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Preface

The 1st International Workshop on Eigenvalue Problems: Algorithms, Software and
Applications in Petascale Computing (EPASA2014) was held in Tsukuba, Ibaraki,
Japan on March 7-9, 2014. The 2nd International Workshop EPASA (EPASA2015)
was also held in Tsukuba on September 14—16, 2015. This volume includes selected
contributions presented at EPASA2014 and EPASA2015.

EPASA2014 and EPASA2015 were organized with the support of the JST-
CREST project “Development of an Eigen-Supercomputing Engine using a Post-
Petascale Hierarchical Model” (Research Director: Tetsuya Sakurai, University of
Tsukuba) in the Research Area “Development of System Software Technologies
for post-Peta Scale High Performance Computing”. The goal of this CREST
project is to develop a massively parallel Eigen-Supercomputing Engine for post-
petascale systems. Through collaboration with researchers in applied mathematics,
HPC and application fields, two eigen-engines, z-Pares and EigenExa, have been
developed.

The goal of the EPASA workshop is to bring together leading researchers
working on the numerical solution of matrix eigenvalue problems to discuss and
exchange ideas on state-of-the-art algorithms, software and applications in petascale
computing. The workshop also aims to create an international community of
researchers for eigenvalue problems.

The invited speakers of EPASA2014 were as follows:

¢ Peter Arbenz (ETH Ziirich, Switzerland)

* Anthony P. Austin (University of Oxford, UK)

* Zhaojun Bai (University of California, Davis, USA)

e James Charles (Purdue University, USA)

* Stefan Giittel (The University of Manchester, UK)

* Tsung-Ming Huang (National Taiwan Normal University, Taiwan)
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Jun-ichi Iwata (The University of Tokyo, Japan)

Hiroshi Kawai (Tokyo University of Science, Suwa, Japan)
Gerhard Klimeck (Purdue University, USA)

Bruno Lang (Bergische Universitidt Wuppertal, Germany)
Ren-Cang Li (University of Texas at Arlington, USA)
Wen-Wei Lin (National Chiao Tung University, Taiwan)
Karl Meerbergen (KU Leuven, Belgium)

Tsuyoshi Miyazaki (National Institute for Materials Science, Japan)
Yuji Nakatsukasa (The University of Tokyo, Japan)

Jose E. Roman (Universitat Politecnica de Valéncia, Spain)
Yousef Saad (University of Minnesota, USA)

Shigenori Tanaka (Kobe University, Japan)

Francoise Tisseur (The University of Manchester, UK)
Lloyd N. Trefethen (Oxford University, UK)

Marian Vajtersic (University of Salzburg, Slovakia)
Weichung Wang (National Taiwan University, Taiwan)

The invited speakers of EPASA2015 were as follows:

Grey Ballard (Sandia National Laboratories, USA)

Akihiro Ida (Kyoto University, Japan)

Hiroyuki Ishigami (Kyoto University, Japan)

Bruno Lang (Bergische Universitidt Wuppertal, Germany)
Julien Langou (University of Colorado Denver, USA)
Daijiro Nozaki (Technische Universitit Dresden, Germany)
Shin’ichi Oishi (Waseda University, Japan)

Sho Shohiro (Osaka University, Japan)

Daisuke Takahashi (University of Tsukuba, Japan)
Francoise Tisseur (The University of Manchester, UK)
Weichung Wang (National Taiwan University, Taiwan)
Chao Yang (Lawrence Berkeley National Laboratory, USA)
Rio Yokota (Tokyo Institute of Technology, Japan)

EPASA2014 and 2015 featured a total of 46 poster presentations focusing on

recent developments in parallel eigensolvers, their theoretical analysis, software,
applications, etc. More than 140 participants from various fields attended the
workshops. This volume gathers 18 selected papers they produced.

We would like to express our gratitude to the participants of both EPASA work-

shops, the authors that contributed to this volume and the reviewers, whose valuable
work helped to improve the quality of these proceedings. Neither workshops would
have been possible without all the hard work of the committee members and the
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CREST project members. Last but not least we would like to acknowledge Dr.
Martin Peters and Ruth Allewelt from Springer for their support.
The 3rd International Workshop EPASA2018 will be held in March 2018.

Tsukuba, Japan Tetsuya Sakurai
Nagoya, Japan Shao-Liang Zhang
Kobe, Japan Toshiyuki Imamura
Tokyo, Japan Yusaku Yamamoto
Tsukuba, Japan Yoshinobu Kuramashi
Tottori, Japan Takeo Hoshi
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An Error Resilience Strategy of a Complex
Moment-Based Eigensolver

Akira Imakura, Yasunori Futamura, and Tetsuya Sakurai

Abstract Recently, complex moment-based eigensolvers have been actively devel-
oped in highly parallel environments to solve large and sparse eigenvalue problems.
In this paper, we provide an error resilience strategy of a Rayleigh—Ritz type
complex moment-based parallel eigensolver for solving generalized eigenvalue
problems. Our strategy is based on an error bound of the eigensolver in the case
that soft-errors like bit-flip occur. Using the error bound, we achieve an inherent
error resilience of the eigensolver that does not require standard checkpointing and
replication techniques in the most time-consuming part.

1 Introduction

In this paper, we consider complex moment-based eigensolvers for computing all
eigenvalues located in a certain region and their corresponding eigenvectors for a
generalized eigenvalue problem of the following form

Ax; = A;Bx;, x;€C" \ {0}, ri€e R cCC, (1)

where A, B € C™" and the matrix pencil zB — A are assumed to be diagonalizable
and nonsingular for any z on the boundary of §2. Let m be the number of target
eigenpairs and X, be an n X m matrix, whose columns are the target eigenvectors,
ie., Xo 1= [x;|A; € 2].

For solving the generalized eigenvalue problem (1), Sakurai and Sugiura have
proposed a projection type method that uses certain complex moment matrices
constructed by a contour integral in 2003 [13]. Thereafter, several researchers
have actively studied improvements and related eigensolvers based on the complex
moment-based eigensolver [5-8, 12, 14, 17]. The concepts of Sakurai and Sugiura
have also been extended to solve nonlinear eigenvalue problems [1-3, 18].

A. Imakura (<) ¢ Y. Futamura ¢ T. Sakurai
University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
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Recently, we analyzed error bounds of the Rayleigh—Ritz type complex moment-
based eigensolver called the block SS—RR method [9]. In this paper, we apply the
results of the analyses to the case that soft-errors like bit-flip occur. Using the error
bound, we provide an error resilience strategy which does not require standard
checkpointing and replication techniques in the most time-consuming part of the
eigensolver.

The remainder of this paper is organized as follows. In Sect. 2, we briefly
describe the basic concepts of the complex moment-based eigensolvers. In Sect. 3,
we introduce the algorithm of the block SS—RR method and the results of its error
bounds. We also introduce the parallel implementation of the block SS—RR method
in Sect. 3. In Sect. 4, we propose an error resilience strategy for the block SS—-RR
method. In Sect. 5, we show some numerical results and we present conclusions in
Sect. 6.

Throughout, the following notations are used. Let V = [v, v,,...,v.] € CcmL
then Z(V) is the range space of the matrix V, and is defined by Z(V) :=
span{vy, vy, ..., v.}. In addition, for A € C, Jika (A, V) are the block Krylov
subspaces, 2 (A, V) = Z([V,AV, ..., A=1V]).

2 Complex Moment-Based Eigensolvers

As a powerful algorithm for solving the generalized eigenvalue problem (1), Sakurai
and Sugiura have proposed the complex moment-based eigensolver in 2003 [13].
This is called the SS—Hankel method. To solve (1), they introduced the rational
function

r(z) =9 (zB—A)"'Bv, v, 7€ C"\ {0}, )

whose poles are the eigenvalues A of the matrix pencil zB —A. They then considered
computing all poles located in 2.

All poles located in a certain region of a meromorphic function can be computed
by the algorithm in [11], which is based on Cauchy’s integral formula,

1 r(z)
ria) = 27i 9§« 7— adz’

where I' is the positively oriented Jordan curve (i.e., the boundary of §2). By
applying the algorithm in [11] to the rational function (2), the target eigenpairs
(Ai,x;), A; € §2 of the generalized eigenvalue problem (1) are obtained by solving
the generalized eigenvalue problem:

Hﬁjui = GiHMui.
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Here, Hy and H;; are small M x M Hankel matrices of the form

Mo M1 - Um—1 J S Y ¥ R 07

Mmoo M2 e UM < M2 U3 e M+
Hy = . .o . ., Hy =1 . . . ,

MM—1 UM - Ham—2 MM Hm+1 c 0 Mam—1

whose entries consist of the following complex moments

1
Wi = . ¢ Zr(z)dz.
2mi Jr

For details, refer to [13].

For more accurate eigenpairs, improvement of the SS—-Hankel method has
been proposed [14]. This improvement is based on the Rayleigh—Ritz procedure
and is called the SS-RR method. Block variants of the SS—Hankel method and
the SS-RR method have also been proposed [5, 6] for higher stability of the
algorithms, specifically when multiple eigenvalues exist in §2. These are called the
block SS-Hankel method and the block SS—-RR method, respectively. An Arnoldi-
based interpretation of the complex moment-based eigensolvers and the resulting
algorithm have also been proposed [8]. The algorithm is named the block SS—
Arnoldi method.

As another approach of the complex moment-based eigensolver, Polizzi has
proposed the FEAST eigensolver for Hermitian generalized eigenvalue problems
in 2009 [12] and then developed it further [17]. The FEAST eigensolver is
an accelerated subspace iteration-type method, and a single iteration is closely
connected to a special case of the block SS—RR method with M = 1.

The relationship among these complex moment-based eigensolvers was analyzed
in [10].

3 The Block SS-RR Method

In this section, we introduce the algorithm of the block SS—RR method and the
results of its error bounds.

3.1 Algorithm of the Block SS—RR Method

Let L,M € N be input parameters. Also let V € C™* be an input matrix, e.g., a
random matrix. Then, we define an n x LM matrix

S = [S(),Sl, e ,SM—I],
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where
1
Sy = . ¢ z"(zB —A)_IBde. 3)
2mi Jr

Then, we have the following theorem; see e.g., [9].
Theorem 1 Let m be the number of eigenvalues of (1) and rank(S) = m. Then, we
have

Z(S) = Z(Xp) = span{x;|A; € 2}.

Theorem 1 indicates that the target eigenpairs (;,x;), A; € £2 can be obtained
by the Rayleigh—Ritz procedure with Z(S). The above forms the basis of the
block SS—-RR method [5]. Continuous integration (3) is approximated by some
numerical integration rule such as the N-point trapezoidal rule with N > M — 1.
The approximated matrix Sy is expressed as

N
S~ 8= wzl(zB—A)'BY, (4)

Jj=1

where z; are the quadrature points, and w; are the corresponding weights. We also
set

S~ S:=1[8.81.....5u-1]. (5)

Here, (zj, w;) are required to satisfy

N
s #0 (k=—1)
j;wfzf{=o, (k=0.1,....N—2) " ©)

The algorithm of the block SS—RR method with numerical integration is consist of
the following three steps:

Step 1. Solve N linear systems with L right-hand sides of the form:
(zB—AW; =BV, j=12,...,N. @)

Step 2. Construct the matrix S by (4) and (5), where :S\‘k can be rewritten by using
W; as follows:

N
§k:ijz§W, k=1,2,....M—1. (8)
j=1
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Algorithm 1 The block SS—RR method
Input: L,M,N € N,V € C™, (3, o) i =12, N
Output: Approximate eigenpairs ()L x;)fori=1,2,..., LM
1: Solve W; = (z;B—A)" !BV forj=1,2,..., N
2: Compute S = Z,: a)szkWJ fork=0,1,..., —landsetS = [/§0,/§1 ..... §M_1]
3: Compute the orthogonalization of S 0= orth(ﬁ)
4: Compute eigenpairs (6;, u;) of the generalized eigenvalue problem Q"AQu; = 6,0"BQu;, and
()L,',’x\,') = (9,‘, Qu,) fori = 1,2 ..... LM

Step 3. Compute approximate eigenpairs by the Rayleigh—Ritz procedure as fol-
lows. Solve

0"AQu; = 6,0"BQu;,

and (’/{i,fi) = (6;, Qu;), where Q = 0rth(§).

The algorithm of the block SS—RR method is summarized as Algorithm 1.

In practice, in order to reduce the computational costs and to improve accuracy,
the matrix S is replaced with a low-rank approximation obtained from the singular
value decomposition. Moreover, z* is scaled for improving numerical stability. For
details, refer to [5, 15].

The block SS-RR method has some parameters such as L, M,N, and these
parameters strongly affect the performance of the method. In the current version of
the software of the block SS-RR method, z-pares ver.0.9.6a [19], N = 32, M =
16 are used as the default parameters. The parameter L is usually set such
that LM = 2m, where m is the number of the target eigenvalues in £2. The
optimal parameters depend on the eigenvalue distribution, the required accuracy,
computational environments and so on. For the details of how to set the parameters
achieving good performance, refer to [15].

3.2 Error Bounds of the Block SS—RR Method

In [9], the error bounds of the block SS—-RR method are analyzed. Here, we briefly
introduce the results.
Let the matrix pencil zB — A be diagonalizable, i.e.,

_ I A
Y 'B—A)X=z|" — ,
B—4) Z[ On_r} [ In_r}

where A, := diag(A;, A2, ..., A,) is a diagonal matrix, and Y~! := [¥], 55, ..., 3,8
and X := [x;,x2,...,x,] are nonsingular matrices. The generalized eigenvalue
problem Ax; = A;Bx; has r := rank(B) finite eigenvalues Ay, A,,..., A, and
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n — r infinite eigenvalues. The vectorsy; and x; are the corresponding left and right
eigenvectors, respectively. The filter function

N

fon =y Y

, 9
Z—Ai ©

Jj=1

is commonly used for analysis of the complex moment-based eigensolvers [6, 16,
17]. Using this filter function, the matrix S can be written as

S = (Xf(ANXY) [V, Cv,...,.c"V], €= X, AXY,

where A, := diag(A1, 2,...,4,), X, 1= [x1,X2,. .. ,x,],f, = [X1,%,,...,X,] and
X' =X = [X,,%,,...,%,]". The error bound of the block SS—RR method in [9]
can be simplified under some assumption on V as follows.

Theorem 2 Let (A;, x;) be the exact eigenpairs of the matrix pencil zB — A. Assume
that f(A;) are ordered in decreasing order of magnitude | f(A;)| = |f(Ai+1)|. Define
P as the orthogonal projector onto the subspace Z(S). Then, we have

SApms1)

(I — P)xill2 < ap; £

’

where o = || X||2|IX™" |2, Bi depends on the angle between the subspace f%/MD (o)
and each eigenvector x;.

Moreover, in [9], the error bound has been proposed for the case in which
the solution of the linear system for the j'-th quadrature point is contaminated as
follows:

(zzB—A)"'BV +E, (10)

where E € C™ is an error matrix of rank(E) = L' < L. Because of the
contaminated solution (10), the matrix S is also contaminated. We define the
contaminated matrix as S'. The error bound of the block SS—RR method with the
contaminated matrix in [9] can also be simplified under some assumption on V as
follows.

Theorem 3 Let (A;, x;) be the exact eigenpairs of the matrix pencil (A, B). Assume
that f(A;) are ordered in decreasing order of magnitude | f(A;)| = |f(Ai+1)|. Define
P’ as the orthogonal projector onto the subspace %(S’). Then, we have

1= 2l < apl | (A;Agj)’ +1)

i ’

where o = || X|]2|| X" |2, B! depends on the error matrix E and the angle between
the subspace %MD (C, V) and each eigenvector x;.
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Here, we note that the values f! is not equivalent to §;, since B! depends on error
matrix E and the contaminated quadrature point j’. 8/ may become larger for A; near
zy than others, specifically for the case where L' = L. For more details of these
theorems, refer to [9].

3.3 Parallel Implementation of the Block SS—-RR Method

The most time-consuming part of the block SS—-RR method is to solve N linear
systems with L right-hand sides (7) in Step 1. For solving the linear systems, the
block SS—RR method has hierarchical parallelism; see Fig. 1.

Layer 1. Contour paths can be performed independently.
Layer 2. The linear systems can be solved independently.
Layer 3. Each linear system can be solved in parallel.

By making the hierarchical structure of the algorithm responsive to the hierarchical
structure of the architecture, the block SS—-RR method is expected to achieve high
scalability.

Because Layer 1 can be implemented completely without communications, here
we describe a basic parallel implementation of the block SS—-RR method for one
contour path. Let P be the number of MPI processes used for one contour path. Here

Fig. 1 Hierarchical structure Im Contour path
of the block SS-RR method Eigenvalue

Re

I
!
1
T
1

Layer 1. Contour paths can be run independently
N 1

/ '

: '

Quadrature point

-7 AN

Layer 2. Linear systems are solved independently
at each quadrature point
- N,

’
.
Pd N

Layer 3. The linear system can be solved in parallel
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Fig. 2 Processes grid and Pig | Py | PIN
MPI sub-communicators
mpi_comm_row (i) —[ pi1 .| pij | pin |
PpP/N,1 -+ |PP/N,j|--+ PP/N.N
T

mpi_comm_col (j)

we assume mod(P, N) = 0 for simplicity and consider two dimensional processes
grid, ie., pij,i = 1,2,...,P/N,j = 1,2,...,N. Then, we also define MPI sub-
communicators for N MPI processes p;j,j = 1,2,...,N asmpi_comm_row (i)
(i = 1,2,...,P/N) and for P/N MPI processes p;;,i = 1,2,...,P/N as
mpi comm col(j) (j=1,2,...,N); see Fig.2.

3.3.1 Parallel Implementation for Step 1

In Step 1, we need to solve N linear systems (7). Because these linear systems are
independent of j (index of quadrature point), we can independently solve these N
linear systems in N parallel. Each linear system (z;B — A)W; = V is solved by
some parallel linear solver on the MPI sub-communicator mpi comm_col (j) in
parallel.

In this implementation, the coefficient matrices A, B and the input matrix V
require to be distributed to P/N MPI processes in each MPI sub-communicator
mpi_comm_col (j) with N redundant. As a result, each solution W; of the linear
system is also distributed to P/N MPI processes in the MPI sub-communicator
mpi comm col (j).

3.3.2 Parallel Implementation for Step 2

Let W, (i = 1.2,....P/N.j = 1,2....,N) be the distributed sub-matrix of W},

which are stored by the MPI process p; ;. Then, for constructing the matrix Si (8),
we independently compute

@ _ kg
Wi = oW,

in each MPI process without communication. Then, we performmpi allreduce
on the MPI sub-communicatormpi comm_row (i) with N MPI processes in P/N
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parallel as follows:

N
SO= Wi k=01 M1

Jj=1
We also set
SO =893V 39 ),

where SO are the sub-matrix of S, which is redundantly stored by the MPI processes
pij»,J = 1,2,...,N.Inthis implementation, the matrix § are distributed in P/N MPI
processes in each MPI sub-communicatormpi comm_ row (i) with N redundant.

3.3.3 Parallel Implementation for Step 3

We have two choices for parallel implementation for Step 3. The first choice is
that all P MPI processes perform the orthogonalization of S and the Rayleigh—Ritz
procedure. This choice makes it possible to work all MPI processes we can use;
however, it needs to redistribution of the matrices A, B and S.

The second choice is that only P/N MPI processes in the MPI sub-communicator
mpi comm_col (j) perform this calculation. In this case, only P/N MPI pro-
cesses work and the others are just redundant; however, redistribution of the matrices
A, B and S does not be required.

4 An Error Resilience Strategy of the Block SS-RR Method

With the recent development of high-performance computer, systems scale is
drastically increasing. In such situation, fault management is considered to play
an important role in large scale application. The fault can be classified to hardware
fault and software fault. Here, we focus on software fault like bit-flip.

The most standard software fault tolerance techniques are checkpointing tech-
niques. The checkpointing techniques save all correct data at some interval, and if
some fault is detected then it restarts with the last correct data. These are efficient
for the case that data size required to save is small and that interval between each
checkpoint is small. On the other hand, large data size causes large I/O costs and
large interval causes large recalculation costs when fault occurs.

The replication techniques are also very basic software fault tolerance tech-
niques. Its basic idea is shown below. Let P be the number of MPI processes we
can use and K be the number of redundancies. Firstly, we split MPI communicator
into each P/K MPI processes. The replication techniques restrict the parallelism to
P/K, i.e., calculation is independently performed by P/K MPI processes in each



10 A. Imakura et al.

MPI sub-communicator. Then, the correct solution is selected from K solutions by
e.g. a majority vote. These are efficient when the number of MPI processes is large
such that target calculation does not show good scalability. However, if the target
calculation shows good scalability, the replication techniques largely increase the
execution time even if fault does not occur.

In this section, we consider an error resilience strategy of the block SS—-RR
method that can use all the MPI processes for the most time-consuming part, i.e.,
to solve the N linear systems (7) in Step 1 and avoid resolving them even if fault
occurs. Here, we assume the following software fault:

e Leta € I be the correct value, where I is the set of floating point numbers. The
fault occurs as the numerical error as follows:

d<«—a+e ecT, (1rn)

where a’ € F is the contaminated value. Here, a, @', e are not “Inf” or “Nan”.
* Unlike hardware faults, remaining calculation are correctly performed with the
contaminated values.

4.1 Error Resilience Strategy

As shown in Sect. 3, the algorithm of the block SS—RR method and its parallel
implementation can be divided into three steps: solving the linear systems, the
numerical integration and the Rayleigh—Ritz procedure. Here, we consider error
resilience of each step.

4.1.1 Error Resilience Strategy for Step 1

Step 1 is the most time-consuming part and also the most scalable part of the block
SS-RR method. Therefore, standard checkpointing and replication techniques may
not be efficient for computational costs. Hence, we introduce an alternative strategy
to standard checkpointing and replication techniques for computational costs.

When fault occurs in Step 1, some kind of value(s) in calculation are replaced
as (11) due to the fault. Then, the contamination is propagated to all MPI processes
in the same MPI sub-communicator mpi comm col (j) via communication. As
aresult, the solution of the linear system is replaced as

W, < Wy +E.  EeF”", rank(E) =L, (12)
when fault occurs in the MPI process p; 7 associated with the j'-th linear system.

Here, we reconsider Theorems 2 and 3. Theorem 2 implies that the error bound
of the block SS—RR method is evaluated by the ratio of the magnitude of the filter
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Fig. 3 Magnitude of filter function | f(1)| of the N-point trapezoidal rule with N = 16, 32, 64 for
the unit circle region §2. (a) On the real axis for N = 16,32, 64. (b) On the complex plane for
N =32

function | f(4;)| to the (LM + 1)-th largest | f(A1p+1)|- The magnitude of the filter
function | f(A;)| of the N-point trapezoidal rule with N = 16,32, 64 for the unit
circle region §2 is shown in Fig.3. The filter function has |f(A)| & 1 inside the
region £2, |f(1))| ~ O far from the region and 0 < | f(4)| < 1 outside but near the
region. Because of Theorem 2 and the filter function, we usually set subspace size
LM such that | f(Arpy+1)] & O to compute the target eigenpairs (4;,x;), A; € £2 with
high accuracy.

Regarding the filter function, Theorem 3 implies that the accuracy of the block
SS—-RR method with the contaminated solution is evaluated by the ratio of the
magnitude of the filter function | f(A;)| to the (LM — L+ 1)-th largest | f(Ary—r+1)]-
Of course, Theorem 3 support the case when fault occurs in Step 1 like (12).
Therefore, if we consider the case that fault occurs in Step 1, we just set subspace
size LM such that |f(Ary—r+1)] & O in order to obtain the eigenpairs to high
accuracy.

Here, we note that, when multiple faults occur in different quadrature points, i.e.,

Wj/; <~ Wy +Ei, W;& < Wy +Ey, EiE> € F™>L rank(E;) = rank(E,) = L

then we can handle the fault in Step 1 by setting larger subspace LM such that
[f(Am—224+1)| = 0

This is an error resilience strategy for Step 1, which makes it possible to use all
MPI processes for computing the N linear systems (7) and to avoid resolving them
even if fault occurs.

4.1.2 Error Resilience Strategy for Step 2

The computational cost for Step 2 is very small, and the data size is not exorbitant
large. Therefore, we can apply checkpointing technique with small additional costs
for Step 2.
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4.1.3 Error Resilience Strategy for Step 3

As noted in Sect. 3.3, we have two choices for implementation of Step 3: to use all
processes with redistribution and to replicate without redistribution. If the number of
processes P is not so large such that this part shows good scalability, the first choice
is better in terms of computational costs. If not, the second choice is better due to the
costs of redistribution. In practice, we want to increase the number of processes P,
if possible, during N linear systems, which is the most time-consuming part, shows
good scalability. And computation of N independent linear systems is expected
to have better scalability than one of the orthogonalization and the Rayleigh—Ritz
procedure. Hence, we usually employ the second choice.

Therefore, we can apply replication technique without no additional costs for
Step 3.

4.2 A Possibility of Development to Other Complex
Moment-Based Eigensolvers

In Sect. 4, we proposed the error resilience strategy of the block SS—RR method
which is based on the error analysis in [9]. Here, we consider a possibility of
development of our strategy to other complex moment-based eigensolvers.

The proposed error resilient strategy is mainly based on Theorem 3 for the block
SS—-RR method. Similar theorems as Theorem 3 could be derived for other complex
moment-based eigensolvers. One of the most important respects of Theorem 3 is
that the subspace size LM should be larger than the rank of error matrix L/, i.e.,
LM > L'. In the case of one linear solution is contaminated in the block SS-RR
method with M > 2, the condition LM > L > L’ is always satisfied and this makes
it possible to derive the proposed error resilient strategy.

For development of our strategy to other complex moment-based eigensolvers,
we can expect that the proposed strategy is also utilized to other complex moment-
based eigensolvers with high order complex moments such as the (block) SS—
Hankel method and the block SS—Arnoldi method, although more detailed analyses
and numerical experiments are required. Because these methods with M > 2 always
satisfy the condition LM > L > L’ as well as the block SS—-RR method.

On the other hand, the current proposed strategy may be difficult to recover
the error of the complex moment-based eigensolvers only with low order complex
moments such as the FEAST eigensolver [12, 17] and the Beyn method [3]. The
subspace size of these methods is L which is the same as the number of right-hand
side of the linear systems. This indicates that the rank of the error matrix reaches the
subspace size in the worst case. In this case, our strategy can not recover the error.
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5 Numerical Experiments

In this section, we experimentally evaluate the results of the error resilience strategy
specifically for Step 1.

5.1 Examplel

For the first example, we apply the block SS-RR method with and without soft-error
in Step 1 to the following model problem

Ax; = Ax;,
A = diag(0.01,0.11,0.21,...,9.91) € R100x100,
Aie 2 =1[-1,1],

and evaluate its accuracy.

We evaluate the relation between accuracy with the number of subspace size LM.
To evaluate this relation, we fixed the parameters as L = 10 and N = 32, and tested
four cases M = 1,2,3,4 (LM = 10, 20, 30, 40). For this example, we set I" as the
unit circle and the quadrature points as

2 1
z; = cos(6)) +isin(6;), 6, = ];T ( - 2)

forj=1,2,...,N. We let fault occur at one of the following quadrature points,

71 = COS (3”2) + isin (fz)

g =1 2 = cos () +isin (')

216 = cos (4 +isin (%)

The algorithm was implemented in MATLAB R2014a. The input matrix V and the
error matrix E were set as different random matrices generated by the Mersenne
Twister in MATLAB, and each linear system was solved by the MATLAB command
4(\’7.

We show in Table 1 the relation of the minimum and the maximum values of
Iri|l2 in A; € £2 with LM. Table 1(a) is for the case without fault and Table 1(b)—(d)
are for the case when fault occurs in Step 1. We also show in Fig. 4 the residual 2-
norm ||r;||2 := ||Ax; — A;Bx;||2/||x:||2 for the block SS—-RR method with and without
fault.

Table 1 shows that minyeg ||[r;]2 have approximately the same order as
| f(Arpr+1)| for the case without fault and as |f(Apy—r+1)| when fault occurs
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Table 1 Relation of

(a) Without fault
accuracy of the block SS—-RR

method with LM when fault M(LM)  |f(ow+)l minyeqrill,  maxy.eallrilz

occurs in Step 1 1(10)  421x1070  1.76x 1070 1.34x 10~
2020)  1.98x 10710 229x10710 2.11x 10~°
3(30) 506X 1076 1.44x10715 120 x 1071
4(40)  225x1077  2.03x 10715 3.46x 1071

(b) Fault occurs at 7,

MIM)  |f—r+)| minyeellrill,  maxeelrill2
1100 1.00x10°  523x 10~ 823 x 10!
2020)  421x1070  1.84x 107"  2.63x 107!
3(30)  1.98x 1071 2.43x 10710 1.63 x 1078
4 (40) 506 x 1071 657 x 10715 1.91x 10713

(¢) Fault occurs at zg

MIM)  |f—r+)| minyeellrill,  maxyeelrill2
1(10)  1.00x10°  542x 10~  7.99 x 10~
2020)  421x1070  1.04x 107" 7.74x 107!
3(30)  1.98x 10710  511x10710 4.57 x 10~
4 (40) 506x 1071 516x1071° 2.87x 10714
(d) Fault occurs at z1¢6

MAM)  |f—r+D)| minyeellrill,  maxy.eelrilla
1(10)  1.00x10°  554x 10~  7.85x 10~
2020)  421x1070  411x10~"  4.84x 107!
3 (30) 1.98 x 10710 7.05x 10710  4.96 x 10~°
4(40) 506X 1076 371X 10715 2.51x 10~

in Step 1, respectively. Moreover, Fig.4 shows that enough large subspace size
(LM = 40 in this example) provides equally high accuracy independent of fault in
Step 1.

5.2 Example I1

For the second example, we apply the block SS—-RR method with and without soft-
error in Step 1 to the generalized eigenvalue problem AUNWO9180 from ELSES
matrix library [4]. The coefficient matrices A, B are 9180 dimensional real sparse
symmetric matrices and B is also positive definite. We consider finding all eigenpairs
(Aiyx), A; € 2 =[0.119,0.153]. In this region, there exist 99 eigenvalues.

We set I' as the ellipse (center: 0.131, semi-major axis: 0.012 and semi-minor
axis: 0.0012), and the quadrature points as

zj = 0.131 4 0.012 (cos(6;) + 0.1isin(6)))

2 (. 1
-3



An Error Resilience Strategy of a Complex Moment-Based Eigensolver 15

1
0 filter function
~ without fault e
- with fault O
L 107 f 4
o
5 107"
o
i $
2 / o
2 107 ==
1072° : :

-5 -4 -3 -2 -1 0 1 2 3 4 5

(a) »
10° 10°
filter function p filter function

- without fault e without fault e
- with fault & - . with fault «

B 1078 7 L 107 T
5 107%° 2 © 107" ?
5 » \ G rg

]

=y -15 % < -1 W
< 10 < 10

107%° : i 10’2‘“‘ ||‘ | §| |||

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5
(®) A © A

Fig. 4 Accuracy of the block SS-RR method with L = 10, M = 4, N = 32 when fault occurs in
Step 1. (a) Fault occurs at z;. (b) Fault occurs at zg. (¢) Fault occurs at z;¢

forj=1,2,...,N. We also set parameters as L = 25, M = 8, N = 32 for the case
without fault and as L = 25, M = 10, N = 32 when fault occurs in Step 1.

The input matrix V and the error matrix E were set as different random
matrices generated by the Mersenne Twister, and each linear system was solved
by “cluster_sparse_solver” in Intel MKL. Here, we note that, in this numerical
experiment, we solved only N/2 linear systems with multiple right-hand sides for
j = 1,2,...,N/2, because the linear solution Wy_; can be constructed from W;
using a symmetric property of the problem.

