
An Elementary Derivation of the Projection
Method for Nonlinear Eigenvalue Problems
Based on Complex Contour Integration

Yusaku Yamamoto

Abstract The Sakurai-Sugiura (SS) projection method for the generalized eigen-
value problem has been extended to the nonlinear eigenvalue problem A.z/w D 0,
where A.z/ is an analytic matrix valued function, by several authors. To the best of
the authors’ knowledge, existing derivations of these methods rely on canonical
forms of an analytic matrix function such as the Smith form or the theorem of
Keldysh. While these theorems are powerful tools, they require advanced knowledge
of both analysis and linear algebra and are rarely mentioned even in advanced
textbooks of linear algebra. In this paper, we present an elementary derivation of
the SS-type algorithm for the nonlinear eigenvalue problem, assuming that the
wanted eigenvalues are all simple. Our derivation uses only the analyticity of the
eigenvalues and eigenvectors of a parametrized matrix A.z/, which is a standard
result in matrix perturbation theory. Thus we expect that our approach will provide
an easily accessible path to the theory of nonlinear SS-type methods.

1 Introduction

Given an n � n matrix A.z/ whose elements are analytic function of a complex
parameter z, we consider the problem of finding the values of z for which the linear
simultaneous equation A.z/w D 0 has a nonzero solution w. Such a problem is
known as the nonlinear eigenvalue problem and the value of z and w that satisfy this
condition are called the eigenvalue and the eigenvector, respectively. The nonlinear
eigenvalue problem arises in many fields of scientific and engineering computing,
such as the electronic structure calculation, nonlinear elasticity and theoretical fluid
dynamics.

There are several algorithms for solving the nonlinear eigenvalue problem,
including the multivariate Newton’s method [14] and its variants [13], the nonlinear
Arnoldi method [21], the nonlinear Jacobi-Davidson method [3] and methods based
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on complex contour integration [1, 2, 4, 22]. Among them, the last class of methods
have a unique feature that they can compute all the eigenvalues in a specified region
on the complex plane enclosed by a Jordan curve (i.e., simple closed curve) � .
In addition, they have large grain parallelism since the function evaluations for
numerical integration can be done for each sample point independently. In fact,
[1] reports that nearly linear speedup can be achieved even in a Grid environment,
where the interconnection network among the computing nodes is relatively weak.

These algorithms can be viewed as nonlinear extensions of the Sakurai-Sugiura
(SS) method for the generalized eigenvalue problem Ax D �Bx [16]. To find the
eigenvalues within a closed Jordan curve � in the complex plane, the SS method
computes the moments �p D R

�
z pu�.A � zB/�1v dz, where u and v are some

constant vectors, and extracts the information of the eigenvalues from the moments.
To justify the algorithm, Weierstrass’s canonical form [5] for (linear) matrix pencils
is used. Similarly, existing derivations of the SS-type algorithms for the nonlinear
eigenvalue problem rely on canonical forms of the analytic matrix function A.z/.
Specifically, Asakura et al. uses the Smith form for analytic matrix functions [6],
while Beyn and Yokota et al. employ the theorem of Keldysh [11, 12]. These
theorems are intricate structure theorems, which give canonical representations of
A.z/ that are valid on the whole domain enclosed by � . On the other hand, they
require advanced knowledge of both analysis and linear algebra and are rarely
introduced even in advanced textbooks of linear algebra.

In this paper, we present an elementary derivation of the SS-type method for the
nonlinear eigenvalue problem, assuming that all the eigenvalues of A.z/ in � are
simple. Instead of the whole domain enclosed by � , we consider an infinitesimally
small circle � �

i around each eigenvalue zi. This allows us to use the analyticity of the
eigenvalues and eigenvectors of a parametrized matrix A.z/, which is a well-known
result in matrix perturbation theory [9, p. 117][10, Chapter 2, Sections 1 & 2], to
evaluate the contour integral along � �

i . Then we aggregate the contributions from
each � �

i to evaluate the contour integral along � . This is sufficient for theoretical
justification of the nonlinear SS-type algorithm in the case of simple eigenvalues.
We believe that this provides an easily accessible approach to the theory of SS-type
methods for the nonlinear eigenvalue problem. We emphasize that our focus here is
not to propose a new algorithm for the nonlinear eigenvalue problem, but to provide
an elementary derivation of the SS-type nonlinear eigensolver.

