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Abstract Recently, complex moment-based eigensolvers have been actively devel-
oped in highly parallel environments to solve large and sparse eigenvalue problems.
In this paper, we provide an error resilience strategy of a Rayleigh–Ritz type
complex moment-based parallel eigensolver for solving generalized eigenvalue
problems. Our strategy is based on an error bound of the eigensolver in the case
that soft-errors like bit-flip occur. Using the error bound, we achieve an inherent
error resilience of the eigensolver that does not require standard checkpointing and
replication techniques in the most time-consuming part.

1 Introduction

In this paper, we consider complex moment-based eigensolvers for computing all
eigenvalues located in a certain region and their corresponding eigenvectors for a
generalized eigenvalue problem of the following form

Axi D �iBxi; xi 2 C
n n f0g; �i 2 ˝ � C; (1)

where A;B 2 C
n�n and the matrix pencil zB � A are assumed to be diagonalizable

and nonsingular for any z on the boundary of ˝ . Let m be the number of target
eigenpairs and X˝ be an n � m matrix, whose columns are the target eigenvectors,
i.e., X˝ WD Œxij�i 2 ˝�.

For solving the generalized eigenvalue problem (1), Sakurai and Sugiura have
proposed a projection type method that uses certain complex moment matrices
constructed by a contour integral in 2003 [13]. Thereafter, several researchers
have actively studied improvements and related eigensolvers based on the complex
moment-based eigensolver [5–8, 12, 14, 17]. The concepts of Sakurai and Sugiura
have also been extended to solve nonlinear eigenvalue problems [1–3, 18].
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Recently, we analyzed error bounds of the Rayleigh–Ritz type complex moment-
based eigensolver called the block SS–RR method [9]. In this paper, we apply the
results of the analyses to the case that soft-errors like bit-flip occur. Using the error
bound, we provide an error resilience strategy which does not require standard
checkpointing and replication techniques in the most time-consuming part of the
eigensolver.

The remainder of this paper is organized as follows. In Sect. 2, we briefly
describe the basic concepts of the complex moment-based eigensolvers. In Sect. 3,
we introduce the algorithm of the block SS–RR method and the results of its error
bounds. We also introduce the parallel implementation of the block SS–RR method
in Sect. 3. In Sect. 4, we propose an error resilience strategy for the block SS–RR
method. In Sect. 5, we show some numerical results and we present conclusions in
Sect. 6.

Throughout, the following notations are used. Let V D Œv1; v2; : : : ; vL� 2 Cn�L,
then R.V/ is the range space of the matrix V , and is defined by R.V/ WD
spanfv1; v2, : : : ; vLg. In addition, for A 2 Cn�n, K �

k .A;V/ are the block Krylov
subspaces, K �

k .A;V/ D R.ŒV;AV; : : : ;Ak�1V�/.

2 Complex Moment-Based Eigensolvers

As a powerful algorithm for solving the generalized eigenvalue problem (1), Sakurai
and Sugiura have proposed the complex moment-based eigensolver in 2003 [13].
This is called the SS–Hankel method. To solve (1), they introduced the rational
function

r.z/ WD evH.zB � A/�1Bv; v;ev 2 C
n n f0g; (2)

whose poles are the eigenvalues � of the matrix pencil zB�A. They then considered
computing all poles located in ˝ .

All poles located in a certain region of a meromorphic function can be computed
by the algorithm in [11], which is based on Cauchy’s integral formula,

r.a/ D 1

2�i

I

�

r.z/

z � a
dz;

where � is the positively oriented Jordan curve (i.e., the boundary of ˝). By
applying the algorithm in [11] to the rational function (2), the target eigenpairs
.�i; xi/; �i 2 ˝ of the generalized eigenvalue problem (1) are obtained by solving
the generalized eigenvalue problem:

H<
Mui D �iHMui:



An Error Resilience Strategy of a Complex Moment-Based Eigensolver 3

Here, HM and H<
M are small M �M Hankel matrices of the form

HM WD

0

B

B

B

@

�0 �1 � � � �M�1

�1 �2 � � � �M
:::

:::
: : :

:::

