-rank approximation and perform an LU
decomposition on it [46–48]. The main difference is whether you view the base
method as the nested dissection and the additional component as HLRA or vice
versa. The former has the advantage of being able to leverage the existing highly
optimized sparse direct solvers, whereas the latter has the advantage of handling
both sparse and dense matrices with the same infrastructure.

There are various ways to minimize the fill-in and compress the dense blocks
during factorization. These dense blocks (Schur complements) are an algebraic form
of the Green’s function [99], and have the same low-rank properties [27] stemming
from the fact that some of the boundary points in the underlying geometry are
distant from each other. Formulating a boundary integral equation is the analytical
way of arriving to the same dense matrix. From an algebraic point of view, the
sparse matrix for the volume turns into a dense matrix for the boundary, through the
process of trying to minimize fill-in. Considering the minimization of fill-in and the
compression of the dense matrices in separate phases leads to methods like HSS +
multifrontal [98, 100, 101].

Ultimately, minimizing fill-in and minimizing off-diagonal rank should not
be conflicting objectives. The former depends on the connectivity and the latter
depends on the distance in the underlying geometry. In most applications, the closer
points are connected (or interact) more densely, so reordering according to the
distance should produce near optimal ordering for the connectivity as well. The
same can be said about minimizing communication for the parallel implementation



Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation 275

of these methods. Mapping the 3-D connectivity/distance to a 1-D locality in the
memory space (or matrix column/row) is what we are ultimately trying to achieve.

3.2 Dense Matrix Factorization

The methods in the previous subsection are direct solvers/preconditioners for sparse
matrices. As we have mentioned, there is an analogy between minimizing fill-
in in sparse matrices by looking at the connectivity, and minimizing the rank
of off-diagonal blocks of dense matrices by looking at the distance. Using this
analogy, the same concept as nested dissection for sparse matrices can be applied
to dense matrices. This leads to methods like the recursive skeletonization [62],
or hierarchical Poincare-Steklov (HPS) [41, 81]. HPS is like a bottom-up version
of what nested dissection and recursive skeletonization do top-down. For high
contrast coefficient problems, it makes sense to construct the domain dissection
bottom-up, to align the bisectors with the coefficient jumps. There are also other
methods that rely on a similar concept [19, 52, 69, 102]. Furthermore, since many
of these methods use weak admissibility with growing ranks for 3-D problems,
it is useful to have nested hierarchical decompositions, which is like a nested
dimension reduction. In this respect, the recursive skeletonization has been extended
to hierarchical interpolative factorization (HIF) [63], the HSS has been extended to
HSS2D [99]. There is also a combination of HSS and Skeletonization [30]. There
are methods that use this nested dimension reduction concept without the low-rank
approximation [60] in the context of domain decomposition for incomplete LU
factorization. One method that does not use weak admissibility is the inverse FMM
[2], which makes it applicable to 3-D problems in O.N/ without nested dimension
reduction.

4 Experimental Results

4.1 FMM vs. HSS

There have been few comparisons between the analytic and algebraic hierarchical
low-rank approximation methods [20]. From a high performance computing per-
spective, the practical performance of highly optimized implementations of these
various methods is of great interest. There have been many efforts to develop new
methods in this area, which has resulted in a large amount of similar methods with
different names without a clear overall picture of their relative performance on
modernHPC architectures. The trend in architecture where arithmetic operations are
becoming cheap compared to data movement, is something that must be considered



276 R. Yokota et al.

carefully when predicting which method will perform better on computers of the
future.

We acknowledge that the comparisons we present here are far from complete,
and much more comparisons between all the different methods are needed in order
to achieve our long term objective. The limitation actually comes from the lack of
highly optimized implementations of these methods that are openly available to us
at the moment.

In the present work we start by comparing exaFMM—a highly optimized
implementation of FMM, with STRUMPACK—a highly optimized implementation
of HSS. We select the 2D and 3D Laplace equation on uniform lattices as test
cases. For HSS we directly construct the compressed matrix by calling the Green’s
function in the randomized low-rank approximation routine.We perform the matrix-
vector multiplication using the FMM and HSS, and measure the time for the
compression/precalculation and application of the matrix-vector multiplication. We
also measure the peak memory consumption of both methods.