The numerical experiments were carried out in double precision arithmetic on 8
nodes of COMA at University of Tsukuba. COMA has two Intel Xeon E5-2670v2
(2.5GHz) and two Intel Xeon Phi 7110P (61 cores) per node. In this numerical
experiment, we use only CPU part. The algorithm was implemented in Fortran 90
and MPI, and was executed with 8 [node] x 2 [process/node] x 8 [thread/process].

We show in Fig.5 the residual 2-norm ||ri||l2 := |[Ax; — A:Bx;|2/||xi|l> for
the block SS-RR method with and without fault. This shows that, by increasing
subspace size LM, the block SS-RR method with fault can achieve approximately
the same accuracy as the case without fault.

Table 2 shows that the computation time of the block SS—RR method without
fault using 1-16 processes and the computation time of the block SS—RR method
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10° — : : :
without fault ——
1072 F fault occurs at z; ----e---
fault occurs at zg -a-
1074 } fault occurs at z;g ——v-—
= 107°
gt 1078
Z 19710
10712
1074 o ;
19-16 ; i :
0.115 0.12 0.125 0.13 0.135 0.14 0.145

A
Fig. 5 Accuracy of the block SS—-RR method with and without fault in Step 1 for AUNW9180

Table 2 Computation time of the block SS-RR method with and without fault
(a) without fault (L = 25,M = §,N = 32)

Time [s]
#process Step 1 Step 2 Step 3 MISC Total
1 2.14E+02 4.20E—05 4.92E—01 1.18E—01 2.15E+02
2 1.06E+02 1.05E—02 4.76E—01 7.87E—02 1.06E+02
4 5.30E+01 1.49E—02 4.77E—01 6.34E—02 5.36E+01
8 2.66E+01 2.05E—02 4.79E—01 5.73E—02 2.72E+01
16 1.34E+01 1.56E—02 4.78E—01 5.33E—02 1.39E+01
(b) with fault (L = 25,M = 10,N = 32)

Time [s]
#process Step 1 Step 2 Step 3 MISC Total
16 1.37E+01 2.09E—02 6.44E—01 1.10E—02 1.44E+01

with fault using 16 processes. This result indicates that Step 1 of the SS—RR method
is the most time-consuming. We can also observe from this result that the proposed
strategy recovers software faults with very small additional computational costs.

6 Conclusion

In this paper, we investigated the error resilience strategy of the Rayleigh—Ritz type
complex moment-based parallel eigensolver (the block SS—-RR method) for solving
generalized eigenvalue problems. Based on the analyses of the error bound of the
method, we provided the error resilience strategy which does not require standard



An Error Resilience Strategy of a Complex Moment-Based Eigensolver 17

checkpointing and replication techniques in the most time-consuming and the most
scalable part. From our numerical experiment, our strategy recovers software faults
like bit-flip with small additional costs.
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Numerical Integral Eigensolver for a Ring
Region on the Complex Plane

Yasuyuki Maeda, Tetsuya Sakurai, James Charles, Michael Povolotskyi,
Gerhard Klimeck, and Jose E. Roman

Abstract In the present paper, we propose an extension of the Sakurai-Sugiura
projection method (SSPM) for a circumference region on the complex plane.
The SSPM finds eigenvalues in a specified region on the complex plane and the
corresponding eigenvectors by using numerical quadrature. The original SSPM has
also been extended to compute the eigenpairs near the circumference of a circle
on the complex plane. However these extensions can result in division by zero,
if the eigenvalues are located at the quadrature points set on the circumference.
Here, we propose a new extension of the SSPM, in order to avoid a decrease in
the computational accuracy of the eigenpairs resulting from locating the quadrature
points near the eigenvalues. We implement the proposed method in the SLEPc
library, and examine its performance on a supercomputer cluster with many-core
architecture.

1 Introduction

We consider a generalized eigenvalue problem Ax = ABx, where A,B € C™",
A € Cis an eigenvalue, and x € C"\{0} is an eigenvector. Eigenvalue problems
arise in many scientific applications such as in quantum transport models, where
the self-energy is required to describe the charge injection and extraction effect of
the contact. To compute the self-energy exactly, one needs to compute all of the
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eigenpairs, however it is enough for practical applications to compute only some
of the eigenpairs. In [9], it is necessary to obtain the eigenvalues A = e'*4 near
the circumference of a circle on the complex plane |A| = 1 and corresponding
eigenvectors, where A is the lattice period length, and k is the wave number.

The shift-invert Arnoldi method is a widely used method for obtaining interior
eigenpairs[12]. This method computes eigenvalues close to a shift point and the
corresponding eigenvectors. It is hard to obtain eigenpairs near the circumference
with the shift-invert Arnoldi method. The Sakurai-Sugiura projection method
(SSPM)[7, 8, 13] has been proposed for computing eigenvalues in a given region,
and the corresponding eigenvectors, with contour integration. The SSPM finds
eigenvalues in a domain surrounded by an integration path, by solving linear systems
of equations at the quadrature points with numerical quadrature. An extension of
the SSPM for calculating eigenvalues in the arc-shaped region by dividing the
circumference of a circle into several arcs, and computing the eigenpairs for each
line was proposed in [10]. This extension allows effective parallel computing of the
eigenpairs in each arc. However, the quadrature points are set on the arc, and when
the eigenpairs are located at the quadrature points, division by zero arises in the
calculations.

In this paper, we present an alternative extension of the SSPM by setting two
arcs, which avoids a decrease in the computational accuracy of the eigenpairs
resulting from locating the quadrature points near the eigenvalues, and allows
parallel computation.

We test the proposed method in SLEPc (the Scalable Library for Eigenvalue
Problem Computations) [5].

This paper is organized as follows. In Sect. 2, we review the SSPM and an
extension of the method for arcs. In Sect. 3, we propose an extension of the SSPM
for the partial ring region and implement it in SLEPc. In Sect. 4, we discuss the
results of the numerical experiments, and our conclusions are presented in Sect. 5.

2 An Extension of the SSPM for Arcs

In this section, we introduce the SSPM for generalized eigenvalue problems[13] and
show an extension of the SSPM for the ring region on the complex plane[10]. The
extension divides the ring region into several arcs, and calculates the eigenpairs near
each arc. In the extension, we construct a subspace that contains the eigenvectors
associated with the eigenvalues near the arc.

First, we introduce the SSPM. Let I" be a positively oriented closed Jordan curve
on the complex plane. The SSPM approximates eigenvalues inside of the closed
Jordan curve I' and corresponding eigenvectors, using a two-step procedure. The
first step is to construct the subspace with a filtering for eigenvectors, and the second
step is to extract the eigenpairs inside the closed Jordan curve.

We now introduce the procedure for constructing the subspace. Suppose that m
eigenvalues are located inside I', let V be a n x L matrix, the column vectors of
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which are linearly independent, and let S = [So, Sy, ..., Sy—1] where Sy are n x L
matrices be n x LM matrices which are determined through contour integration,

1
S = ,9§z"(zB—A)—lBde, for k=0,1,....M—1, (1)
271 Jr

where zB—A is aregular matrix pencil on z € I', and M is chosen such that LM > m.

We assume that the matrix pencil uB — A is diagonalizable for any u; regular
matrices X = (x1,X2,...,%,) and ¥ = (y,y,,...,y,) that satisfy YH(uB—A)X =
(ul — A) exist, where A is the diagonal matrix with elements A1, A,,..., A, on the
diagonal. From the residue theorem,

Sk =Y fil)xiy!'BY,

i=1

where y; and x; are the left and right eigenvector of uB — A respectively, and f;(A;)
is a filter function that satisfies

1 o *, xeg,
Je) = 2mi ﬁ z —de - % 0, otherwise,
where G is the interior region of I". Eigenvalues outside I" are filtered out with the
filter function f; (4;). Thus the components of S in the direction of eigenvectors with
eigenvalues outside I" are reduced.
In the case that the Jordan curve I' is a circle with a center y and a radius p, an
N-point trapezoidal rule can be applied to compute (1) numerically, that is

N
Se~ 8= witkX;. )
j=1

where

GV =97V 01 N—1,

_ 271i(j+1) _
=y +pen V2w =
=Y TP i oN ] P

are quadrature points, normalized quadrature points and corresponding weights,
respectively, and Xj, j = 0,1,...,N — 1 are the solutions of linear systems with
multiple right-hand side vectors,

(;B—A)X; =BV, j=0,1,....N—1. 3)

The filter function f(x) is approximated by the N-point trapezoidal rule as

N

i) ~ o = Zz'vﬁxx", O<k<N-1, @)

=17
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where f (x) is a rational function. The rational function f‘ (x) and eigenvectors in S
depend on z;, w;, {; and N. In this case, the rational function f‘ (x) decays outside
the circle[7, 11]. Thus the components of S in the direction of eigenvectors with
eigenvalues outside I" are small.

Next, we introduce the procedure for the approximation of eigenpairs using the
Rayleigh-Ritz approach for the SSPM[7]. Let the singular value decomposition
(SVD) of § = [S0.81,....8y_1] € C*IM pe § = QXWH, where Q =

41> - qru] € (C”XLM, Yy = dlag(ol,az,...,crLM), 01> 01> ... > o
and W € CIMXIM_ We omit singular values less than §, and construct Q =
[41:95 - -..qx] € C™K, where K > m, and ox > § > ok+1. We solve the small

eigenvalue problem
(@ O"BO — 0M"AQ)u; =0, Q"AQ, Q"BO e C7K,

where ; is the eigenvalue of the matrix pencil o;O"BQ — OHAQ and u; is the
eigenvector corresponding to ¢;. Then the eigenvalues of the matrix pencil A — AB
are approximated by A; & o, and the corresponding approximate eigenvectors are
given by x; ~ Qu;fori=1,2,...,K. Some approximated eigenvalues may appear
outside I". We keep eigenvalue A; inside I" for i = 1,2,...,m, where rm is the
number of approximated eigenvalues inside I, and discard the rest.

We can compute the eigenpairs in a specific circle by using the SSPM. When
many eigenvalues exist in the circle, we have to set a large value for LM, and thus the
computational cost for computing the eigenpairs is high. In some applications, the
eigenpairs near the circumference of the circle are also required. When computing
these eigenpairs, the computational cost can be reduced with an extension of the
SSPM for the arc as follows[10]. In the extension, the procedure for constructing
the subspace is different, but the procedure for extracting eigenpairs remains the
same.

Let L be the arc with center y, radius p, starting angle 6, and ending angle 6,

L:iz=y+pe? 6,<6<6b,

where 0 < 8, < 6, < 2. Quadrature points z;, normalized quadrature points {; and
corresponding weights w; are given by

, j=0,1,...,N—-1,

2j+1 ) Tn-1(8)
i), Wj =
2N N

=y + pe't , G = cos(
(%)

where, Ti(x) is the Chebyshev polynomial of the first kind of degree k, and 6; =
0, + (6 — 6,) fj-;l. ¢ are AN Chebyshev points in the interval [—1, 1], and z; are
points in L. The matrices S in (2) are computed with z;, {;, w; in (5). According
to [10], the rational function f (x) in (4) with z;, {;, w; in (5) decays outside the arc
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L. Thus the eigenvectors associated with the eigenvalues outside L are filtered out.
Then we extract the eigenpairs using a Rayleigh-Ritz approach, and we can obtain
the eigenpairs near L.

For computing the eigenpairs in a ring region, we divide the circumference of
the ring into D arcs Ly, d = 1,2,...,D with Géd), Gt()d), d=1,2,...,D. Then we
compute the eigenpairs on each arc.

3 Extension of the SSPM for the Partial Ring Region

In the extension of the SSPM, quadrature points may lie on the arc. Division by
zero arises when eigenpairs are located at quadrature points. Therefore, to avoid
division by zero, quadrature points should be located sufficiently far from the arc.
The filter function, which is approximated by the rational function, is dependent
on the quadrature points, and decays outside of the arc. Thus components of
eigenvectors in S decrease when eigenvalues are farther from quadrature points.
When the eigenpairs are located away from the quadrature points, the accuracy of
the approximated eigenpairs is reduced. We propose an alternative extension of the
SSPM, which avoids a decrease in the computational accuracy of the eigenpairs
resulting from locating the quadrature points near the eigenvalues. The proposed
method uses alternative formulations for zj, {;, w;, and derive the filter function
which decays outside of the partial ring region.
Let ¥ be two arcs such that

LE:z=y+p%e? 6,<6 <6,

where y is the center, and p™, p~ are the outer and inner radii of the arcs that
satisfy p™ > p~, and 6,, 6, are the starting and ending angles that satisfy 0 < 6, <
6, < 2.

Quadrature points z;, j = 0,1,...,N — 1 are Chebyshev points on L* and L™,

5, (0<j<N%)
i = - . —\
! Z g (Nt <j<Nt+N)

where zj+ are N* Chebyshev points on L™, and z; are N~ Chebyshev points

on L.~ defined by (5), and N = NT + N~. In the SSPM, a weight for the
quadrature {wo, wi, ..., wy—1} is set to satisfy the following equation for computing
the eigenpairs inside I" [14],

N—1

e _J L (k=-1
;W’éf - %0, (k=0.1,...N—2) ©)
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In the proposed method, we compute the eigenpairs between two arcs. The weights
for a quadrature w; are defined by barycentric weight [2],

wj = (_1)N+l Nl_l[kN;(i (é-k) ,
r=0.ki(Ck — &)

where

2z —
g = G=7 j=0,1,....N—1.
p1+ P2

The barycentric weight is used for computing weight for quadrature, which satis-
fies (6). Then, we construct the matrix Sy by (2). The procedure after constructing
S'k is then the same as the SSPM in Sect. 2.

Figures 1 and 2 show schematics of the quadrature points in the SSPM for an
arc and a partial ring region, and Figs. 3 and 4 show rational functions f (x) defined
by (4) in each extension for N = 32 quadrature points. In Fig. 3, we set y = 0,
p=1,0, =0and 6, = 7. In Fig. 4, weset y = 0, p™ = 1.01, p~ = 0.99,
0, =0,6, =7, Nt =24 and N~ = 8. In the extension for arcs as well as for the
partial ring region, the rational function f (x) decays outside of the two arcs. Thus

Fig. 1 Quadrature points for e
the SSPM for the arc - -

Fig. 2 Quadrature points for
the proposed method

o :Quadrature point
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Fig. 3 Filter function for the SSPM for the arc
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Fig. 4 Filter function for the proposed method

the components of S in the direction of eigenvectors associated with eigenvalues
outside " are small.

Figures 6 and 7 show the rational functions f (x) on the two lines in Fig. 5.
We compute absolute value of the rational function for the SSPM for the arc and
the proposed method with Nt = 24, N~ = 8 and N* = 16. The parameters
Y, P, pi, 6, and 6, are the same as in Figs. 3 and 4. In Figs. 6 and 7, the horizontal
axis indicates angle of the linel and imaginary axis, respectively. In Fig. 6, we
can see that the gap between maximum value and minimum value of the rational
function for the proposed method is smaller than the gap for the SSPM for the arc.
The rational function for the proposed method with N* = 24, N~ = 8 are similar
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Fig. 5 Two lines for filter function
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Fig. 6 Absolute value of the filter function on the linel

to that with N* = 16. Thus the components of S‘k in the direction of eigenvectors
associated with eigenvalues near the arc for the proposed method is more equable
than that for the SSPM for arc. In Fig. 7, we can see that the rational functions for the
proposed method decays outside of the circle more rapidly than that for the SSPM
for arc. However, the rational functions for the proposed method decays inside of
the circle more slowly than that for the SSPM for arc. The rational function for the
proposed method with N* = 24, N~ = 8 are similar to that with N* = 16. Thus
the components of St in the direction of eigenvectors associated with eigenvalues
outside the circle for the proposed method are smaller than that for the SSPM
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for arc, and the components of St in the direction of eigenvectors associated with
eigenvalues inside the circle for the proposed method are larger than that for the
SSPM for arc.

In the proposed method, we compute the eigenpairs in a partial ring region. To
do this, we divide the ring region into D partial ring regions by Géd) , Gt()d), d =
1,2,...,D. Then we compute the eigenpairs using the proposed method in each
partial ring region.

The SSPM has potential for hierarchical parallelism: (I) each region can be
computed independently, (IT) linear systems at each quadrature point can be solved
independently, (IIT) multiple right-hand sides of the linear systems can be solved
simultaneously. Therefore we can assign different tasks for solving the linear
systems to each parallel processor. Parallel implementations of the SSPM have
been developed, such as Bloss[6], z-Pares[4] and CISS (Contour Integral Spectral
Slicing). In CISS, the parallelism of (I) and (II) is implemented in SLEPc, along
with an extension for the arc.

4 Numerical Example

In this section, we present numerical examples of the proposed method. We
implement the proposed method in SLEPc, and compare the performance of the
proposed method with that of the extension for the arc.

Experiments are performed on the supercomputer cluster of many-core architec-
ture COMA (PACS-IX) at the Center for Computational Sciences, the University
of Tsukuba. COMA has a total of 393 nodes providing 1.001 PFLOPS at optimum
performance. Each node has dual CPU (Intel Xeon E5-2670v2), dual MIC (Intel
Xeon Phi 7110P), and 64 GB memory, and the CPU has 10 cores and the MIC has
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61 cores. The linear systems are solved by a direct method, in particular PCLU in
PETSc library[1].

First, we compare the accuracy of the two extensions. Four test matrices A, B
were used in the numerical experiments: (I) 1000 x 1000 diagonal matrix A and
identity matrix B. The diagonal elements of A are 950 complex values, real and
imaginary part of which are random between [0,0.4], and 50 complex values,
real and imaginary part of which are random between [0.5, 1.1] (SAMPLE). (II)
501 x 501 diagonal matrix A and identity matrix B. The diagonal elements of A
are 500 complex values, that are spaced equiangularly on the circle with a center
0 and a radius 1 on the complex plane, and 1 complex value which is close to
quadrature point (z; +107'%) in the SSPM for the arc (SAMPLE2). (IIT) 5000 x 5000
matrix A taken from the matrix market[3] and identity matrix B (OLM5000). (IV)
11,520 11,520 matrix A, B derived from computation of the self-energy of a silicon
nanowire with a 6 x 6 nm? cross section[9] (SI11520). In both extensions, we divide
the ring region into D = 4 partial ring regions, and we set p* = p & f8. Parameters
for the ring region, starting angles and ending angles are given in Table 1. The
remaining parameters for both extensions were Nt =24 N~ = 8§, N = 32,
L=32,M=28and§ = 10712,

Table 2 shows the accuracy of the two extensions. max(res) and min(res) are the
maximum and minimum values of the residuals ||Ax; — A;Bx; |2/ (||Allg + |A:i| | Bll),
respectively. The proposed method shows similar accuracy to the SSPM for the arc
for the case (I), (III) and (IV). In the case (II), we can see that the maximum value
of the residuals of the proposed method is smaller than that of the SSPM for the arc.
Because 1 eigenvalue is very close to the quadrature point for the SSPM for the arc,
a component of S in the direction of eigenvector associated with eigenvalue near
the quadrature point becomes large, and other components become small relatively.
These results indicate that the accuracy of residuals become low when the eigenpairs

Table 1 Parameters for the proposed method and the extension for the arc

A T SN (S ) B (Nl B () B (PR

SAMPLE 0 08 03 [0,0.57] [0.57, 7] [, 1.57] [1.57, 27]
SAMPLE2 0 1 0.01 [0,0.57] [0.57, 7] [, 1.57] [1.57, 27]
OLM5000[3] -5 6.6 0.1 [0,0.57] [0.57, 7] [, 1.57] [1.57, 2]
S111520[9] -1 1 0.03  [0,0.387] [0.387, 7] [, 1.627]  [1.627,27]
Table 2 Accuracy of the two extensions

Arc Partial ring region

Total Total Exact number

of m Max (res)  Min (res) of m Max (res)  Min (res) of eigenpairs
SAMPLE 50 55x107% 37x107% 50 32x107% 42x1078% 50
SAMPLE2 501 1.8x107° 1.5x107" 501 2.2x 10710 8.6x 1071 501
OLMS5000[3] 26 1.2x107'¢ 89x 1071 26 1.1x107'° 1.6x 10717 26
SI11520[9] 332 3.9x 107! 23x 107" 332 72x107% 4.4x 10713 332
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Table 3 Computational time for the proposed method for different numbers of processes

# processes 1 2 4 8 16 32 64 128
Total 308,800 153,170 76,623 40,601 23,439 15,268 10,463 8245
Ideal 308,800 151,300 75,650 37,825 18,913 9456 4728 2364
1000

2 100 .
2
< T—
§ I I I I [
- I l "

1 B &

1 2 4 8 16 32 64 128
# process
mm Linear system SVD mmProjection mmmConstruct S mmMisc Ideal Total

Fig. 8 Details of the computational time for the proposed method with different numbers of
processes (SI11520[9])

are closed at the quadrature points, and the proposed method improves the accuracy
by locating the quadrature points sufficiently far from the arc.

Next, we evaluate the parallel performance of the proposed method. We investi-
gate how the computational time varies as the number of processes increases. We
use test matrix SI11520[9] in this experiment. We implement the proposed method
in SLEPc. Here, the number of processes is set to 1,2, 4,8, 16,32, 64 and 128, and
other parameter values are the same as in the above experiment.

Table 3 shows the computational time for the proposed method with different
numbers of processes. Total is the computational time for the proposed method,
and Ideal is the ideal time (Total of 1 process)/(# processes). Figure 8 shows the
details of the computational time. In Table 3 and Fig. 8, we can see that the proposed
method has a good scaling for solving linear systems in (3), but is saturated for
constructing S'in (2) and computing the SVD due to the increase in communication
time for each process. Thus the computational time for the proposed method is close
to the ideal time for up to 8 processes but increases for 16 or more processes.

5 Conclusion

In the present paper, we presented an extension of the SSPM for a partial ring
region. The filter function for the extension is similar to that for the existing SSPM
for the arc. We implemented the SSPM for a partial ring region using SLEPc, and
demonstrated that the method can be parallelized. The performance of the method
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was examined on a supercomputer cluster with many-core architecture. The results
showed that the accuracy of the proposed method was similar to that of the SSPM for
an arc, and the proposed method improves the accuracy by locating the quadrature
points sufficiently far from the arc. We demonstrate that our implementation on
SLEPc has efficient parallelism. As an area for future work, we intend to develop
the SSPM to avoid the loss in efficiency due to the communication time between
computers.
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A Parallel Bisection and Inverse Iteration Solver
for a Subset of Eigenpairs of Symmetric Band
Matrices

Hiroyuki Ishigami, Hidehiko Hasegawa, Kinji Kimura,
and Yoshimasa Nakamura

Abstract The tridiagonalization and its back-transformation for computing eigen-
pairs of real symmetric dense matrices are known to be the bottleneck of the
execution time in parallel processing owing to the communication cost and the
number of floating-point operations. To overcome this problem, we focus on
real symmetric band eigensolvers proposed by Gupta and Murata since their
eigensolvers are composed of the bisection and inverse iteration algorithms and
do not include neither the tridiagonalization of real symmetric band matrices nor
its back-transformation. In this paper, the following parallel solver for computing
a subset of eigenpairs of real symmetric band matrices is proposed on the basis
of Murata’s eigensolver: the desired eigenvalues of the target band matrices are
computed directly by using parallel Murata’s bisection algorithm. The correspond-
ing eigenvectors are computed by using block inverse iteration algorithm with
reorthogonalization, which can be parallelized with lower communication cost than
the inverse iteration algorithm. Numerical experiments on shared-memory multi-
core processors show that the proposed eigensolver is faster than the conventional
solvers.
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1 Introduction

A subset of eigenpairs of a real symmetric matrix, i.e. eigenvalues and the
corresponding eigenvectors, is required in several applications, such as the vibration
analysis, the molecular orbital computation, and the kernel principal component
analysis. As the scale of the problems appearing in such applications becomes
significantly larger, the parallel processing is crucial for reducing the overall
execution time. As a result, there has been an increase in the demand for highly
scalable algorithms for computing a subset of the eigenpairs in parallel processing.

Let us consider computing a subset of eigenpairs of a real symmetric dense
matrix on the basis of the orthogonal similarity transformations. In general cases, the
eigenpairs of the target symmetric matrix are computed through the following three
phases: The first phase is tridiagonalization, which is to reduce the target matrix to
symmetric tridiagonal form by orthogonal similarity transformations. The second
phase is to compute eigenpairs of the symmetric tridiagonal matrix. The last phase
is back-transformation, which is to compute the eigenvectors of the original matrix
from the computed eigenvectors of the symmetric tridiagonal matrix by using the
orthogonal transformations generated for the first phase.

The following two-step framework [7, 8] is widely used for the tridiagonaliza-
tion: The first step is to reduce the symmetric dense matrix to symmetric band
form and the second step is to reduce the symmetric band matrix to symmetric
tridiagonal form. Several efficient parallel algorithms based on this framework has
been proposed in [2—4, 7, 17], etc. However, it is pointed out in [4] that the band
reduction in the second step and its corresponding back-transformation remains to
be the bottleneck of the overall execution time in massively parallel processing if
the eigenvectors are required.

To overcome the problem in the tridiagonalization and the corresponding back-
transformation, the authors consider not reducing a real symmetric band matrix to
the tridiagonal form, but directly computing the eigenpairs of the real symmetric
band matrix. The bisection and inverse iteration algorithms [6] for real symmetric
band matrices can be used for this purpose. It is to be noted that the bisection
algorithm can compute the desired eigenvalues of the target matrices and the inverse
iteration algorithm gives the corresponding eigenvectors. Their implementation for
real symmetric band matrices is proposed in [12, 20]. As shown in numerical results
on Sect. 4.1, the bisection algorithm proposed in [20] is faster than that proposed
in [12]. Let us name the algorithm in [12] Gupta’s bisection algorithm and that
in [20] Murata’s bisection algorithm, respectively. The inverse iteration algorithm
with reorthogonalization is used for computing the corresponding eigenvectors both
in [12, 20].

In this paper, the authors propose the following parallel algorithm for computing
desired eigenpairs of real symmetric band matrices: the desired eigenvalues are
computed by using the parallel implementation of Murata’s bisection algorithm
and the corresponding eigenvectors are computed by using block inverse iteration
algorithm with reorthogonalization (BIR algorithm) [14], which is a variant of the
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inverse iteration algorithm with reorthogonalization. Then, the performance of the
proposed methods is evaluated through numerical experiments on shared-memory
multi-core processors.

The rest of this paper is organized as follows. Section 2 gives a review of the
bisection algorithms for computing eigenvalues of real symmetric band matrices
proposed in [12, 20], and then shows their parallel implementation for shared-
memory multi-core processors. Section 3 shows the inverse iteration algorithm
with reorthogonalization and the BIR algorithm for computing eigenvectors of real
symmetric band matrices, and then shows their parallel implementation for shared-
memory multi-core processors. Section 4 shows results of numerical experiments on
shared-memory multi-core processors to evaluate the performance of the proposed
parallel algorithm, which computes eigenvalues of target matrices by using parallel
Murata’s bisection algorithm and computes the corresponding eigenvectors by using
the BIR algorithm. We end with conclusions and future work in Sect. 5.

2 Eigenvalue Computation of Symmetric Band Matrices

The bisection algorithm [6] computes the desired eigenvalues of a real symmetric
matrix by updating repeatedly the half-open intervals (u”, uX]. The computation
of v(u) is required for updating the intervals, where w is a value in the intervals
(u*, uR] and v(p) is the number of eigenvalues of the target matrix that are less
than p, and is the most time-consuming part of the bisection algorithm.

In this section, we introduce Gupta’s bisection algorithm [12] and Murata’s bisec-
tion algorithm [20] for computing the desired eigenvalues of a real n x n symmetric
band matrix B with half-bandwidth w and then show a parallel implementation of
them. These two algorithms differ in the computation of v ().

2.1 Gupta’s Bisection Algorithm

Gupta’s bisection algorithm employs Martin-Wilkinson’s Gaussian elimination [19]
for computing v(u).

The computation of v(u) by employing Martin-Wilkinson’s Gaussian elimi-
nation is based on Sturm’s theorem [21]. In this case, all the principal minor
determinant of B — ul is required. Martin-Wilkinson’s Gaussian elimination is
adequate for this purpose since economical partial pivoting strategy is implemented
to it from the viewpoint of both the numerical stability and the number of
floating-point operations. Note that the number of floating-point operations in
Martin-Wilkinson’s Gaussian elimination is O(w’n).

Martin-Wilkinson’s Gaussian elimination is mainly composed of the BLAS
(Basic Linear Algebra Subprograms [9]) 1 routines such as vector operations.
Whenever the partial pivoting occurs in Martin-Wilkinson’s Gaussian elimination,
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the number of floating-point operations increases and, moreover, a pattern of the
data access changes. As a result, Gupta’s bisection algorithm is difficult to achieve
a high performance from the viewpoint of data reusability.

2.2 Murata’s Bisection Algorithm

Murata’s bisection algorithm [20] employs not only Martin-Wilkinson’s Gaussian
elimination but also the LU factorization without pivoting for computing v(u).

The computation of v(u) by employing the LU factorization without pivoting is
based on Sylvester’s law of inertia [21]. In this case, we consider a LU factorization
without pivoting B—ul = LU, where L is an nxn lower triangular matrix with lower
bandwidth w and U is an n x n unit upper triangular matrix with upper bandwidth
w. On the basis of Sylvester’s law of inertia, v(u) is equivalent to the number of
negative values in diagonal elements of L.

The number of floating-point operations in Martin-Wilkinson’s Gaussian elimi-
nation is about 3 times higher than that in the LU factorization without pivoting. In
addition, the cache hit ratio of the LU factorization without pivoting is higher than
that of Martin-Wilkinson’s Gaussian elimination owing to absence of any pivoting.
However, owing to both the rounding errors and the absence of any pivoting, the
LU factorization without pivoting sometimes fails or the resulting elements of this
factorization may be not correct even if accomplished.

As aresult, Murata’s bisection algorithm computes v(u) in the following way: In
the early stage of computing eigenvalues of B, Murata’s bisection algorithm employs
the LU factorization without pivoting for computing rapidly v(u). In addition,
if p is significantly close to a certain eigenvalue, Murata’s bisection algorithm
employs Martin-Wilkinson’s Gaussian elimination for computing accurately v ().
Consequently, Murata’s bisection algorithm is expected to be faster than Gupta’s
algorithm for computing the desired eigenvalues of B.

The several acceleration techniques for the LU factorization algorithm has been
proposed. As shown in [13], the optimal implementation for vector processors is
implemented to the LU factorization without pivoting and the overall execution time
for Murata’s bisection algorithm becomes shorter. On recent scalar processors with
the large cache, the LU factorization had better to be implemented using the block
algorithm for enforcing higher cache hit ratio. Hence, in this paper, the block LU
factorization of real symmetric band matrices is introduced into Murata’s bisection
algorithm for the purpose of improving further its performance on shared-memory
multi-core processors.
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Algorithm 1 Parallel bisection algorithm for symmetric band matrices

1: function ParallelBandBisection(B, £)

2: Set uk, R > Use Gerschgorin theorem, etc.
3 ky :=1,k,:=1

4: repeat

5: ISomp parallel do private (i)

6: dok:=kytok, >k, </t
7 = (g + pf)/2

8: Compute vg(iy)

9: end do

10: Update the intervals Mé, ;Lf for k = kp, ..., k. and the indices k;, k.