This paper is structured as follows: In Sect. 2, we develop a theory for computing
the eigenvalues of A.z/ based on the complex contour integral. The algorithm based
on this theory is presented in Sect. 3. Section 4 gives some numerical results. Finally,
we give some concluding remarks in Sect. 5.

Throughout this paper, we use capital letters to denote matrices, bold small letters
to denote vectors, roman small letters and Greek letters to denote scalars. AT and A�
denote the transpose and the Hermitian conjugate of a matrix A, respectively. In
denotes the identity matrix of dimension n. For x 2 Cn, fxg denotes a subspace of
Cn spanned by x.
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2 The Theory

Let A.z/ be an n � n matrix whose elements are analytic functions of a complex
parameter z in some region of the complex plane. Let � be a closed Jordan curve
within that region and assume that A.z/ has m eigenvalues z1; z2; : : : ; zm within
� . We further assume that they are simple eigenvalues, that is, simple zeroes of
det.A.z//, and the number m is known. In the following, we refer to z1; z2; : : : ; zm as
nonlinear eigenvalues of A.z/.

For a fixed value of z, A.z/ is a constant matrix and therefore has n eigenvalues.
We refer to them as linear eigenvalues of A.z/. Also, we call the eigenvectors of a
constant matrix A.z/ linear eigenvectors. If zi is a nonlinear eigenvalue of A.z/, A.zi/
is singular and at least one of the linear eigenvalues of A.zi/ is zero. Moreover, since
z1; z2; : : : ; zm are simple eigenvalues, only one of the n linear eigenvalues become
zero at each of them. We denote the linear eigenvalue that becomes zero at z D zi by
�i.z/. Note that zi is a simple zero of �i.z/ because otherwise zi will not be a simple
zero of det.A.z//.

Since �i.z/ is a continuous function of A.z/ near zi [10, p. 93, Theorem 2.3], it
remains to be a simple linear eigenvalue of A.z/ in the neighborhood of z D zi and
has one-dimensional right and left eigenspaces. Let xi.z/ and yi.z/ be the (linear) left
and right eigenvectors, respectively, chosen so that y�

i .z/xi.z/ D 1. Also, let Xi.z/ 2
Cn�.n�1/ and Yi.z/ 2 Cn�.n�1/ be matrices whose column vectors are the basis of the
orthogonal complementary subspaces of fyi.z/g and fxi.z/g, respectively, and which
satisfy Y�

i .z/Xi.z/ D In�1. From these definitions, we have

�
y�
i .z/

Y�
i .z/

�
�
xi.z/ Xi.z/

� D
�
y�
i .z/xi.z/ y�

i .z/Xi.z/
Y�
i .z/xi.z/ Y�

i .z/Xi.z/

�

D
�

1 0T

0 In�1

�

: (1)

Note that xi.z/, yi.z/, Xi.z/ and Yi.z/ are not yet uniquely determined under these
conditions.

Now we show the following basic lemma.

Lemma 2.1 Let � �
i be a circle with center zi and radius �. For sufficiently small �,

�i.z/ is an analytic function of z within � �
i and all of xi.z/, yi.z/, Xi.z/ and Yi.z/ can

be chosen to be analytic functions of z within � �
i .

Proof For a sufficiently small �, �i.z/ is a simple linear eigenvalue of A.z/
everywhere in � �

i . In this case, it is well known that �i.z/ is an analytic function
of z in � �

i . See [9, p. 117] for the proof. Let Pi.z/ 2 Cn�n be a projection operator
on the right eigenvector of A.z/ belonging to �i.z/ along the left eigenvector. It is
also shown in [10, p. 93, Theorem 2.3] that Pi.z/ is an analytic function of z in � �

i
for sufficiently small �.