The elapsed time for the FMM and HSS for different problem sizes is shown
in Fig. 2. In order to isolate the effect of the thread scalability of the two methods,
these runs are performed on a single core of a 12-core Ivy Bridge (E5-2695 v2). For
the 2D Laplace equation, the FMM shows some overhead for small N, but is about
3 orders of magnitude faster than HSS for larger problems. For the 3D Laplace
equation, the FMM is about 2 orders of magnitude faster than HSS for smaller N,
but HSS exhibits non-optimal behavior for large N because the rank keeps growing.

The large difference in the computational time is actually coming from the heavy
computation in the sampling phase and compression phase of the HSS. In Fig. 3,

103 104 105 106 107

N

10-4

10-3

10-2

10-1

100

101

102

103

tim
e 

[s
]

O(N)
HSS(Laplace3D)
HSS(Laplace2D)
FMM(Laplace3D)
FMM(Laplace2D)

Fig. 2 Elapsed time for the matrix-vector multiplication using FMM and HSS for different
problem sizes



Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation 277

1024 2048 4096 8192 16384 32768 65536
N

0

20

40

60

80

100

%
 o

f t
ot

al

Sample
Compress
Mat-Vec

Fig. 3 Percentage of the computation time of HSS for different problem sizes

103 104 105 106

N

10-1

100

101

102

103

104

105

M
em

or
y 

us
ag

e 
[M

B]

O(N)

HSS
FMM

Fig. 4 Peak memory usage of FMM and HSS for the 3D Laplace equation

we show the percentage of the computation time of HSS for different problem sizes
N. “Sample” is the sampling time, “Compress” is the compression time, and “Mat-
Vec” is the matrix-vector multiplication time. We can see that the sampling is taking
longer and longer as the problem size increases. This is because the rank k increases
with the problem size N, and both sampling and compression time increase with the
k and N.

The peak memory usage of FMM and HSS is shown in Fig. 4 for the 3D Laplace
equation. We see that the FMM has strictly O.N/ storage requirements, but since



278 R. Yokota et al.

the rank in the HSS grows for 3D kernels it does not show the ideal O.N logN/

behavior. The disadvantage of HSS is two-fold. First of all, its algebraic nature
requires it to store the compressed matrix, where as the FMM is analytic and
therefore matrix-free. Secondly, the weak admissibility causes the rank to grow
for 3D problems, and with that the memory consumption grows at a suboptimal
complexity.

4.2 FMM vs. Multigrid

If we are to use the FMM as a matrix-freeO.N/ preconditioner based on hierarchical
low-rank approximation, the natural question to ask is “How does it compare against
multigrid?”, which is a much more popular matrix-free O.N/ preconditioner for
solving elliptic PDEs. We perform a benchmark test similar to the one in the
previous subsection, for the Laplace equation and Helmholtz equation on a 3D
cubic lattice Œ�1; 1�3, but for this case we impose Dirichlet boundary conditions
at the faces of the domain. The preconditioners are used inside a Krylov subspace
solver. The runs were performed on Matlab using a finite element package IFISS.
Our fast multipole preconditioner is compared with the incomplete Cholesky (IC)
factorization with zero fill implemented in Matlab and the algebraic multigrid
(AMG) and geometric multigrid (GMG) methods in IFISS. The FMM code is
written in C and called as a MEX function.

The convergence rate of the FMM and Multigrid preconditioners for the Laplace
equation is shown in Fig. 5, for a grid spacing of h D 2�5. “AMG” is algebraic
multigrid, “GMG” is geometric multigrid, “Inc Chol” is incomplete Cholesky. The
� value represents the accuracy of the FMM. We see that the FMM preconditioner
has comparable convergence to the algebraic and geometric multigrid method. Even
for a very low-accuracy FMM with � D 10�2, the convergence rate is much better
than the incomplete Cholesky. We refer to the work by Ibeid et al. [67] for more
detailed comparisons between FMM and Multigrid.

A similar plot is shown for the Helmholtz equation with grid spacing of h D 2�5

and wave number � D 7 in Fig. 6. The nomenclature of the legend is identical to
that of Fig. 5. In this case, we see a larger difference between the convergence rate
of FMM andMultigrid. Even the FMM with the worst accuracy does better than the
multigrid. We have also confirmed that the FMM preconditioner has a convergence
rate that is independent of the problem size, up to moderate wave numbers of �.