11:  until All of the desired eigenvalues meets the stopping criteria

12: return Ay = (uf + pufy/2fork=1,..., l
13: end function

2.3 Parallel Implementation of Bisection Algorithm

In this paper, Murata’s and Gupta’s bisection algorithms are implemented on the
basis of the dstebz routine [15], which is provided in LAPACK (Linear Algebra
PACKage [1]) and computes the desired eigenvalues of real symmetric tridiagonal
matrices. A pseudocode of their parallel implementation is shown in Algorithm 1,
where £ is the number of the desired eigenvalues.

The computation of v(u;) on line 8 is applied different algorithms for Murata’s
and Gupta’s bisection algorithm as mentioned in Sects. 2.1 and 2.2, respectively.
In addition, the computation of v () is performed in parallel with respect to each
search point px by employing the OpenMP directive shown in line 5.

Note that an initial interval uf and pu® are set on line 2. ut and uf are, at first,
set as the lower and upper bounds derived from Gerschgorin theorem [11] and then
are refined by the iterative computation of v(uf) and v(u¥) in the same way as
shown on lines 7 and 8. Moreover, several criteria are designed for stopping the
binary search (a repeat-until iteration on lines 4-11) in the dstebz routine and
its subroutine dlaebz and we apply the modified criteria on line 11 for computing
eigenvalues of B. For more details, see the dstebz and dlaebz routines [15].

Note that the above-mentioned parallel bisection algorithm requires the working
memory for computing v(u) independently on each computation thread. The
amount of the working memory for Martin-Wilkinson’s Gaussian elimination is
(3w + 1)n per a computation thread and is larger than that for the block LU
factorization. Thus, we have to spend about #(3w 4 1)n working memory for
performing parallel Murata’s and Gupta’s bisection algorithm, where 7 is the number
of the computation threads.
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3 Eigenvector Computation of Symmetric Band Matrices

The inverse iteration algorithm with reorthogonalization is used in [12, 20] for
computing the eigenvectors of a real symmetric band matrix B. In this section, we
consider applying block inverse iteration algorithm with reorthogonalization (BIR
algorithm) [14] for computing the eigenvectors of B, which is a variant of the inverse
iteration algorithm with reorthogonalization.

3.1 Inverse Iteration Algorithm with Reorthogonalization

We first introduce the inverse iteration with reorthogonalization for computing the
eigenvectors of B. In the followings, let A; be an eigenvalue of the target matrix
suchthat Ay > A, > -+ > Ay (£ =< n) and g, be the corresponding eigenvector
to Ak, respectively. Moreover, let A; be an approximate value of A;, obtained by
some eigenvalue computation algorithm such as the bisection algorithm, and v,((o)
be a starting vector for k = 1, ..., £. Then the inverse iteration is to generate a

sequence of vectors v,(f) by solving iteratively the following linear equation:
(B—I\kl) o =0V =12, .., (1)

where [ is the n x n identity matrix. If |/~\k — M| K |)~kj — Akl forj # k is satisfied,
v,(f) converges to g, as i — 0o.

If some of the eigenvalues are very close to one another, we must reorthogonalize
all the corresponding eigenvectors to these eigenvalues. Hereafter, such eigenvalues
are referred to as clustered eigenvalues. Peters-Wilkinson’s criterion [22] is applied
in dstein [15], which is a LAPACK routine for computing eigenvectors of a
real symmetric tridiagonal matrix 7, as dividing eigenvalues of T into clusters. In
Peters—Willfinson’s criterion, A;—; and A are regarded as belonging to the same
cluster if [A;—; — :Xk| < 1073||T||, is satisfied (2 < k < £). In the followings, we
also use Peters-Wilkinson’s criterion for dividing eigenvalues of a real symmetric
band matrix B into clusters. However, ||B|1(= ||B|lx) is not adequate to use in this
criterion since ||B||; becomes significantly large according to w, the half-bandwidth
of B. To the contrary, since ||B||, satisfies

[[Bx|l2
[Bl2 = sup

> max |A;], 2)
verr [x]l2 i
a good lower bound of ||B||, is obtained by max(il, in), where both A; and A, do
not depend on w. Thus, in this paper, Peters-Wilkinson’s criterion for computing the
eigenvectors of B is designed by using A; and A,,.
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Algorithm 2 Inverse iteration algorithm with reorthogonalization for symmetric
band matrices

1: function BandInv(B, ¢, )Ntl, 14)

2: dok:=1to/

3: i:=0

4: Generate an initial random vector: v,({o)

5: LU factorization with partial pivoting: B — )Ik = P L Uy > Call dgbtrf
6: repeat

7: ir=i+1 )

8: Normalize v\ " to g/ "

9: Solve P L Ugn\) = gt~ > Call dgbtrs
10: ifk > 1and [A;—; — Ag] < 1073 x max(JA;], [A,]), then
11: Reorthogonalize v,((') to q,((') by employing MGS algorithm
12: else
13: ki =k
14: end if
15: until some condition is met.
16: Normalize v,(:) to q,(:)
17 0c=[0 ¢f']
18:  end do

19:  return Q;, = [q1 q[]
20: end function

Algorithm 2 shows a pseudocode of the inverse iteration algorithm with reorthog-
onalization for computing the £ eigenvectors of B and is designed on the basis of
the dstein routine. As well as the dstein, the modified Gram-Schmidt (MGS)
algorithm [11] is applied to the reorthogonalization part on line 11. On line 10,
Peters-Wilkinson’s criterion with the above-mentioned modification is applied for
dividing eigenvalues of B into clusters. For solving the linear equation (1), we
once perform the LU factorization with the partial pivoting (PLU factorization) of
B— Ml by employing the dgbtrf routine (line 5), and then iteratively obtain v,(j)
by employing the dgbtrs routine (line 9). Note that both dgbtrf and dgbtrs
routines are provided in LAPACK. The dgbtrf routine is implemented on the
basis of the block algorithm of the PLU factorization and is composed of the BLAS
2 and 3 routines. In addition, the dgbtrs routine is mainly composed of the BLAS
2 routines and requires Py, Lg, and Uy, which are the resulting elements of the PLU
factorization by the dgbtrf routine. For this purpose, we have to store Py, Ly, and
Uy in the working memory and their amount is about (3w + 1)n.

In this paper, let us consider that the inverse iteration algorithm with reorthogo-
nalization is parallelized by employing the parallel BLAS routines.
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Algorithm 3 Block inverse iteration algorithm with reorthogonalization for com-
puting the corresponding eigenvectors to clustered eigenvalues of symmetric band
matrices

1: function BandBIR(B, r, EA )Ntl, L AD
2: Set an n X r matrix Qg be Qy := O
33 doj:=1tol/r
4: i:=0
5: Generate Q}g) = [qE(J))_ 1 " q;?) }
6: !Somp parallel do
7: dok=:(j—l)r+1tojr
8: LU factorization with partial pivoting: B — )Ik = Py LUy > Call dgbtrf
9: end do
10: repeat
11: ir=i+1
12: ISomp parallel do
13: dok=:(j—Dr—+1, ..., jr
14: Solve L Ugp!) = g! ™" > Call dgbtrs
15: enddo
16: Vil = vl -0 10, Vi > Call dgemm x2
17: QR factorization: Vj(',) = QJ(':R](',)
18: 0! := @) — 041 Q/_,, 00 b Call dgemm X2
19: QR factorization: QJ([: = QJ('ZRJ('Z
20: until converge
21: Qjr = [Q(j—nr Q}.’i] (Qr = [ m)
22: end do

23: return Q; = [q1 qz]
24: end function

3.2 Block Inverse Iteration Algorithm
with Reorthogonalization

A pseudocode of the block inverse iteration algorithm with reorthogonalization
(BIR algorithm) for computing the corresponding eigenvectors to the clustered
eigenvalues of B is shown in Algorithm 3, where { is the number of eigenvalues
belonging to a certain cluster and r is a block parameter determined arbitrarily by
users (r < é). For convenience, we assume the r is a divisor of {. Note that the BIR
algorithm corresponds to the inverse iteration algorithm with reorthogonalization in
Algorithm 2 if r = 1.

The BIR algorithm is composed of two parts as well as the inverse itera-
tion algorithm with reorthogonalization. The one is to solve r linear equations
simultaneously. For this part, the dgbtrf and dgbtrs routines are employed
as well as the inverse iteration algorithm with reorthogonalization. Different from
the inverse iteration algorithm with reorthogonalization, the computation of solving
simultaneously r linear equations can be parallelized in terms of k since the linear
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equations are independent of each other. Thus, the computation of this part is
parallelized by the OpenMP directives shown on lines 6-9 and lines 12-15. Note
that we have to spend r(3w + 1)n working memory to store Py, Li, and Uy
corresponded to the r linear equations for the above purpose.

The other is the block reorthogonalization part as shown on lines 16 to 19. In
Algorithm 3, the block Gram-Schmidt algorithm with reorthogonalization (BCGS2
algorithm) [5] is used for this part. The BCGS2 algorithm is mainly composed of
the matrix multiplication, which is one of the BLAS 3 routines. Thus, the dgemm
routines are employed to the computation on lines 16 and 18 in Algorithm 3.
As well as the BIR algorithm proposed in [14], we consider that the recursive
implementation of the classical Gram-Schmidt algorithm [24] is applied to the
computation of the QR factorization on lines 17 and 19, which is also mainly
composed of the matrix multiplications. In this paper, the block reorthogonalization
part is parallelized by employing the parallel BLAS routines.

The BIR algorithm corresponds to the simultaneous inverse iteration algo-
rithm [10] if r = . Thus, the simultaneous inverse iteration algorithm always
spends the larger amount of memory than the BIR algorithm does. Note that the
memory use for the BIR algorithm is almost equal to that for the parallel bisection
algorithms mentioned in 2.3 if r is set to the number of the computation threads.

3.3 Remark on Inverse Iteration Algorithms

The relationship between the inverse iteration algorithm with reorthogonalization
and the BIR algorithm is analogous to that between the LU factorization and
the block LU factorization. Thus, the number of floating-point operations in the
BIR algorithm is almost equal to that in the inverse iteration algorithm with
reorthogonalization.

As mentioned before, both the inverse iteration algorithm with reorthogonal-
ization and the BIR algorithm are composed two parts: solving linear equation
and the (block) reorthogonalization part. Assuming £ is the number of the desired
eigenvectors of B, the number of floating-point operations is O({w?n) in solving
linear equations and is O(Eéaxn) in the reorthogonalization part, where Cinax is the
number of eigenvalues belonging to the largest eigenvalue cluster (fmax < {).
As a result, solving linear equations is occupied with much of the execution
time for computing eigenvectors of B by the inverse iteration algorithm with
reorthogonalization as long as it is not a case that £ is much larger than w. The
same is true of the BIR algorithm.
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4 Performance Evaluation

This section gives experimental results on shared-memory multi-core processors to
evaluate the performance of the proposed eigensolver, which computes eigenvalues
of real symmetric band matrices by employing parallel Murata’s bisection algorithm
mentioned in Sect. 2 and computes the corresponding eigenvectors by the BIR
algorithm mentioned in Sect. 3.2.

Table 1 shows our experimental environment, which is one node of Appro Green
Blade 8000 at ACCMS, Kyoto University. All the experiments were performed
by numactl --interleave=all to control NUMA policy. In addition, each
code was run with 16 threads on the condition that the KMP_AFFINITY was set to
“none” in all the numerical experiments except for the performance evaluation of the
parallel efficiency of the eigensolvers in Sect. 4.3. Note that the KMP_AFFINITY
is an environment variable for controlling the OpenMP thread affinity. The Intel
Math Kernel Library (MKL) was used for the parallel execution of the BLAS
and LAPACK routines and the OpenMP directives are also used for the thread
parallelization as mentioned in Sects. 2 and 3. The block size r of the BIR algorithm
in the proposed eigensolver was set to r = 16 in all the experiments, which is
equal to the number of cores in the experimental environment shown in Table 1.
Since the working memory for the BIR algorithm is almost equal to that for the
parallel bisection algorithm, the total memory use can be easily estimated on this
condition. Note that the maximum number of iterations in both the BIR algorithm
and the inverse iteration algorithm with reorthogonalization is set to 5, as well as
the dstein routine provided in LAPACK. In fact, the number of iterations in both
of them is 3 in all the experiments.

The following n x n symmetric band matrices with half-bandwidth w were used
for test matrices in the performance evaluation, whose elements are set random
numbers in the range [0, 1): B; is set to n = 20,000 and w = 64; B, is set to
n = 40,000 and w = 256. In the experiments, the largest £ eigenvalues of them and
the corresponding eigenvectors are computed, where £ is set to £ = 250, 500, 1000.

Table 1 Specifications of the experimental environment

One node of Appro Green Blade 8000 at ACCMS

CPU Intel Xeon E5-2670@2.6 GHz, 16 cores (8 cores X 2 sockets)
L3 cache: 20MB x 2

RAM DDR3-1600 64 GB, 136.4 GB/s

Compiler Intel C++/Fortran Compiler 15.0.2

Options -03 -xHOST -ipo -no-prec-div

-openmp -mcmodel=medium -shared-intel
Run command numactl --interleave=all
Software Intel Math Kernel Library 11.2.2
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4.1 Performance Evaluation of Murata’s Bisection Algorithm

To evaluate the performance of parallel Murata’s bisection algorithm in Sect. 2,
we compared the execution time for computing the desired eigenvalues of real
symmetric band matrices by using parallel Murata’s bisection algorithm with that
by using Gupta’s bisection algorithm. Their codes are parallelized by employing the
OpenMP directives as shown in Sect. 2.3.

Figure 1a and b show the execution times for computing the £ largest eigenvalues
of B, and B», respectively. According to the expectation in Sect. 2.2, we observe
that Murata’s bisection algorithm is faster than Gupta’s bisection algorithm in all
the cases.

Table 2a and b show the number of computing v(u) on the basis of the block
LU factorization algorithm and Martin-Wilkinson’s Gaussian elimination. These
tables indicate that most of the computation of v(u) is performed by the block LU
factorization-based algorithm in Murata’s bisection. In addition, the total number
of computing v(x) in Murata’s bisection is almost the same as that in Gupta’s
bisection. We also observe that the total number of computing v(x) in both bisection
algorithms depends on £, the number of the desired eigenvalues.

300 — 6,000 —
— 250 | oGupta 3 5,000 | oGupta
g o Murata 2, @ Murata
g 200 g 4,000
‘é 150 .g 3,000 1
2 100 2 2,000
Q o
: - i
g 50 { 1,000 «F —
oL M oL 1
250 500 1,000 250 500 1,000
# of eigenvalues () # of eigenvalues ()
(a) (b)

Fig. 1 Execution times for computing the largest £ eigenvalues of real symmetric band matrices
by using parallel Murata’s bisection algorithm and parallel Gupta’s bisection algorithm. (a) Cases
of B;. (b) Cases of B,

Table 2 The number of computing v(i) on the basis of the block LU factorization algorithm

and Martin-Wilkinson’s Gaussian elimination when we compute the largest £ eigenvalues by

employing parallel Murata’s bisection algorithm and parallel Gupta’s bisection algorithm

(a) Cases of B, (b) Cases of B,

# of eigenvalues (£) 250 500 1000 # of eigenvalues (¢) 250 500 1000

Murata Block LU 9538 18,802 36,852 Murata Block LU 9030 17,728 34,719
M-W 108 209 692 M-W 186 506 1449

Gupta M-W 9896 19,511 38,544 Gupta M-W 9216 18,234 36,168
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4.2 Performance Evaluation of BIR Algorithm

In order to evaluate the performance of the proposed eigenvector computation
algorithm in Sect. 3, we compared the execution time for computing of the
eigenvectors corresponding to the ¢ largest eigenvalues of real symmetric band
matrices by using the proposed algorithm (“BIR”) with that by using the inverse
iteration algorithm with reorthogonalization (“Inv”). Their codes are parallelized
by employing the Intel MKL and the OpenMP directives as shown in Sect. 3.
In addition, the £ largest eigenvalues of the target matrices are obtained by using
parallel Murata’s bisection algorithm.

Figure 2 shows the execution times for computing the corresponding eigen-
vectors to the £ largest eigenvalues of the target matrices and their details, where
“Solving equation” denotes the execution time for solving linear equations (1) and
“Reorthogonalization” denotes the execution time for the reorthogonalization part
performed by the MGS algorithm in “Inv” or the BCGS2 algorithm in “BIR”.
Figure 2a and b correspond to the case of By and B, respectively. These figures
show that “BIR” is faster than “Inv” in all the cases. According to the discussion
about the number of floating-point operations in each part mentioned in Sect. 3.3, the

OSolving equation O Reorthogonalization M misc. O Solving equation O Reorthogonalization M misc.
100 100
80 80
‘o 60 ‘o 60
g E
= — = —
= 1 .2 —
£ 40 s 40
|53 |93
% 2
5] =
20 4‘ 20 4‘
0 0
% 3 3 E 3 3
& 8 x4 x 8 & 8 x &
> & > E > K & 2 &
E =[E| B =BE| E =S g BS| E B8 2 =%
£ £ £ 3 & £
250 500 1,000 250 500 1,000
(top) code (top) code
(bottom) # of eigenvectors (¢) (bottom) # of eigenvectors (¢)
(@) (b)

Fig. 2 Execution times for computing the corresponding eigenvectors to the largest £ eigenvalues
of symmetric band matrices by using the block inverse iteration algorithm with reorthogonalization
(“BIR”) and the inverse iteration algorithm with reorthogonalization (“Inv”’) and their details. (a)
Cases of B;. (b) Cases of B,
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“Solving equation” part occupies most parts of the execution time of the eigenvector
computation in all the cases.

We also observe that the execution time for the “Solving equation” part of “BIR”
is significantly shorter than that of “Inv” in all the cases. As mentioned in Sect. 3,
the parallelization of the “Solving equation” part in “BIR” differs from that in “Inv”.
In the BIR algorithm, each linear equation is solved on each computation thread,
and thus any barrier synchronization between the computation threads does not
occur until all the computation assigned to each computation thread is finished.
On the other hand, since the inverse iteration algorithm with reorthogonalization is
parallelized by employing the parallel BLAS routines, the barrier synchronization
between the computation threads occurs each time the BLAS routine is called.
Moreover, the BLAS-based computations in the dgbtrf and dgbtrs routines are
difficult to achieve good performance in parallel processing since the size of vectors
and matrices appearing in these computations is too small. From the above reasons,
the “Solving equation” part of “BIR” achieves the higher performance in parallel
processing than that of “Inv”.

Finally, we examined the effect of the block size r on the performance of the
BIR algorithm. As mentioned in Sect. 3.2, the block reorthogonalization part of
the BIR algorithm includes many matrix multiplications, and thus, the performance
of the BIR algorithm depends on that of the routine for the matrix multiplications
dgemm. In addition, the dgemm routine is difficult to achieve the better performance
if the size of the matrices appearing in the computation is sufficiently large. Figure 3
shows the execution times for computing the corresponding eigenvectors to the
largest 1000 eigenvalues of B; by using the BIR algorithm with different block
size r. From this figure, we observe that the BIR algorithm with r = 128 or 256 is
somewhat faster than that with » = 16 for computing the 1000 eigenvectors of B;. In
spite of this tendency, we set r as the number of cores in the proposed eigensolver.
This is because r must be smaller than the number of the desired eigenvectors as
mentioned in Sect. 3.2.
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computing the corresponding i
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S 6 — — —
=]
AN
2
4
2 — N N N N N —
0

16 32 64 128 256 512
Block size (r)



44 H. Ishigami et al.
4.3 Performance Evaluation of Proposed Band Eigensolver

In order to evaluate the performance of the proposed symmetric band eigensolver,
we compared the proposed solver (“Murata+BIR”) with the two conventional eigen-
solvers. One of the conventional solvers is also to compute eigenvalues by using
Murata’s bisection algorithm and to compute the corresponding eigenvectors by
using the inverse iteration algorithm with reorthogonalization shown in Algorithm 2
and is referred to as “Murata+Inv”. The codes of “Murata+BIR” and “Murata+Inv”
are also parallelized by employing the Intel MKL and the OpenMP directives as
shown in Sects. 2.3 and 3. The other conventional solver is “dsbevx” provided in
Intel MKL, which is a LAPACK routine for computing a subset of eigenpairs of
real symmetric band matrices through the tridiagonalization. Note that “dsbevx”
employs the dsbtrd routine to tridiagonalize the target band matrix in the way
proposed in [17], the dstebz routine to compute the desired eigenvalues of
the real symmetric tridiagonal matrix, and the dstein routine to compute the
corresponding eigenvectors.

Figure 4a and b show the overall execution time for computing the eigenpairs
corresponding to the ¢ largest eigenvalues of B, and B,, respectively. We observe
that the proposed eigensolver, “Murata+BIR”, is faster than the conventional solvers
in all the cases. Figure 5a and b show the details of the overall execution time for
“Murata+BIR” and “Murata+Inv”’. We observe that most of the execution time in
“Murata+BIR” remains to be occupied by that of the eigenvalue computation using
parallel Murata’s bisection algorithm in all the cases. One reason of this result is that
the number of floating-point operations in “Murata”, Murata’s bisection algorithm,
is much higher than that in “BIR”. The other reason is that the execution time
for eigenvector computation in “Murata+BIR” is significantly reduced from that
in “Murata+Inv” as mentioned in Sect. 4.2.
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O Conventional (dsbevx) O Conventional (dsbevx) -
— 600 H B Conventional (Murata+Inv) H — 3,000 H E Conventional (Murata+Inv) H ]
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£ 500 2. 2,500 — —
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& 00 [ 8 500 —r_’f
1
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250 500 1,000 250 500 1,000
# of eigenpairs (¢) # of eigenpairs (¢)
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Fig. 4 Execution times for computing the eigenpairs corresponding to the largest £ eigenvalues of
real symmetric band matrices by using the proposed solver (“Murata+BIR”) and the conventional
solvers (“Murata+Inv”” and “dsbevx”). (a) Cases of B,. (b) Cases of B,
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Fig. 5 Details of the execution times for computing the eigenpairs corresponding to the largest £
eigenvalues of real symmetric band matrices by using “Murata+BIR” and “Murata+Inv”. (a) Cases
of B;. (b) Cases of B,
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Fig. 6 Orthogonality [|Q] Q¢ — Illco/€ of the corresponding eigenvectors to the largest ¢
eigenvalues of real symmetric band matrices by using the proposed solver (“Murata+BIR”) and
the conventional solvers (“Murata+Inv” and “dsbevx”). (a) Cases of B;. (b) Cases of B,

The accuracy of the eigenpairs computed by using the proposed solver and the
conventional solvers is shown as follows. Figure 6a and b show the orthogonality
I Qz— Q¢—I||c0 /£ of By and B,, respectively. Similarly, Fig. 7a and b show the residual
|BiQ¢—Q¢Dy|l0o/ € of By and By, respectively. Note that Dy = diag(il, e, ig) and
O = [ql ‘Ie]- These figures show that the proposed eigensolver computes the
desired eigenpairs as accurately as the conventional solvers.

To evaluate the parallel efficiency, we compared the overall execution times with

1, 2, 4, 8, and 16 threads for computing the eigenpairs corresponding to the ¢
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Fig. 7 Residual ||B;Q; — Q¢D¢|l0o /£ of the eigenpairs corresponding to the largest £ eigenvalues
of real symmetric band matrices by using the proposed solver (“Murata+BIR”) and the conven-
tional solvers (“Murata+Inv”” and “dsbevx”). (a) Cases of B;. (b) Cases of B,
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Fig. 8 Execution times for computing the eigenpairs corresponding to the largest £ eigenvalues of
B, by using “dsbevx” in different KMP_AFFINITY. (a) Cases of £ = 250. (b) Cases of £ = 500.
(c) Cases of £ = 1000
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Fig. 9 Execution times for computing the eigenpairs corresponding to the largest £ eigenvalues
of B by using “Murata+Inv” in different KMP_AFFINITY. (a) Cases of £ = 250. (b) Cases of
£ = 500. (¢) Cases of £ = 1000

largest eigenvalues of the test matrices. Figures 8, 9, and 10 show the cases of B.
Figures 11, 12, and 13 show the cases of B;. In these figures, we also compared the
execution times of each code run using the different KMP_AFFINITY environment
variables: “none”, “scatter”, and “compact”. From these figures, we observe that
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the proposed eigensolver “Murata+BIR” achieve the higher parallel efficiency than
the conventional eigensolvers “dsbevx” and “Murata+Inv”. We also observe that, if
the number of threads is 16, each of the eigensolvers run with “none” achieves a
competitive performance as that run with “scatter” does and the eigensolvers run
with “compact” achieves the worst performance. From Figs. 10 and 13, the parallel
efficiency of the proposed eigensolver run with “scatter” for B, is higher than that
for By, which is smaller than B, in terms of both the matrix size and the bandwidth
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size. Moreover, the parallel efficiency of it for both B; and B, becomes higher than
as the number of the desired eigenpairs £ increases.

5 Conclusions and Future Work

In order to accelerate a subset computation of eigenpairs for real symmetric band
matrices, the parallel symmetric band eigensolver is proposed, which computes
directly the desired eigenvalues by using parallel Murata’s bisection algorithm
in Sect. 2 and the corresponding eigenvectors by using the BIR algorithm in
Sect. 3.2. Employing not only Martin-Wilkinson’s Gaussian elimination but also the
block LU factorization, parallel Murata’s bisection algorithm is faster than parallel
Gupta’s bisection algorithm. Numerical experiments on shared-memory multi-core
processors show that the BIR algorithm is much faster than the inverse iteration
algorithm with reorthogonalization since the BIR algorithm is parallelized with
lower communication cost than the other. As the result, the numerical experiments
also show that the proposed eigensolver is faster than the conventional solvers. In
conclusion, we show that the parallel efficiency of the proposed eigensolver run with
“scatter” becomes much higher as the problem size increases.

One of future work is to apply the proposed symmetric band eigensolver for
computing a subset of eigenpairs of real symmetric dense matrices appearing in
actual applications, such as the kernel principal component analysis. The number
of the desired eigenpairs in such problems may be fewer than the number of the
processing elements. In this case, the multi-section methods proposed in [18, 23]
or the multi-section with multiple eigenvalues method [16] is expected to achieve
the higher performance than the parallel bisection algorithm in Sect. 2.3. Thus, the
development of the multi-section algorithm based on Murata’s bisection algorithm
is considered as the other future work.
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The Flexible ILU Preconditioning for Solving
Large Nonsymmetric Linear Systems
of Equations

Takatoshi Nakamura and Takashi Nodera

Abstract The ILU factorization is one of the most popular preconditioners for the
Krylov subspace method, alongside the GMRES. Properties of the preconditioner
derived from the ILU factorization are relayed onto the dropping rules. Recently,
Zhang et al. (Numer Linear Algebra Appl 19:555-569, 2011) proposed a Flexible
incomplete Cholesky (IC) factorization for symmetric linear systems. This paper is
a study of the extension of the IC factorization to the nonsymmetric case. The new
algorithm is called the Crout version of the flexible ILU factorization, and attempts
to reduce the number of nonzero elements in the preconditioner and computation
time during the GMRES iterations. Numerical results show that our approach is
effective and useful.

1 Introduction

The preconditioned iterative methods for nonsymmetric linear systems [2, 4, 6, 10]
are effective procedures for solving large and sparse linear systems of equations:

Ax = b, ey

arises from the discretization of elliptic partial differential equations. Two good pre-
conditioners are known, such as the incomplete LU factorization(ILU) [1, 5, 8, 14]
and the modified incomplete LU factorization [1], each of which makes use of an
approximate factorization of the coefficient matrix into the product of a sparse lower
triangular matrix L, and a sparse upper triangular matrix U. It has been observed
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on an empirical basis that it generates a linear system with eigenvalues that are
mostly clustered near 1. The effectiveness of both techniques for nonsymmetric
linear systems of equations derived from non-self-adjoint elliptic boundary value
problems, has been demonstrated in many numerical experiments [3-6, 14].

There are now numerous Krylov subspace methods for solving nonsymmetric
linear systems of equations, e.g. the GMRES, the Bi-CGSTAB, the QMR and the
IDR(s) [9, 12, 13]. In order to be effective, these methods must be combined with a
good preconditioner, and it is generally agreed that the choice of the preconditioner
is even more critical than the choice of the Krylov subspace iterative methods.
The GMRES [11] is useful for a thorough treatment of preconditioned iterative
procedures. The preconditioning of a coefficient matrix is known as one of the
methods for improving the convergence of the GMRES. The preconditioner of
the ILU factorization applied to the GMRES is popular and is considered to be
one of the fundamental preconditioners in the solution of large nonsymmetric
linear systems of equations. The search for effective preconditioners is an active
research topic in scientific computing. Several potentially successful methods of
the ILU factorizations have been recently proposed [14]. The performance of the
ILU factorization often is dependent on the dropping method to reduce fill-ins.
There are some dropping strategies, for example, the dual dropping strategy which
makes it possible to determine the sparsity of incomplete factorization precondi-
tioners by two fill-in control parameters: (1) r: dropping tolerance and (2) p: the
number of p largest nonzero elements in the magnitude are kept. Recently, Zhang
et al. [14] proposed using parameter g to control the number of nonzero elements
in preconditioner L, in the IC factorization. Their proposed scheme was called IC
factorization with a multi-parameter strategy. The parallel implementation of the
ILU factorization is investigated in [6, 7].

In this paper, the general framework of the dropping strategy in an ILU factor-
ization will be proposed. Further to this, a method for overcoming the shortcomings
that a calculating norm is needed to use diagonal elements, will be explored. In
Sect. 2, the most promising approach for preconditioning will be discussed. In
Sect. 3, two flexible ILU factorizations will be proposed and explored. In Sect. 4, the
results of extensive numerical experimentations will be tabulated. The conclusion
follows.

2 Preconditioning

The preconditioner M can reduce the number of iterations, because the properties of
this coefficient matrix can be improved through preconditioning [1]. One possibility
is to solve the left preconditioned system of the equation:

M 'Ax = M7 'b. (2)

In general, the preconditioning matrix M is often chosen so that cond(M~'A) «
cond(A), where cond(Z) is the condition number of matrix Z. A remedy exists
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when the preconditioner M is available in factored form, e.g., as an incomplete LU
factorization M = LU, where L is a lower triangular matrix and U is an upper
triangular matrix.

2.1 ILU Factorization

The ILU factorization is an LU factorization with reducing fill-ins. The ILU
factorization factorizes coefficient matrix A as follows:

A=LU+R, 3)

where L is a lower triangular matrix, U is an upper triangular matrix, and R is
an error matrix. In this paper, we use the Crout version ILU factorization which
we usually call ILUC. The standard ILUC description of Algorithm 1 is due to Li
et al. [4, pp. 717-719].

For lines 4 and 8 in the Algorithm 1, the unit (k : n) of the ith row of U is needed,
and in the same way only the unit (k 4+ 1 : n) of the ith column of L is required.
Accessing entire rows of U or columns of L and then removing only the needed part
is a costly option.

The dual dropping strategy was used in line 10 and 11. For a less complex
problem, the effect of the dropping rule is not as important. For large scale problems,
however, it is critically important. The number of iterations appears to be sensitive
to the dropping tolerance. The basic idea of the dual dropping strategy is constituted
by the following two steps:

1. Any elements of L or U whose magnitude is less than tolerance t is dropped:
lujl <tx|z]l = w; =0, or |lj]<tx|w| = ;=0

where 7 is a dropping tolerance.