Now, let x.0/
i ¤ 0 be a (linear) right eigenvector of A.zi/ corresponding to �i.zi/

and set xi.z/ D Pi.z/x
.0/
i . Then xi.z/ is an analytic function of z and belongs to the

right eigenspace of �i.z/. Moreover, since xi.zi/ D Pi.zi/x
.0/
i D x.0/

i ¤ 0, xi.z/



254 Y. Yamamoto

remains nonzero within � �
i if � is sufficiently small. Thus we can adopt xi.z/ as a

(linear) right eigenvector corresponding to �i.z/.
Next, let Qy.0/

i ¤ 0 be a (linear) left eigenvector of A.zi/ corresponding to �i.zi/

and X.0/
i 2 Cn�.n�1/ be a matrix whose column vectors are the basis of the orthog-

onal complementary subspace of fQy.0/
i g. Set Xi.z/ D .I � Pi.z//X

.0/
i . Then, Xi.z/ is

an analytic function of z. Also, its column vectors are orthogonal to the (linear) left
eigenvector of A.z/ corresponding to �i.z/, which we denote by Qyi.z/, since

Qy�
i .z/Xi.z/ D Qy�

i .z/ .I � Pi.z//X
.0/
i D �Qy�

i .z/ � Qy�
i .z/

�
X.0/
i D 0T ; (2)

where we used the fact that P�
i .z/ is a projection operator on the left eigenvector

along the right eigenvector. Moreover, since Xi.zi/ D .I � Pi.zi//X
.0/
i D X.0/

i , Xi.z/
remains to be rank n�1 within � �

i if � is sufficiently small. In this situation, the col-
umn vectors of Xi.z/ constitute the basis of the orthogonal complementary subspace.

Finally we note that for sufficiently small �, the matrix Œxi.z/ Xi.z/� is of full rank
since the column vectors of Xi.z/ are orthogonal to the left eigenvector, while the
left and right eigenvectors are not orthogonal for a simple eigenvalue [15]. Hence
we can define a vector yi.z/ and a matrix Yi.z/ 2 Cn�.n�1/ by

�
y�
i .z/

Y�
i .z/

�

D �
xi.z/ Xi.z/

��1
: (3)

It is clear that yi.z/ and Yi.z/ are analytic functions of z and xi.z/, yi.z/, Xi.z/ and
Yi.z/ satisfy Eq. (1). From Eq. (1), it is apparent that Yi.z/ is of rank n � 1 and its
columns are the basis of the orthogonal subspace of xi.z/. Finally, yi.z/ is a (linear)
left eigenvector corresponding to �i.z/ since it is orthogonal to the columns of Xi.z/
and the eigenspace is one-dimensional.

Thus we have constructed xi.z/, yi.z/, Xi.z/ and Yi.z/ that satisfy all the
requirements of the lemma. ut

Using the result of Lemma 2.1 and Eq. (1), we can expand A.z/ in � �
i as

A.z/ D �
xi.z/ Xi.z/

�
�
y�
i .z/

Y�
i .z/

�

A.z/
�
xi.z/ Xi.z/

�
�
y�
i .z/

Y�
i .z/

�

D �
xi.z/ Xi.z/

�
�
y�
i .z/A.z/xi.z/ y�

i .z/A.z/Xi.z/
Y�
i .z/A.z/xi.z/ Y�

i .z/A.z/Xi.z/

� �
y�
i .z/

Y�
i .z/

�

D �
xi.z/ Xi.z/

�
�

�i.z/ 0T

0 Y�
i .z/A.z/Xi.z/

� �
y�
i .z/

Y�
i .z/

�

(4)

where all the elements and submatrices appearing in the last line are analytic
functions of z.

As for the submatrix Y�
i .z/A.z/Xi.z/, we can show the following lemma.

Lemma 2.2 For sufficiently small �, Y�
i .z/A.z/Xi.z/ is nonsingular within � �

i .
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Proof Since � is sufficiently small, we can assume that there is no other nonlinear
eigenvalues of A.z/ in � �

i than zi.
Now, assume that Y�

i .z/A.z/Xi.z/ is singular at some point z D Oz in � �
i . Then

there is a nonzero vector p 2 Cn�1 such that Y�
i .Oz/A.Oz/Xi.Oz/p D 0. It then follows

from Eqs. (4) and (1) that Xi.Oz/p is a (linear) right eigenvector of A.Oz/ corresponding
to the linear eigenvalue 0. Hence, Oz is a nonlinear eigenvalue of A.z/. But because
A.z/ has no other nonlinear eigenvalues than zi in � �

i , we have z D zi. On the other
hand, xi.Oz/ D xi.zi/ is also a (linear) right eigenvector of A.Oz/ corresponding to
the linear eigenvalue 0. Since the matrix Œxi.Oz/ Xi.Oz/� is of full rank (see Eq. (1)),
xi.Oz/ and Xi.Oz/p are linearly independent. Thus the null space of A.Oz/ is at least
two-dimensional. But this contradicts the assumption that Oz D zi is a simple zero of
det.A.z//. Hence Y�

i .z/A.z/Xi.z/ must be nonsingular within � �
i . ut

Combining Lemma 2.2 with Eq. (4), we have the following expansion of A.z/�1

valid everywhere in � �
i except at z D zi:

A.z/�1 D �
xi.z/ Xi.z/

�
"

�i.z/�1 0T

0
˚
Y�
i .z/A.z/Xi.z/

��1

# �
y�
i .z/

Y�
i .z/

�

: (5)

In the right hand side, �i.z/ is analytic except at z D zi. All other elements and
submatrices are analytic everywhere in � �

i . Note that
˚
Y�
i .z/A.z/Xi.z/

��1
is analytic

because A.z/, Xi.z/ and Yi.z/ are analytic (see Lemma 2.1) and Y�
i .z/A.z/Xi.z/ is

nonsingular, as proved in Lemma 2.2.
We now define the complex moments �1; �2; : : : ; �2m�1 by complex contour

integration as

�p.u; v/ D 1

2�i

I

�

z pu�A.z/�1A0.z/v dz; (6)

where u and v are some constant vectors in Cn. The next lemma shows that these
complex moments contain information on the nonlinear eigenvalues of A.z/ in � .

Lemma 2.3 The complex moments can be written as

�p.u; v/ D
mX

iD1

�i.u; v/z pi ; (7)

where f�i.u; v/gmiD1 are some complex numbers. Moreover, f�i.u; v/gmiD1 are nonzero
for generic u and v.

Proof Let � �
i .i D 1; : : : ;m/ be a circle with center zi and with sufficiently small

radius �. In � , the integrand is analytic everywhere except inside � �
1 ; : : : ; � �

m , so
we only need to consider the integration along � �

i .
Since � is sufficiently small, Lemma 2.1 ensures that we can choose analytic

xi.z/, yi.z/, Xi.z/ and Yi.z/ within � �
i . Of course, �i.z/ is also analytic in � �

i . In
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addition, since �i.z/ has a simple zero at z D zi, it can be expressed as �i.z/ D
.z � zi/pi.z/, where pi.z/ is analytic and nonzero in � �

i .
Now, from Eq. (5), we have

A.z/�1 D �i.z/
�1xi.z/y�

i .z/ C Xi.z/
˚
Y�
i .z/A.z/Xi.z/

��1
Y�
i .z/ (8)

By differentiating Eq. (4) with respect to z, we have

A0.z/ D �i
0.z/xi.z/y�

i .z/ C �i.z/
˚
xi.z/y�

i .z/
�0

C ˚
Xi.z/Y

�
i .z/A.z/Xi.z/Y

�
i .z/

�0
(9)

Combining Eqs. (8) and (9), we have

A.z/�1A0.z/ D �i.z/
�1�i

0.z/xi.z/y�
i .z/ C xi.z/y�

i .z/
˚
xi.z/y�

i .z/
�0

C�i.z/xi.z/y�
i .z/

˚
Xi.z/Y

�
i .z/A.z/Xi.z/Y

�
i .z/

�0

CXi.z/
˚
Y�
i .z/A.z/Xi.z/

��1
Y�
i .z/A0.z/

D 1

z � zi
� xi.z/y�

i .z/ C pi0.z/
pi.z/

xi.z/y�
i .z/

C xi.z/y�
i .z/

˚
xi.z/y�

i .z/
�0

C 1

z � zi
� 1

pi.z/
� xi.z/y�

i .z/
˚
Xi.z/Y

�
i .z/A.z/Xi.z/Y

�
i .z/

�0

CXi.z/
˚
Y�
i .z/A.z/Xi.z/

��1
Y�
i .z/A0.z/: (10)