The strong scaling of FMM and AMG are shown in Fig. 7, which includes the
setup phase and all iterations it took to converge. All calculations were performed
on the TACC Stampede system without using the coprocessors. Stampede has
6400 nodes, each with two Xeon E5-2680 processors and one Intel Xeon Phi
SE10P coprocessor and 32GB of memory. We used the Intel compiler (version
13.1.0.146) and configured PETSc with “COPTFLAGS=-O3 FOPTFLAGS=-O3
-with-clanguage=cxx



Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation 279

0 5 10 15 20
10−8

10−6

10−4

10−2

100

102

Iterations

R
es

id
ua

l

FMM (ε=10−6)
FMM (ε=10−4)
FMM (ε=10−2)
AMG
GMG
Inc Chol

Fig. 5 Convergence rate of the FMM and Multigrid preconditioners for the Laplace equation on a
Œ�1; 1�3 lattice with spacing h D 2�5

0 5 10 15 20
Iterations

10-8

10-6

10-4

10-2

100

102

R
es

id
ua

l

FMM (ε= 10-6)
FMM (ε= 10-4)
FMM (ε= 10-2)
AMG
GMG
Inc Chol

Fig. 6 Convergence rate of the FMM and Multigrid preconditioners for the Helmholtz equation
on a Œ�1; 1�3 lattice with spacing h D 2�5 and wave number � D 7



280 R. Yokota et al.

100 101 102 103

Number of cores

100

102

104

tim
e 

[s
]

ExaFMM (FMM)
BoomerAMG (Multigrid)

Fig. 7 Strong scaling of the 2-D FMM and AMG preconditioners

-download-f-blas-lapack -download-hypre
-download-metis -download-parmetis

-download-superlu_dist -with-debugging=0”. For BoomerAMG
we compared different relaxation, coarsening, and interpolation methods and found
that

“-pc_hypre_boomeramg_relax_type_all
backward-SOR/Jacobi
-pc_hypre_boomeramg_coarsen_type
modifiedRuge-Stueben

-pc_hypre_bommeramg_interp_type classical” gives the best per-
formance. We use a grid size of N D 40962 and run from 1 to 1024 cores using
up to 16 cores per node on Stampede. For this particular Poisson problem on
this particular machine using this particular FMM code we see an advantage over
BoomerAMG past 512 cores.

5 Conclusions and Outlook

We have shown the contrast between the analytical and algebraic hierarchical low-
rank approximations, by reviewing the contributions over the years and placing them
along the analytical-algebraic spectrum. The relation between Treecode, FMM,
KIFMM, black-box FMM, H -matrix,H 2-matrix, HODLR, HSS, HBS, and BLR
were explained from the perspective of compute-memory tradeoff. This birds-eye



Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation 281

view of the entire hierarchical low-rank approximation landscape from analytical to
algebraic, allows us to place ideas like precomputation of FMM translation matrices
and relate that to storage reduction techniques for the algebraic variants.

Some important findings from this cross-disciplinary literature review are:

• Translational invariance of the FMM operators suggest that H 2-matrices (and
the like) have mostly duplicate entries, which many are redundantly storing at
the moment.

• The analytical variants can now perform factorization and are kernel indepen-
dent, so the decision to use the algebraic variants at the cost of consuming more
memory should be made carefully.

• The kernel-independent variants of FMM can be used as a matrix-free O.N/

compression technique.
• The use of SVD to compress the FMM translation matrices, makes the work on

variable expansion order and its error optimized variants redundant.
• The hierarchical compression should not be applied directly to the inverse or

factorizations of sparse matrices just because they fill-in. One must first try to
minimize fill-in, and then compress only the dense blocks that cannot be avoided.

The comparison benchmarks between FMM and HSS are still preliminary
tests for a very simple case. However, they clearly demonstrate the magnitude of
the difference that lies between the various hierarchical low-rank approximation
methods. The comparison between FMM and multigrid is also a very simple test
case, but it reveals the previously unquantified convergence properties of low-
accuracy FMM as a preconditioner. Of course, for such simple problems the FMM
can give the exact solution in finite arithmetic and therefore solve the problem in
a single iteration. The interesting point here is not the fact that it can be used as
a preconditioner, but the practical performance of the low-accuracy FMM being
significantly faster than the high accuracy FMM, even if it requires a few iterations.