�M�1 �M � � � �2M�2

1

C

C

C

A

; H<
M WD

0

B

B

B

@

�1 �2 � � � �M

�2 �3 � � � �MC1

:::
:::

: : :
:::

�M �MC1 � � � �2M�1

1

C

C

C

A

;

whose entries consist of the following complex moments

�k WD 1

2�i

I

�

zkr.z/dz:

For details, refer to [13].
For more accurate eigenpairs, improvement of the SS–Hankel method has

been proposed [14]. This improvement is based on the Rayleigh–Ritz procedure
and is called the SS–RR method. Block variants of the SS–Hankel method and
the SS–RR method have also been proposed [5, 6] for higher stability of the
algorithms, specifically when multiple eigenvalues exist in ˝ . These are called the
block SS–Hankel method and the block SS–RR method, respectively. An Arnoldi-
based interpretation of the complex moment-based eigensolvers and the resulting
algorithm have also been proposed [8]. The algorithm is named the block SS–
Arnoldi method.

As another approach of the complex moment-based eigensolver, Polizzi has
proposed the FEAST eigensolver for Hermitian generalized eigenvalue problems
in 2009 [12] and then developed it further [17]. The FEAST eigensolver is
an accelerated subspace iteration-type method, and a single iteration is closely
connected to a special case of the block SS–RR method with M D 1.

The relationship among these complex moment-based eigensolvers was analyzed
in [10].

3 The Block SS–RR Method

In this section, we introduce the algorithm of the block SS–RR method and the
results of its error bounds.

3.1 Algorithm of the Block SS–RR Method

Let L;M 2 N be input parameters. Also let V 2 Cn�L be an input matrix, e.g., a
random matrix. Then, we define an n � LM matrix

S WD ŒS0; S1; : : : ; SM�1�;
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where

Sk WD 1

2�i

I

�

zk.zB � A/�1BVdz: (3)

Then, we have the following theorem; see e.g., [9].

Theorem 1 Let m be the number of eigenvalues of (1) and rank.S/ D m. Then, we
have

R.S/ D R.X˝/ D spanfxij�i 2 ˝g:

Theorem 1 indicates that the target eigenpairs .�i; xi/; �i 2 ˝ can be obtained
by the Rayleigh–Ritz procedure with R.S/. The above forms the basis of the
block SS–RR method [5]. Continuous integration (3) is approximated by some
numerical integration rule such as the N-point trapezoidal rule with N � M � 1.
The approximated matrix bSk is expressed as

S �bSk WD
N

X

jD1

!jz
k
j .zjB � A/�1BV; (4)

where zj are the quadrature points, and !j are the corresponding weights. We also
set

S �bS WD ŒbS0;bS1; : : : ;bSM�1�: (5)

Here, .zj; !j/ are required to satisfy

N
X

jD1

!jz
k
j

� ¤ 0; .k D �1/

D 0; .k D 0; 1; : : : ;N � 2/
: (6)

The algorithm of the block SS–RR method with numerical integration is consist of
the following three steps:

Step 1. Solve N linear systems with L right-hand sides of the form:

.zjB � A/Wj D BV; j D 1; 2; : : : ;N: (7)

Step 2. Construct the matrix bS by (4) and (5), where bSk can be rewritten by using
Wj as follows:

bSk D
N

X

jD1

!jz
k
j Wj; k D 1; 2; : : : ;M � 1: (8)
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Algorithm 1 The block SS–RR method
Input: L;M;N 2 N;V 2 C

n�L; .zj; !j/; j D 1; 2; : : : ;N

Output: Approximate eigenpairs .b�i;bxi/ for i D 1; 2; : : : ; LM
1: Solve Wj D .zjB � A/�1BV for j D 1; 2; : : : ;N

2: ComputebSk D PN
jD1 !jz

k
j Wj for k D 0; 1; : : : ;M � 1 and setbS D ŒbS0;bS1; : : : ;bSM�1�

3: Compute the orthogonalization ofbS W Q D orth.bS/

4: Compute eigenpairs .�i; ui/ of the generalized eigenvalue problem QHAQui D �iQHBQui, and

.b�i;bxi/ D .�i;Qui/ for i D 1; 2; : : : ; LM

Step 3. Compute approximate eigenpairs by the Rayleigh–Ritz procedure as fol-
lows. Solve

QHAQui D �iQ
HBQui;

and .b�i;bxi/ D .�i;Qui/, where Q D orth.bS/.