Note that in the rightmost hand side of Eq. (10), the second, third and fifth terms are
analytic and vanish by contour integration. Hence,

1

2�i

I

� �
i

z pu�A.z/�1A0.z/v dz

D 1

2�i

I

� �
i

z pu�
�

1

z � zi
� xi.z/y�

i .z/

C 1

z � zi
� 1

pi.z/
� xi.z/y�

i .z/
˚
Xi.z/Y

�
i .z/A.z/Xi.z/Y

�
i .z/

�0
�

v dz

D �i.u; v/z pi ; (11)
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where

�i.u; v/

D u�xi.zi/y�
i .zi/

�

In C 1

pi.zi/

˚
Xi.zi/Y

�
i .zi/A.zi/Xi.zi/Y

�
i .zi/

�0
�

v: (12)

In deriving the last equality of Eq. (11), we used the fact that all the factors in the
integrand except 1=.z� zi/ is analytic in � �

i . �i.u; v/ is nonzero for generic u and v,
since �i.u; v/ can be written as u�Xv, where X is a nonzero constant matrix.

Finally, we have

�p.u; v/ D 1

2�i

I

�

z pu�A.z/�1A0.z/v dz

D
mX

iD1

1

2�i

I

� �
i

z pu�A.z/�1A0.z/v dz

D
mX

iD1

�i.u; v/z pi : (13)

This completes the proof. ut
Note that we could adopt the definition

�p.u; v/ D 1

2�i

I

�

z pu�A0.z/A.z/�1v dz; (14)

instead of Eq. (6) and get the same result, although the expression for �i.u; v/ in
Eq. (12) is slightly different. So the order of A.z/�1 and A0.z/ does not actually
matter.

Once f�p.u; v/g2m�1
pD0 have been computed, we can extract the information on the

nonlinear eigenvalues fzigmiD1 from them in the same way as in the algorithm for the
linear eigenvalue problem [16]. To this end, we first define two Hankel matrices Hm

and H<
m by

Hm D

0

B
B
B
@

�0 �1 � � � �m�1

�1 �2 � � � �m
:::

:::
: : :

:::

�m�1 �m � � � �2m�2

1

C
C
C
A

; H<
m D

0

B
B
B
@

�1 �2 � � � �m

�2 �3 � � � �mC1

:::
:::

: : :
:::

�m �mC1 � � � �2m�1

1

C
C
C
A

: (15)

Here we have suppressed the dependence of �p on u and v for brevity. The next
theorem shows how to compute the nonlinear eigenvalues from Hm and H<

m . This
is exactly the same theorem used for the linear eigenvalue problem in [16], but we
include the proof for completeness.
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Theorem 2.4 Assume that A.z/ has m simple nonlinear eigenvalues z1; z2; : : : ; zm
within � . Assume further that �i’s defined by Eq. (12) are nonzero for i D 1; : : : ;m.
Then, z1; z2; : : : ; zm are given as the m eigenvalues of the matrix pencil H<

m � �Hm

defined by Eq. (15).

Proof Define a Vandermonde matrix Vm and two diagonal matrices Dm and 	m by

Vm D

0

B
B
B
@

1 1 � � � 1

z1 z2 � � � zm
:::

:::
:::

:::

zm�1
1 zm�1

2 � � � zm�1
m

1

C
C
C
A

; (16)

Dm D diag.�1; �2; � � � ; �m/; (17)

	m D diag.z1; z2; � � � ; zm/: (18)

Then it is easy to see that Hm D VmDmVT
m and H<

m D VmDm	mVT
m. Since �i ¤

0 (i D 1; : : : ;m), Dm is nonsingular. Also, since the m nonlinear eigenvalues are
distinct, Vm is nonsingular. Thus we have

� is an eigenvalue of H<
m � �Hm:

, H<
m � �Hm is singular.

, 	m � �Im is singular.

, 9k; � D zk: (19)

This completes the proof. ut
We can also compute the (nonlinear) eigenvectors corresponding to z1; z2; : : : ; zm

by slightly modifying the lemma and the theorem stated above. Let n-dimensional
vectors s0; s1; : : : ; sm�1 be defined by

sp.v/ D 1

2�i

I

�

z pA.z/�1A0.z/v dz . p D 0; 1; : : : ;m � 1/: (20)

Then we have the following lemma.