There is much more that can be done if all of these complicated hierarchical low-
rank approximation methods could somehow be made easier to code. We believe
a modular view of these methods will help the developers though separation of
concerns. Instead of everyone coding a slightly different version of the whole thing,
we could each choose a module to focus on that fits our research interests, and
contribute to a larger and more sustainable ecosystem. A few ideas to facilitate the
transition to such a community effort are:

1. Create a common benchmark (mini app) for each of the modules.
2. Gradually propagate standards in the community, starting from the major codes.
3. Develop a common interface between the hierarchical structure and inner kernels.
4. Do not try to unify code, just have a standard with a common API (like MPI).

Acknowledgements We thank François-Henry Rouet, Pieter Ghysels, and Xiaoye, S. Li for
providing the STRUMPACK interface for our comparisons between FMM and HSS. This work
was supported by JSPS KAKENHI Grant-in-Aid for Research Activity Start-up Grant Number
15H06196. This publication was based on work supported in part by Award No KUK-C1-013-
04, made by King Abdullah University of Science and Technology (KAUST). This work used



282 R. Yokota et al.

the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by
National Science Foundation grant number OCI-1053575.

References

1. Ambikasaran, S., Darve, E.: An O(NlogN) fast direct solver for partial hierarchically semi-
separable matrices. J. Sci. Comput. 57, 477–501 (2013)

2. Ambikasaran, S., Darve, E.: The inverse fast multipole method. arXiv:1407.1572v1 (2014)
3. Ambikasaran, S., Li, J.-Y., Kitanidis, P.K., Darve, E.: Large-scale stochastic linear inversion

using hierarchical matrices. Comput. Geosci. 17(6), 913–927 (2013)
4. Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., L’Excellent, J.-Y., Weisbecker, C.:

Improving multifrontal methods by means of block low-rank representations. SIAM J. Sci.
Comput. 37(3), A1451–A1474 (2015)

5. Aminfar, A., Darve, E.: A fast, memory efficient and robust sparse preconditioner based on
a multifrontal approach with applications to finite-element matrices. Int. J. Numer. Methods
Eng. 107, 520–540 (2016)

6. Aminfar, A., Ambikasaran, S., Darve, E.: A fast block low-rank dense solver with applications
to finite-element matrices. J. Comput. Phys. 304, 170–188 (2016)

7. Anderson, C.R.: An implementation of the fast multipole method without multipoles. SIAM
J. Sci. Stat. Comput. 13(4), 923–947 (1992)

8. Appel, A.W.: An efficient program for many-body simulation. SIAM J. Sci. Stat. Comput.
6(1), 85–103 (1985)

9. Barba, L.A., Yokota, R.: How will the fast multipole method fare in the exascale era? SIAM
News 46(6), 1–3 (2013)

10. Barnes, J., Hut, P.: O(NlogN) force-calculation algorithm. Nature 324, 446–449 (1986)
11. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86, 565–589

(2000)
12. Bebendorf, M.: Hierarchical Matrices. Lecture Notes in Computational Science and Engi-

neering, vol. 63. Springer, Berlin (2008)
13. Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices.

Computing 70, 1–24 (2003)
14. Bédorf, J., Gaburov, E., Fujii, M.S., Nitadori, K., Ishiyama, T., Portegies Zwart, S.: 24.77

Pflops on a gravitational tree-code to simulate the milky way galaxy with 18600 GPUs.
In: Proceedings of the 2014 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–12 (2014)

15. Berman, C.L.: Grid-multipole calculations. SIAM J. Sci. Comput. 16(5), 1082–1091 (1995)
16. Börm, S.: Construction of data-sparse h2-matrices by hierarchical compression. SIAM J. Sci.

Comput. 31(3), 1820–1839 (2009)
17. Börm, S., Grasedyck, L.: Hybrid cross approximation of integral operators. Numer. Math.

101, 221–249 (2005)
18. Börm, S., Grasedyck, L., Hackbusch, W.: Introduction to hierarchical matrices with applica-

tions. Eng. Anal. Bound. Elem. 27, 405–422 (2003)
19. Bremer, J.: A fast direct solver for the integral equations of scattering theory on planar curves

with corners. J. Comput. Phys. 231, 1879–1899 (2012)
20. Brunner, D., Junge, M., Rapp, P., Bebendorf, M., Gaul, L.: Comparison of the Fast Multipole

Method with Hierarchical Matrices for the Helmholtz-BEM. Comput. Model. Eng. Sci. 58(2),
131–160 (2010)