The algorithm of the block SS–RR method is summarized as Algorithm 1.
In practice, in order to reduce the computational costs and to improve accuracy,

the matrix bS is replaced with a low-rank approximation obtained from the singular
value decomposition. Moreover, zk is scaled for improving numerical stability. For
details, refer to [5, 15].

The block SS–RR method has some parameters such as L;M;N, and these
parameters strongly affect the performance of the method. In the current version of
the software of the block SS–RR method, z-pares ver.0.9.6a [19], N D 32;M D
16 are used as the default parameters. The parameter L is usually set such
that LM D 2m, where m is the number of the target eigenvalues in ˝ . The
optimal parameters depend on the eigenvalue distribution, the required accuracy,
computational environments and so on. For the details of how to set the parameters
achieving good performance, refer to [15].

3.2 Error Bounds of the Block SS–RR Method

In [9], the error bounds of the block SS–RR method are analyzed. Here, we briefly
introduce the results.

Let the matrix pencil zB � A be diagonalizable, i.e.,

Y�1.zB � A/X D z

�

Ir
On�r

�

�
�

�r

In�r

�

;

where �r WD diag.�1; �2; : : : ; �r/ is a diagonal matrix, and Y�1 WD Œey1;ey2; : : : ;eyn�H

and X WD Œx1; x2; : : : ; xn� are nonsingular matrices. The generalized eigenvalue
problem Axi D �iBxi has r WD rank.B/ finite eigenvalues �1; �2; : : : ; �r and
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n � r infinite eigenvalues. The vectorseyi and xi are the corresponding left and right
eigenvectors, respectively. The filter function

f .�i/ WD
N

X

jD1

!j

zj � �i
; (9)

is commonly used for analysis of the complex moment-based eigensolvers [6, 16,
17]. Using this filter function, the matrix bS can be written as

bS D �

Xrf .�r/eX
H
r

�

ŒV;CV; : : : ;CM�1V�; C WD Xr�reX
H
r ;

where �r WD diag.�1; �2; : : : ; �r/;Xr WD Œx1; x2; : : : ; xr�;eXr WD Œex1;ex2; : : : ;exr� and
X�1 D eXH D Œex1;ex2; : : : ;exn�H. The error bound of the block SS–RR method in [9]
can be simplified under some assumption on V as follows.

Theorem 2 Let .�i; xi/ be the exact eigenpairs of the matrix pencil zB�A. Assume
that f .�i/ are ordered in decreasing order of magnitude j f .�i/j � j f .�iC1/j. Define
P as the orthogonal projector onto the subspaceR.bS/. Then, we have

k.I �P/xik2 � ˛ˇi

ˇ

ˇ

ˇ

ˇ

f .�LMC1/

f .�i/

ˇ

ˇ

ˇ

ˇ

;

where ˛ D kXk2kX�1k2, ˇi depends on the angle between the subspaceK �
M .C;V/

and each eigenvector xi.
Moreover, in [9], the error bound has been proposed for the case in which

the solution of the linear system for the j0-th quadrature point is contaminated as
follows:

.zj0B � A/�1BV C E; (10)

where E 2 Cn�L is an error matrix of rank.E/ D L0 � L. Because of the
contaminated solution (10), the matrix bS is also contaminated. We define the
contaminated matrix as bS0. The error bound of the block SS–RR method with the
contaminated matrix in [9] can also be simplified under some assumption on V as
follows.

Theorem 3 Let .�i; xi/ be the exact eigenpairs of the matrix pencil .A;B/. Assume
that f .�i/ are ordered in decreasing order of magnitude j f .�i/j � j f .�iC1/j. Define
P 0 as the orthogonal projector onto the subspaceR.bS0/. Then, we have

k.I �P 0/xik2 � ˛ˇ0
i

ˇ

ˇ

ˇ

ˇ

f .�LM�L0C1/

f .�i/

ˇ

ˇ

ˇ

ˇ

;

where ˛ D kXk2kX�1k2, ˇ0
i depends on the error matrix E and the angle between

the subspaceK �
M .C;V/ and each eigenvector xi.
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Here, we note that the values ˇ0
i is not equivalent to ˇi, since ˇ0

i depends on error
matrix E and the contaminated quadrature point j0. ˇ0

i may become larger for �i near
zj0 than others, specifically for the case where L0 D L. For more details of these
theorems, refer to [9].