Lemma 2.5 The vector sp can be written as

sp.v/ D
mX

iD1

z pi 
i.v/xi.zi/; (21)

where f
i.v/gmiD1 are some complex numbers. Moreover, f
i.v/gmiD1 are nonzero for
generic v.
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Proof Let ej be the j-th column of In. Then we have from Eqs. (20), (13) and (12),

sp.v/ D
nX

jD1

ej
1

2�i

I

�

z pe�
j A.z/�1A0.z/v dz

D
nX

jD1

ej�p.ej; v/

D
nX

jD1

mX

iD1

ej�i.ej; v/z pi

D
mX

iD1

z pi xi.zi/y
�
i .zi/

�

In C 1

pi.zi/

˚
Xi.zi/Y

�
i .zi/A.zi/Xi.zi/Y

�
i .zi/

�0
�

v

D
mX

iD1

z pi 
i.v/xi.zi/; (22)

where


i.v/ D y�
i .zi/

�

In C 1

pi.zi/

˚
Xi.zi/Y

�
i .zi/A.zi/Xi.zi/Y

�
i .zi/

�0
�

v: (23)

Apparently, 
i.v/ is nonzero for generic v. ut
Denote by wi the (nonlinear) eigenvector of A.z/ corresponding to the eigenvalue

zi, that is, wi D xi.zi/. Then w1;w2; : : : ;wm can be computed as follows.

Theorem 2.6 If 
i ¤ 0 for i D 1; : : : ;m, the eigenvectors are given by

Œw1;w2; : : : ;wm� D Œs0; s1; : : : ; sm�1�V
�T
m : (24)

Proof From Lemma 2.5, Œs0; s1; : : : ; sm�1� can be written as

Œs0; s1; : : : ; sm�1�

D
"

mX

iD1

z0
i 
i.v/xi.zi/;

mX

iD1

z1
i 
i.v/xi.zi/; : : : ;

mX

iD1

zm�1
i 
i.v/xi.zi/

#

D Œ
1x1.z1/; 
2x2.z2/; : : : ; 
mxm.zm/�VT
m: (25)

Hence,

Œ
1x1.z1/; 
2x2.z2/; : : : ; 
mxm.zm/� D Œs0; s1; : : : ; sm�1�V
�T
m : (26)
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The theorem follows by noting that if 
i ¤ 0, 
ixi.zi/ is a nonzero vector that
satisfies A.zi/xi.zi/ D �i.zi/xi.zi/ D 0 and is itself a nonlinear eigenvector
corresponding to zi. ut

3 The Algorithm

In this section, we present an algorithm for computing the nonlinear eigenvalues of
A.z/ that lie within � based on the theory developed in the previous section. For
simplicity, we restrict ourselves to the case where � is a circle centered at the origin
and with radius r.

In the algorithm, we need to approximate the contour integrals in Eqs. (6)
and (20) with some quadrature. Since they are integrals of an analytic function over
the entire period, we use the trapezoidal rule [19, 20], which converges exponentially
and therefore is an excellent method for the task. When the number of sample points
is K, Eqs. (6) and (20) become

�p.u; v/ D rpC1

K

K�1X

jD0

!
. pC1/j
K u�A.r!j

K/�1A0.r!j
K/v; (27)

sp.v/ D rpC1

K

K�1X

jD0

!
. pC1/j
K A.r!j

K/�1A0.r!j
K/v; (28)

respectively, where !K D exp
�

2� i
K

�
.

Using these expressions, the algorithm can be written as in Algorithm 1.

[Algorithm1: Finding the eigenvalues in � and corresponding eigenvectors]
h1i Input n, m, r, K, u and vĄD
h2i !K D exp

�
2� i
K

�

h3i for j D 0; 1; : : : ;K � 1

h4i �j D r!j
K

h5i tj D A.�j/
�1A0.�j/v

h6i end for
h7i for p D 0; 1; : : : ; 2m � 1

h8i sp D rpC1

K

PK�1
jD0 !