21. Burant, J.C., Strain, M.C., Scuseria, G.E., Frisch, M.J.: Analytic energy gradients for the
Gaussian very fast multipole method (GvFMM). Chem. Phys. Lett. 248, 43–49 (1996)

22. Chaillat, S., Bonnet, M., Semblat, J.-F.: A multi-level fast multipole BEM for 3-D elastody-
namics in the frequency domain. Comput. Methods Appl. Mech. Eng. 197, 4233–4249 (2008)



Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation 283

23. Chan, T.F.: On the existence and computation of LU-factorizations with small pivots. Math.
Comput. 42(166), 535–547 (1984)

24. Chan, T.F.: Rank revealing QR factorizations. Linear Algebra Appl. 88/89, 67–82 (1987)
25. Chandrasekaran, S., Ipsen, I.C.F.: On rank-revealing factorizations. SIAM J. Matrix Anal.

Appl. 15(2), 592–622 (1994)
26. Chandrasekaran, S., Dewilde, P., Gu, M., Lyons, W., Pals, T.: A fast solver for HSS

representations via sparse matrices. SIAM J. Matrix Anal. Appl. 29(1), 67–81 (2006)
27. Chandrasekaran, S., Dewilde, P., Gu, M., Somasunderam, N.: On the numerical rank of the

off-diagonal blocks of Schur complements of discretized elliptic PDEs. SIAM J. Matrix Anal.
Appl. 31(5), 2261–2290 (2010)

28. Cheng, H., Gimbutas, Z., Martinsson, P.G., Rokhlin, V.: On the compression of low rank
matrices. SIAM J. Sci. Comput. 26(4), 1389–1404 (2005)

29. Choi, C.H., Ruedenberg, K., Gordon, M.S.: New parallel optimal-parameter fast multipole
method (OPFMM). J. Comput. Chem. 22(13), 1484–1501 (2001)

30. Corona, E., Martinsson, P.G., Zorin, D.: An O(N) direct solver for integral equations on the
plane. Appl. Comput. Harmon. Anal. 38, 284–317 (2015)

31. Coulaud, O., Fortin, P., Roman, J.: High performance BLAS formulation of the multipole-to-
local operator in the fast multipole method. J. Comput. Phys. 227, 1836–1862 (2008)

32. Dachsel, H.: Corrected article: “an error-controlled fast multipole method”. J. Chem. Phys.
132, 119901 (2010)

33. Darve, E., Havé, P.: A fast multipole method for Maxwell equations stable at all frequencies.
Philos. Trans. R. Soc. Lond. A 362, 603–628 (2004)

34. Darve, E., Cecka, C., Takahashi, T.: The fast multipole method on parallel clusters, multicore
processors, and graphics processing units. C.R. Mec. 339, 185–193 (2011)

35. Dehnen, W.: A hierarchical O(N) force calculation algorithm. J. Comput. Phys. 179(1), 27–
42 (2002)

36. Dutt, A., Gu, M., Rokhlin, V.: Fast algorithms for polynomial interpolation, integration, and
differntiation. SIAM J. Numer. Anal. 33(5), 1689–1711 (1996)

37. Elliott, W.D., Board, J.A.: Fast Fourier transform accelerated fast multipole algorithm. SIAM
J. Sci. Comput. 17(2), 398–415 (1996)

38. Ethridge, F., Greengard, L.: A new fast-multipole accelerated Poisson solver in two dimen-
sions. SIAM J. Sci. Comput. 23(3), 741–760 (2001)

39. Fong, W., Darve, E.: The black-box fast multipole method. J. Comput. Phys. 228, 8712–8725
(2009)

40. Fortin, P.: Multipole-to-local operator in the fast multipole method: Comparison of FFT,
rotations and BLAS improvements. Technical Report RR-5752, Rapports de recherche, et
theses de l’Inria (2005)

41. Gillman, A., Barnett, A., Martinsson, P.G.: A spectrally accurate direct solution technique for
frequency-domain scattering problems with variable media. BIT Numer. Math. 55, 141–170
(2015)

42. Gimbutas, Z., Greengard, L.: Fast multi-particle scattering: a hybrid solver for the Maxwell
equations in microstructured materials. J. Comput. Phys. 232, 22–32 (2013)

43. Gimbutas, Z., Rokhlin, V.: A generalized fast multipole method for nonoscillatory kernels.
SIAM J. Sci. Comput. 24(3), 796–817 (2002)

44. Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L.: A theory of pseudoskeleton approxi-
mations. Linear Algebra Appl. 261(1–3), 1–21 (1997)

45. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of H-matrices. Computing 70,
295–334 (2003)

46. Grasedyck, L., Kriemann, R., Le Borne, S.: Parallel black box H-LU preconditioning for
elliptic boundary value problems. Comput. Vis. Sci. 11, 273–291 (2008)

47. Grasedyck, L., Hackbusch, W., Kriemann, R.: Performance of H-LU preconditioning for
sparse matrices. Comput. Methods Appl. Math. 8(4), 336–349 (2008)

48. Grasedyck, L., Kriemann, R., Le Borne, S.: Domain decomposition based H-LU precondi-
tioning. Numer. Math. 112, 565–600 (2009)



284 R. Yokota et al.

49. Gray, A.G., Moore, A.W.: N-body problems in statistical learning. In: Leen, T.K., Dietterich,
T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13, pp. 521—
527. MIT Press, Cambridge (2001)

50. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2),
325–348 (1987)

51. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace
equation in three dimensions. Acta Numer. 6, 229–269 (1997)

52. Greengard, L., Gueyffier, D., Martinsson, P.G., Rokhlin, V.: Fast direct solvers for integral
equations in complex three dimensional domains. Acta Numer. 18, 243–275 (2009)

53. Gu, M., Eisenstat, S.C.: Efficient algorithms for computing a strong rank-revealing QR
factorization. SIAM J. Sci. Comput. 17(4), 848–869 (1996)

54. Gumerov, N.A., Duraiswami, R.: Fast radial basis function interpolation via preconditioned
Krylov iteration. SIAM J. Sci. Comput. 29(5), 1876–1899 (2007)

55. Hackbusch, W.: A sparse matrix arithmetic based on H-matrices, part I: Introduction to H-
matrices. Computing 62, 89–108 (1999)

56. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element
method by panel clustering. Numer. Math. 54, 463–491 (1989)

57. Hackbusch, W., Khoromskij, B., Sauter, S.A.: On h2-matrices. In: Bungartz, H., Hoppe, R.,
Zenger, C. (eds.) Lectures on Applied Mathematics. Springer, Berlin (2000)

58. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288
(2011)

59. Hao, S., Martinsson, P.G., Young, P.: An efficient and highly accurate solver for multi-body
acoustic scattering problems involving rotationally symmetric scatterers. Comput. Math.
Appl. 69, 304–318 (2015)

60. Hénon, P., Saad, Y.: A parallel multistage ILU factorization based on a hierarchical graph
decomposition. SIAM J. Sci. Comput. 28(6), 2266–2293 (2006)

61. Hesford, A.J., Waag, R.C.: Reduced-rank approximations to the far-field transform in the
gridded fast multipole method. J. Comput. Phys. 230, 3656–3667 (2011)

62. Ho, K.L., Greengard, L.: A fast direct solver for structured linear systems by recursive
skeletonization. SIAM J. Sci. Comput. 34(5), A2507–A2532 (2012)

63. Ho, K.L., Ying, L.: Hierarchical interpolative factorization for elliptic operators: Integral
equations. arXiv:1307.2666 (2015)

64. Hong, Y.P., Pan, C.T.: Rank-revealing QR factorizations and the singular value decomposi-
tion. Math. Comput. 58(197), 213–232 (1992)

65. Hwang, T.-M., Lin, W.-W., Yang, E.K.: Rank revealing LU factorizations. Linear Algebra
Appl. 175, 115–141 (1992)

66. Hwang, T.-M., Lin, W.-W., Pierce, D.: Improved bound for rank revealing LU factorizations.
Linear Algebra Appl. 261(1), 173–186 (1997)

67. Ibeid, H., Yokota, R., Pestana, J., Keyes, D.: Fast multipole preconditioners for sparse
matrices arising from elliptic equations. arXiv:1308.3339 (2016)

68. Izadi, M.: Hierarchical Matrix Techniques on Massively Parallel Computers. Ph.D. thesis,
Universitat Leipzig (2012)

69. Kong, W.Y., Bremer, J., Rokhlin, V.: An adaptive fast direct solver for boundary integral
equations in two dimensions. Appl. Comput. Harmon. Anal. 31, 346–369 (2011)