3.3 Parallel Implementation of the Block SS–RR Method

The most time-consuming part of the block SS–RR method is to solve N linear
systems with L right-hand sides (7) in Step 1. For solving the linear systems, the
block SS–RR method has hierarchical parallelism; see Fig. 1.

Layer 1. Contour paths can be performed independently.
Layer 2. The linear systems can be solved independently.
Layer 3. Each linear system can be solved in parallel.

By making the hierarchical structure of the algorithm responsive to the hierarchical
structure of the architecture, the block SS–RR method is expected to achieve high
scalability.

Because Layer 1 can be implemented completely without communications, here
we describe a basic parallel implementation of the block SS–RR method for one
contour path. Let P be the number of MPI processes used for one contour path. Here

Fig. 1 Hierarchical structure
of the block SS–RR method

Layer 1.  Contour paths can be run independently

Layer 2.  Linear systems are solved independently
                 at each quadrature point

Layer 3.  The linear system can be solved in parallel

Eigenvalue
Contour path

Quadrature point

Im

Re
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Fig. 2 Processes grid and
MPI sub-communicators

p1,1 ... p1, j ... p1,N
...

. . .
...

. . .
...

mpi_comm_row(i)→ pi,1 ... pi, j ... pi,N
...

. . .
...

. . .
...

pP/N,1 ... pP/N, j ... pP/N,N

↑
mpi_comm_col(j)

we assume mod.P;N/ D 0 for simplicity and consider two dimensional processes
grid, i.e., pi;j; i D 1; 2; : : : ;P=N; j D 1; 2; : : : ;N. Then, we also define MPI sub-
communicators for N MPI processes pi;j; j D 1; 2; : : : ;N as mpi_comm_row(i)
(i D 1; 2; : : : ;P=N) and for P=N MPI processes pi;j; i D 1; 2; : : : ;P=N as
mpi_comm_col(j) ( j D 1; 2; : : : ;N); see Fig. 2.

3.3.1 Parallel Implementation for Step 1

In Step 1, we need to solve N linear systems (7). Because these linear systems are
independent of j (index of quadrature point), we can independently solve these N
linear systems in N parallel. Each linear system .zjB � A/Wj D V is solved by
some parallel linear solver on the MPI sub-communicator mpi_comm_col(j) in
parallel.

In this implementation, the coefficient matrices A;B and the input matrix V
require to be distributed to P=N MPI processes in each MPI sub-communicator
mpi_comm_col(j) with N redundant. As a result, each solution Wj of the linear
system is also distributed to P=N MPI processes in the MPI sub-communicator
mpi_comm_col(j).

3.3.2 Parallel Implementation for Step 2

Let W.i/
j ; .i D 1; 2; : : : ;P=N; j D 1; 2; : : : ;N/ be the distributed sub-matrix of Wj,

which are stored by the MPI process pi;j. Then, for constructing the matrix bSk (8),
we independently compute

W.i/
j;k D !jz

k
j W

.i/
j

in each MPI process without communication. Then, we perform mpi_allreduce
on the MPI sub-communicatormpi_comm_row(i)with N MPI processes in P=N
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parallel as follows:

bS .i/
k D

N
X

jD1

W.i/
j;k ; k D 0; 1; : : : ;M � 1:

We also set

bS.i/ D ŒbS.i/
0 ;bS.i/

1 ; : : : ;bS.i/
M�1�;

wherebS.i/ are the sub-matrix ofbS, which is redundantly stored by the MPI processes
pi;j; j D 1; 2; : : : ;N. In this implementation, the matrixbS are distributed in P=N MPI
processes in each MPI sub-communicatormpi_comm_row(i) with N redundant.