. pC1/j
K tj

h9i �p D u�sp
h10i end for
h11i Construct Hm and H<

m from �0; �1; : : : ; �2m�1.
h12i Find the eigenvalues z1; z2; : : : ; zm of H<

m � �Hm.
h13i Compute Œw1;w2; : : : ;wm� D Œs0; s1; : : : ; sm�1�V�T

m
using the matrix Vm defined by Eq. (16).
h14i Output z1; z2; : : : ; zm and w1;w; : : : ;wm.
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Concerning the use of Algorithm 1, several remarks are in order.

1. In this algorithm, the computationally dominant part is step 5, where the solution
of linear equations with coefficient matrix A.�j/ for j D 0; 1; : : : ;K�1 is needed.
This operation is repeated for K different values of �j. However, as is clear from
the algorithm, these K operations can be done completely in parallel. Thus the
algorithm has large-grain parallelism.

2. In step 13, since Vm is a Vandermonde matrix, multiplying V�T
m can be done

using a specialized solver for Vandermonde systems [7]. This is faster and more
accurate than first constructing Vm explicitly and then using a general-purpose
solver such as the Gaussian elimination.

3. Though this algorithm presupposes that m, the number of eigenvalues in � , is
known in advance, this is often not the case. When m is unknown, we can choose
some integer M, which hopefully satisfies M � m, run the algorithm by replacing
m with M, and compute f�igMiD1 by �i D eTi V

�1
M HMV�T

M ei. In this case, M � m of
fz1; z2; : : : ; zmg are spurious eigenvalues that do not correspond to the nonlinear
eigenvalues of A.z/ in � . These spurious eigenvalues can be distinguished from
the true ones since the corresponding j�ij’s are very small. This technique was
proposed in [17] for the (linear) generalized eigenvalue problem and its detailed
analysis is given in [1]. There is also a technique to determine m using the
singular value decomposition of HM . See [8] for details.

4 Numerical Examples

In this section, we give numerical examples of our Algorithm 1. The experiments
were performed on a PC with a Xeon processor and Red Hat Linux using the
Gnu C++ compiler. We used LAPACK routines to solve the linear simultaneous
equation with coefficient matrix A.�j/ and to find the eigenvalues of the matrix
pencil H<

m � �Hm.

Example 1 Our first example is a small symmetric quadratic eigenvalue problem
taken from [18]:

A.z/D

2

6
6
6
6
6
6
6
6
6
4

�10�2C�C10

2�2C2�C2 �11�2C�C9 sym:

��2C��1 2�2C2�C3 �12�2C10

�2C2�C2 �2�2C��1 ��2�2�C2 �10�2C2�C12

3�2C��2 ��2C3��2 �2�2��1 2�2C3�C1 �11�2C3�C10

3

7
7
7
7
7
7
7
7
7
5

: (29)

This problem has ten distinct eigenvalues and their values are (to three deci-
mals) [13]:

�1:27 �1:08 �1:0048 �0:779 �0:512

0:502 0:880 0:937 1:47 1:96:
(30)
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Table 1 Computed eigenvalues, their residuals and the values of �i for Example 1

i Eigenvalue zi Residual �i

1 C8:14126840 C 3:48672318i 6:95 � 10�1 C0:00000000 C 0:00000000i

2 �0:51176193 � 0:00000000i 4:62 � 10�11 C0:10296094 � 0:15679519i

3 �1:07716760 C 0:00000072i 2:23 � 10�6 �0:00000929 � 0:00000217i

4 �1:00483822 C 0:00000000i 7:37 � 10�11 �1:22943061 C 0:25648078i

5 �0:77909458 � 0:00000000i 5:33 � 10�11 C1:65030210 C 0:71552727i

6 C0:50241527 C 0:00000000i 4:54 � 10�12 �0:03125232 C 0:34335409i

7 C0:87992728 C 0:00000000i 3:23 � 10�11 �0:06281529 � 0:23562418i

8 C0:93655066 � 0:00000000i 5:81 � 10�11 C0:00985445 C 0:10564969i

Five eigenvalues of A.z/ are given in bold

We applied our method with r D 1:0 to find the eigenvalues in the unit disk
with center at the origin. There are five eigenvalues of A.z/ in this circle. We set
M D 8 (see item (iii) of the previous subsection) and K D 128. The computed
eigenvalues zi of H<

M � �HM is shown in Table 1, along with the residual of the
computed eigenvectors wi and the values of �i. Here the residual is defined by k
A.zi/wi k = .k A.zi/ k1k wi k/.