70. Langston, H., Greengard, L., Zorin, D.: A free-space adaptive FMM-based PDE solver in
three dimensions. Commun. Appl. Math. Comput. Sci. 6(1), 79–122 (2011)

71. Le Borne, S.: Multilevel hierarchical matrices. SIAM J. Matrix Anal. Appl. 28(3), 871–889
(2006)

72. Lee, D., Vuduc, R., Gray, A.G.: A distributed kernel summation framework for general-
dimension machine learning. In: Proceedings of the 2012 SIAM International Conference
on Data Mining (2012)



Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation 285

73. Lessel, K., Hartman, M., Chandrasekaran, S.: A fast memory efficient construction algo-
rithm for hierarchically semi-separable representations. http://scg.ece.ucsb.edu/publications/
MemoryEfficientHSS.pdf (2015)

74. Li, J.-Y., Ambikasaran, S., Darve, E.F., Kitanidis, P.K.: A Kalman filter powered by h2-
matrices for quasi-continuous data assimilation problems. Water Resour. Res. 50, 3734–3749
(2014)

75. Liang, Z., Gimbutas, Z., Greengard, L., Huang, J., Jiang, S.: A fast multipole method for the
Rotne-Prager-Yamakawa tensor and its applications. J. Comput. Phys. 234, 133–139 (2013)

76. Liberty, E., Woolfe, F., Martinsson, P.G., Rokhlin, V., Tygert, M.: Randomized algorithms for
the low-rank approximation of matrices. Proc. Natl. Acad. Sci. U.S.A. 104(51), 20167–20172
(2007)

77. Makino, J.: Yet another fast multipole method without multipoles – Pseudoparticle multipole
method. J. Comput. Phys. 151(2), 910–920 (1999)

78. Malhotra, D., Biros, G.: PVFMM: a parallel kernel independent FMM for particle and volume
potentials. Commun. Comput. Phys. 18(3), 808–830 (2015)

79. Malhotra, D., Gholami, A., Biros, G.: A volume integral equation stokes solver for problems
with variable coefficients. In: Proceedings of the 2014 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 1–11 (2014)

80. March, W.B., Xiao, B., Biros, G.: ASKIT: approximate skeletonization kernel-independent
treecode in high dimensions. SIAM J. Sci. Comput. 37(2), A1089–A1110 (2015)

81. Martinsson, P.G.: The hierarchical Poincaré-Steklov (HPS) solver for elliptic PDEs: a tutorial.
arXiv:1506.01308 (2015)

82. Martinsson, P.G., Rokhlin, V.: A fast direct solver for boundary integral equations in two
dimensions. J. Comput. Phys. 205, 1–23 (2005)

83. Miranian, L., Gu, M.: Strong rank revealing LU factorizations. Linear Algebra Appl. 367,
1–16 (2003)

84. Ohno, Y., Yokota, R., Koyama, H., Morimoto, G., Hasegawa, A., Masumoto, G., Okimoto, N.,
Hirano, Y., Ibeid, H., Narumi, T., Taiji, M.: Petascale molecular dynamics simulation using
the fast multipole method on k computer. Comput. Phys. Commun. 185, 2575–2585 (2014)

85. Oliveira, S., Yang F.: An algebraic approach for H-matrix preconditioners. Computing 80,
169–188 (2007)

86. Pan, C.T.: On the existence and computation of rank-revealing LU factorizations. Linear
Algebra Appl. 316, 199–222 (2000)

87. Petersen, H.G., Soelvason, D., Perram, J.W., Smith, E.R.: The very fast multipole method. J.
Chem. Phys. 101(10), 8870–8876 (1994)

88. Rahimian, A., Lashuk, I., Veerapaneni, K., Chandramowlishwaran, A., Malhotra, D., Moon,
L., Sampath, R., Shringarpure, A., Vetter, J., Vuduc, R., Zorin, D., Biros, G.: Petascale
direct numerical simulation of blood flow on 200k cores and heterogeneous architectures.
In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10 (2010)

89. Rouet, F.-H., Li, X.-S., Ghysels, P., Napov, A.: A distributed-memory package for dense
hierarchically semi-separable matrix computations using randomization. arXiv:1503.05464
(2015)

90. Shao, Y., White, C.A., Head-Gordon, M.: Efficient evaluation of the Coulomb force in
density-functional theory calculations. J. Chem. Phys. 114(15), 6572–6577 (2001)