3.3.3 Parallel Implementation for Step 3

We have two choices for parallel implementation for Step 3. The first choice is
that all P MPI processes perform the orthogonalization of bS and the Rayleigh–Ritz
procedure. This choice makes it possible to work all MPI processes we can use;
however, it needs to redistribution of the matrices A;B and bS.

The second choice is that only P=N MPI processes in the MPI sub-communicator
mpi_comm_col(j) perform this calculation. In this case, only P=N MPI pro-
cesses work and the others are just redundant; however, redistribution of the matrices
A;B and bS does not be required.

4 An Error Resilience Strategy of the Block SS–RRMethod

With the recent development of high-performance computer, systems scale is
drastically increasing. In such situation, fault management is considered to play
an important role in large scale application. The fault can be classified to hardware
fault and software fault. Here, we focus on software fault like bit-flip.

The most standard software fault tolerance techniques are checkpointing tech-
niques. The checkpointing techniques save all correct data at some interval, and if
some fault is detected then it restarts with the last correct data. These are efficient
for the case that data size required to save is small and that interval between each
checkpoint is small. On the other hand, large data size causes large I/O costs and
large interval causes large recalculation costs when fault occurs.

The replication techniques are also very basic software fault tolerance tech-
niques. Its basic idea is shown below. Let P be the number of MPI processes we
can use and K be the number of redundancies. Firstly, we split MPI communicator
into each P=K MPI processes. The replication techniques restrict the parallelism to
P=K, i.e., calculation is independently performed by P=K MPI processes in each
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MPI sub-communicator. Then, the correct solution is selected from K solutions by
e.g. a majority vote. These are efficient when the number of MPI processes is large
such that target calculation does not show good scalability. However, if the target
calculation shows good scalability, the replication techniques largely increase the
execution time even if fault does not occur.

In this section, we consider an error resilience strategy of the block SS–RR
method that can use all the MPI processes for the most time-consuming part, i.e.,
to solve the N linear systems (7) in Step 1 and avoid resolving them even if fault
occurs. Here, we assume the following software fault:

• Let a 2 F be the correct value, where F is the set of floating point numbers. The
fault occurs as the numerical error as follows:

a0  aC e; e 2 F; (11)

where a0 2 F is the contaminated value. Here, a; a0; e are not “Inf” or “Nan”.
• Unlike hardware faults, remaining calculation are correctly performed with the

contaminated values.

4.1 Error Resilience Strategy

As shown in Sect. 3, the algorithm of the block SS–RR method and its parallel
implementation can be divided into three steps: solving the linear systems, the
numerical integration and the Rayleigh–Ritz procedure. Here, we consider error
resilience of each step.

4.1.1 Error Resilience Strategy for Step 1

Step 1 is the most time-consuming part and also the most scalable part of the block
SS–RR method. Therefore, standard checkpointing and replication techniques may
not be efficient for computational costs. Hence, we introduce an alternative strategy
to standard checkpointing and replication techniques for computational costs.

When fault occurs in Step 1, some kind of value(s) in calculation are replaced
as (11) due to the fault. Then, the contamination is propagated to all MPI processes
in the same MPI sub-communicator mpi_comm_col(j) via communication. As
a result, the solution of the linear system is replaced as

W 0
j0  Wj0 C E; E 2 F

n�L; rank.E/ D L; (12)

when fault occurs in the MPI process pi;j0 associated with the j0-th linear system.
Here, we reconsider Theorems 2 and 3. Theorem 2 implies that the error bound

of the block SS–RR method is evaluated by the ratio of the magnitude of the filter
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Fig. 3 Magnitude of filter function j f .�/j of the N-point trapezoidal rule with N D 16; 32; 64 for
the unit circle region ˝. (a) On the real axis for N D 16; 32; 64. (b) On the complex plane for
N D 32

function j f .�i/j to the .LM C 1/-th largest j f .�LMC1/j. The magnitude of the filter
function j f .�i/j of the N-point trapezoidal rule with N D 16; 32; 64 for the unit
circle region ˝ is shown in Fig. 3. The filter function has j f .�/j � 1 inside the
region ˝ , j f .�//j � 0 far from the region and 0 < j f .�/j < 1 outside but near the
region. Because of Theorem 2 and the filter function, we usually set subspace size
LM such that j f .�LMC1/j � 0 to compute the target eigenpairs .�i; xi/; �i 2 ˝ with
high accuracy.