Algorithm 1 Crout version of the ILU factorization (ILUC)
1: fork=1:ndo:

2: Initialize row z: z1:5—1 = 0, Zikon = Arion

3 for {i|l<i<k—1landl; #0} do:

4: Zhen = Zhen — b * Uigen

5:  end for

6: Initialize column w, as wi:x = 0, Wit-1:n = Qkt-1:0k
7 for {i| 1 <i<k—1anduy # 0} do:

8: Wi 1 = ZkA-1in — Uik * le1ini

9:  end for

10:  Apply a dropping rule to row z

11:  Apply a dropping rule to column w

12: Ug: =2

13: l;‘k = w/ukk, lkk =1

14: end for
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2. In the k-th column of L, the number of the p largest nonzero elements in the
magnitude are kept. Similarly, the number of the p largest nonzero elements in
the k-th row of U, which includes the diagonal elements, are kept. This controls
the total memory storage that can be used by the preconditioner.

To study parameter p, a new dropping strategy was proposed which changes p
by some parameters during the computation of the preconditioner. A dynamically
changed parameter g according to the magnitude of elements in the preconditioner
L, where g is the number of nonzero elements kept in the corresponding column of
L, was introduced for this exercise.

3 ILU Factorization with Multi-Parameter Strategies

In this section, we present some strategies to dynamically selected the number of
nonzero elements in each column of preconditoner L and each row of preconditioner
U in ILU factorization. Our consideration is focused on the performance of the
Crout version of ILU factorization (ILUC) preconditioner (i.e. Algorithm 1) and
choice of parameters.

3.1 Flexible ILU Factorization

Zhang [14] proposed a flexible IC factorization which changed parameter p
according to the norm of the already computed elements of preconditioner L. This
idea was explored to propose a flexible ILU factorization with a new norm, and
this will be referred to as the n-flexible ILU. In the n-flexible ILU factorization, g,
the number of nonzero elements kept in each column of L and each row of U, is
determined as follows:

l.
max (puin, p + [clogid"V ]} (11 < g,
q= “4)

. I
min (puas. p+ [clogiod"']). (1 = g,

where

d (Xie 1)

g = ) , (j=1,...,n).
J
The parameter p is selected as a basic parameter to control the number of nonzero
elements in the preconditioner pyi, and pmax that indicate the range of the number of
nonzero elements kept in each column of L and row of U. Moreover, the parameter
c is a proportion value to control the number of nonzero elements in each column of
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the preconditioner L and row of the preconditioner U. We observe that parameter c is
quite important to obtain effective preconditioners by the flexible ILU factorization
besides pmin and pmax-

The nonzero elements of L were compared with the nonzero elements of Z, where
L was generated by a fixed ILU factorization and L is generated by n-flexible ILU
factorization, respectively:

nnz(L) = np,

~ " I
nnz(L) ~ np + Z [c log,, [ ]”:| .
8i

j=1
This results in the following relation:

n

Z [c log,q ”(::”:| < 0= nnz(L) > nnz(Z). 5)
J

j=1
The next step was to consider the logarithmic function f(x) = log,, x. This function
satisfied the following relation: (1) f/(x) is a monotonic decreasing function, and
(2) f(1) = 0. From these properties, it was not difficult to prove the following
inequality:

log,o(1 +5) +1og;p(1—5) <0 (O<s<1). (6)

Assuming that ||/;||/g; is a symmetric distribution to 1, ) [clog, [Ij]l/g] < O
and nnz(L) > nnz(f), were obtained. The upper matrix U also satisfied the same
relation. It was concluded that the n-flexible ILU factorization reduced the nonzero
elements of the preconditioner.

3.2 Diagonal Flexible ILU Factorization

The n-flexible ILU factorization is characterized by the shortcoming that it needed to
calculate the norm during each iteration and as a result, increased the computation
time. To overcome this issue, diagonal elements were used instead of ||/;||/g; and
a diagonal flexible ILU factorization was proposed called the d-flexible ILU. The
d-flexible ILU factorization determined the number of nonzero elements as follows:

d; ~
max (pminv )4 + |:610g10d|»§f|i| ) ) (ld]| < g])s
J

g = " ™
rmin (pmax, P+ [clogmd,gi } ) (4] = %),

J
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where

_A(Zhadd)
8 = . . (=1,...,n).
J
In the next section, it will be verified that the d-flexible ILU factorization
preconditioner based on ILUC is suitable for practical use.

4 Numerical Experiments

Numerical experiments were implemented, based on ITSOL packages [9]. In this
section, the numerical results were used to compare the following methods for
solving two examples: the d-flexible ILU, the d-fixed ILU (ILUC) and the n-flexible
ILU. All numerical experiments were done on the DELL Precision T1700 with
3.50GHz and a 16 GB main memory, using C language. In these experiments,
xo = O for an initial approximate solution, and solution x; is considered to have
converged if the norm of the residual, ||r;|| = |b — Ax;|, satisfied the following
convergence criterion:

71/ lIroll < 1.0 x 10~"2 (8)

where r; is the residual vector of the i-th iteration. All the matrices were tested
with the following parameter setting. pmin = p — 0.2p, pmax = p + 0.2p, ¢ = 8.
For the choice of parameter p, we firstly set up p by 3 times nnz(A)/n which is
usually appropriate for the most problems. Some sensitivity analysis of the flexible
ILU factorization on parameter c is performed in our examples, using the practical
technique which has been given in Zhang et al. [14, Section 3.2]. When parameter
¢ varies from 4 to 20, we discovered that the convergence rate is not sensitive to c.
Therefore, we may hold the parameter ¢ to some good fixed value such as 6 in our
examples.

We denoted the computation time of the factorization as CPT, the computation
time of GMRES as CGT, the total computation time as the Total, the rational of
nonzero elements of L and U to nonzero elements of original coefficient matrix A
as nnz(LU)/nnz(A), and the iterations of GMRES as Its. These result were used to
illustrate the efficiency of the flexible ILU preconditioning.

4.1 Example 1

The first matrix problem arising from the finite difference discretization of the
boundary value problem of the two-dimensional partial differential equation with
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Dirichlet boundary conditions in Joubert [3] is calculated as follows:

1 1 2
—Au+ D3 (y— Z)Mx + (x— 3)()c— 3)uy — 4372y

= G(x,y) on 2 = [0, 1]%,
©)

where u(x,y) = 1+xy on 0£2. The operator is discretized using a five point centered
finite difference scheme to discretize on a uniform grid with a mesh spacing & =
1/128 in either direction. For D and % is small, the generated matrix is a symmetric
indefinite matrix with 16 distinct negative eigenvalues and the rest of the spectrum
positive. The classical GMRES method with ILU(0) and MILU(0) preconditioning
applied to this problem is difficult to converge. Sometimes these preconditioners fail
to converge with GMRES method. In any case, this is a challenging test problem to
solve.

In this problem, the parameters were set as follows: p = 15, ppin = p —
0.2p, pmax = p + 0.2p, ¢ = 6. The dropping tolerance t was also set up as
T = 107* Table 1 shows that in each example, the d-flexible ILU factorization
reduces the nonzero elements of the preconditioning matrix without increasing total
computation time. The results show that the d-flexible ILU factorization reduces
memory usage efficiency.

Table 1 Example 1—numerical results of the boundary value problem

Preconditioner Dh CPT (s) CGT (s) Total (s) Its nnz(LU) /nnz(A)

ILUC 24 0.760 1.990 2.750 35 7.549
n-Flexible 0.970 1.700 2.670 25 8.690
d-Flexible 0.640 2.020 2.660 38 6.624
ILUC 23 0.720 2.740 3.460 45 7.883
n-Flexible 0.960 2.240 3.200 34 9.266
d-Flexible 0.620 2.680 3.300 47 6.988
ILUC 22 0.710 3.910 4.620 60 8.034
n-Flexible 0.970 3.100 4.070 44 9.707
d-Flexible 0.620 3.980 4.600 66 7.399
ILUC 2! 0.660 10.610 11.270 172 1.776
n-Flexible 0.980 4.310 5.290 58 9.826
d-Flexible 0.620 10.530 11.150 175  7.441
ILUC 20 0.590 27.750 28.340 473 7.282
n-Flexible 0.980 7.780 8.760 107 9.865
d-Flexible 0.590 27.730 28.320 473 7.261
ILUC 2-1 0.560 - - - 7.009
n-Flexible 0.970 30.280 31.250 413 9.860

d-Flexible 0.560 - - - 7.009



58 T. Nakamura and T. Nodera
4.2 Example 2

The next test problem studied was the Poisson3Db, which is a computational fluid
dynamics (CFD) problem from the University of Florida Matrix Collection [2]. This
problem had a 85,623 x 85,623 real nonsymmetric matrix and the nonzero elements
of this coefficient matrix were 2,374,949. The nonzero pattern of this matrix is
shown in Fig. 1. For the choice of parameter p in this problem, we used the above
mentioned formula as p = 3 x nnz(A)/n ~ 83. As a result, we now initially set
p = 80, and reduce parameter p to get a valuable evaluation. In fact, the modification
of p is expected to produce a more reasonable comparison. The other parameters
were set as follows: ppin = p — 0.2p, pmax = p +0.2p, c = 6,7 = 1074

Table 2 shows that the d-flexible ILU factorization was faster than other
preconditioned methods and its preconditioner had the least nonzero elements.

Fig. 1 Example 2—number
of nonzero elements of
Poisson3Db’s matrix

4
0 2 4 6 g x10
nnz = 2374949

Table 2 Example 2—numerical results of the Poisson3Db problem

Preconditioner )4 CPT (s) CGT (s) Total (s) Its nnz(LU)/nnz(A)
ILUC 70 3.470 2.500 5.970 38 4.449
n-Flexible 4.800 2.620 7.420 37 5.031
d-Flexible 2.950 2.870 5.820 46 3.965
ILUC 75 3.660 2.580 6.240 38 4.639
n-Flexible 5.260 2.670 7.930 36 5.385
d-Flexible 3.190 2.530 5.720 40 4.161
ILUC 80 3.870 2.660 6.530 38 4.815
n-Flexible 5.710 2.870 8.580 37 5.739

d-Flexible 3.390 2.480 5.870 38 4.346
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Judging from the computation time vs behavior of residual norm in Fig. 2, these
were similar to other methods.

Figures 3 and 4 show the distribution of ||/;||/g; for the n-Flexible ILU factoriza-
tion and the distribution of |d;|/g; for the d-Flexible ILU factorization, respectively.
These figures suggest that the d-Flexible ILU factorization is the best method
for reducing the number of nonzero elements of the fill-in. We expect that the
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_ 104} :
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Fig. 2 Example 2—convergence behavior of residual norm vs computation time, p = 80
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Fig. 3 Example 2—distribution of ||I;||/g; for n-Flexible ILU
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Fig. 4 Example 2—distribution of |d;|/’g; for d-Flexible ILU

almost same as the distribution of these figures can be found to solve the system
arising from the boundary value problem of partial differential equation, especially
convection diffusion and CFD problems. However, more numerical experiments are
needed for finding the discretized matrices which can optimize the use of the d-
flexible ILU factorization.

In summary, based on the data in Tables 1 and 2, it can be concluded that
for these experiments, the proposed scheme of the d-flexible ILU preconditioner
appears to be superior to other schemes in memory requirements especially in terms
of the number of nonzero elements of the preconditioner. Furthermore, for many
of these experiments, the GMRES with a d-flexible ILU preconditioner needed
less total computation time compared to the fixed ILU (ILUC) and the n-flexible
preconditioner with some exceptions. In Table 2, the results of the experiments are
tabulated showing that the proposed scheme executes better or analogous in total
time to the solution.

5 Conclusion

The dropping strategy is integral for the ILU factorization to generate an efficient
and reliable preconditioned matrix. The numerical experiments show that the
proposed d-flexible ILU factorization, is able to reduce certain nonzero elements of
the preconditioner as well as the total computation time. The results also suggest that
the GMRES with the d-flexible ILU factorization converges faster than a GMRES
with the other classical ILU factorization.
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It can be concluded that d-flexible ILU factorization is a practical and effective

method for solving large sparse sets of nonsymmetric linear systems of equations.

Future studies are necessary for investigating and determining specific param-

eters, and finding matrices which can optimize the use of the d-flexible ILU
factorization.
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Improved Coefficients for Polynomial Filtering
in ESSEX

Martin Galgon, Lukas Krimer, Bruno Lang, Andreas Alvermann,

Holger Fehske, Andreas Pieper, Georg Hager, Moritz Kreutzer,

Faisal Shahzad, Gerhard Wellein, Achim Basermann, Melven Rohrig-Zollner,
and Jonas Thies

Abstract The ESSEX project is an ongoing effort to provide exascale-enabled
sparse eigensolvers, especially for quantum physics and related application areas. In
this paper we first briefly summarize some key achievements that have been made
within this project.

Then we focus on a projection-based eigensolver with polynomial approximation
of the projector. This eigensolver can be used for computing hundreds of interior
eigenvalues of large sparse matrices. We describe techniques that allow using
lower-degree polynomials than possible with standard Chebyshev expansion of
the window function and kernel smoothing. With these polynomials, the degree,
and thus the number of matrix—vector multiplications, typically can be reduced by
roughly one half, resulting in comparable savings in runtime.

1 The ESSEX Project

ESSEX—Equipping Sparse Solvers for Exascale—is one of the projects within the
German Research Foundation (DFG) Priority Programme “Software for Exascale
Computing” (SPPEXA). It is a joint effort of physicists, computer scientists and
mathematicians to develop numerical methods and programming concepts for the
solution of large sparse eigenvalue problems on extreme-scale parallel machines.
ESSEX’ goal is not to provide a general-purpose eigenvalue library directly usable
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in the full range of eigenvalue computations. Rather, in the first funding period
the focus was on appropriate methods for selected physical applications featuring
rather different characteristics, such as the need for a few extremal eigenpairs, a
bunch of interior eigenpairs, information about the whole eigenvalue distribution,
and dynamics, of symmetric or Hermitian matrices. These methods include Jacobi—
Davidson iteration, projection-based algorithms, the kernel polynomial method, and
Chebyshev time propagation, respectively.

To obtain scalable high performance, ESSEX takes a holistic performance
engineering approach encompassing the applications, algorithmic development, and
underlying building blocks. One of the outcomes is an “Exascale Sparse Solver
Repository” (ESSR) that provides high-performance implementations of several
methods. In addition, experiences gained through ESSEX work can give guidelines
for addressing structurally similar problems in numerical linear algebra. In the
following we briefly summarize some of ESSEX’ results so far.

Up to now, block variants of the Jacobi—Davidson algorithm have been con-
sidered worthwhile mainly for robustness reasons. Our investigations [20] have
revealed that they also can be faster than non-blocked variants, provided that all
basic operations (in particular sparse matrix times multiple vector multiplication
and operations on tall and skinny matrices) achieve optimal performance. This is
typically not the case if block vectors are stored in column-major ordering, and
we showed that some care has to be taken when implementing algorithms using
row-major block vectors instead. A blocked GMRES solver has been developed for
solving the multiple Jacobi—Davidson correction equations occurring in the block
algorithm.

An adaptive framework for projection-based eigensolvers has been developed
[8], which allows the projection to be carried out with either polynomials or a
contour integration as in the FEAST method [19]. The latter approach requires the
solution of highly indefinite, ill-conditioned linear systems. A robust solver for these
has been identified and implemented [9].

The eigensolvers in ESSEX are complemented by domain-specific algorithms
for quantum physics computations such as the kernel polynomial method (KPM)
[26] for the computation of eigenvalue densities and spectral functions. These
algorithms, which are based on simple schemes for the iterative evaluation of
(Chebyshev) polynomials of sparse matrices, are very attractive candidates for our
holistic performance engineering approach. For example, in a large-scale KPM com-
putation [14, 15] we achieved 11% of LINPACK efficiency on 4096 heterogeneous
CPU-GPU nodes of Piz Daint at Swiss National Supercomputing Centre (CSCS).
This is an unusually high value for sparse matrix computations whose performance
is normally much more restricted by the main memory bandwidth.

Such progress is possible because in ESSEX the algorithmic work on the
above methods goes hand-in-hand with the model-guided development of high-
performance MPI+X hybrid parallel kernels for the computational hot spots. They
are included in the “General, Hybrid, and Optimized Sparse Toolkit” (GHOST)
[16]. Besides implementations of sparse matrix—(multiple) vector multiplication,
optionally chained with vector updates and inner products to reduce data transfers,
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operations with “tall skinny” dense matrices, and other basic building blocks,
GHOST also provides mechanisms for thread-level task management to utilize
the aggregate computational power of heterogeneous nodes comprising standard
multicore CPUs, Intel Xeon Phi manycore CPUs, and NVIDIA GPUs, and to enable
asynchronous checkpointing with very low overhead.

A “Pipelined Hybrid-parallel Iterative Solver Toolkit” (PHIST) [25] provides an
interface to the GHOST kernels and adapters to the Trilinos libraries Anasazi [1] and
Belos [2]. It also contains higher-level kernels and a comprehensive test framework.

A unified sparse matrix storage format for heterogeneous compute environments,
SELL-C-0, has been proposed [13]. It is a generalization of the existing formats
Compressed Row Storage and (Sliced) ELLPACK with row sorting and allows near-
to-optimum performance for a wide range of matrices on CPU, Phi, and GPU, thus
often obviating the former need to use different formats on different platforms.

While the methods and software developed in ESSEX are applicable to general
eigenvalue problems, our project specifically addresses quantum physics research
applications. Among these, the recent fabrication of graphene [4] and topological
insulator [11] materials has renewed the interest in the solution of large scale
interior eigenvalue problems. Realistic modeling of structured or composite devices
made out of these materials directly leads to large sparse matrix representations
of the Hamilton operator in the Schrodinger equation, and the eigenvalues and
eigenvectors deep inside the spectrum, near the Fermi energy, determine the
electronic structure and topological character and thus the functioning of such
devices.

A more comprehensive description of the results obtained within the ESSEX
project can be found in [25] and the references therein, and on the ESSEX homepage
https://blogs.fau.de/essex/.

In the following sections we focus on the BEAST-P eigensolver that is available
in the ESSR and in particular propose approaches for increasing its efficiency.

2 Accelerated Subspace Iteration with Rayleigh—Ritz
Extraction

Eigenvalue problems (EVPs) Av = Av with real symmetric or complex Hermitian
matrices A arise in many applications, e.g., electronic structure computations in
physics and chemistry [3].

Often the matrix is very large and sparse, and only a few extreme or interior
eigenpairs (A, v) of the spectrum are required. In this case iterative solvers based on
Krylov subspaces, such as Lanczos or Jacobi—Davidson-type methods [17, 24], or
block variants of these [20, 21], tend to be most efficient. A common feature of such
algorithms is a subspace that is expanded by a single vector or a block of vectors in
each iteration, thus increasing its dimension.
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Algorithm 1 Key algorithmic steps for subspace iteration with Rayleigh—Ritz
extraction
Given: A C”" [, =[o,f]CR
Sought: Those eigenpairs (A, v) of A such that A € I
1: start with a subspace Y € C"*™ of suitable dimension m
2: while not yet converged do:
3:  compute U = f(A) - Y for a suitable function f
4:  compute Ay = U*AU and By = U*U and solve the size-m generalized EVP AyW =
AByW
5:  replace Y with U -W

In this work we focus on the situation when (1) the eigenpairs in a given interval
are sought, A € I, = [o, B], (2) these eigenvalues are in the interior of the spectrum,
and (3) their number is moderately large (some hundreds, say). Then subspace
iteration, possibly coupled with a Rayleigh—Ritz extraction, may be competitive or
superior to the afore-mentioned methods. The basic procedure is summarized in
Algorithm 1; cf. also [8, 22].

The function f can be chosen in many different ways, ranging from f(x) = x
(i.e.,U = A-Y, “power iteration”) to more sophisticated “filter functions;” cf., e.g.,
[22]. In particular, consider the “window function”

. V1, xel,
F) =) = % 0, otherwise
and a column y; of Y, expanded w.r.t. an orthonormal system vy, ..., v, of A’s
eigenvectors, y; = » ;_; NkVk. Then

n

FA)Y -y =Y nfQove = Y mevi,

k=1 AK€l

i.e., yj is projected onto the invariant subspace spanned by the desired eigenvectors.
With this choice of f, the procedure in Algorithm 1 would terminate after just one
iteration. Especially for large matrices, however, y;, (A) - yx can only be approxi-
mated, either by using specialized algorithms for matrix functions f(A) - b [12, 23]
or by approximating the function: f ~ y;,. We will focus on the latter approach, in
particular on using polynomials for approximating f. Very good approximation can
be achieved with rational functions, and methods for choosing these optimally have
been investigated [10] (cf. also [19] for the FEAST algorithm, where the rational
approximation is done via a numerical contour integration). However, rational
functions require the solution of shifted linear systems (A — ol)x; = y;, and these
can be very challenging if direct solvers are not feasible.

In this work we will instead consider polynomial functions f(x) = p(x), where
p(x) is a polynomial of degree d. Then f(A) -y is easy to evaluate even if A is not
available explicitly but its action A - v on any vector v can be determined (e.g., for
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very large sparse matrices whose nonzero entries are not stored but re-computed
whenever they are needed).

An important observation is that, in order for the overall algorithm in Algorithm 1
to work, we must be able to determine the number of eigenvalues that are contained
in [, e.g., to decide whether all sought eigenpairs have been found and to adjust the
dimension of the search space Y. This can be done by counting the singular values
of the current matrix U that are larger than some given bound zjysige- Thus we must
have

p(x) > Tinside fOTX € [Ol, :3] (1)

in order not to miss one of the sought eigenpairs. For compatibility with the FEAST
realization of the projector we choose Tinsige = 0.5 throughout. By contrast, linearity
of the filter is not an issue: it is not necessary that p(x) & 1 in the interior of 7. (The
values should, however, not be too large to avoid numerical problems in the SVD
computation.)

For the approximate projector p(A) to be effective, it must dampen the compo-
nents v; corresponding to unwanted eigenvalues A; ¢ I;. Thus we require

P < Tousige forx &[a—6,8 + 6] 2)

for some threshold Toyside, €-2-, Tousidee = 0.01. The margin § > 0 is necessary
because a continuous function p cannot achieve 2 for all x ¢ I, while fulfilling 1.
Note that if there are unwanted eigenvalues A; € (o — 8, ) U (8, 8 + &) then the
corresponding components v; may not be sufficiently damped to yield satisfactory
convergence of the overall method. In this case it may be necessary to increase the
degree of the polynomial; cf. [8]. Anyway p should be chosen such that a small
margin can be achieved. This is the main focus of this work.

The remainder of the article is organized as follows. In Sect. 3 we will discuss
how to reduce the margin while still trying to approximate the window function,
p(x) ~ xy,. In Sect. 4 we will see that the margin for o, 8] can be reduced further
by approximating the window function for a smaller interval. Giving up the linearity
constraint within the interval yields another type of filter that is discussed in Sect. 5.
Numerical results presented in Sect. 6 show that the reduction of the margin also
leads to a lower number of operations (measured by the number of matrix—vector
multiplications) and faster execution for the overall eigensolver.

3 Polynomial Approximation of the Window Function

The Chebyshev approximation discussed in the following requires x € [—1,1].
To achieve this, the matrix A is shifted and scaled such that all its eigenvalues
lie between —1 and 1. The search interval [o, 8] is transformed accordingly.
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Throughout the following discussion we assume that this preprocessing has already
been done.

It is well known [7] that the window function x|« g can be approximated by a
polynomial expansion

d

Aap@ ~ > alix) 3)
k=0
where the T} are the Chebyshev polynomials of the first kind,

Tox)=1, Ti(x)=x, Ti(x)=2x-Ti—1(x)—T—(x) fork > 2,

and the coefficients are given by

co = }Z - (arccosa — arccos f) , @
= ljr - (sin(k - arccos ) — sin(k - arccos B)) , k> 1.

Using a finite expansion, however, leads to so-called Gibbs oscillations [26] close
to the jumps of the function, clearly visible in the left picture in Fig. 1. These
oscillations can be reduced by using appropriate kernels [26], e.g., of Jackson,
Fejér, Lorentz, or Lanczos type. Incorporating a kernel amounts to replacing the
¢ in 3 with modified coefficients c,’( = gy - ¢¢. For the Lanczos kernel, which has
proved successful in the context of polynomial approximation [18], the corrections
are given by

k \n i
& = (sinc d+ 1) , k>0, where sincfé = Slnfgtg) '
1.2 1.2
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Fig. 1 Dotted curves: window function y[4 gj(x) for the interval [«, 8] = [0.238,0.262]; solid
curves: degree-1600 Chebyshev approximation p(x) without Lanczos kernel (left picture) and with
Lanczos kernel (1 = 2; right picture). The “damping condition” |p(x)| < Tousice = 0.01 may be
violated in the light gray areas
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Fig. 2 Window function [ g)(x) for the interval [, 8] = [0.238, 0.262] (dotted line) and degree-
1600 Chebyshev approximation p(x) with & = +/2 Lanczos kernel (solid line)

The parameter u is assumed to be positive and integer.

The right picture in Fig. 1 demonstrates the smoothing effect of the Lanczos
kernel (u = 2). As the oscillations are removed almost completely, the margin
8 (width of the gray areas in Fig. 1) is reduced from approximately 0.02316 to
0.00334, even though the resulting p has a much lower steepness in the points o and
B. Roughly speaking, the right picture in Fig. 1 suggests bad damping throughout the
whole (smaller) margin, whereas in the left picture good damping may be achieved
even at some points within the (larger) margin.

To obtain a small margin §, the filter polynomial should be as steep as possible
at the points o and B and have oscillations |p(x)] > Touside Only very close
to the interval. In the following we will consider three different approaches for
increasing the steepness while keeping the oscillations limited. The first approach—
discussed below—still aims at approximating the window function y(4 ;. The other
approaches are based on different target functions; they will be presented in Sects. 4
and 5.

For the further use as a filter in the eigensolver the integrality restriction for w is
not necessary. Indeed, non-integer i values may lead to filters with smaller margin;
see Fig. 2 for = +/2, with § ~ 0.00276. Thus the margin was reduced by another
factor of 1.21 with respect to it = 2. In the remainder of the paper, this factor will
be called the gain of a filter:

gain = 8(Chebyshev approximation with Lanczos kernel, ;1 = 2)

&)

S (filter under consideration)

(A close look reveals that the amplitude of the oscillations outside the margin has

increased w.r.t. £ = 2, but not enough to violate the condition |p(x)| < Touside-)
According to Fig. 3, a gain of roughly 1.4 may be achieved with an approxima-

tion to the window function if the kernel parameter p is chosen appropriately, and
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Fig. 3 gain, as defined in 5,
by using different values for
the parameter p in the
Lanczos kernel for

[, B] = [0.238,0.262]

log2( 1)

“appropriately” depends on the degree d. (The optimal value for p also depends on
« and f; this dependence is not shown in the picture.) Note that y can be optimized
before applying the filter p(A) to some vectors v because § depends only on the
interval [o, B8] and the degree d, but not on A and v.

(For a given interval [o, B] and degree d, the value of the margin §, and thus the
gain, depends on the threshold ,ysige. Throughout this paper we use Tousige = 0.01,
which is motivated by attempting to achieve a residual drop by a factor of 100 in
one iteration of our BEAST-P eigensolver; cf. the discussion in [8].)

4 Shrinking the Interval

The second approach to improving the filter is based on shrinking the interval to a
smaller one, [, 8] — [@, B] = [@+ A1, B— A>] C [, B]. If the Lanczos parameter
W is kept fixed, the shoulders of p will follow the interval boundaries and move
inwards. Thus, the resulting function values p(«) and p(8) will drop below 0.5. We
then try to restore the property 1 by scaling the polynomial (via its coefficients ¢y):

~ —~ 0.5
PTOP W b BB ©
Figure 4 shows the resulting polynomial for @ = 0.24032 and :g = 0.259609.

It remains to determine by which amount the interval should be shrunk. The shift
A is determined by the slope p’(«): we choose it proportional to p(«)/p’ (), with
a proportionality factor ¢ > 0, and analogously for 8. Note that for low degrees d
and narrow intervals [, 8] the shoulder of p may not be very steep, and thus the
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Fig. 4 Window function y g(x) for [, B] = [0.238,0.262] (dotted line) and degree-1600

Chebyshev approximation p(x) with 1 = 2 Lanczos kernel for the shrunken interval [-&J,’B,] =
[0.24032, 0.25969] before (dash-dotted) and after (solid) scaling
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a

Fig. 5 log,(gain), as defined in 5, by using different values for the parameter p in the Lanczos
kernel and different shrink factors o for [, 8] = [0.238,0.262] and d = 1600

resulting interval can become empty: @ = o + o ”,((‘z ) > B+o P — E To avoid
this situation and to preserve a certain width of the interval, the shifts are limited to
A; <0.9-r, where r = (f —«)/2 is the radius of the original interval. In particular,
none of the endpoints is moved over the original midpoint.

Figure 5 reveals that a gain of almost 3 can be obtained with suitable combina-
tions (u, o) (note the logarithmic color coding). As 0 = 0 disables shrinking, the
left border of the plot corresponds to the “d = 1600 curve in Fig. 3.

The search for a suitable (i, o) combination is simplified by the observation that

there are just three “essentially different” patterns for the dependence gain(u, §):
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Fig. 6 Typical pattern of log,(gain), as defined in 5, for [, B] = [0.238,0.262]. Left picture:
“critical” degree (d = 565); right picture: “low” degree (d = 141)

while Fig.5 gives a typical pattern for “high” degrees, the patterns for “critical”
and “low” degrees are shown in Fig. 6. (With “low” fixed degrees, our BEAST-P
eigensolver converges slowly, whereas “high” degrees cannot improve convergence
sufficiently to compensate for the increased work in the computation of p(A) - Y.
Therefore our adaptive scheme [8] tries to work with the “critical” degrees in
between.) Whether a given degree d is to be considered high, critical, or low,
depends mainly on the width of the interval, 8 — «, and to a lesser degree on
the location of the interval’s midpoint with respect to [—1, 1]: intervals close to the
origin require higher values of d than intervals near the boundaries £1; see Fig.7
for very similar patterns corresponding to different interval widths and locations.

Regardless of whether the degree is low, critical or high, the (i, o) combination
yielding the optimal gain is located close to the diagonal log, (1) = o. Therefore
our search considers only those combinations on a (A log, 1, Ao)-equispaced grid
that lie within a specified band along the diagonal (see Fig. 8) and selects the one
giving the highest gain.

This BAND search may be followed by a closer look at the vicinity of the
selected combination Ppest = (108, Ubest, Obest), €ither by considering the points on
an equispaced GRID centered at Py, (with smaller step sizes A’ log, u < Alog, &,
Ao & Ao), or by following a PATH originating at Ppes: consider the eight
neighbors of Ppeg at distances =+ ;A log, u, :i:éAa, go to the one giving the best
gain, and repeat until none of the neighbors is better (then halve the step sizes and
repeat until a prescribed minimum step size is reached).

The GRID and PATH search might also be used without a preceding BAND search,
but the two-phase approach tends to be more efficient.

In a parallel setting, the evaluation of the gain at the different points in a BAND
or GRID search can be done concurrently, thus requiring only one global reduction
operation to determine the optimum combination (log, t, o). Then each process
recomputes the coefficients ¢; corresponding to this combination to avoid global
communication involving a length-(d + 1) vector. The PATH search has lower
potential for parallelization, but tends to be more efficient serially, in particular if
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Fig. 7 Intervals [cr, 8] with the same width, but different location, or different width may lead
to almost the same pattern as in Fig.5 if a suitable degree d is considered. Top left: [«, 8] =
[—0.984, —0.960], d = 400; top right: [o, ] = [0.560,0.584], d = 1131; bottom left: [a, B] =
[—0.012,0.012], d = 1600; bottom right: [, B] = [0.150, 0.350], d = 200
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Fig. 8 The points mark the (log, /¢, o) combinations that are considered in the BAND search; cf.
Figs. 5 and 6 for the underlying log,(gain) patterns
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we avoid to re-evaluate gain for combinations that already had been considered
before along the path.