91. Takahashi, T., Cecka, C., Fong, W., Darve, E.: Optimizing the multipole-to-local operator in
the fast multipole method for graphical processing units. Int. J. Numer. Methods Eng. 89,
105–133 (2012)

92. Verde, A., Ghassemi, A.: Fast multipole displacement discontinuity method (FM-DDM) for
geomechanics reservoir simulations. Int. J. Numer. Anal. Methods Geomech. 39(18), 1953–
1974 (2015)

93. Wang, Y., Wang, Q., Deng, X., Xia, Z., Yan, J., Xu, H.: Graphics processing unit (GPU)
accelerated fast multipole BEM with level-skip M2L for 3D elasticity problems. Adv. Eng.
Softw. 82, 105–118 (2015)

http://scg.ece.ucsb.edu/publications/MemoryEfficientHSS.pdf
http://scg.ece.ucsb.edu/publications/MemoryEfficientHSS.pdf


286 R. Yokota et al.

94. White, C.A., Head-Gordon, M.: Rotating around the quartic angular momentum barrier in
fast multipole method calculations. J. Chem. Phys. 105(12), 5061–5067 (1996)

95. Wilkes, D.R., Duncan, A.J.: A low frequency elastodynamic fast multipole boundary element
method in three dimensions. Comput. Mech. 56, 829–848 (2015)

96. Willis, D., Peraire, J., White, J.: FastAero – a precorrected FFT-fast multipole tree steady and
unsteady potential flow solver. http://hdl.handle.net/1721.1/7378 (2005)

97. Wolf, W.R., Lele, S.K.: Aeroacoustic integrals accelerated by fast multipole method. AIAA
J. 49(7), 1466–1477 (2011)

98. Xia, J.: Randomized sparse direct solvers. SIAM J. Matrix Anal. Appl. 34(1), 197–227 (2013)
99. Xia, J.: O(N) complexity randomized 3D direct solver with HSS2D structure. In: Proceedings

of the Project Review, Geo-Mathematical Imaging Group, Purdue University, pp. 317–325
(2014)

100. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Superfast multifrontal method for large
structured linear systems of equations. SIAM J. Matrix Anal. Appl. 31(3), 1382–1411 (2009)

101. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Fast algorithms for hierarchically semiseperable
matrices. Numer. Linear Algebra Appl. 17, 953–976 (2010)

102. Yarvin, N., Rokhlin, V.: An improved fast multipole algorithm for potential fields on the line.
SIAM J. Numer. Anal. 36(2), 629–666 (1999)

103. Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole algorithm in two
and three dimensions. J. Comput. Phys. 196(2), 591–626 (2004)

104. Ying, L., Biros, G., Zorin, D.: A high-order 3D boundary integral equation solver for elliptic
PDEs in smooth domains. J. Comput. Phys. 219, 247–275 (2006)

105. Yokota, R., Bardhan, J.P., Knepley, M.G., Barba, L.A., Hamada, T.: Biomolecular electrostat-
ics using a fast multipole BEM on up to 512 GPUs and a billion unknowns. Comput. Phys.
Commun. 182, 1272–1283 (2011)

106. Yokota, R., Narumi, T., Yasuoka, K., Barba, L.A.: Petascale turbulence simulation using
a highly parallel fast multipole method on GPUs. Comput. Phys. Commun. 184, 445–455
(2013)

107. Yunis, E., Yokota, R., Ahmadia, A.: Scalable force directed graph layout algorithms using
fast multipole methods. In: The 11th International Symposium on Parallel and Distributed
Computing, Munich, June 2012

108. Zhao, Z., Kovvali, N., Lin, W., Ahn, C.-H., Couchman, L., Carin, L.: Volumetric fast
multipole method for modeling Schrödinger’s equation. J. Comput. Phys. 224, 941–955
(2007)

http://hdl.handle.net/1721.1/7378

	Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation
	1 Introduction
	2 Hierarchical Low-Rank Approximation: Analytic or Algebraic?
	2.1 Analytic Low-Rank Approximation
	2.2 Fast Translation Operators
	2.3 Semi-analytical FMM
	2.4 Algebraic Low-Rank Approximation

	3 Low-Rank Approximation for Factorization
	3.1 Sparse Matrix Factorization
	3.2 Dense Matrix Factorization

	4 Experimental Results
	4.1 FMM vs. HSS
	4.2 FMM vs. Multigrid

	5 Conclusions and Outlook
	References