Regarding the filter function, Theorem 3 implies that the accuracy of the block
SS–RR method with the contaminated solution is evaluated by the ratio of the
magnitude of the filter function j f .�i/j to the .LM�LC1/-th largest j f .�LM�LC1/j.
Of course, Theorem 3 support the case when fault occurs in Step 1 like (12).
Therefore, if we consider the case that fault occurs in Step 1, we just set subspace
size LM such that j f .�LM�LC1/j � 0 in order to obtain the eigenpairs to high
accuracy.

Here, we note that, when multiple faults occur in different quadrature points, i.e.,

W 0
j01
 Wj01

CE1; W 0
j02
 Wj02

CE2; E1;E2 2 F
n�L; rank.E1/ D rank.E2/ D L;

then we can handle the fault in Step 1 by setting larger subspace LM such that
j f .�LM�2LC1/j � 0.

This is an error resilience strategy for Step 1, which makes it possible to use all
MPI processes for computing the N linear systems (7) and to avoid resolving them
even if fault occurs.

4.1.2 Error Resilience Strategy for Step 2

The computational cost for Step 2 is very small, and the data size is not exorbitant
large. Therefore, we can apply checkpointing technique with small additional costs
for Step 2.
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4.1.3 Error Resilience Strategy for Step 3

As noted in Sect. 3.3, we have two choices for implementation of Step 3: to use all
processes with redistribution and to replicate without redistribution. If the number of
processes P is not so large such that this part shows good scalability, the first choice
is better in terms of computational costs. If not, the second choice is better due to the
costs of redistribution. In practice, we want to increase the number of processes P,
if possible, during N linear systems, which is the most time-consuming part, shows
good scalability. And computation of N independent linear systems is expected
to have better scalability than one of the orthogonalization and the Rayleigh–Ritz
procedure. Hence, we usually employ the second choice.

Therefore, we can apply replication technique without no additional costs for
Step 3.

4.2 A Possibility of Development to Other Complex
Moment-Based Eigensolvers

In Sect. 4, we proposed the error resilience strategy of the block SS–RR method
which is based on the error analysis in [9]. Here, we consider a possibility of
development of our strategy to other complex moment-based eigensolvers.

The proposed error resilient strategy is mainly based on Theorem 3 for the block
SS–RR method. Similar theorems as Theorem 3 could be derived for other complex
moment-based eigensolvers. One of the most important respects of Theorem 3 is
that the subspace size LM should be larger than the rank of error matrix L0, i.e.,
LM > L0. In the case of one linear solution is contaminated in the block SS–RR
method with M � 2, the condition LM > L � L0 is always satisfied and this makes
it possible to derive the proposed error resilient strategy.

For development of our strategy to other complex moment-based eigensolvers,
we can expect that the proposed strategy is also utilized to other complex moment-
based eigensolvers with high order complex moments such as the (block) SS–
Hankel method and the block SS–Arnoldi method, although more detailed analyses
and numerical experiments are required. Because these methods with M > 2 always
satisfy the condition LM > L � L0 as well as the block SS–RR method.

On the other hand, the current proposed strategy may be difficult to recover
the error of the complex moment-based eigensolvers only with low order complex
moments such as the FEAST eigensolver [12, 17] and the Beyn method [3]. The
subspace size of these methods is L which is the same as the number of right-hand
side of the linear systems. This indicates that the rank of the error matrix reaches the
subspace size in the worst case. In this case, our strategy can not recover the error.



An Error Resilience Strategy of a Complex Moment-Based Eigensolver 13

5 Numerical Experiments

In this section, we experimentally evaluate the results of the error resilience strategy
specifically for Step 1.

5.1 Example I

For the first example, we apply the block SS–RR method with and without soft-error
in Step 1 to the following model problem

Axi D �xi;

A D diag.0:01; 0:11; 0:21; : : : ; 9:91/ 2 R
100�100;

�i 2 ˝ D Œ�1; 1�;

and evaluate its accuracy.
We evaluate the relation between accuracy with the number of subspace size LM.