5 [Iteratively Compensating Filters

As already mentioned in Sect. 2, it is not necessary that f(x) =~ 1 within [o, B].
Consider instead the function

s = s =05 (™) xe fop

0, otherwise

filx) =

’

where r = (B —«)/2 is the radius of the interval and m = (o + ) /2 is its midpoint.
Thus, fi(x) is a degree-d; polynomial within [«, ], taking its maximum f,.x at the
midpoint and fi(«) = f1(8) = 0.5 at the boundaries, and fj(x) = 0 outside the
interval. The two parameters may be chosen freely such that fi,.x > Tinsige and dy > 0
is an even integer. See the top left picture in Fig. 9 for the function f; with fi.x = 5
and dy = 8.

We then determine a degree-d Chebyshev approximation p; to f; and scale it
to achieve min{p;(«),p1(B)} = 0.5 (top right picture in Fig.9). To reduce the
oscillations outside [«, B8], we “compensate” for them by taking the negative error
—p1(x) as a target in the second step, i.e., we now approximate the function

P
—p-pi(x), otherwise

with a relaxation parameter p > 0 (we used p = 0.75). This is repeated until a
prescribed number of iterations (e.g., 50) is reached or the margin did not improve
during the last 3, say, iterations. In the example in Fig. 9 this procedure takes 34 4- 3
iterations to reduce the margin from § ~ 0.01305 for y; to 0.00150 for ypest = y34.

Note that in this approach the coefficients ¢; cannot be computed cheaply with
a closed formula such as 4. Using the orthogonality of the Chebyshev polynomials
w.r.t. the inner product

+1 1
W@:[4MW@MN§mmW@:ﬂﬂ_Q’

the coefficients are given by

(fs Tk)

Cr =
(Tx, T)
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Fig. 9 Top left: The function f; for [, B] = [0.238,0.262], fmax = 5 and d; = 8. Top right: The
resulting degree-1600 approximation p; (x) before (dash-dotted) and after (solid) scaling to achieve
min{p(a), p(B)} = 0.5. Bottom left: “Compensating” filter function f, (thick line) and resulting
approximation p, (thin line). Bottom right: Final filter polynomial p = p34

and can be obtained by numerical integration. Here, f is the target function for
the current iteration. This makes determining iteratively compensating filters more
expensive than optimized shrunken Lanczos filters. (Cf. also [5] for an alternative
approach for approximating functions working with a modified inner product.)

6 Numerical Experiments

So far we have focused on the gain of the improved filters, i.e. on the reduction of
the margin § where sufficient damping of unwanted eigenvalues may be violated.
When applying these filters in, e.g., iterative eigensolvers then the ultimate goal is
to speed up the computations. In our experiments we use the filters in a polynomial-
accelerated subspace iteration with Rayleigh—Ritz extraction and adaptive control of
the polynomial degrees; see [8] for a detailed description of this algorithm (BEAST-
P in the ESSR).
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As the overall work is typically dominated by the matrix—vector multiplications
(MVMs), our first set of experiments determines if the improved filters lead to a
reduction of the overall number of MVMs. We use a test set comprising 21 matrices
with dimensions ranging from 1152 to 119,908. Twelve matrices are taken from the
University of Florida matrix collection [6] and nine come from graphene modeling.
For each matrix we consider two search intervals I, = [«, B] containing roughly
300 eigenvalues. Eigenpairs were considered converged (and were locked) when
they reached the residual threshold [|Ax; — Aix;|| < 10712 - n - max{|a|, ||} for
the scaled matrix (cf. beginning of Sect. 3). In Fig. 10 the resulting 42 problems are
sorted by “hardness,” i.e., by the overall number of MVMs taken by Chebyshev
approximation with Lanczos kernel (@ = 2). The plots show the reduction of the
MVM count w.r.t. this reference filter if we use (1) the shrunken Lanczos filters
described in Sect.4 with BAND optimization alone or with BAND optimization,
followed by PATH search, or (2) the iteratively compensating filters described in
Sect. 5, or (3) a combination of both. In the latter case, we first determine the best
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Fig. 10 Ratios of the overall number of matrix-vector products w.r.t. Lanczos (@ = 2) for

iteratively compensating filters (dash-dotted thin line), shrunken Lanczos filters with BAND
optimization (dotted line), BAND and PATH optimization (solid thin line), and combined filters
(see main text; solid thick line)
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shrunken Lanczos filter by a BAND+PATH search, and only if this did not yield a
gain > 2.0 then an iteratively compensating filter is determined as well, and the
gain-maximal of the two filters is taken.

The data indicate that roughly 40-50% of the MVMs can be saved in most
cases with the combined approach and that most of the improvement can already
be achieved with just GRID optimization of shrunken Lanczos filters turned on.
The effectiveness of the iteratively compensating filters as a stand-alone method
tends to be inferior to filters involving shrunken Lanczos. (In general, the latter are
better for critical and high degrees, whereas iteratively compensating filters may be
superior for low degrees.) In a single case the improved filters involving shrunken
Lanczos led to an increase of the MVMs (by 60%). This seems to be an artefact
of our adaptive scheme: All variants take seven iterations to find all 304 eigenpairs
contained in the search interval. With improved coefficients, 40% fewer MVMs are
needed so far, but then the adaptive control fails to detect completeness and triggers
additional iterations with increasing degree; we will investigate this issue further.

The reduced MVM count through the optimized filters did not come with a
significant degradation of the quality of the computed eigensystems. On average, the
maximum residual for each problem, max; || Ax;—A,x;||, and the maximum deviation
from orthonormality, max; ; [x*x; —§;;|, incurred a slight increase (by 25% and 37%,
resp.), whereas the maximum deviation of the eigenvalues, max; |A; computed — Al
(w.r.t. values A; obtained with a direct eigensolver) decreased by 13%.

The above experiments were done with Matlab on machines with varying load
and therefore do not provide reliable timing information. Timings were obtained
with substantially larger matrices on the Emmy cluster (two 2.2GHz 10-core
Xeon 2260v2 per node) at Erlangen Regional Computing Center with a parallel
implementation featuring the performance-optimized kernels described in [14]. The
data in Table 1 indicate that using the improved coefficients allowed the adaptive
scheme to settle at a much lower degree for the polynomials, yielding a reduction of
the MVM count and overall runtime by roughly one half. Even with the complete
optimization of the coefficients done redundantly in each node, their computation
took only a small amount of the overall time. Parallelizing this step as described at
the end of Sect. 4 will reduce its time consumption even further.

Table 1 Final degree in the adaptive scheme (starting with d = 100 and increasing by factors
of 2 or L\/ 2]), overall number of MVMs, overall time, and time required for computing the
coefficients of the polynomials, for two problems from modeling topological insulators, using
standard Chebyshev approximation with Lanczos kernel (x# = 2) or the improved coefficients
for the filters

Filter Final degree ~ Overall MVMs  Overall time  Time for coeffs
Topological insulator, n = 268,435,456, 148 evals, 128 nodes a 20 cores

Lanczos (u = 2) 4525 5,598,502 7.11h 0.00h
Improved (combined) 2255 2,602,360 3.44h 0.02h
Topological insulator, n = 67,108,864, 148 evals, 64 nodes a 20 cores

Lanczos (u = 2) 2262 2,726,112 1.97h 0.00h

Improved (combined) 1127 1,482,035 1.10h 0.01h
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7 Conclusions

After a very brief overview of the ESSEX project and some of its results in
the first funding period, we have focused on one method used for computing
a moderate number (some hundreds, say) of interior eigenpairs for very large
symmetric or Hermitian matrices: subspace iteration with polynomial acceleration
and Rayleigh-Ritz extraction. We have presented two techniques for reducing
the degree of the polynomials. One of them was based on determining standard
Chebyshev approximations with suitable Lanczos kernels to a window function,
but for a shrunken interval. The other technique was iterative, starting with a
polynomial-shaped target function and trying to compensate the error made in the
previous approximation. In both cases the optimization of the coefficients of the
final polynomial was done with respect to the margin, i.e., the width of the area
where sufficient damping of unwanted eigenpairs cannot be guaranteed. Numerical
experiments showed that the polynomials thus obtained indeed also reduce the
overall number of matrix—vector multiplications in the eigensolver, and thus its
runtime.
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Eigenspectrum Calculation

of the O(a)-Improved Wilson-Dirac Operator
in Lattice QCD Using the Sakurai-Sugiura
Method

Hiroya Suno, Yoshifumi Nakamura, Ken-Ichi Ishikawa,
Yoshinobu Kuramashi, Yasunori Futamura, AKkira Imakura,
and Tetsuya Sakurai

Abstract We have developed a computer code to find eigenvalues and eigenvectors
of non-Hermitian sparse matrices arising in lattice quantum chromodynamics
(lattice QCD). The Sakurai-Sugiura (SS) method (Sakurai and Sugiura, J] Comput
Appl Math 159:119, 2003) is employed here, which is based on a contour integral,
allowing us to obtain desired eigenvalues located inside a given contour of the com-
plex plane. We apply the method here to calculating several low-lying eigenvalues of
the non-Hermitian O(a)-improved Wilson-Dirac operator D (Sakurai et al., Comput
Phys Commun 181:113, 2010). Evaluation of the low-lying eigenvalues is crucial
since they determine the sign of its determinant det D, important quantity in lattice
QCD. We are particularly interested in such cases as finding the lowest eigenvalues
to be equal or close to zero in the complex plane. Our implementation is tested for
the Wilson-Dirac operator in free case, for which the eigenvalues are analytically
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known. We also carry out several numerical experiments using different sets of
gauge field configurations obtained in quenched approximation as well as in full
QCD simulation almost at the physical point. Various lattice sizes LcL,L L, are
considered from 8% x 16 to 964, amounting to the matrix order 12L,L,L.L, from
98,304 to 1,019,215,872.

1 Introduction

The determinant of the Wilson-Dirac operator, det D, plays an important role in
lattice QCD. In general, the determinant of an £ x £ matrix D can be written, in
terms of its eigenvalues A;, as

<z
detp =], (1)
=1

so that all the information about the Wilson fermion determinant, or the fermion
measure, is concentrated in the eigenspectrum. This makes the eigenspectrum
calculation of the Wilson-Dirac operator an interesting subject. Because the eigen-
spectrum possesses the vertical and horizontal symmetries and that the complex
eigenvalues are therefore always paired, the determinant can be further expressed in

the form:
detD =[x ] 1Al ()
MER  AyeC

We are thus particularly interested in calculating several low-lying real eigenvalues
of the Wilson-Dirac operator, since the sign problem may occur due to the real,
negative eigenvalues.

In this work, we develop exploratorily a computer code for calculating the low-
lying eigenspectrum of the Wilson-Dirac operator. For such sparse eigenproblems
as the Wilson-Dirac equation, the Implicitly Restarted Arnoldi Method (IRAM) [1]
is one of the conventional choices. It is noteworthy mentioning earlier attempts
to improve eigenvalue computations of the non-Hermiltian Dirac operator, such as
in [2]. We adopt here the Sakurai-Sugiura (SS) method since this makes it possible
to set more flexibly the region for searching eigenvalues. The SS method is based
on contour integrals, allowing us to calculate eigenvalues located in a given domain
of the complex plane as well as the associated eigenvectors. Our computer code
will be applied to calculating low-lying eigenvalues of the non-Hermitian O(a)-
improved Wilson-Dirac operator. We consider the spatiotemporal lattice sizes 83 x16
and 96%, amounting to the matrix order of 98,304 and 1,019,215,872, respectively.
Eigenvalue calculations will be performed using gauge field configurations for the
free case, those generated in quenched approximation as well as those generated by
a full QCD simulation, focusing on such cases as finding the low-lying eigenvalues
to be localized very close to zero in the complex plane.
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2 Sakurai-Sugiura Method for the Wilson-Dirac Operator

The lattice QCD is defined on a hypercubic four-dimensional lattice of finite extent
expressed as Ly xL,xL,xL, with L, , - being the three-dimensional spatial extent and
L, the temporal one. The lattice spacing is set to unity for notational convenience.
The fields are defined on the sites n with periodic boundary conditions. We define
two types of fields on the lattice. One is the gauge field represented by U, (n)** with
nw=1,2,3,4 (corresponding respectively to x, y, z, #) and a, b = 1,2, 3, which is a
3 x 3 SU(3) matrix assigned on each link. The other is the quark field g(n)5 which
resides on each site carrying the Dirac index o« = 1,2,3,4 and the color index
a = 1,2, 3. The O(a)-improved Wilson-Dirac operator is written as

4
DY (nm) = 84,8“"8(n,m) — 1 > [(1 = Yu)ap (U (m)“*8(n + fi.m)
n=l1

+ (14 Y p (U (m)™)*$(n — fr.m)]

4 .
e D (Oudup(Fu(m) 8. m). 3)

ny=1

where [ denotes the unit vector in the u direction. k is the hopping parameter,
and the coefficient csw is a parameter to be adjusted for the O(a)-improvement.
The Euclidean gamma matrices are defined in terms of the Minkowski ones in the
Bjorken-Drell convention: y; = —iyy, (j = 1,2,3), ya = ¥3p, ¥5s = Vip» and
Oy = é[yﬂ, yv]. The explicit representation for y; 5345 are given in [3], together
with the expression for the field strength F,, (n) in terms of the gauge field U, (n).
The O(a)-improved Wilson-Dirac operator defined in Eq. (3) is a sparse, complex
non-Hermitian square matrix D € CZ>*<, where only 51 out of £ = L, x L, x
L, x L, x 3 x 4 entries in each row have nonzero values.
In this work, we consider an eigenproblem

Dxlzklxl, (121,2,...,3), (4)

where A; and x; are eigenvalues and eigenvectors, respectively. In order to extract
eigenpairs (A;,x;) from the matrix D in Eq.(4), we adopt the Sakurai-Sugiura
method, proposed in [4—6]. This method is based on contour integrals, allowing us to
calculate eigenvalues located in a given domain of the complex plane, together with
the associated eigenvectors. In this method, we first define matrices Sy € CZ*L ag

1
S = ,95z"(zI—D)—lvclz,k=o,1,...,M—1. ®)
2ri Jr

Here, I' is a positively oriented closed curve in the complex plane inside which
we seek for eigenvalues, and M denotes the maximum moment degree. The matrix
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V € CZ*L, called source matrix, contains L column vectors V = [vy, va, ..., vz],
and we take a random vector for each of these source vectors. We assume that I”
is given by a circle and the integration is evaluated via a trapezoidal rule on I".
By designating the center and the radius of the circle as y and p, respectively, and
by defining the quadrature points as z; = y + pe?™U=VI/N j = 12,... N, we
approximate the integral in Eq. (5) via an N-point trapezoidal rule:

N
o 1 k -1
Sy~ S, = N jé 1 z (zil —=D)~V. (6)

A

We then carry out the singular value decomposition for the matrix § =
[S0.S1s ..., Sy_1] € CZ*IM a5 follows

§=03w, )
0=1q1,92,...,qu) € CZ*M, (®)
XY = diag(oy,09,...,0m). 9

We next determine the numerical rank m of the matrix . The value of m is fixed
as the number of singular values satisfying o; > §, with § being the threshold
for determining the numerical rank and usually set to § = 107'2. The original
eigenproblem is transformed to a smaller eigenproblem via the transformation
matrix Q = [q1.¢2.....qm], with only the first m column vectors from Q are
incorporated. We finally solve the smaller eigenequation Q"DQu; = p;u; and obtain
an approximation to the eigenpairs A; ~ u; and x; ~ Qu,;. Although our purpose
is to know the eigenvalue distribution and that the eigenvectors are not necessary,
we choose to calculate them since we need to check the accuracy via the relative
residual norms.

As can be seen from Eq. (6), the Sakurai-Sugiura method produces a subspace
with the matrix basis involving the inverses of the matrices (z;/ — D). The matrix
inversion can be performed solving the shifted linear equations

(zil — D)yj = v1. (10)

There exist several implementations based on direct methods such as LAPACK
and MUMPS libraries. These implementations, however, are hardly applicable
to such linear problems as arising in lattice QCD due to their large matrix
sizes, and some iterative methods are desirable to solve such large sparse linear
equations. In this work, we implement exploratorily the BiCGStab algorithm as is
presented in Algorithm 1. The BiCGStab algorithm will be found to converge very
slowly, suffering from the ill-condition problem of the shifted linear equations. We
choose, however, to employ the solution vectors as are obtained from a sufficiently
large number of BiCGStab iterations. The shift-invariance property of the Krylov
subspace of D under any translation indicates that substantial time saving can
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Algorithm 1 BiCGStab algorithm for solving Ay = (z/ — D)y = v

: initial guess y € C<,

: compute r = v — Ay,
setp=r =r,

choose 7 such that (7, r) # 0,
: while ||r||,/||v]|2 > € do:
o = (.1)/(F.Ap).
y<y+op,
r<—r—aAp,

9: . = (Ar,r)/(Ar, Ar),

10: y<y+¢rn,

11: r <—r— CAr,

122 B=(/f) Fn/Fr),
13: p<r+ Bp—LAp),
4. 7=,

15: end while.

A e

be achieved by solving all shifted equations with only one sequence of Krylov
subspaces, which can be a subject of the future development. In practice, the center
y and the radius p of the contour can be determined by running the code beforehand
with small values of N, L and M, which also allows us to estimate approximatively
the multiplicity of eigenvalues inside I". Then, the default values of N = 32 and
M = 16 can be mostly used, but the value of L is crucial, and need to be large in
case of large multiplicity or in order to obtain higher accuracy.

Code development is carried out based on the lattice QCD simulation program
LDDHMCY/ ver1.3K0.52ovlpcomm]1.2 developed for the K computer [7, 8]. The K
computer, at the RIKEN Advanced Institute for Computational Science, consists
of 82,944 computational nodes and 5184 I/O nodes connected by the so-called
“Tofu” network, providing 11.28 Pflops of computing capability. The Tofu network
topology is six-dimensional one with 3D-mesh times 3D-torus shape. Each node has
a single 2.0 GHz SPARC64 VIIIfx processor equipping 8 cores with SIMD enabled
256 registers, 6 MB shared L2 cache and 16 GB of memory. The L1 cache sizes per
each core are 32 KB/2WAY (instruction) and 32 KB/2WAY (data).

3 Simulation Results

Our implementation is tested here for the free-case Wilson-Dirac operator, of which
the eigenspectrum can be analytically obtained. For the free case, (U, (nz)“”’ = 8aps
the Wilson-Dirac action, in the momentum space (¥ (x) = [ dk exp(ikx)y (k)), turns
out to be

4
D(k) = 1—1x Y [2cos(ky) — 2iy, sin(k,)]. (11)
n=l1
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Since the allowed momentum components must be the discrete elements of the
Brillouin zone (k, = 7" 1,), we then obtain the expression for the free Wilson-Dirac
w

eigenvalues as

4 4
2 2

Ay = 1-2 E:cos([jrl#):l:i Zsinz(Lﬂlﬂ) JL,=0,1,...,L,— 1.
p=1 w p=1 "

12)

Each set of the numbers {/,} correspond to 12 eigenvalues, 2 sets of 6 multiple
eigenvalues with the plus and minus signs in Eq. (12). Note also that for the hopping
parameter k = 1/8, the minimum eigenvalue coincide with the origin, z = 0.
Figure 1 shows the eigenvalues of the free-case Wilson-Dirac operator calculated
by the SS method for the lattice size 8° x 16 and the hopping parameter k = 1/8.
We have used the number of quadrature N = 32, the number of source vector
L = 64 and the maximum moment degree M = 16. We notice three sets of
eigenvalues inside the integration contour of which the quadrature points z; are
indicated by asterisks. Each of these three sets contains 12 multiple eigenvalues, so
that in total 36 eigenvalues are found inside the integration contour. The BiCGStab
algorithm used for solving the shifted linear equation (10) is found to converge
very slowly for some quadrature points z;, due to the ill-condition problem: for
the quadrature point the most on the right-hand side z;, the residual ||r||2/]|v]]2
decreases only to about 1078 ~ 107!° with 1000 BiCGStab iterations, while it
decreases less than 10™!* with about 200 BiCGStab iterations for the quadrature
point the most on the left-hand side z;7. However, using the solution vectors obtained

T T T T T T %1
0.2 F83x 16,Free,k=0.125 N —
L 2 4
0.1 ® e .

*
L . 4

2 1

g or Zy7 ® * ]
- * 4

*
0.1 ® Lt .

O SS method X
0217 x Analytical x n
O S BN S
-0.2 -0.1 0 0.1 0.2

Re(L)

Fig. 1 Eigenvalues of the free-case Wilson-Dirac operator in a 8 X 16 lattice for the hopping
parameter k = 1/8. The eigenvalues obtained from the SS method are indicated as red circles,
those obtained from the analytical expression are indicated as black crosses. Green (blue) asterisks
indicate the quadrature points z; for which the BiCGStab algorithm converges (does not converge)
to less than 10™'* of the relative residuals norms with 1000 iterations
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0.02175 §§ method o 7
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Fig. 2 The same as in Fig. 1, but for the lattice size 96*

with about 1000 iterations, we have been able to obtain the above eigenvalues
accurately with the relative residual norms about 10~". This may indicate that even
if the shifted equations (10) are not solved with high precision, we can obtain a
certain precision about the eigenvalues. If we decrease the number of BiCGStab
iterations, we could still obtain acceptable values for the eigenvalues but with more
or less lower accuracy. Our eigenvalues obtained by the SS method are visually
indistinguishable from those obtained from the analytical expression in Eq. (12).
Figure 2 shows the same results but for the larger lattice size, 96*. We have used
the parameters for the SS method (N,L,M) = (32,128, 16). Here, inside the
integration contour, we have found one set of 12 multiple eigenvalues at the origin
and 2 sets of 36 multiple eigenvalues above and below the origin, 84 eigenvalues
in total. The relative residual norms have been found to be around 5 x 10™%. These
eigenvalues calculated by the SS method are also shown to be indistinguishable from
those from the analytical expression in Eq. (12). Note that, we set L = 128 since it
must be greater than or equal to the maximum multiplicity of the eigenvalues in I".
If there is no multiplicity, we usually set a small valueto L e.g. L = 8.

We have also carried out eigenvalue calculations with a sample of gauge field
configurations generated in quenched approximation. We generate these config-
urations on a 8% x 16 lattice with the Iwasaki gauge action 8 = 1.9 using the
lattice QCD program LDDHMC/ver1.3K0.52ovlpcomm 1.2 [7, 8]. Figure 3 shows
the eigenvalues of the O(a)-improved Wilson-Dirac operator with these gauge
configurations in quenched approximation for the parameters x = 0.1493 and
csw = 1.6 . These values of k¥ and csw have been chosen so that the minimum real
eigenvalue is close to the origin in the complex plane. We have used the parameters
for the SS method (N,L,M) = (32,96, 16). The relative residual norms of the
eigenvalues have been found to be around 107>.

Finally, we have performed eigenvalue calculations using a set gauge field
configurations generated in a full QCD calculation. These gauge field configurations
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Fig. 3 Eigenvalues of the O(a)-improved Wilson-Dirac operator in a 83 x 16 lattice for the
hopping parameter k = 0.1493 and the improvement parameter csyy = 1.6, with gauge field
configurations generated in quenched approximation. The eigenvalues obtained from the SS
method are indicated as red circles. Green (blue) asterisks indicate the quadrature points z; for
which the BiCGStab algorithm converges (does not converge) to less than 107'* of the relative
residuals norms with 1000 iterations

are generated by a 2 + 1 flavor QCD simulation near the physical point on a 96*
lattice [9] with the hopping parameters (kyq4, ks) = (0.126117,0.124700) and csw =
1.110. The other details are given in [9]. Figure 4 shows the eigenvalues calculated
by the SS method for the hopping and improvement parameters k = 0.126117
and csw = 1.110. We have used the parameters for the SS method (N,L, M) =
(32,16, 16), and the maximum number of BiCGStab iterations 30,000 for solving
the shifted linear equations. The relative residual norms of the eigenvalues have been
found to be around 5 x 107*.

The above eigenvalue calculations have been performed on the K computer, using
16 nodes for the lattice size 83 x 16 and 16,384 nodes for the lattice size 96*. Almost
the whole computer time is consumed in the multiplication of the quark field by the
Wilson-Dirac operator. The time spent by each matrix-vector multiplication is found
to be 1.29x 1073 s for the lattice size 8% x 16, and 5.5 x 1073 s for the lattice size 96*.
For the 8° x 16 free case, the elapsed time amounts to 2160's with about 1.67 x 10°
matrix-vector multiplications being performed. For the 96* free case, the elapsed
time is 21,500 s with about 3.93 x 10° matrix-vector multiplications. For the 8° x 16
quenched-approximation case, the elapsed time is found to be 3480s with about
3.01 x 10° matrix-vector multiplications, while for the 96* Full QCD case, we have
found the elapsed time to be 65,300's with 1.27 x 107 matrix-vector multiplications.
In Fig. 5, we show the performance per node of the matrix-vector multiplication as
a function of the lattice size.
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Fig. 4 Eigenvalues of the O(a)-improved Wilson-Dirac operator in a 96* lattice for the hopping
parameter « 0.126117 and the improvement parameter csw = 1.110, with gauge field
configurations generated in a full QCD simulation. The eigenvalues obtained from the SS method
are indicated as red circles. Green (blue) asterisks indicate the quadrature points z; for which the
BiCGStab algorithm converges (does not converge) to less than 10~ of the relative residuals
norms with 30,000 iterations
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Fig. 5 Performance (in GFLOPS) per node of the matrix-vector multiplication as a function of
the lattice size. Note that for the lattice sizes 8° X 16, 123 x 24, 243 x 48, and 48° x 96, we use
respectively 16, 16, 256, and 2048 nodes of the K computer

4 Summary

In this work, we have exploratorily developed a computer code for calculating eigen-
values and eigenvectors of non-Hermitian matrices arising in lattice QCD, using the
Sakurai-Sugiura method. We have applied our implementation to calculating low-
lying eigenvalues of the O(a)-improved Wilson-Dirac operator with gauge field
configurations for the free case and those generated in quenched approximation
and in full QCD. Eigenvalues have been obtained with relative residual norms from
about 1077 to 5 x 107, with the accuracy being limited by the slow convergence
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of the BiCGStab algorithm for solving the shifted linear equations. We think that
the Sakurai-Sugiura method is a promising way to solve eigenvalue problems in
lattice QCD under the condition that it is combined with a more efficient shifted
linear equation solver, which is desirable in order to improve the accuracy of these
eigenvalues. For the future work, some preconditioner might be necessary for the
iterative linear solver. We are actually carrying out implementation of a Krylov
subspace iterative method specifically for solving shifted linear systems [10].
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project (Project ID:hp120170, hp140069, hp150248).
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Properties of Definite Bethe—Salpeter Eigenvalue
Problems

Meiyue Shao and Chao Yang

Abstract The Bethe—Salpeter eigenvalue problem is solved in condense matter
physics to estimate the absorption spectrum of solids. It is a structured eigenvalue
problem. Its special structure appears in other approaches for studying electron
excitation in molecules or solids also. When the Bethe—Salpeter Hamiltonian matrix
is definite, the corresponding eigenvalue problem can be reduced to a symmetric
eigenvalue problem. However, its special structure leads to a number of interesting
spectral properties. We describe these properties that are crucial for developing
efficient and reliable numerical algorithms for solving this class of problems.

1 Introduction

Discretization of the Bethe—Salpeter equation (BSE) [15] leads to an eigenvalue
problem Hz = Az, where the coefficient matrix H has the form

A B
n=40 1)

The matrix A and B in (1) satisfy
A* = A, B =B. 2)

Here A* and A are the conjugate transpose and complex conjugate of A, respectively.
In this paper, we call H a Bethe—Salpeter Hamiltonian matrix, or, in short, a BSE
Hamiltonian. In condense matter physics, the Bethe—Salpeter eigenvalue problem is
derived from a Dyson’s equation for a 2-particle Green’s function used to describe
excitation events that involve two particles simultaneously. It is a special case of the
J-symmetric eigenvalue problem [3]. This type of eigenvalue problem also appears
in linear response (LR) time-dependent density functional theory, and the random
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phase approximation theory. In these approaches, H is sometimes called a Casida
Hamiltonian, a linear response Hamiltonian, or a random phase approximation
(RPA) Hamiltonian.

The dimension of A and B can be quite large, because it scales as O(N?), where
N is number of degrees of freedom required to represent a three-dimensional single
particle wavefunction. As a result, efficient numerical algorithms must be developed
to solve the Bethe—Salpeter eigenvalue problem. To gain computational efficiency,
these methods should take advantage of the special structure of the Hamiltonian
in (1).

Let

I, 0 _[AB
Cn—[o_ln] Q_[BA] 3)

Then H = C,£2, with both C, and §£2 Hermitian. In most physics problems, the
condition

2>0 “)

holds, that is, the matrix 2 is positive definite. We call H a definite Bethe—
Salpeter Hamiltonian matrix when (4) is satisfied. It has been shown in [16] that, in
general, solving a Bethe—Salpeter eigenvalue problem is equivalent to solving a real
Hamiltonian eigenvalue problem. However, a definite Bethe—Salpeter eigenvalue
problem, which is of most interest in practice, has many additional properties. In this
paper we restrict ourselves to this special case, i.e., we assume that the condition (4)
holds.

There are several ways to reformulate the definite Bethe—Salpeter eigenvalue
problem. One equivalent formulation of Hz = Az yields a generalized eigenvalue
problem (GEP) C,z = A7 '2z. As Q is positive definite, C,z = A7'Qz is
a Hermitian—definite GEP and hence has real eigenvalues. Another equivalent
formulation is (£2 — AC,)z = 0, where 2 — AC, is a definite pencil [7, 20] with
a definitizing shift Ao = 0. In addition, the eigenvalue problem H?z = A?z can be
written as a product eigenvalue problem (C,$2C,)22z = A’z in which both C,£2C,
and §2 are positive definite. These formulations suggest that a definite Bethe—
Salpeter eigenvalue problem can be transformed to symmetric eigenvalue problems.
As a result, we can analyze various properties of the Bethe—Salpeter eigenvalue
problem by combining existing theories of symmetric eigenvalue problems (see,
e.g., [14, 20]) with the special structure of H.

In this paper, we describe several spectral properties of a definite BSE Hamil-
tonian. These properties include the orthogonality of eigenvectors, the Courant—
Fischer type of min—max characterization of the eigenvalues, the Cauchy type
interlacing properties, and the Weyl type inequalities for establishing bounds on
a structurely perturbed definite BSE Hamiltonian. Most properties take into account
the special structure of the BSE Hamiltonian. Although the derivations are relatively
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straightforward, these properties are important for developing efficient and reliable
algorithms for solving the definite Bethe—Salpeter eigenvalue problem.

The rest of this paper is organized as follows. In Sect. 2, we analyze the spectral
decomposition of H and derive two types of orthogonality conditions on the
eigenvectors. Variational properties based on these two types of orthogonality con-
ditions are established in Sect. 3. Finally, we provide several eigenvalue perturbation
bounds in Sect. 4.

2 Preliminaries

2.1 Spectral Decomposition

As a highly structured matrix, a definite BSE Hamiltonian admits a structured
spectral decomposition as stated in the following theorem.