Among the eight computed eigenvalues, z2 and z5 through z8 are inside the
circle and have relatively large value of j�ij. Thus we know that they are wanted
eigenvalues. In fact, they have small residuals of order 10�11. Hence we can say
that we have succeeded in finding all the five eigenvalues in the circle and the
corresponding eigenvectors with high accuracy.

On the other hand, z4 is located outside the circle and z1 and z3 have small value
of j�ij. This shows that they are either unwanted or spurious eigenvalues. Among
these three eigenvalues, z4 has a large value of j�ij and its residual is as small as
that for the inner eigenvalues. Thus it seems that this is a true outer eigenvalue
that has been computed accurately. This occurs because the effect of the poles of
u�A.z/�1A0.z/v just outside the circle remains due to numerical integration. This
phenomenon occurs also in the algorithm using Tr.A.z/�1A0.z// and is analyzed in
[1] in detail.

Example 2 Our next example is a medium size problem whose elements have both
linear and exponential dependence on z. Specifically,

A.z/ D A � zIn C �B.z/; (31)

where A is a real nonsymmetric matrix whose elements follow uniform random
distribution in Œ0; 1�, B.z/ is an anti-diagonal matrix with antidiagonal elements ez

and � is a parameter that determines the degree of nonlinearity. This test matrix
is used in [1]. In the present example, n D 500 and we applied our method with
r D 0:7. It is known that there are ten eigenvalues in the circle. We set M D 12 and
K D 128. The result are shown in Table 2.
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Table 2 Computed eigenvalues, their residuals and the values of �i for Example 2

i Eigenvalue zi Residual �i

1 C0:18966905 C 0:63706191i 2:13 � 10�14 C1:17984929 � 0:22981043i

2 �0:43247175 � 0:71100593i 3:68 � 10�6 C0:00000000 � 0:00000000i

3 �0:51507157 � 0:45900079i 4:72 � 10�15 �0:98601173 � 6:36155661i

4 C0:18966905 � 0:63706191i 8:81 � 10�15 �1:41428395 � 1:01002310i

5 C0:59154350 � 0:25937027i 8:23 � 10�15 C5:09208563 � 0:07378654i

6 C0:59154350 C 0:25937027i 1:49 � 10�14 �4:13045809 � 4:87142384i

7 C0:33336324 � 0:18217042i 4:14 � 10�14 �8:04725134 C 0:10007238i

8 C0:33336324 C 0:18217042i 6:92 � 10�14 C6:45071565 C 3:77328737i

9 �0:54261232 � 0:00000000i 1:52 � 10�14 �1:37030828 C 1:66944385i

10 �0:08820357 � 0:00000000i 1:78 � 10�13 �3:03924483 C 3:67246714i

11 �0:43248417 C 0:71102419i 6:22 � 10�5 �0:00000000 � 0:00000000i

12 �0:51507157 C 0:45900079i 8:56 � 10�15 C1:97883460 C 0:79241891i

Ten eigenvalues in the circle are given in bold

Fig. 1 Distribution of the
eigenvalues in Example 2

Im z

Re z

0.7

0.7-0.7

-0.7

O

Eigenvalues

Among the twelve computed eigenvalues, the ten eigenvalues except for z2 and
z11 are inside the circle and have large value of �i. Accordingly, these are judged
to be the wanted eigenvalues. This is confirmed by the fact that the corresponding
residuals are all of order 10�13. Hence we can conclude that our algorithm again
succeeded in finding all the wanted eigenvalues in this example. The computed
eigenvalues in the complex plane are shown in Fig. 1.
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5 Conclusion

In this paper, we presented an alternative derivation of the SS-type method for
the nonlinear eigenvalue problem. We assumed that all the eigenvalues in the
specified region are simple and considered contour integrals along infinitesimally
small circles around the eigenvalues. This allowed us to use the analyticity of the
eigenvalues and eigenvectors of a parametrized matrix A.z/, which is a well-known
result in matrix perturbation theory, instead of the canonical forms of A.z/ described
by the Smith form or the theorem of Keldysh. We believe this will provide an easily
accessible approach to the theory of the nonlinear SS-type method.
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