To evaluate this relation, we fixed the parameters as L D 10 and N D 32, and tested
four cases M D 1; 2; 3; 4 (LM D 10; 20; 30; 40). For this example, we set � as the
unit circle and the quadrature points as

zj D cos.�j/C i sin.�j/; �j D 2�

N

�

j � 1

2

�

for j D 1; 2; : : : ;N. We let fault occur at one of the following quadrature points,

zj0 D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

z1 D cos
�

�
32

�C i sin
�

�
32

�

z8 D cos
�

15�
32

�C i sin
�

15�
32

�

z16 D cos
�

31�
32

�C i sin
�

31�
32

�

The algorithm was implemented in MATLAB R2014a. The input matrix V and the
error matrix E were set as different random matrices generated by the Mersenne
Twister in MATLAB, and each linear system was solved by the MATLAB command
“n”.

We show in Table 1 the relation of the minimum and the maximum values of
krik2 in �i 2 ˝ with LM. Table 1(a) is for the case without fault and Table 1(b)–(d)
are for the case when fault occurs in Step 1. We also show in Fig. 4 the residual 2-
norm krik2 WD kAxi��iBxik2=kxik2 for the block SS–RR method with and without
fault.

Table 1 shows that min�i2˝ krik2 have approximately the same order as
j f .�LMC1/j for the case without fault and as j f .�LM�LC1/j when fault occurs
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Table 1 Relation of
accuracy of the block SS–RR
method with LM when fault
occurs in Step 1

(a) Without fault

M .LM/ j f .�LMC1/j min�i2˝krik2 max�i2˝krik2

1 (10) 4:21 � 10�1 1:76 � 10�1 1:34 � 10�1

2 (20) 1:98 � 10�10 2:29 � 10�10 2:11 � 10�9

3 (30) 5:06 � 10�16 1:44 � 10�15 1:20 � 10�14

4 (40) 2:25 � 10�17 2:03 � 10�15 3:46 � 10�15

(b) Fault occurs at z1

M .LM/ j f .�LM�LC1/j min�i2˝krik2 max�i2˝krik2

1 (10) 1:00 � 100 5:23 � 10�1 8:23 � 10�1

2 (20) 4:21 � 10�1 1:84 � 10�1 2:63 � 10�1

3 (30) 1:98 � 10�10 2:43 � 10�10 1:63 � 10�8

4 (40) 5:06 � 10�16 6:57 � 10�15 1:91 � 10�13

(c) Fault occurs at z8

M .LM/ j f .�LM�LC1/j min�i2˝krik2 max�i2˝krik2

1 (10) 1:00 � 100 5:42 � 10�1 7:99 � 10�1

2 (20) 4:21 � 10�1 1:04 � 10�1 7:74 � 10�1

3 (30) 1:98 � 10�10 5:11 � 10�10 4:57 � 10�9

4 (40) 5:06 � 10�16 5:16 � 10�15 2:87 � 10�14

(d) Fault occurs at z16

M .LM/ j f .�LM�LC1/j min�i2˝krik2 max�i2˝krik2

1 (10) 1:00 � 100 5:54 � 10�1 7:85 � 10�1

2 (20) 4:21 � 10�1 4:11 � 10�1 4:84 � 10�1

3 (30) 1:98 � 10�10 7:05 � 10�10 4:96 � 10�9

4 (40) 5:06 � 10�16 3:71 � 10�15 2:51 � 10�14

in Step 1, respectively. Moreover, Fig. 4 shows that enough large subspace size
(LM D 40 in this example) provides equally high accuracy independent of fault in
Step 1.

5.2 Example II

For the second example, we apply the block SS–RR method with and without soft-
error in Step 1 to the generalized eigenvalue problem AUNW9180 from ELSES
matrix library [4]. The coefficient matrices A;B are 9180 dimensional real sparse
symmetric matrices and B is also positive definite. We consider finding all eigenpairs
.�i; xi/; �i 2 ˝ D Œ0:119; 0:153�. In this region, there exist 99 eigenvalues.