Theorem 1 ([16, Theorem 3]) A definite Bethe—Salpeter Hamiltonian matrix is
diagonalizable and has real spectrum. Furthermore, it admits a spectral decom-
position of the form

Xy1[a o][x -v71"
H_[YX} [0 —A} [—Y X} ’ ©)
where A = diag{A,...,A,} > 0, and
X -y [xy
=1,
[—Y X:| |:YX:| 2 ©)

As the eigenvalues of a definite BSE Hamiltonian appear in pairs £A, we denote
by )Li+ (U) (A; (U)) the ith smallest positive (largest negative) eigenvalue of a matrix
U with real spectrum. When the matrix is omitted, A" (or A7) represents A" (H)
(or A; (H)), where H is a definite BSE Hamiltonian. Thus the eigenvalues of H are
labeled as

A—f...<,ll_<,li"§...§,1:',

n —

To represent the structure of the eigenvectors of H, we introduce the notation

$(U.V) = [g (ﬂ
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where U and V are matrices of the same size. The structure is preserved under
summation, real scaling, complex conjugation, transposition, as well as matrix
multiplication
¢U1L, VU, Vo) = ¢(U1Us + ViVa, ViUs + Ui V).
The Egs. (5) and (6) can be rewritten as
C.2 =X, Y)Cop(A,0)0 (X, —Y)*, oX,—V)*¢(X,Y) = Iy,

The converse of Theorem 1 is also true in the following sense: If (5) holds, then H
is a definite BSE Hamiltonian because

As a result, H' = C,[¢(X.—Y)p(A7",0)¢(X,—Y)*] is also a definite BSE
Hamiltonian.

2.2 Orthogonality on the Eigenvectors

From the spectral decomposition of a definite BSE Hamiltonian H, we immediately
obtain two types of orthogonality conditions on the eigenvectors of H.
First, the fact 2 = ¢ (X, —Y)¢p (A, 0)¢p (X, —Y)* implies that

PX. V)" R¢(X.Y) = ¢(A.0).

Therefore, the eigenvectors of H are orthogonal with respect to the §2-inner product
defined by (u, v), := v*Qu. The eigenvectors can be normalized as

¢(5(v ?)*‘QQZ&(X’ ?) = D,.

through a diagonal scaling ¢ (X, Y) = ¢(X, Y)p(A™V/2,0).
Second, it follows directly from (6) that

¢(X7 Y)*Cnd)(Xv Y) = Cn-

This indicates that the eigenvectors of H are also orthogonal with respect to
the C-inner product defined by (u,v). := v*C,u, which is an indefinite scalar
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product [20]. Furthermore, the positive (negative) eigenvalues of H are also the C-
positive (C-negative) eigenvalues of the definite pencil 2 — AC,.!

These two types of orthogonal properties can be used to construct structure
preserving projections that play a key role in Krylov subspace based eigensolvers.
Suppose that ¢ (X;, i) € C¥*? is orthonormal with respect to the £2-inner product.
Then projection using ¢ (Xi, Yx) yields a 2k x 2k Hermitian matrix of the form

Hy = ¢ (Xi, )" QH Xi, Yi) = ¢ (Xi, Yo)* 2C,2¢ (X, Yi) =: Cup (Ax, By).
(7

It can be easily shown that the eigenvalues of the projected Hermitian matrix Hy
also occur in pairs +6, as H; admits a structured spectral decomposition H; =
¢ (U, Vi) Crp (O, 0)p (Uy, Vi)™, where ¢ (Uy, Vi)* ¢ (Ui, Vi) = L. Furthermore,
the matrix ¢ (Xx, Yi)¢(Uk, Vi) is again orthonormal with respect to the £2-inner
product. Thus we regard (7) as a structure preserving projection. But we remark
that ®, is not always positive definite here as H; can sometimes be singular.

Similarly, if ¢ (X, Yx) € C? % is orthonormal with respect to the C-inner
product, that is, ¢ (X, Yx)*C,¢ (Xk, Yi) = Ci. Then

Hi:= Cep(Xie, Vi) CoHp (X, Vi) = Ci[¢p(Xi, V) * 20 (Xie, Yo | (3)

is a 2k x 2k definite BSE Hamiltonian. Therefore the projection (8) in C-inner
product can also be regarded as structure preserving.

3 Variational Properties

3.1 Min-Max Principles

The ith smallest eigenvalues of the Hermitian—definite pencil C, — £2, denoted by
Wi, can be characterized by the Courant—Fischer min—max principle

) 7*Cuz
M; = min max ©)]
dim(¥)=i ze¥ 7*§2z
77#0

*
. T7Cyz
= max min " (10)
dim(¥)=2n—i+1z€¥ 7*§27
77#0

TA vector v is called C-positive, C-negative, C-neutral, respectively, if v*C,v > 0, v*C,v <
0, v*C,v = 0. An eigenvalue of 2 — AC, is called C-positive (C-negative) if its associated
eigenvector is C-positive (C-negative).
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where 7 is a linear subspace of C?". Notice that

1
A= >0, (1 <i<n).
Mon—i+1

Taking the reciprocal of (9) and (10) yields Theorem 2 below. The theorem is
also a direct consequence of the Wielandt min—max principle discussed in [10,
Theorem 2.2] for the definite pencil 2 — AC,,.

Theorem 2 Let H = C,$2 be a definite Bethe—Salpeter Hamiltonian matrix as
defined in (1). Then

7*2z

Aj‘ = max min (11
dim(¥)=2n—i+1 ze¥ z¥*C,Z
Z*CnZ>0
*
. 7* 2z
= min max (12)
dim(¥)=i zev z*C,z

2¥Cuz>0
forl <i<n
An important special case is i = 1, for which we have the following Corollary 1.

Corollary 1 ([191) The smallest positive eigenvalue of a definite Bethe—Salpeter
Hamiltonian matrix H = C,S2 satisfies

Af = min  o(x,y), (13)
K x—y*y#0
where
*
NEPAIN
vl |BA] Ly
o(x,y) = . - (14)
[x*x — y*y|

is the Thouless functional.

Thanks to this result, the computation of /\T can be converted to minimizing
the Thouless functional (14). Thus optimization based eigensolvers, such as the
Davidson algorithm [6] and the LOBPCG algorithm [8], can be adopted to compute
AT,

Finally, we remark that, from a computational point of view, the use of (12)
requires additional care, because for an arbitrarily chosen subspace ¥ C C?" the
quantity

*
702z
sup T = sup "0z
ey 2 0pt €YV
7%Cpz>0 7*Cpz=1

can easily become +o0o when ¥ contains C-neutral vectors.
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3.2 Trace Minimization Principles

In many applications, only a few smallest positive eigenvalues of H are of practical
interest. The computation of these interior eigenvalues requires additional care since
interior eigenvalues are in general much more difficult to compute compared to
external ones. Recently, (13) has been extended to a trace minimization principle
for real BSE Hamiltonians [1], so that several eigenvalues can be computed
simultaneously using a blocked algorithm [2, 9]. In the following, we present
two trace minimization principles, corresponding to the two types of structured
preserving projections discussed in Sect. 2.2.

Theorem 3 Let H = C,52 be a definite Bethe—Salpeter Hamiltonian matrix as
defined in (1). Then

] 1
- et ) - min trace(X*X — Y*Y (15
(Af M sxnreen=m ( ) )

holds for 1 <k <n.

Proof We rewrite the eigenvalue problem Hz = Az as C,z = A~'£2z. Then by the
trace minimization principle for Hermitian—definite GEP, we obtain

1 1 . *
_(A?_ 4t ,le‘) = z*I}zlgilk trace(Z*C,Z).

Notice that

S = { [ﬂ € Ck: (X, Y)* Q¢ (X, Y) = I

is a subset of
S ={ZeC"Z*QZ=1}.
We have

min trace(Z*C,Z) < min trace(Z*C,Z).
ZeS ZeS

The equality is attainable, since the minimizer in .5 can be chosen as the
eigenvectors of H, which is also in .#]. As a result, (15) follows directly from the
fact that [X*, Y*]C,[X*, Y*]* = X*X — Y*Y. O
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Theorem 4 Let H = C,82 be a definite Bethe—Salpeter Hamiltonian matrix as
defined in (1). Then

Af+- 4+ = min trace(X*AX + X*BY + Y*BX + Y*AY)
PX.Y)*Cpp(X,Y)=C
(16)

holds for 1 <k <n.

Proof As the eigenvalues of H are also the eigenvalues of the definite pencil £2 —
AC,, by the trace minimization property of definite pencils (see, for example, [9,
Theorem 2.4]), we obtain

A+t min trace(Z* 27)

Z*CpZ=I

min trace(Z*27).
2 7*CyZ=Cy

The rest of the proof is nearly identical to that of Theorem 3. Because
S = { [ﬂ e C*: (X, Y)*Crp(X,Y) = Ci

is a subset of
S ={Z2eC™"2"C,Z = G},
we have

min trace(Z*$2Z) < min trace(Z*27).
ZeS ZeS

The equality is attainable by choosing the corresponding eigenvectors of H, which
belong to both .#] and .%5. |

Theorems 3 and 4 can both be used to derive structure preserving optimization
based eigensolvers. We shall discuss the computation of eigenvalues in separate
publications. We also refer the readers to [10] for more general variational princi-
ples.

3.3 Interlacing Properties

We have already seen that the two types of orthogonality conditions on the
eigenvectors of H can both be used to construct structure preserving projections
that can be used for eigenvalue computations. In this subsection we point out some
difference on the location of the Ritz values.
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When the §2-inner product is used for projection, we have the following Cauchy
type interlacing property.

Theorem 5 Let H = C,§2 be a definite Bethe—Salpeter Hamiltonian matrix as
defined in (1). Suppose that ¢(X,Y)* Q¢ (X, Y) = Iy, where 1 < k < n. Then the
eigenvalues of ¢ (X, Y)*QH@(X, Y) are real and appear in pairs £6. Moreover’

AM(@X.Y)*RHY(X.Y)) < Af,_(H).,  (1<i<k). (17)

Proof The first half of the theorem follows from the discussions in Sect.2.2. We
only show the interlacing property. Notice that U := £2'/2¢(X, Y) has orthonormal
columns in the standard inner product, thatis, U* U = I,;. By the Cauchy interlacing
theorem, we have

A (@(X, V)*RHP(X, Y)) = AT (U*2'*C,02'2U)
< A:H_k(gl/zcngl/z)

+
= Atk (H). 0
In contrast to the standard Cauchy interlacing theorem, there is no nontrivial
lower bound on the Ritz value Al.+ ((;S X, ")*QH¢ (X, Y)) here. In fact, the projected
matrix ¢ (X, Y)*2H¢ (X, Y) can even be zero. For instance,

is an example for such an extreme case (assuming 2k < n).

For projections based on the C-inner product, we establish Theorem 6 below.
Similar to Theorem 5, Ritz values are only bounded in one direction. However, in
this case, it is possible to provide a meaningful (though complicated) upper bound
for the Ritz value. We refer the readers to [1, Theorem 4.1] for the case of real BSE.
Further investigation in this direction is beyond the scope of this paper.

Theorem 6 Let H = C,52 be a definite Bethe—Salpeter Hamiltonian matrix as
defined in (1). Suppose that (X, Y)*Cpnp(X,Y) = Cy, where 1 < k < n. Then the
eigenvalues of Cx¢ (X, Y)*C,Hp (X, Y) appear in pairs £6. Moreover

A (Cp(X. V) CHY(X.Y)) = AF(H),  (1<i<k). (18)

Proof Notice that the eigenvalues of Cy (¢ X, )*Q¢ (X, Y)) can also be regarded
as the eigenvalues of the definite pencil ¢ (X, Y)*(£2 — AC,)¢(X,Y). Then the

’In the case when ¢ (X, Y)* QH¢ (X, Y) is singular, we assign half of the zero eigenvalues with the
positive sign in the notation )t,-+ (¢ X, V)*QHp(X,Y )).
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conclusion follows from the Cauchy interlacing property of definite pencils [9,
Theorem 2.3]. O

From a computational perspective, (18) provides more useful information
than (17), because the Ritz value )Li+ (qu& X, )*C,Ho (X, Y)) is bounded in terms
of the corresponding eigenvalue )t;"(H) to be approximated. The inequality (17)
gives an upper bound of the Ritz value. But we have less control over the location
of A (¢(X,Y)*RHP(X.Y)).

Finally, we remark that the trace minimization principle (16) can also be derived
by the interlacing property (18).

4 Eigenvalue Perturbation Bounds

4.1 Weyl Type Inequalities

In the perturbation theory of symmetric eigenvalue problems, Weyl’s inequality
implies that the eigenvalues of a Hermitian matrix are well conditioned when a
Hermitian perturbation is introduced. In the following we establish similar results
for definite Bethe—Salpeter eigenvalue problems.

Theorem 7 Let H and H + AH be definite Bethe—Salpeter Hamiltonian matrices.
Then

(1 <i<n),

AH(H) =y,

AF(H + AH) —WH)‘ |AH|

where ky(H) = |H|2||H™ .

Proof Let A2 = C,AH. Then §2 + AS2 is positive definite. We rewrite Hz = Az as
the GEP C,z = A~ Qz. It follows from the Weyl inequality on Hermitian—definite
GEP [12, Theorem 2.1] that

L 1 _ I27MlA]k
AF(H) AFHA+ AH)| T AN(H A+ AH)

By simple arithmetic manipulations, we arrive at

AT (H 4+ AH) — A (H)
Af(H)

1421 | 4]
< k(2 =Kk (H .
i— XD, =
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Theorem 7 characterizes the sensitivity of the eigenvalues of H when a structured
perturbation is introduced—the relative condition number of /\l.+ (H) is bounded by
k2(H). When the perturbation is also a definite BSE Hamiltonian, the eigenvalues
are perturbed monotonically. We have the following result.

Theorem 8 Let H, AH € C¥>?" be definite Bethe—Salpeter Hamiltonian matrices.
Then

Af(H + AH) = Af(H) + Af (AH), (1 <i<n).

Proof Let A2 = C,AH. Then by Theorem 2 we have

* *
. "2z  7FAL2z
Aj‘ (H+ AH) = max min
dim(¥)=2n—i+1 z&¥ \z*C,z 7*Cyz
Z*CnZ>0

£ 3
) 7* 82z
> max min + /\fr(AH)
dim(¥)=2n—i+1 z&¥ \z2*C,Z
7%Cpz>0

= A (H) + A (AH). O

A special perturbation in the context of Bethe—Salpeter eigenvalue problems
is to drop the off-diagonal blocks in H. Such a perturbation is known as the
Tamm—Dancoff approximation (TDA) [5, 18]. Similar to the monotonic perturbation
behavior above, it has been shown in [16] that TDA overestimates all positive
eigenvalues of H. In the following, we present a simpler proof of this property than
the one given in [16].

Theorem 9 ([16, Theorem 4]) Let H be a definite Bethe—Salpeter Hamiltonian
matrix as defined in (1). Then

ATH) < AF@), (1 <i<n).

Proof Notice that H> = (C,£2C,)$2 with both C,£2C, and £2 positive definite. By
the arithmetic—geometric inequality on positive definite matrices [4, Sect. 3.4], we
obtain

At H) = \/)L;;((CnQCn)Q) <5 (0902 * Q) = x;( B ﬂ ) =\t@. o

Combining Theorems 7 and 9, we obtain the following corollary. It characterizes
to what extent existing results in the literature obtained from TDA are reliable.
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Corollary 2 If H is a Bethe—Salpeter Hamiltonian matrix as defined in (1), then

0 < M@ =aFE)

DD 10

. (1<i<n.
IH |2

4.2 Residual Bounds

Another type of perturbation bounds on eigenvalues measures the accuracy of
approximate eigenvalues in terms of the residual norm. These bounds are of interest
in eigenvalue computations. In the following we discuss several residual bounds for
the definite Bethe—Salpeter eigenvalue problem.

Theorem 10 Let H = C,82 be a definite Bethe—Salpeter Hamiltonian matrix.
Suppose that X, Y € C™* satisfy

-1

X, V)" Q¢(X,Y) = In, ¢(X7Y)*Cn¢(X7Y):|:(3 _0@} ,

for some k between 1 and n, where ® = diag{0,,...,0:} > 0. Then there exists a
BSE Hamiltonian AH = C,AS$2 = C,¢(AA, AB) such that

19)

(H + AH)$(X.Y) = (X, Y) [@ 0 } .

0 -6
and
|AH|> < 2[|H|Y*|R]2, (20)

where

R = Hp(X.Y) — (X.Y) [g _0@} .

Proof 1t follows from the definition of R that

SX. V) CoR = I — (X, ¥)* Cop (X, Y) [g _0@} —0.

Let

AQ = CRO(X, V)" 2 + Q¢(X,Y)R*C,.
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Then AS2 is Hermitian. Since ® is real, we have
R=C,p(A,B)p(X,Y)—9(X,Y)C,,¢p(0,0) = C,¢p(AX+BY—-XO,AY+BX+Y0O),
indicating that

Q¢X,Y)R*C, = ¢(A,B)p(X,Y)p(AX + BY — XO,AY + BX + YO)*

has the block structure ¢ (-, -). Thus AH := C, A2 is a BSE Hamiltonian. It can be
easily verified that (19) is satisfied. Finally,

1/2
|AH = |A2]2 < 21122 2"2¢ X, V)[Rl = 2[H],*IR]>. D

Roughly speaking, (20) implies that for definite BSE, Rayleigh—Ritz based
algorithms that produce small residual norms are backward stable. When «;(H) is of
modest size, backward stability implies forward stability according to Theorem 7.
The following theorem provides a slightly better estimate compared to simply
combining Theorems 7 and 10.

Theorem 11 Under the same assumption of Theorem 10, there exist k positive
eigenvalues of H, Aj, < -+ < Aj,, such that

1/2 .
16 = Al < |HIY?IRN (1 <i<kh).

Proof Notice that U:= 2'/2¢(X,Y) has orthonormal columns (in the standard
inner product), and

QWR:QWQQWU—UF)O]
0 -6

By the residual bound for standard Hermitian eigenvalue problems (see [14,
Theorem 11.5.1] or [17, Sect.IV.4.4]), we obtain that there are 2k eigenvalues of

Q1V2¢,2'2, A, <--- < Ay, < Aj <--- < A, such that

&k

3 3 1/2 1/2 .
max {16; + 21, 16: = Lil} < 12013 0RI2 = IHIIR. (1 <i< .

Note that at least one of the inequalities ijl > 0 and i—jl < 0 holds. As the
eigenvalues of 22'/2C,2'/? are identical to those of H, the conclusion follows
immediately by choosing

MZ{M7 0w, O

—A_j,, otherwise,
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Finally, we end this section by a Temple—Kato type quadratic residual bound
as stated in Theorem 12. The quadratic residual bound explains the fact that the
accuracy of a computed eigenvalues is in general much higher compared to that
of the corresponding eigenpair. Such a behavior has been reported for real Bethe—
Salpeter eigenvalue problem in [9]. It is certainly possible to extend Theorem 12 to
a subspace manner using techniques in [11, 13].

Theorem 12 Let (0, ) be an approximate eigenpair of a definite BSE Hamiltonian
H = C,$2 satisfying

7*822

NP
VAN T4

Then the eigenvalue of H closest to 0, denoted by A, satisfies

’9—1 _ A_l’ < ||H_l||2||H2— 92”%
— gap(0)7* 22

where

0):= min |07 — L(H)".
gap(0) Mg}gl;@\ (H)™'|

Proof The theorem is a direct consequence of [14, Theorem 11.7.1] on the
equivalent Hermitian eigenvalue problem (.Q_l/ 2c,27Y 2) (.Ql/ 2z) = A(.Ql/ 21).
O

5 Summary

The Bethe—Salpeter eigenvalue problem is an important class of structured eigen-
value problems arising from several physics and chemistry applications. The most
important case, the definite Bethe—Salpeter eigenvalue problem, has a number
of interesting properties. We identified two types of orthogonality conditions on
the eigenvectors, and discussed several properties of the corresponding structure
preserving projections. Although most of our theoretical results can be derived by
extending similar results for general symmetric eigenvalue problems to this class
of problems, they play an important role in developing and analyzing structure
preserving algorithms for solving this type of problems. Numerical algorithms will
be discussed in a separate publication.
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Preconditioned Iterative Methods for Eigenvalue
Counts

Eugene Vecharynski and Chao Yang

Abstract We describe preconditioned iterative methods for estimating the number
of eigenvalues of a Hermitian matrix within a given interval. Such estimation is
useful in a number of applications. It can also be used to develop an efficient
spectrum-slicing strategy to compute many eigenpairs of a Hermitian matrix. Our
method is based on the Lanczos- and Arnoldi-type of iterations. We show that with
a properly defined preconditioner, only a few iterations may be needed to obtain a
good estimate of the number of eigenvalues within a prescribed interval. We also
demonstrate that the number of iterations required by the proposed preconditioned
schemes is independent of the size and condition number of the matrix. The
efficiency of the methods is illustrated on several problems arising from density
functional theory based electronic structure calculations.

1 Introduction

The problem of estimating the number of eigenvalues of a large and sparse Hermi-
tian matrix A within a given interval [§, 7] has recently drawn a lot of attention,
e.g., [12-14]. One particular use of this estimation is in the implementation of
a “spectrum slicing” technique for computing many eigenpairs of a Hermitian
matrix [1, 11]. Approximate eigenvalue counts are used to determine how to divide
the desired spectrum into several subintervals that can be examined in parallel.
In large-scale data analytics, efficient means of obtaining approximate eigenvalue
counts is required for estimating the generalized rank of a given matrix; see,
e.g., [22].

A traditional approach for counting the number of eigenvalues of A in [£, 7] is
based on the Sylevester’s law of inertia [ 15]. The inertia of the shifted matrices A—§&1
and A — nl are obtained by performing LDL” factorizations of these matrices [1].
This approach, however, is impractical if A is extremely large or not given explicitly.
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Several techniques that avoid factoring A have recently been described in [12,
14]. These methods only require multiplying A with a number of vectors. In [12], a
survey that describes several approaches to approximating the so-called density of
states (DOS), which measures the probability of finding eigenvalues near a given
point on the real line is presented. The DOS approximation can then be used to
obtain an estimate of the number of eigenvalues in [£, 75]. The potential drawback
of a DOS estimation based approach is that, instead of directly targeting the specific
interval [, 7], it always tries to approximate the eigenvalue distribution on the entire
spectrum first.

Conceptually, the approaches in [12, 14] are based on constructing a least-squares
polynomial approximation of a spectral filter. Such approximations, however, often
yield polynomials of a very high degree if A is ill-conditioned or the eigenvalues
to be filtered are tightly clustered. These are common issues in practical large-scale
computations. In particular, matrices originating from the discretization of partial
differential operators tend to become more ill-conditioned as the mesh is refined.
As aresult, the polynomial methods of [12, 14] can become prohibitively expensive.
The overall cost of the computation becomes even higher if the cost of multiplying
A with a vector is relatively high.

In this work we explore the possibility of using preconditioned iterative methods
to reduce the cost of estimating the number of eigenvalues within an interval. By
applying the Lanczos or Arnoldi iteration to preconditioned matrices with properly
constructed Hermitian positive definite (HPD) preconditioners, we can significantly
reduce the number of matrix-vector multiplications required to obtain accurate
eigenvalue counts. Furthermore, when a good preconditioner is available, we can
keep the number of matrix-vector multiplications (roughly) constant even as the
problem size and conditioning of A increase. The methods we present in this paper
do not require the lower and upper bounds of the spectrum of A to be estimated a
priori. This feature compares favorably with the methods of [12, 14] since obtaining
such bounds can by itself be a challenging task.

This paper is organized as following. Section 2 outlines the main idea, followed
by derivation of the preconditioned Lanczos-type estimator based on Gauss quadra-
ture in Sect. 3. The preconditioned Arnoldi-type algorithm is presented in Sect. 4.
In Sect. 5, we discuss the proposed methods from the polynomial perspective. The
performance of the introduced schemes depends to a large extent on the quality of
the HPD preconditioner associated with the matrix A—t/. While the development of
such a preconditioner is outside the scope of this paper, we point to several available
options in Sect. 6. Several numerical experiments are reported in Sect. 7.

2 Basic Idea

To simplify our presentation, let us assume that the endpoints & and 7 are different
from any eigenvalue of A. Then the number of eigenvalues c(€, 1) of A in [§, 7] is
given by the difference c(&,7) = n (A—nl) —n_(A—E&I), where n_(A — tI) denotes
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the negative inertia (i.e., the number of negative eigenvalues) of A — t/. Hence, in
order to approximate c(€, 1), it is sufficient to estimate n (A — /) for a given real
number t.

The problem of estimating n (A — t/) can be reformulated as that of approximat-
ing the trace of a matrix step function. Namely, let

1, x<0;
h(x) = ’ ’ 1
) 0, otherwise . M
Then
n (A —tl) = trace {h(A — tl)}. 2)

Now let us assume that T is an HPD preconditioner for the shifted matrix A — ¢/
in the sense that the spectrum of 7A is clustered around a few distinct points on the
real line. Specific options for constructing such preconditioners will be discussed in
Sect. 6.

If T is available in a factorized form T = M*M, estimating n (A — tI) is
equivalent to estimating n (M(A — tI)M*), i.e., transforming A — 7/ to C =
M(A — tI)M* preserves the inertia. Hence, we have

n_ (A —1tl) = trace {h(C)}. 3)

If T = MM* is chosen in such a way that its spectrum has a favorable

distribution, i.e., the eigenvalues of C is clustered in a few locations, then estimating
trace {h(C)} can be considerably easier than estimating trace {h(A — tI)}.

If the multiplication of C with a vector can be performed efficiently, then the
trace of C can be estimated as

1 m
trace {C} ~ ” Z v/ Cuj, 4)
=1

where the entries of each vector v; are i.i.d. random variables with zero mean and
unit variance; see [2, 10]. It follows that

n (A —tl) = trace {h(C)} ~ ’111 Z v h(C)v, (%)
=1

for a sufficiently large sample size m.
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The variance of the stochastic trace estimator is known to depend on the
magnitude of off-diagonal entries of the considered matrix [2], which is £(C) in O).!
Clearly, different choices of the preconditioned operator C yield different matrices
h(C), and hence lead to different convergence rates of the estimator (5).

3 Preconditioned Lanczos

If A is large, then the exact evaluation of 4(C) in (5) can be prohibitively expensive,
because it requires a full eigendecomposition of the preconditioned matrix. A more
practical approach in this situation would be to (approximately) compute v*h(C)v
for a number of randomly sampled vectors v without explicitly evaluating the matrix
function.

3.1 The Gauss Quadrature Rule

Let us assume that T = M*M is available in the factorized form and let C =
M(A — tI)M* in (5). We also assume that the Hermitian matrix C has p < n distinct
eigenvalues i1 < py < ... < [Up.

Consider the orthogonal expansion of v in terms of the eigenvectors of C,
ie., v = Zf=1 o,u;, where u; is an normalized eigenvector associated with the
eigenvalue j;, and o; = uv. It is then easy to verify that

P P
v R(C)y = Zafh(ui) = Zaf, o = |ufvl?, (6)

i=1 i=1

where p_ denotes the number of negative eigenvalues. The right-hand side in (6) can
be viewed as a Stieltjes integral of the step function / with respect to the measure
defined by the piecewise constant function

0, ifx < M1,
— i 2 : . .
acy(x) = Zj:l ar, if (i < x < fit1, (7
Zf=1 o, if p, < x.

'The variance of a Gaussian trace estimator applied to a Hermitian matrix also depends on the
magnitude of the diagonal elements and can be expressed only in terms of the eigenvalues of A.
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Therefore, using (7), we can write (6) as

0

v*h(C)v = /h(x)dotc,v(x) E/ dac,(x). (8)

M1

Computing the above integral directly is generally infeasible because the mea-
sure (7) is defined in terms of the unknown eigenvalues of C. Nevertheless, the
right-hand side of (8) can be approximated by using the Gauss quadrature rule [6],
so that

k k_
v*h(C)v ~ Zw,-h(@,-) = Zw,-, )

i=1 i=1

where the k nodes 0; < 6, < ... < 6, and weights wy, wy, ..., wy of the quadrature
are determined from k steps of the Lanczos procedure (see Algorithm 1) applied to
the preconditioned matrix C with the starting vector v. In (9), k_ denotes the number
of negative nodes 6;.

Specifically, given gq; = v/||v||, running k steps of the Lanczos procedure in
Algorithm 1 yields the relation

COr = Ok dit s Qpy1 Qi1 =1, (10)

where Jy+ ¢ is the tridiagonal matrix
ar B2

Bray
Jir1k = LB € RKHDXE, (11)
Br o
Br+1

Algorithm 1 The Lanczos procedure for M(A — t)M*

Input: Matrix A — tI, T = M™M, starting vector v, and number of steps k.
Output: Tridiagonal matrix J;41 4 and the Lanczos basis Qx+1 = [q1, 92, - - -, Qk+1]-

I g1 <= v/|vll; go <= 0; B1 < 0; Q1 < q1;

2: fori=1— kdo:

3w MA—OM*q; — Bigi—1;

4 < giww<—w—aq;

5 Reorthogonalize w <— w — Q;(Q7 w);

6:  Bit1 < Iwls git1 < w/Bit1; Qit1 < [Qis qit1ls
7: end for
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The eigenvalues of the leading k x k submatrix of J; x, denoted by Ji, are ordered
sothat ) < 60, <... <6 <0 <6 +1 <...< 06 Then the Gauss quadrature
rule on the right-hand side of (9) is defined by eigenvalues and eigenvectors of Jy,
i.e.,

k k_
VRO ~ [[v]PefhTer =Y wih(0) =Y wi. wi = [oPla(DI>.  (12)

i=1 i=1

where z; is the eigenvector of J; associated with the eigenvalue 6;, z;(1) denotes its
first component [6], and k_ denotes the number of negative Ritz values.

If the preconditioner T = MM™ is chosen in such a way that the spectrum of C =
M(A — tI)M* is concentrated within small intervals [a, b] C (—00,0) and [c,d] C
(0, 00), then, by (7), the measure apa—rnm+,, Will have jumps inside [a, b] and
[c, d], and will be constant elsewhere. Hence, the integral in (8) will be determined
only by integration over [a, b] because & vanishes in [c, d]. Therefore, in order for
quadrature rule (9) to be a good approximation to (8), its nodes should be chosen
inside [a, b].

In the extreme case in which clustered eigenvalues of C coalesce into a few
eigenvalues of higher multiplicities, the number of Lanczos steps required to obtain
an accurate approximation in (12) is expected to be very small.

Proposition 1 Let the preconditioned matrix C = M(A — tI)M* have p distinct
eigenvalues. Then the Gauss quadrature (12) will be exact with at most k = p
nodes.

Proof Let v = Zf=1 o;u;, where u; is an eigenvector of C associated with the
eigenvalue p;. Then p steps of Lanczos process with v as a starting vector produce
a tridiagonal matrix J, and an orthonormal basis O, such that the first column of
0, is b = v/|lv||. The eigenvalues 6; of J, are exactly the p distinct eigenvalues
of C. The eigenvectors z; of J, are related to those of C as u; = Q,z;. Thus, we have
wi = |[v]?lz(D]? = |[v]|?|0*w;]®> = |v*u;|?, and, by comparing with (6), we see
that the quadrature (12) gives the exact value of v*h(M(A — T)M*)v.
Proposition 1 implies that in the case of an ideal preconditioner, where M(A—tI)M*
has only two distinct eigenvalues, the Gauss quadrature rule (12) is guaranteed to be
exact within at most two Lanczos steps.

Finally, note that, in exact arithmetic, the Lanczos basis Q; should be orthonor-
mal [15]. However, in practice, the orthogonality may be lost; therefore, we
reorthogonalize Q; at every iteration of Algorithm 1 (see step 5).

3.2 The Algorithm

Let J,i‘i) denote the k-by-k tridiagonal matrix resulting from the k-step Lanczos
procedure applied to C = M(A — tI)M* with a random starting vector v;. Assume
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Algorithm 2 The preconditioned Lanczos-type estimator for n_(A — 1)

Input: Matrix A, shift T, HPD preconditioner T = M™*M for A — tI, number of steps k, and
parameter m.
Output: approximate number C, of eigenvalues of A that are less than t;

1. L, < 0.

2: forj=1— mdo:

3:  Generate v ~ A4(0,1).