We set � as the ellipse (center: 0.131, semi-major axis: 0.012 and semi-minor
axis: 0.0012), and the quadrature points as

zj D 0:131C 0:012
�

cos.�j/C 0:1i sin.�j/
�

;

�j D 2�

N

�

j � 1

2

�



An Error Resilience Strategy of a Complex Moment-Based Eigensolver 15

10-20

10-15

10-10

10-5

100

-5 -4 -3 -2 -1 0 1 2 3 4 5

|f
(λ
)|
 a
nd
 |
| 
r i
 |
| 2

λ

filter function
without fault

with fault

(a)

10-20

10-15

10-10

10-5

100

-5 -4 -3 -2 -1 0 1 2 3 4 5

|f
(λ
)|

 a
nd

 |
| 

r i
 |
| 2

λ
-5 -4 -3 -2 -1 0 1 2 3 4 5

λ

filter function
without fault

with fault

(b) 

10-20

10-15

10-10

10-5

100

|f
(λ
)|

 a
nd

 |
| 

r i
 |
| 2

filter function
without fault

with fault

(c) 

Fig. 4 Accuracy of the block SS–RR method with L D 10;M D 4;N D 32 when fault occurs in
Step 1. (a) Fault occurs at z1. (b) Fault occurs at z8. (c) Fault occurs at z16

for j D 1; 2; : : : ;N. We also set parameters as L D 25;M D 8;N D 32 for the case
without fault and as L D 25;M D 10;N D 32 when fault occurs in Step 1.

The input matrix V and the error matrix E were set as different random
matrices generated by the Mersenne Twister, and each linear system was solved
by “cluster_sparse_solver” in Intel MKL. Here, we note that, in this numerical
experiment, we solved only N=2 linear systems with multiple right-hand sides for
j D 1; 2; : : : ;N=2, because the linear solution WN�j can be constructed from Wj

using a symmetric property of the problem.
The numerical experiments were carried out in double precision arithmetic on 8

nodes of COMA at University of Tsukuba. COMA has two Intel Xeon E5-2670v2
(2.5 GHz) and two Intel Xeon Phi 7110P (61 cores) per node. In this numerical
experiment, we use only CPU part. The algorithm was implemented in Fortran 90
and MPI, and was executed with 8 [node] � 2 [process/node] � 8 [thread/process].

We show in Fig. 5 the residual 2-norm krik2 WD kAxi � �iBxik2=kxik2 for
the block SS–RR method with and without fault. This shows that, by increasing
subspace size LM, the block SS–RR method with fault can achieve approximately
the same accuracy as the case without fault.

Table 2 shows that the computation time of the block SS–RR method without
fault using 1–16 processes and the computation time of the block SS–RR method
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Fig. 5 Accuracy of the block SS–RR method with and without fault in Step 1 for AUNW9180

Table 2 Computation time of the block SS–RR method with and without fault

(a) without fault (L D 25;M D 8;N D 32)

Time [s]

#process Step 1 Step 2 Step 3 MISC Total

1 2.14E+02 4.20E�05 4.92E�01 1.18E�01 2.15E+02

2 1.06E+02 1.05E�02 4.76E�01 7.87E�02 1.06E+02

4 5.30E+01 1.49E�02 4.77E�01 6.34E�02 5.36E+01

8 2.66E+01 2.05E�02 4.79E�01 5.73E�02 2.72E+01

16 1.34E+01 1.56E�02 4.78E�01 5.33E�02 1.39E+01

(b) with fault (L D 25;M D 10;N D 32)

Time [s]

#process Step 1 Step 2 Step 3 MISC Total

16 1.37E+01 2.09E�02 6.44E�01 1.10E�02 1.44E+01

with fault using 16 processes. This result indicates that Step 1 of the SS–RR method
is the most time-consuming. We can also observe from this result that the proposed
strategy recovers software faults with very small additional computational costs.

6 Conclusion

In this paper, we investigated the error resilience strategy of the Rayleigh–Ritz type
complex moment-based parallel eigensolver (the block SS–RR method) for solving
generalized eigenvalue problems. Based on the analyses of the error bound of the
method, we provided the error resilience strategy which does not require standard
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checkpointing and replication techniques in the most time-consuming and the most
scalable part. From our numerical experiment, our strategy recovers software faults
like bit-flip with small additional costs.
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