4:  Run k steps of Lanczos process in Algorithm 1 with the starting vector v to obtain
tridiagonal matrix J.

5:  Find the eigendecomposition of J. Let z;,...,z be unit eigenvectors associated with
negative eigenvalues of J.

6:  SetL, < L, + [[v]> 5=, wi, where w; = |z:(1)|2.

end for

: Return L, < [L,/m)].

® 3

that k; is the number of its negative eigenvalues. Then, by (5) and (12), the quantity
n_(A — tl) can be approximated from the estimator

k.
) - i . i
Leemy = 3 3w’ w? =IylP P yer©n a3

j=1i=1

where z,(-j )(1) denotes the first components of a normalized eigenvector z,(j ) of J ,((j )
associated with the negative eigenvalues. It is expected that, for a sufficiently large
m, L;(k,m) ~ n_(A—tl). The expression (13) is what Algorithm 2 uses to estimate
the number of eigenvalues of A that are to the left of t. Here and throughout, the
notation v; € .47(0,1) means that the entries of each sampling vector v; are i.i.d.
random variables chosen from normal distribution with zero mean and unit variance.

In order to estimate the number of eigenvalues in a given interval [£,n],
Algorithm 2 should be applied twice with t = £ and © = 7. The difference between
the estimated n_(A — £I) and n_(A — nl) yields the desired count. The two runs of
Algorithm 2 generally require two different HPD preconditioners, one for A — &1
and the other for A — nl. In some cases, however, it can be possible to come up with
a single preconditioner that works well for both runs.

The cost of Algorithm 2 is dominated by computational work required to perform
the preconditioned matrix-vector multiplication of M(A — tI)M*v at each iteration
of the Lanczos procedure. The eigenvalue decomposition of the tridiagonal matrix
Jx, as well as reorthogonalization of the Lanczos basis in step 5 of Algorithm 1, is
negligibly small for small values of k, which can be ensured by a sufficiently high
quality preconditioner.
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3.3 Bias of the Estimator

A relation between the Gauss quadrature (12) and matrix functional v*A(C)v can
be expressed as

k_
Zwi = v*h(C)v + «,

i=1

where € is the error of the quadrature rule. Thus, (13) can be written as

1 & 1 &
Lekom)= 3 vfh(@u+ Y €. (14)
Jj=1 j=1
where e,((j) denotes the error of the quadrature rule for vjf"h(C)vj. As m increases,

the first term in the right-hand side of (14) converges to trace {4(C)} = n_(A — tl).
Thus, L. (k, m) is a biased estimate of n_(A—tI), where the bias is determined by the
(average) error of the quadrature rule, given by the second term in the right-hand side
of (14). In other words, the accuracy of L, (k, m) generally depends on how well the
Gauss quadrature captures the value of the matrix functional v*h(M(A — t)M*)v.

Bounds on the quadrature error for a matrix functional v*f(C)v, where f is
a sufficiently smooth function and C is a Hermitian matrix, are well known. In
particular, the result of [3] gives the bound

<Nk

< s PinBi B (15)

where the constant Ny is such that [f®®(x)| < N, for x in the interval containing
spectrum of C, and B; are the off-diagonal entries of (11).

Function A(x) in (1) is discontinuous. Therefore, bound (15) does not directly
apply to measure the quadrature error for the functional v*h(M(A — tl)M*)v.
However, since the rule (12) depends on the values of A(x) only at the Ritz values 6;
generated by the Lanczos process for M(A — tI)M*, it will yield exactly the same
result for any function A(x), such that i(6;) = h(6;) for all 6;. If, additionally, /(x)
assumes the same values as (x) on the spectrum of M(A — tI)M*, then, by (6), the
functionals v*h(M(A — tI)M*)v and v*h(M(A — tI)M*)v will also be identical.
Hence, the quadrature errors for v*h(M(A — tI)M*)v and v*h(M(A — t])M*)v
will coincide. But then we can choose iz(x) as a 2k times continuously differentiable
function and apply (15) to bound the quadrature error for v* (M (A — tI)M*)v. This
error will be exactly the same as that of the quadrature (12) for v*A(M(A—tI)M*)v,
which we are interested in.

In particular, let us assume that the eigenvalues of M(A — t/)M™* and Ritz values
0; are located in intervals [a, b) and (c, d] to the left and right of origin, respectively.
Then we can choose iz(x) such that it is constant one on [a, b) and constant zero
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on (c, d]. On the interval [b, ¢], which contains zero, we let 4(x) to be a polynomial
p(x) of degree 4k + 1, such that p(b) = 1, p(c) = 0, and p(b) = p?P(c) = 0 for
I =1,...,2k. This choice of polynomial will ensure that the piecewise function 7(x)
is 2k times continuously differentiable. (Note that p(x) can always be constructed by
(Hermite) interpolation with the nodes b and c; see, e.g., [16].) We then apply (15)
to obtain the bound on the quadrature error for v*A(M(A — tI)M*)v. As discussed
above, this yields the estimate of the error €; of quadrature rule (12) for functional
v*h(M(A — tI)M*)v. Thus, we can conclude that the latter is bounded by (15),
where N is the maximum of [p®* (x)| on the interval [b, c].

This finding shows that we can expect that (12) provides a better approximation
of v*h(M(A — tI)M*)v when the intervals [a, b) and (c, d], containing eigenvalues
of M(A — tI)M* along with the Ritz values produced by the Lanczos procedure, are
bounded away from zero. In this case, the rate of change of the polynomial p(x) on
[b, c] will not be too high, resulting in a smaller value of Ny in (15).

Fortunately, a good choice of the preconditioner T = M*M can ensure that
eigenvalues of M(A — tI)M* are clustered and away from zero. In this case, the
Ritz values typically converge rapidly to these eigenvalues after a few Lanczos
steps. Thus, with a good preconditioner, the Gauss quadrature (12) can effectively
approximate the matrix functional v*h(M(A — tI)M*)v, yielding small errors ¢, for
a relatively small number of quadrature nodes. As a result, the bias of the estimator
L. (k, m) in (14) will be small and, as confirmed by numerical experiments in Sect. 7.

3.4 The Generalized Averaged Gauss Quadrature Rule

The Gauss quadrature rule (12) is exact for all polynomials of degree at most 2k—1;
e.g., [6].

In the recent work of [17] (and references therein), a so-called generalized
averaged (GA) Gauss quadrature rules was introduced. This quadrature rule make
use of the same information returned from a k-step Lanczos process, but gives an
exact integral value for polynomials of degree 2k. Hence it is more accurate at
essentially the same cost.

When applying the GA Gauss quadrature rule to the matrix functional v*A(C)v
in (8), we still use the expression (12), except that we have (2k — 1) nodes
01, 0,, ..., 01 which are the eigenvalues of the matrix

Joit = tridiag {1, ..., @, 0ty - 1), (Bav oo, Bics Bt Bt ... o)} (16)

obtained from Jy4x in (11) by extending its tridiagonal part in a “reverse” order.
The set (o;) of numbers in (16) gives the diagonal entries of Jyyx, whereas
(B;) define the upper and lower diagonals. Similarly, the associated weights w;
are determined by squares of the first components of the properly normalized
eigenvectors z; of Lk_l associated with the eigenvalues 6;; see [17] for more details.
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Thus, we can expect to increase accuracy of the estimator by a minor modification
of Algorithm 2. This modification will only affect step 5 of the algorithm, where J;
must be replaced by the extended tridiagonal matrix (16).

4 Preconditioned Arnoldi

Sometimes, the preconditioner T is not available in a factored form 7 = MM*. In
this case, it may be necessary to work with T(A — tI) or (A — )T directly. One
possibility is to make use of the fact that (A — )T is self adjoint with respect to an
inner product induced by 7. This property allows us to carry out a T-inner product
Lanczos procedure that produces

A —tDTXy = XirtSerik Xpp T =1 (17
Similarly, we can use a T~ '-inner product based Lanczos procedure to obtain
TA— DYy = YigiJipin Yo T Wi =1, (18)

where Y; = M* Q. Even though it may appear that we do not need 7 in a factored
form in either (17) or (18), the starting vectors we use to generate (17) and (18) are
related to M. In particular, (17) must be generated from x; = M~'q; and (18) must
be generated from y; = M*q;, where ¢, is a random vector with i.i.d entries.

Another approach is to construct an estimator based on (5), where C = T(A—tl).
This will require evaluating the bilinear form v*h(T(A—1t1))v, where h is a function
of a matrix T'(A — tI) that has real spectrum but is non-Hermitian in standard inner
product. Similar to the Hermitian case, the matrix functional v*4(T(A — tI))v can
be viewed as an integral, such that

1
vV*R(T(A—<D))v = 4 2/ / h(O)v* (& — (A—tDT) "' (tl = T(A — 1)) 'vdwdt,
= JrJr
(19)
where I" is a contour that encloses the spectrum of T(A — tl) and the bar
denotes complex conjugation; see, e.g., [9]. This integral can be approximated by a

quadrature rule based on a few steps of the Arnoldi process (Algorithm 3) applied
to the preconditioned operator T(A — /) with a starting vector v [4, 6].



Preconditioned Iterative Methods for Eigenvalue Counts 117

Algorithm 3 The Arnoldi procedure for T(A — t1)

Input:  Matrix A — t/, HPD preconditioner 7', starting vector v, and number of steps k.
Output: Hessenberg matrix Hy4 4 and the Arnoldi basis Qx+1 = [q1. 92, - - -, k+1]-

Logi < v/lvll; Q1 < g1
2: forj =1 — kdo:

30 w<TA—1l)g;

4 fori=1— jdo:

5: hij < gfw;w <= w—hq;;

6:  end for

T by < Il g1 < w/hipr s Qi <= Q) g1l
8: end for

Given g; = v/||v||, Algorithm 3 produces an orthonormal Arnoldi basis Q4+
and an extended upper Hessenberg matrix

hl,l hl,z PP hl.k
hai hop o hag
Hiy1x = : e REFDXE, (20)
k-1 hig
Piet1.k

such that T(A — t1)Qx = Ox+1Hi+1.4, QZ+1Q/<+1 = I. An Arnoldi quadrature rule
for the integral (19) is fully determined by the k-by-k leading submatrix H; of (20).
Similar to (12), it gives

k_
V*R(TA — v ~ [vlPeth(H)er = Y witi. wi = |[v]*z(1), t = 510,
i=1
2L
where w; are determined by the first components of the (right) eigenvectors
21,...,2_ of Hy associated with its k_ eigenvalues that have negative real parts,
and ¢, is the ith entry of the first column of § = Z~'. Similar to Proposition 1, it can
be shown that if T(A — /) has p distinct eigenvalues, then (21) is exact with at most
p nodes.
LetH, ,EJ ) be the upper Hessenberg matrix produced by the Arnoldi process applied
to C = T(A — tI) with the starting vector v;. Then (21) and (5) yield the estimator

m ki
YN w2 w? = P (). 1 = s7G6). v e 4(0.1),

j=1i=1

1
A (k,m) = "

(22)
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Algorithm 4 The preconditioned Arnoldi-type estimator for n (A — t/)

Input:  Matrix A, shift 7, HPD preconditioner 7 for A — 7/, number of steps k, and parameter m.
Output: approximate number A, of eigenvalues of A that are less than t;

1: A, < 0.
2: forj=1— mdo:
3:  Generate v ~ A4(0,1).

4:  Run k steps of Arnoldi process in Algorithm 3 with the starting vector v to obtain upper
Hessenberg matrix Hy.
5:  Find the eigendecomposition (&, Z) of Hy. Let zy, ...,z _be unit eigenvectors associated

with negative eigenvalues.
6: Compute S = Z~!. Set s < S(1,:). Set A, < A, + |[v||*Re (Zf;l w,-s,-), where w; =

zi(1), s; = s(i).
7: end for
8. Return A, < [A,/m].

where zg‘i)(l) denotes the first component of the k; unit eigenvectors zl(j) of H,ﬁ‘i).
()

and s;”" is the ith entries of the first column of the inverted matrix of eigenvectors

of H,ﬁ‘i). Similar to (13), we expect that, for a sufficiently large m, the real part of
A (k,m) approximates n_(A — tI). The computation of Re (A, (k, m)) is described
in Algorithm 4.

The cost of Algorithm 4 is comparable to that of Algorithm 2, and is slightly
higher mainly due to the need to invert the eigenvector matrix of Hy. In contrast
to Algorithm 2, the above described scheme assumes complex arithmetic, because
the upper Hessenberg matrix H; is non-Hermitian and can have complex eigenpairs.
However, for good choices of T, the imaginary parts tend to be small in practice as,
for a sufficiently large k, the eigenpairs of H; converge rapidly to those of T(A —tl),
which are real. Finally, note that the derivation of the estimator (22) assumes an
extension of the definition of the step function (1), such that i(x) has the value of
one on the left half of the complex plane, and is zero elsewhere.

5 Polynomial Viewpoint

Let C = M(A — tI)M* or C = T(A — tl). Then, we can replace #(C) in (5) by a
polynomial approximation p;(C) of degree /. There are several ways to choose this
polynomial. One option is to take p;(C) as formal truncated expansion of A(x) in
the basis of Chebyshev polynomials. This choice is related the approach described
in [14].

The quality of a polynomial approximation p;(x) of 4(x) can be measured by the
difference between p;(x) and h(x) on the set of eigenvalues of C. When the spectrum
of C has an arbitrary distribution, constructing a polynomial that provides the best
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least squares fit on the entire interval containing all eigenvalues, as is done in [14],
is well justified.

When a good preconditioner is used, the spectrum of C tends to cluster around
several points on the real line. Thus, a natural approach would be to choose
p; such that it is only close to & in regions that contain eigenvalue clusters. It
can be quite different from % elsewhere. An example of such an approach is an
interpolating polynomial, e.g., [16], that interpolates & at eigenvalue clusters. A
practical construction of such a polynomial is given by the following theorem, which
relates the the interpolation procedure to the Lanczos or Arnoldi process.

Theorem 1 (See [8, 18]) Let O, Ty be the orthonormal basis and the projection of
the matrix C generated from a k-step Lanczos (Arnoldi) process, with the starting
vector v. Then

01Ok f(Tk)er = pr—1,,(C)v, (23)

where pi—1 ., is the unique polynomial of degree at most k — 1 that interpolates f in
the Hermite sense on the spectrum of Ty.

The subscript “v” in py—1, is used to emphasize the dependence of the polyno-
mial on the staring vector v. Note that 7} is a symmetric tridiagonal matrix if C is
Hermitian. It is upper Hessenberg otherwise.

Using formula (23), it is easy to verify that if C = M(A — tI)M*, then the
bilinear form v*p;_;,(C)v is exactly the same as the Gauss quadrature rule on the
right-hand side of (12). Similarly, if C = T(A — t[), then v*p;—_; ,(C)v is given by
the Arnoldi quadrature on the right-hand side of (21). Hence, both estimators (13)
and (22) can be viewed as a stochastic approximation of trace {px—; ,(C)}, where
Pk—1.v(x) is an interpolating polynomial of degree k — 1 for the step function 4.

6 Preconditioning

The iterative scheme we presented earlier rely on the assumption that the operator
T is HPD, as this property guarantees that the inertia of the original matrix A — t/
is preserved after preconditioning. Furthermore, a good choice of T should cluster
spectrum of the preconditioned matrix C around several points in the real axis.

An ideal HPD preconditioner will result in the preconditioned matrix with only
two distinct eigenvalues. In this case, by Proposition 1, the Lanczos procedure
should terminate in two steps. An example of such an ideal preconditioner is the
matrix T = |A—11|~!, where the absolute value is understood in the matrix function
sense.

Clearly, the choice T = |A — tI|~! is prohibitively costly in practice. However, it
is possible to construct HPD preconditioners that only approximate |[A—tI|~!. Such
a preconditioning strategy was proposed in [20] and is referred to as the absolute
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value (AV) preconditioning. It was shown in [20] that, e.g., for discrete Laplacian
operators, AV preconditioners can be efficiently constructed using multigrid (MG).

Another possible option is to employ the incomplete LDL” (ILDL) factorization.
Given a matrix A — 7/ and a drop tolerance ¢, an ILDL(#) preconditioner is of the
form T = L™*D~'L™!, where L is lower triangular and D is block-diagonal with
diagonal blocks of size 1 and 2, such that T ~ (A — tI)~!.

Clearly, since A — t/ is indefinite, the ILDL(#) procedure will generally result in
an indefinite 7, which cannot be applied within the preconditioned estimators of this
paper. Therefore, we suggest to modify it by taking the absolute value of diagonal
blocks of D, so that T = L™ * |D|_1L_1. Such a preconditioner is HPD, and the cost
of the proposed modification is marginal. This idea has been motivated by [5], where
a similar approach was used in the context of full (complete) LDL” factorization.

Finally, in certain applications, HPD operators are readily available and tradi-
tionally used for preconditioning indefinite matrices. For example, this is the case in
Density Functional Theory (DFT) based electronic structure calculations in which
the solutions are expressed in terms of a linear combination of planewaves. A widely
used preconditioner, often referred to as the Teter preconditioner [19], is diagonal in
the planewave basis.

7 Numerical Experiments

We now study the numerical behavior of the proposed methods for three test
problems listed in Table 1. The matrix “Laplace” represents a standard five-point
finite differences (FD) discretization of the 2D Laplacian on a unit square with
mesh size 4 = 277. The problems “Benzene” and “H2” originates from the DFT
based electronic structure calculations. The former is a FD discretization of a

Table 1 Estimates of n_(A — /) produced by Algorithm 2 with different preconditioners and the
corresponding numbers k of Lanczos iterations for three test problems

Problem n T n_(A—1tl) Preconditioner  Estimatedn_(A —tl) &k
Laplace 16,129 3000 226 No prec. 232 134
ILDL(1e-3) 216 34
ILDL(le-5) 229 6
Benzene 8219 5 344 No prec. 338 85
ILDL(le-5) 350 18
ILDL(1e-6) 341 2
H2 11,019 0.5 19 No prec. 20 50

Teter 20 11
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Fig. 1 Effects of the GA Gauss quadrature of Sect. 3.4 on the accuracy of the estimator

Hamiltonian operator associated with a ground state benzene molecule,” whereas
the latter corresponds to a Hamiltonian associated with the hydrogen molecule
generated by the KSSOLV package [21]. Throughout, our goal is to estimate the
quantity n_(A — tI) for a given value of the shift 7.

Table 1 presents the results of applying the Lanczos-type estimator given in
Algorithm 2 to the test problems with different preconditioner choices. For the
“Laplace” and “Benzene” matrices, we use the positive definite ILDL(f) based pre-
conditioning with different drop tolerance ¢, discussed in the previous section. The
ILDL factorizations of A — t/ are obtained using the sym-1i1d1 package [7]. In the
“H2” test, we employ the diagonal Teter preconditioner available in KSSOLV [19].
In both cases, the preconditioner is accessible in the factorized form T = M*M.
The number of random samples m is set to 50 in all tests.

In the table, we report estimates of n_(A — tlI) produced by Algorithm 2
along with the corresponding numbers of Lanczos iterations (k) performed at each
sampling step. The reported values of k correspond to the smallest numbers of
Lanczos iterations that result in a sufficiently accurate estimate. The error associated
with these approximations have been observed to be within 5%.

Table 1 demonstrates that the use of preconditioning significantly reduces the
number of Lanczos iterations. Furthermore, k becomes smaller as the quality of the
preconditioner, which is controlled by the drop tolerance ¢ in the ILDL(#) based
preconditioners, improves for the “Laplace” and “Benzene” tests.

Figure 1 shows that the quality of the estimates can be further improved by using
the GA Gauss quadrature rules discussed in Sect. 3.4. In both plots, the horizontal
axis corresponds to the number of Lanczos iterations (k) per sampling step, and
the vertical axis is the corresponding estimate of n_(A — ¢I). It can be seen that
the estimator based on the GA Gauss quadrature (referred to as “GA Lanczos”)

2 Available in the PARSEC group of the University of Florida Sparse Matrix Collection at https://
www.cise.ufl.edu/research/sparse/matrices/.
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Table 2 Independence of preconditioned Arnoldi- and Lanczos-type estimators for n_(A — /) on
the discretization parameter for the “Laplace” (left) and “H2” (right) problems
h 276 277 278 279 2710 ecut (Ry) 25 50 75 100 125
Chebyshev 8§ 14 34 62 80 Chebyshev 52 78 76 99 124
Arnoldi+AV 16 16 18 19 16 Lanczos+Teter 8 8 11 8 8

is generally more accurate for the two test problems, with the accuracy difference
being especially evident for smaller values of k.

In the context of linear systems arising from discretizations of partial differential
equations, an important property of preconditioning is that it allows maintaining the
same number of iterations needed to obtain solution regardless of problem size.
A similar phenomenon can be observed when estimating n_(A — tl) using the
preconditioned methods of this paper.

In Table 2 (left) we consider a family of discrete Laplacians, whose size and
condition numbers increase as the mesh parameter 4 is refined. For each of the
matrices, we apply the Arnoldi-type estimator of Algorithm 4 with the MG AV
preconditioner from [20] and, similar to above, report the smallest numbers k of
Arnoldi iterations per sampling step needed to obtain a sufficiently accurate estimate
(within 5% error) of n_(A — tl). The results are compared against those of an
unpreconditioned estimator based on (5), where C = A and the step function /(A)
is replaced by its least-squares polynomial approximation of degree k constructed
using the basis of Chebyshev polynomials. The latter (referred to as “Chebyshev”)
is essentially the approach proposed in [14].

It can be seen from the table, that Algorithm 4 with the AV preconditioner
exhibits behavior that is independent of h. Regardless of the problem size and
conditioning, the number of Arnoldi steps stays (roughly) the same (between 16
and 19).

In Table 2 (right) we report a similar test for a sequence of “H2” problems
obtained by increasing the kinetic energy cutoff (ecut) from 25 to 125 Ry in the
plane wave discretization. This gives Hamiltonian matrices with sizes ranging from
1024 to 23,583. Again, we observe that the behavior of the Lanczos-type estimator
in Algorithm 2 with the Teter preconditioner [19] is essentially independent of the
discretization parameter, whereas the “Chebyshev” approach tends to require higher
polynomial degrees as the problem size grows.
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Comparison of Tridiagonalization Methods
Using High-Precision Arithmetic with MuPAT

Ryoya Ino, Kohei Asami, Emiko Ishiwata, and Hidehiko Hasegawa

Abstract In general, when computing the eigenvalues of symmetric matrices, a
matrix is tridiagonalized using some orthogonal transformation. The Householder
transformation, which is a tridiagonalization method, is accurate and stable for
dense matrices, but is not applicable to sparse matrices because of the required mem-
ory space. The Lanczos and Arnoldi methods are also used for tridiagonalization and
are applicable to sparse matrices, but these methods are sensitive to computational
errors. In order to obtain a stable algorithm, it is necessary to apply numerous
techniques to the original algorithm, or to simply use accurate arithmetic in the
original algorithm. In floating-point arithmetic, computation errors are unavoidable,
but can be reduced by using high-precision arithmetic, such as double-double (DD)
arithmetic or quad-double (QD) arithmetic. In the present study, we compare double,
double-double, and quad-double arithmetic for three tridiagonalization methods; the
Householder method, the Lanczos method, and the Arnoldi method. To evaluate the
robustness of these methods, we applied them to dense matrices that are appropriate
for the Householder method. It was found that using high-precision arithmetic, the
Arnoldi method can produce good tridiagonal matrices for some problems whereas
the Lanczos method cannot.

1 Introduction

Recently, eigenvalue computation has become very important in several applica-
tions. For a real symmetric dense matrix, the target matrix is usually reduced
to symmetric tridiagonal form by orthogonal similarity transformations, and the
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eigenvalues of the obtained symmetric tridiagonal matrix are then computed by,
for example, the QR method or bisection and inverse iteration algorithms. On the
other hand, for sparse matrices other than band matrices, tridiagonalization by the
Householder transformation is so difficult because of requiring a great deal of
memory. The Lanczos method involves simple matrix-vector multiplication and
vector operations, and does not require modification of the given matrix. The
Lanczos and Arnoldi methods are simple algorithms, but the roundoff error causes
the Lanczos vectors to lose orthogonality [1]. However, they may require less
memory.

Mathematically simple algorithms are often unstable because of computation
errors. In order to obtain a stable algorithm, we can apply several techniques to the
original algorithm, or simply use accurate arithmetic. In floating-point arithmetic,
computation errors are unavoidable, but can be reduced through the use of high-
precision arithmetic, such as double-double (DD) arithmetic or quad-double (QD)
arithmetic.

Kikkawa et al. and Saito et al. [2, 3] developed the Multiple Precision Arithmetic
Toolbox (MuPAT), a high-precision arithmetic software package, on Scilab (http://
www.scilab.org/). The MuPAT uses double-double arithmetic and quad-double
arithmetic in order to work on conventional computers. The computation time for
double-double-precision arithmetic is approximately 20 times greater than that for
ordinary double-precision arithmetic, but this cost can be reduced through the use
of parallel processing.

In the present paper, we compare double, double-double, and quad-double
arithmetic for the Lanczos method, the Arnoldi method, and the Householder
method [1] for obtaining symmetric tridiagonal matrices from symmetric matrices,
and the QR method for finding all eigenvalues thereof. We use a sparse storage
format of MuPAT in order to reduce the memory requirement, but did not use
parallel processing.

2 Multiple-Precision Arithmetic on MuPAT

2.1 Double-Double and Quad-Double Arithmetic

Double-double and quad-double arithmetic were proposed as quasi-quadruple-
precision and quasi-octuple-precision arithmetic by Hida et al. [4] and Dekker [5]. A
double-double number is represented by two double-precision numbers, and a quad-
double number is represented by four double-precision numbers. A double number
X(p), a double-double number x(pp) and a quad-double number x(pp) are represented
by an unevaluated sum of double-precision numbers xg, X1, X2, x3 as follows:

X(p) = X0, X(Dp) = Xo + X1, Xep) = X0 + X1 + X2 + X3,


http://www.scilab.org/
http://www.scilab.org/
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Table 1 Numberof Type Add & sub Mul div Total
double-precision arithmetic DD Add&sub 11 0 0 1
operations su
Mul 15 9 0 24
Div 17 8 2 27
QD Add&sub 91 0 0 91
Mul 171 46 0 217
Div 579 66 0 649

where xo, x1, x, and x3 satisfy the following inequalities:
1 .
[xip1] < zulp(x,-), i=0,1,2,

where ulp stands for ‘units in the last place’. For a given decimal input data x, we
can also denote that

xpy = (x0)@), Xwmp) = (X0,X1)(DD), X(0D) = (X0, X1, X2, X3)(0D)-

The lower portion is ignored or truncated from the longer format data to the shorter
format data, and is assumed to be zeros from the shorter format data to the longer
format data. A double-double (quad-double) number has 31 (63) significant decimal
digits.

In this paper, we abbreviate double-double and quad-double on DD and QD.
Both DD and QD arithmetic are performed using error-free floating point arithmetic
algorithms that use only double-precision arithmetic and so require only double-
precision arithmetic operations. Both DD and QD arithmetic are described in detail
in [4] and [5]. Table 1 shows the number of double-precision arithmetic operations
for DD and QD arithmetic.

2.2 Extended MuPAT with a Sparse Data Structure

A quadruple- and octuple-precision arithmetic toolbox, i.e., the Multiple Precision
Arithmetic Toolbox (MuPAT) and variants thereof [2, 3], allow the use of double-,
quadruple-, and octuple-precision arithmetic with the same operators or functions,
and mixed-precision arithmetic and partial use of different precision arithmetic
becomes possible. The MuPAT is independent of hardware and operating system.

We developed an accelerated MuPAT for sparse matrices in [3] in order to reduce
the amount of memory and computation time, and using the developed MuPAT,
large matrices can easily be handled. We define two data types for a sparse matrix:
DDSP for double-double numbers and QDSP for quad-double numbers.

These data types are based on the compressed column storage (CCS) format,
which contains vectors in the form of row indices, column pointers, and values. Note



128 R. Ino et al.

that DDSP uses two value vectors and QDSP uses four value vectors to represent
double-double and quad-double numbers, respectively. As such, it is possible to use
a combination of double, double-double, and quad-double arithmetic for both dense
and sparse data structures. Based on the definitions of these data types, MuPAT
has six data types: constant, DD, and QD for dense data, and sparse, DDSP,
and QDSP for sparse data of double, double-double and quad-double numbers,
respectively.

Quad-double arithmetic requires a tremendous number of double-precision
operations. In particular, one QD division requires 649 double-precision operations,
so the required computation time is hundreds of times greater than that for double-
precision arithmetic on Scilab. In order to accelerate QD and DD arithmetic
operations, external routines written in the C language are prepared. These MuPAT
functions achieve high-speed processing but depend on the hardware and operating
system used. Currently, this code is not parallelized but can be accelerated through
the use of parallel processing.

3 Eigenvalue Computation

In order to compute the eigenvalues of a real symmetric matrix A, the matrix
A is usually tridiagonalized to an similarity tridiagonal matrix 7 by similarity
transformations, and the eigenvalues of the matrix 7 are then computed. The
Lanczos, Arnoldi, and Householder methods can be used for this purpose.

The Lanczos and Arnoldi methods involve matrix-vector multiplication and some
vector operations. Since, unlike in the Householder method, updating the original
matrix A is not necessary, the Lanczos and Arnoldi methods can be easily applied
to sparse matrices.

The QR method and the bisection algorithm are used for computing the
eigenvalues of a tridiagonal matrix 7. For computing the eigenvectors of 7', the QR
method and inverse iteration are used. The quality of eigenvalues and eigenvectors
depends only on the tridiagonal matrix 7" and not on the tridiagonalization method.
If T is an inexact approximation of A, even if the eigenvalues and eigenvectors of T
are correctly calculated, they do not correspond to those of A.

In the present paper, we used the implicit single shift QR algorithm based on [6]
for computing all eigenvalues. The QR method generates eigenvalues as diagonal
elements in descending order.

In particular, for a sparse matrix, the transformations used for tridiagonalizing A
to T are not used to compute eigenvectors of A, which would require tremendous
computation and memory. If eigenvalues Ay of T are accurately computed, an
inverse iteration method can be applied to compute the eigenvectors of (7' — A7[) or
(A — Arl). The inverse iteration method for sparse matrices uses a direct solver or
an iterative solver, such as the conjugate gradient method.
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3.1 Tridiagonalization

For a given symmetric matrix A, it is possible to find an orthogonal Q such that
QTAQ = T is tridiagonal. In the present paper, we consider three tridiagonalization
methods for symmetric matrices: the Lanczos method, the Arnoldi method, and the
Householder method. These methods are described in detail in [1].

3.1.1 The Lanczos Method

The Lanczos method can construct an equivalent tridiagonal matrix by generating
orthogonal bases one after another. However, roundoff errors cause the Lanczos
vectors to lose orthogonality [1].

Let A be an n x n symmetric matrix, and let Q be an n x n orthogonal matrix.
Then, we generate T = QTAQ. We set the column of Q by

Q= [qlq:|---1q,]

and the components of 7 by

w B 0
B ar Bo

T = o
. . . ,anl
0 .- ﬂn—l oy

Equating columns as AQ = QT, we conclude that
Aq, = Bi—1@i—1 T g + Brarr1 (Bogo = 0),

fork =1,2,...,n— 1. The orthonormality of the vector ¢, implies
o = q,quk.

If we define the vector ry as
re = (A — ail)q; — Bi—19—1>

and if it is nonzero, then

T
9i+1 = ,Bk,

where B = % ||rg 2.

For a given symmetric matrix A € R and an initial vector g, € R", Algorithm 1
computes a matrix Q = [q,--- ,¢q,] with orthonormal columns and a tridiagonal
matrix T € R™" so that AQ = QT. The diagonal and superdiagonal entries of T are
ay, -, o, and By, -+, B,—1, respectively.
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Algorithm 1 The Lanczos method [1]

I: k=0,ry = ¢y, Bo = llgll2
2: while B, # 0 do:

¥ g =

4 k=k+1

50 o =qiAg

6: 1= (A—alg — Bi—19;—
7o B = lIrell2

8: end while

3.1.2 The Arnoldi Method

The Arnoldi method is a way to extend the Lanczos method to non-symmetric
matrices and generate the Hessenberg matrix Q7 AQ = H. However, for a symmetric
matrix A, this process produces a tridiagonal matrix 7 = H.

In the same manner as the Lanczos iteration, we set Q = [q,,4,,--- ,4,] and
compare columns in AQ = QH. Then,

k+1
Aqk:Zhikqi, lfkfn_l
i=1

Isolating the last term in the summation gives
k
ry = Aq; — Zhikq,‘,
i=1

where hy = qiTAqk fori = 1,2,... k. It follows that if ry # 0, then g, is
specified by
Tk

D1 = Btk

where A1 = ||rr|2- These equations define the Arnoldi method.

For a given matrix A € R™" and an initial vector ¢, € R", Algorithm 2
computes a matrix Q = [q,, - ,q,] € R”" with orthonormal columns and an
upper Hessenberg matrix H € R™" so that AQ = QH. Especially for a symmetric
matrix, this algorithm generates an orthogonal matrix Q and a tridiagonal matrix 7.

3.1.3 The Householder Method

The Householder method for a symmetric matrix can generate an tridiagonal matrix
QTAQ = T using the Householder matrix [1]. Suppose that the Householder
matrices Py, --- , Pr—1 have been determined such that if

Ag—y = (P1 -+ Pe—)TA(Py -+ - Pry),
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Algorithm 2 The Arnoldi method [1]

I k= 0,r0 = qo. h1o = llgoll2
2: while 41, 7 0 do:

. — I
3: qk+1 - 1k

4 k=k+1

50 rp=Aq,

6: fori=1,2,--- ,kdo:
7 hy = q] 1y

8: re =1y — hag;

9: end for

10: et = lIrell
11: end while

then
Bi1 By 0
Ai—1 = | B2t By By
0 B3 By

is tridiagonal through its first k — 1 columns. If Py is an order- (n — k) Householder
matrix such that P;Bj; is a multiple of I, and if Py = diag (I, P), then the leading
k-by-k principal submatrix of

Bi1 B 0
Ay = PrAi—1Py = | Bsy Bn  BysPy
0 PiB3y PyB33Py

is tridiagonal. Clearly, if U = Pj---P,_,, then UTAU = T is tridiagonal. In the
calculation of Ay, it is important to exploit symmetry during the formation of the
matrix PyB33P;. More specifically, suppose that Py has the form

~ 2
P.=1—Bw’, B= o 0#veRrR—*
vTv

. T
Note thatif p = BBy;v andw = p — (ﬂ”2 ")v, then
PkB3313k = B33 - va - va.

We used the Householder algorithm written in [1].

Since only the upper triangular portion of this matrix needs to be calculated, we
see that the transition from A;_; to A; can be accomplished in only 4(n — k)? flops
for a dense matrix.

4 Numerical Experiments

In this section, we analyze the accuracy, numerical stability, and computing cost
for three tridiagonalization methods and the computed eigenvalue by the implicit
single shift QR algorithm [6] for the tridiagonal matrix 7. For tridiagonalization,
we compare three arithmetic precisions: double (D), DD, and QD.
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The QR method can be applied to non-symmetric matrices (not only tridiagonal
matrices), in which case complex eigenvalues would appear. Therefore, we use only
tridiagonal factors in the Arnoldi method.

For the Lanczos and Arnoldi methods, the initial vector g, is a uniformly
distributed random vector between 0 and 1 using the ‘rand’ function of Scilab.

All experiments were carried out on an Intel Core 15-4200U, 1.60 GHz, 8 GB
memory and Scilab 5.5.0 on Windows 7 Professional. We assumed the ‘true
eigenvalue’ to be the computation result produced by the ‘Eigenvalues’ function
of Mathematica with 200 decimal digits.

4.1 Example 1: Nos4 (Small Problem)

We demonstrate the results of the three tridiagonalization methods for a small matrix
‘nos4’ in MatrixMarket (http://math.nist.gov/MatrixMarket/). The dimension of
this matrix was 100, the number of the nonzero elements was 594, the condition
number on the matrix was 2.7 x 10°, and the matrix originated from a structure
problem. The eigenvalues of nos4 are distributed between 0.00053795...and
0.84913778. .. without any clustered eigenvalues.

Table 2 lists the accuracy of the eigenvalues, the loss of orthogonality, and the
computation times for the three tridiagonalization methods and three precisions.
Here, max|A; — A;| and avg|A; — A;| denote the maximum absolute error and the
average of absolute errors, where A; and A; represent the ith computed eigenvalue
and the true eigenvalue, respectively. We checked the loss of orthogonality by

e where / and Q are a unit matrix and an orthogonal matrix, respectively,
and || - || denotes the Frobenius norm. ‘Avg time’ for dense and sparse implies the
computation time only for tridiagonalization part.

For the QR algorithm, the accuracy of the eigenvalues in D, DD, and QD are
approximately the same for all tridiagonalization methods. This means that the
accuracy of the QR method with double-precision arithmetic is sufficient, and the
accuracy of tridiagonalization is important in eigenvalue computation. Therefore,
we hereinafter apply the QR method with only double-precision arithmetic and
focus on the difference in accuracy and computation time among the tridiagonal-
ization methods and their arithmetic precisions.

Concerning the tridiagonalization methods, there is little difference between the
maximum and average errors for Lanczos-QD, Arnoldi-DD, -QD, and Householder-
D, -DD, -QD (where, for example, Lanczos-QD indicates the Lanczos method with
QD precision).

The orthogonalities of Lanczos-QD, Arnoldi-DD, and Householder-D are
approximately the same and can be improved by using DD and QD. The relationship
between method and accuracy depends on the given matrix. In the case of nos4,
however, Householder-D, Arnoldi-DD and Lanczos-QD are sufficient.
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In Fig. 1, the horizontal axis indicates the index of the eigenvalues in descending
order, and the vertical axis indicates the absolute error of eigenvalues |A; — 4;].

Figure 1 shows that the absolute errors of Lanczos-D and -DD are large in general
but become small for smaller eigenvalues, the absolute error of Arnoldi-D increases
for smaller eigenvalues (from approximately the 50th eigenvalue), and Lanczos-QD,
Arnoldi-DD, -QD, and Householder-D provide sufficient accuracy.

In Fig.2, the horizontal axis again indicates the index of the eigenvalues
in descending order, and the vertical axis indicates the value of the computed
eigenvalues. The results for ‘Mathematica’, which represents the true eigenvalues,
Lanczos-QD, Arnoldi-DD, and Householder-D are approximately the same. Both
Lanczos-D and -DD have duplicative eigenvalues. Using higher-precision arith-
metic, a plot is gradually brought closer to the true eigenvalue.

Table 3 lists the numbers of elements outside the tridiagonal part (upper
triangular) for the Arnoldi method. The Arnoldi method is based on similarity
transformation of non-symmetric matrices to Hessenberg matrices, and elements
outside the tridiagonal part should be zero in the case of symmetric matrices.
However, in our numerical experiments, nonzero elements appeared outside the
tridiagonal part because of rounding errors. The relationship between nonzero
elements and the accuracy of tridiagonalization is an area for future study.

In the case of using dense data, the ratio of the computation time for the
Lanczos, Arnoldi, and Householder methods with double-precision arithmetic is
approximately 1:2:2. For DD, the number of double-precision computations is 7
for the Lanczos method, 30 for the Arnoldi method, and 133 for the Householder
method. For QD, the number of double-precision computations is 35 for the Lanczos
method, 70 for the Arnoldi method, and 1,100 for the Householder method.
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Fig. 1 Absolute error in eigenvalues for nos4 in descending order
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Fig. 2 Eigenvalues for nos4 in descending order
Table 3 Elements outside the tridiagonal part for the Arnoldi method for nos4
D DD QD
1070 <x 598 0 0
1070 <x <1073 1224 0 0
1078 <x < 10710 2716 103 0
10720 <x <1071 313 453 0
1070 <x <1072 0 3171 0
1074 < x < 1073 0 1124 0
1070 <x < 1074 0 0 263
x <1070 0 0 4588
Maximum 1.83 x 107! 3.97 x 10712 7.42 x 10=%

The computation times for Lanczos-DD and Lanczos-QD for sparse data are
84% and 28%, respectively, of those for dense data, and the computation times for
Arnoldi-DD and Arnoldi-QD for sparse data are 96% and 80%, respectively, of
those for dense data. Costs of high-precision arithmetic and saving of computation
time in sparse data type are depending on used algorithms and their implementa-
tions. For small matrices, Householder-D is the best method, but the computation
time for Lanczos-QD using sparse data is only four times greater than that for
Householder-D.
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4.2 Example 2: Trefethen_200b (Medium Problem)

We used a larger test matrix ‘Trefethen_200b’ from the University of Florida
Sparse Matrix Collection (http://www.cise.ufl.edu/research/sparse/matrices/). The
dimension of this matrix was 199, the number of nonzero elements was 2, 873,
the condition number was 5.2 x 107, and the matrix originated from a com-
binatorial problem. The eigenvalues of Trefethen_200b are distributed between
2.3443911...and 1223.3718. .. without any clustered eigenvalues.

Table 4 shows the results for various combinations of methods and precisions.
As mentioned in Sect. 4.1, we applied the QR method with only double-precision
arithmetic.

Concerning the accuracy of the eigenvalues, Lanczos-QD and Arnoldi-DD
are not improved, but Arnoldi-QD and Householder-D, -DD, -QD are sufficient.
In terms of orthogonality, the accuracy of Arnoldi-QD and Householder-D is
approximately the same.

In the case of using dense data, the ratio of the computation times for the
Lanczos, Arnoldi, and Householder methods with double-precision arithmetic is
approximately 1:14:30. For DD, the number of double-precision computation is 114
for the Lanczos method, 52 for the Arnoldi method, and 244 for the Householder
method. For QD, the number of double-precision computations is 634 for the
Lanczos method, 147 for the Arnoldi method, and 2,314 for the Householder
method.

The computation times for Lanczos-DD and for Lanczos-QD for sparse data
are 26% and 13%, respectively, of those for dense data, and the computation
times for Arnoldi-DD and Arnoldi-QD are both 80% of those for dense data. For
Trefethen_200b, the computation time was greatly reduced by the use of sparse data
of MuPAT.

In Fig. 3, the horizontal and vertical axes are the same as in Fig. 1. Figure 3
reveals the following: The absolute errors for Lanczos-QD are large, but become
small for smaller eigenvalues from approximately half of dimension. In contrast,
the absolute error for Arnoldi-DD increases for the smaller eigenvalues (from
approximately the 80th eigenvalue). Arnoldi-QD and Householder-D are sufficient.

Table 5 shows the upper triangular factors outside the tridiagonal part, which
should be zero using the Arnoldi method. For Arnoldi-D and -DD, there are numer-
ous nonzero elements within the range of double precision, and these elements
affect the accuracy of the eigenvalues. For Arnoldi-QD, the number of nonzero
elements is sufficiently small and does not affect the accuracy of eigenvalues in
double precision.

4.3 Example 3: Nos5 (Slightly Large Problem)

We used the ‘nos5’ test matrix in Matrix Market (http://math.nist.gov/
MatrixMarket/). The dimension of this matrix was 468, the number of nonzero


http://www.cise.ufl.edu/research/sparse/matrices/
http://math.nist.gov/MatrixMarket/
http://math.nist.gov/MatrixMarket/
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Fig. 3 Absolute error in eigenvalues for Trefethen_200b in descending order

Table 5 Elements outside the tridiagonal part for the Arnoldi method for Trefethen_ 200b

D DD QD

100 <x 1474 269 0
1075 <x < 10° 6718 1543 0
10710 < x < 1075 7465 2096 0
10715 <x < 10710 3846 2517 0
10720 < x < 10715 0 3168 56
107 < x < 10720 0 9906 1104
1074 < x < 1073 0 4 2515
10750 < x < 10740 0 0 4548
1079 < x < 10750 0 0 9967

x < 10760 0 0 1313
Maximum 2.91 x 102 3.70 x 102 2.19x 10~18

elements was 5, 172, the condition number was 1.1 x 103, and the matrix originated
from a structure problem. The eigenvalues of nos5 are distributed between
52.899482...and 582029.11. .. without any clustered eigenvalues.

Table 6 shows the results for various combinations of methods and precisions.
Concerning the accuracy of the eigenvalues, the accuracy of Arnoldi-QD was not
improved, but the accuracy of Householder-D was sufficient. With respect to the
orthogonality, only Householder-D was sufficient. Although the condition number
of nos5 was not so large, the Arnoldi method with QD cannot generate an accurate
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tridiagonal matrix. The modification of the implementation of the Lanczos method
and the Arnoldi method and the choice of the initial value remain as areas for future
research.

Arnoldi and Lanczos methods in high-precision arithmetic can not produce
accurate eigenvalues in current implementation, for example, Lanczos-QD with
sparse data structure can consume approximately the same as the computation
time and the memory space with Householder-D. There are some possibility to
improve the computation for high-precision arithmetics. By the compiled code and
parallel processing, the computation will be improved, however their codes depend
on computing environment and loose ease of use.

In the Arnoldi method, the ratio of matrix-vector operations becomes smaller as
the dimension of matrix becomes larger, but in the Lanczos method, the ratio is not
changed regardless of the dimension. Thus, in the Arnoldi method, the speed up by
the sparse data is small.

S Concluding Remarks

Although the authors believe that simple algorithms are good, floating-point number
operations can break simple algorithms due to rounding errors. In the present paper,
we attempted to stabilize the Lanczos and Arnoldi methods for tridiagonalization
of symmetric matrices by using high-precision arithmetics; DD and QD. Since the
Lanczos and Arnoldi methods are based on matrix-vector multiplication and do not
change the given matrix, they have a possibility to be used for tridiagonalizing large
sparse matrices.

We analyzed accuracy, numerical stability, and computing cost for tridiago-
nalization using dense and sparse matrix operations. We compared double (D),
double-double (DD), and quad-double (QD) arithmetic for tridiagonalization by the
Lanczos, Arnoldi, and Householder methods, and eigenvalue computation using the
shifted QR method in only double-precision arithmetic.

The Lanczos method was stabilized by QD for only a small problem and required
more precision. The Arnoldi method was also stabilized, although there were some
problems in the case of relatively large test problems. A large matrix had some
elements outside the tridiagonal part, resulting in an non-symmetric matrix. The
Householder method was sufficient in double-precision arithmetic, but was not fit
for large sparse matrices.

We conclude that a high-precision arithmetic is effective for tridiagonalization
and no special technique is necessary for some problem. Lanczos and Arnoldi
methods can work well with high-precision arithmetic. However, some improve-
ment is necessary for other problems. The best combination of algorithm and
computing precision depends on the problem to be solved. The controlling precision
in automatic is one of our future issues.

The sparse data type in MuPAT could reduce the required memory space and
computation time for sparse matrices in high-precision arithmetic. For accelerating
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computation, parallel computing for these operations will be necessary. The analysis
of the numerical stability and additional improvement of algorithms and implemen-
tation are our future issues.
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Computation of Eigenvectors for a Specially
Structured Banded Matrix

Hiroshi Takeuchi, Kensuke Aihara, Akiko Fukuda, and Emiko Ishiwata

Abstract For a specially structured nonsymmetric banded matrix, which is related
to a discrete integrable system, we propose a novel method to compute all the
eigenvectors. We show that the eigenvector entries are arranged radiating out from
the origin on the complex plane. This property enables us to efficiently compute
all the eigenvectors. Although the intended matrix has complex eigenvalues, the
proposed method can compute all the complex eigenvectors using only arithmetic
of real numbers.

1 Introduction

Some eigenvalue algorithms are known to be related to integrable systems. There is
an interesting analogy between the QR algorithm and the Toda flow [1, 2]. The
recursion formula of the quotient difference (qd) algorithm is equivalent to the
discrete Toda equation [3]. In addition to the discovery of the above relationships,
some new algorithms have been formulated for computing eigenvalues or singular
values based on the asymptotic properties of discrete integrable systems. A famous
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example is the dLV algorithm for computing singular values of bidiagonal matrices
[4], which was designed based on the integrable discrete Lotka—Volterra (dLV)
system, a prey—predator model in mathematical biology.

The discrete hungry Lotka—Volterra (dhLV) system:

Moo+ 8(")14,(('2]

(n+l) (n)
u , k=12,....M,, n=0,1,...,
k l_[1+8(n+1) (n+l) "

(n)M =0, “(Zn)M =0,. ) =0, “1(1;)+1 =0,.. uf(l? wm=0

ey

is a generalization of the dLV system, where u,(c") is the population of the species and
8™ is the discrete step-size at a discrete time 7. Note that M; := (M + 1)k — M,
where the parameter M denotes the number of species on which a species preys, and
the case M = 1 corresponds to the dLV system. Based on the dhLV system (1), a
new algorithm for computing the eigenvalues of nonsymmetric banded matrices was
formulated, referred to as the dhLV algorithm [5]. Although the intended matrices
of the dhLV algorithm are real and nonsymmetric and generally have complex
eigenvalues, the algorithm can compute all the eigenvalues using only the arithmetic
of real numbers [5].

However, the computation of eigenvectors for the intended matrices of the dhLV
algorithm was not covered [5]. In general, the inverse iteration method can be used
to compute eigenvectors when approximate eigenvalues are obtained. However,
since the intended matrices have complex eigenvalues, the inverse iteration method
requires the arithmetic of complex numbers. In this paper, we derive a recursion
formula that satisfies in the characteristic equation, and show that eigenvector entries
are arranged radiating out from the origin. Then, using this distinct distribution, we
propose a new method for computing all the eigenvectors of the intended matrices
without complex arithmetic.

The remainder of this paper is organized as follows. In Sect.2, we present
a brief review of the dhLV algorithm. In Sect.3, we investigate the distribution
of the eigenvector entries, and propose a new method for computing all the
eigenvectors efficiently. In Sect. 4, some numerical examples are presented to show
the effectiveness of the proposed method. Finally, Sect. 5 gives concluding remarks.

2 Computation of Eigenvalues Based on the dhLV System

In this section, we briefly review the dhLV algorithm [5], which is based on
the asymptotic property of the dhLV system (1), for computing all the complex
eigenvalues.
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The intended matrix of the dhLV algorithm is a nonsymmetric banded matrix
with size (M,, + M) x (M,, + M) for the given parameters m and M, as follows.

M
0...0 U™
10...0 U
1 RV
§0 = o | )
0
1 0

where U™ is defined using the dhLV variables u" by

M
U = T+ 87u). 3)

J=1

The matrix S® appears in the context of an integrable system and, in particular, is
one of the Lax matrices. Let us introduce the following matrix

v
0 vy
0
7MW — 0 - -l ,
5™ 0
5 0 .0V Ly

~ —_—— —
M

where

M
v = TTa+ 8.
j=0

Then, S™ and T™ satisfy

TMW g+ — () , (4)
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which is called the Lax form for the dhLV system (1). Assume u,(co) > (. Then, there
exists the inverse (70?)~!, and (4) can be transformed into

s+ — (T(n))—ls(")T(")_ (5)

This implies that the eigenvalues of S and S”*1 are equal to each other under the
time evolution from 7 to n + 1 of the dhLV system (1). The positivity of the dhLV
variables yields the following theorem concerning the asymptotic convergence of
the dhLV system (1).

Theorem 1 (Fukuda et al. [5, 6]) Ler 0 < u\” < Ko, k = 1,2,....M,, fora
positive real number K. Then, it holds that

(n)

nl_i)ngouMk =c, k=1,2,....m, (6)
: (n _ _
,,ll}go”Mﬁp_O’ k=1,2,....m—1, p=12,...,M, 7

where cy > ¢y > -+ > ¢, > 0.
From (6) and (7), the convergence of U,i") (3) in (2) is easily given by

lim Uy =c. k=12.....m,

n—>oQ
: (n _ _
nIlIEOUwa—O’ k=12,....m—1, p=12,...,M.

Therefore, the convergence of S™ as n — oo can be expressed by

S
§* = lim S" = £ .52 ‘ ,

n—o0 .
E S,
where Sy fork = 1,2, ..., m, and E are square matrices with size (M + 1) x (M + 1)
defined by

AYRES o , E:=
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Since det(AI—S;) = AM*T1—¢;, the characteristic polynomial of S* can be written as

m m

det(Al — §*) = ]_[ [det(Al — Sp)] = ]_[ [AMH — ], ®)

k=1 k=1

where [ is the identity matrix. From (5) and (8), the eigenvalues of S are given by
the (M + 1)th root of cy. Since S is similar to S1), §? ..., all the eigenvalues of
S := SO are given by

2 li

Ake = rpexp (M 41

), k=12,....m, £=1,2,....M+1, C)]

where r; = lim,— o0 +\1/ ”1(\2 Therefore, the eigenvalues of S can be obtained using

the time evolution of the dhLV system (1).

Based on U,io) fork = 1,2,...,M,, in S, the initial values u,(co) of the dhLV
system (1) are set to

(0)
U
40— k

k " ., k=1,2,....M,,.
[Ta +6%u2)
=1

Starting from u,(co) , the values u,(cl) , u,(cz) , ... are recursively computed using the dhLV

system (1). For sufficiently large n, ”1(\2 becomes an approximation for c;. Therefore,
by using (9), we can obtain approximations for the eigenvalues of S. Although S has
complex eigenvalues, the recurrence (1) is performed only with the arithmetic of
real numbers. Since the eigenvalues (9) can be rewritten as

Aig = cos 2t + isin 26 (10)
=Tk M) T )]

the right hand side of (10) can be obtained by computing real and imaginary parts
individually with the arithmetic of real numbers.

3 Distribution and Computation of Eigenvector Entries

In this section, we propose a new method to compute all the eigenvectors of S
using only the arithmetic of real numbers. Let A be an eigenvalue of S. Then, its
corresponding eigenvector x satisfies

(S—Al)x = 0, (11)
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where x = (xl,xz,...,xM,n+M)T. Let U, := U,EO) for k = 1,2,...,M,, for
simplicity, and by writing down each entry of (11), it holds that

X =Axjr1, j=MuyM,+1,... M, +M-—1, (12)

X = Axit1 — Upp1 - Xjem41, J=1,2,.... M — 1. (13)

Since, from Theorem 1, all the eigenvalues of S are distinct, we have rank(S—Al) =
M,, + M — 1. Therefore, by setting x;,,+» = 1, the entries xas, + y—1, Xp,,+m—25 - - -
x1 can be computed recursively in this order using (12) and (13). Note here that, in
the case A is a complex number, complex arithmetic is necessary when using the
recursion formulas (12) and (13). For the purpose of avoiding complex arithmetic,
we separate each entry of x into the absolute value and the argument.

Lemmal Let A and x = (xl,xz,...,me+M)T be the cigenvalue and the
corresponding eigenvector of S. We assume that A is written as
2nli
A =rex , 14
P (M +1 ) (19
where r is a positive real number and £ € {1,2,...,M + 1}. Then, x; can be

expressed as

2nlji

. j=1,2,... M, +M, 15
M+1) J + (15)

Xj = Yj €Xp (—

where y; are real numbers that satisfy

Y+ = 1, (16)
y]:ry]+17 j:vaMm+ls---7Mm+M_lv (17)
Vi =rji+1 — Upp1 - Yigm+1, j=12,.... M, — 1. (18)

Proof We show that y; satisfying (15)—(18) exist for j = 1,2,...,M,, + M. The
proof is by induction forj = M,,+M,M,,+M—1, ..., 1in this order. Let xp,, 41 =
1. By setting ya,,+m = 1, it holds that

2l(M,, + M)i)

XAMy+M = YM,,+M €XP (— Ml

Hence, (15) and (16) hold for j = M,, + M. We next consider the case of j =
M, +M—-1,M,+M-2,... M,. From (12) and (14), we have

Xj = Xxj+1

— A’Mm +M_]
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M ey 20l (M,y + M — j)i
M+1

Mot ey (Znﬁ((ll;[—f-’_lim —j)i)

_ rMm_;’_M_j exp (- 271’@]1 '
M+ 1

By setting y; = rM»+tM=J_(15) and (17) are satisfied.
For the casej = M,,— 1, M,,,—2, ..., 1, assume that (15)—(18) hold forj = p+1
andj = p + M + 1 with an arbitrary p € {1,2,...,M,, — 1}, that is,

2ndl(p + 1)i
M+1 )
2nl(p + M + 1)i

M+1 )

2 dpi

M—l—l)’

Xp+1 = Yp+1€Xp (_
Xp+M+1 = Yp+M+1 EXP (—
= Yp+M+1 EXP (—

From (13), it follows that

Xp = Axp1 — Upt1 Xptm+1

27 li 2nd(p + 1)i 2 dpi
= rexp Yp+1€xp | — — Upt+1 Yp+m+1€xp | —

M+ 1 M+ 1 M+ 1
2 dpi I 2 dpi
= p+1 €X — — U, D €X -
Yp+1 €Xp M+ 1 p+1Yp+M+1CXp M+ 1
2 dpi
= (1Yp+1 — Upt1Yp+m+1) €Xp (_M—i— 1) :

By letting y, = ryp+1 — Upt1Yp+m+1, it holds that x, = y, exp(—2nLpi/(M + 1)).
Therefore, there exist y; forj = 1,2,..., M, + M, that satisfy (15)—(18).

From Lemma 1, the difference between argx; and argx;y; is 2né/(M + 1),
which coincides with that for the corresponding eigenvalues, where arg X denotes
the argument of X € C. We note that the entries of the eigenvectors are arranged
radiating out from the origin on the complex plane. For example, Fig. 1 shows the
distribution of the eigenvector entries on the complex plane in the case M = 6 and
m=2with U, =3/2fork =1,2,...,M,.Here, the arguments of the eigenvalues
are 27t/7 and 47/7 on the left and right sides of Fig. 1, respectively. We can see
that the difference between argx; and argx;4 coincides with the argument of the
corresponding eigenvalue, and that the entries of the eigenvectors are distributed in
a radial fashion.
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To compute an eigenvector x, precisely x; forj = 1,2,...,M,, + M, we first
compute y; forj = M,, + M,M,,, + M — 1,...,2,1 in this order by (16)—~(18),
and then give the quantities concerning the argument to y; using (15). It is noted
here that (16)—(18) compute real eigenvectors that satisfy Sy = ry, wherey =
D1 Y20 Vb)) |-

On the other hand, where approximate eigenvalues have been obtained, the
inverse iteration method is a standard way to compute the corresponding eigen-
vectors. Specifically, for an approximate complex eigenvalue A of a matrix A, the
iterations

x® ) = A —An"x®, k=0,1,2,... (19)

give a good approximation for an eigenvector within a few iterations. For the
purpose of obtaining eigenvectors of S, the inverse iteration method might produce
the desired eigenvectors. If we use a straightforward implementation, then complex
arithmetic is required. However, using (15) of Lemma 1, it is not necessary to use
complex arithmetic, even if we employ the inverse iteration method. Two alternative
methods of computing all the eigenvectors of S are summarized as follows:

(I) Compute only m real eigenvectors, which correspond to m real eigenvalues,
using (16)—(18). Then, compute the remaining mM complex eigenvectors by
applying (15).

(IT) Compute only m real eigenvectors by the inverse iteration method, and then
compute the remaining mM complex eigenvectors by (15).

We here discuss the computational costs for the proposed methods. Let N be the
matrix size M,,, + M. In the case of (I), from (16)-(18), the number of operations for
computing m real eigenvectors is m(3N — 2M — 3). Moreover, computing a complex
eigenvector from a real eigenvector using (15) requires N operations, where £ is the

2nlji

M+1
mMEN operations to obtain the remaining mM complex eigenvectors. Therefore,
the total number of operations for (I) is m(3N — 2M — 3) + mMEN. On the other
hand, when using the inverse iteration method, we need to solve a linear system (19)
per iteration, and its computational costs are O(N3) in general. If we use the
structure of the coefficient matrix, the linear system can be solved with operations
of O(N). Therefore, the total number of operations for (I) is O(mN) + mMEN,
which is essentially the same cost as those in (I). Note here that the cost increases
in proportion to the number of iterations of the inverse iteration method.

costs for computing y; exp ( ), which we may assume to be O(1). We need

4 Numerical Examples

In this section, we present numerical examples and investigate the accuracy and
efficiency of the proposed method. Numerical calculations are conducted in double-
precision arithmetic in Matlab R2015a on a PC (Intel Core i7-3635QM CPU
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Fig. 2 Distribution of 1.5

eigenvalues computed by
05} \\ / /

eig() for S

o

A
v«* *««
;é‘** ****

#**** *#

iETANS

-1.5 —1 —0.5 0 0.5 1 1.5
Real

Imaginary

and 16 GB of RAM). The test matrix S is given by setting Uy = 0.5 for k =
1,2,....,M,,, M =9, and m = 100, that is, the size of S is 1000 x 1000.

In Figs.2 and 3, we present the distributions of eigenvalues and all the entries
of some selected eigenvectors computed using the Matlab function eig().
Theoretically, all the eigenvalues and eigenvector entries are distributed radially
from the origin (0, 0). However, from Fig.2, we can observe that the eigenvalues
located near the origin are not arranged on the line

2nli
c=rexp( 7 ). =120 (20)

From Fig. 3, the entries of the eigenvectors corresponding to the eigenvalues (a)
A = —0.39905 + 1.2281i and (b) A = 1.0004 — 0.72809i appear to be distributed
on line defined by (20). However, those corresponding to the eigenvalues (¢) A =
0.24683 —0.069711iand (d) A = 0.13358 —0.21754i, which are near the origin, are
clearly not distributed on line. This shows that the test matrix S is an example of a
matrix that the Matlab function eig () cannot accurately compute all the eigenpairs
of.

Next, we present the CPU times for computing all the eigenvectors. The
eigenvalues are computed using the dhLV algorithm [5], and we compute all the
eigenvectors in the following four ways:

A. All the real and complex eigenvectors are computed by:

(i) the recursion formulas (12) and (13), where real or complex arithmetic is
used for real or complex eigenvectors, respectively,

or

(i1) the inverse iteration method, where real or complex arithmetic is used for
real or complex eigenvectors, respectively.
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Fig. 3 Distribution of the entries of the eigenvectors computed by eig (). (a) A = —0.39905 +
1.2281i. (b) A = 1.0004 — 0.72809i. (c) A = 0.24683 — 0.069711i. (d) A = 0.13358 — 0.21754i

B. The m real eigenvectors corresponding to the m real eigenvalues are computed

by:

(i) the recursion formulas (16)—(18) with real arithmetic

or

(i1) the inverse iteration method with real arithmetic,

then, the remaining mM complex eigenvectors are computed by multiplying the
real eigenvector entries by the arguments (see methods (I) and (II) in Sect. 3).

The inverse iteration method was started with a random vector on (0, 1), and
was stopped after two iterations. The linear equations (19) were solved by the \

(mldivide ()) function of Matlab.

The computation times for computing all the eigenvectors are shown in Table 1.
Since the methods B—(i) and B—(ii) are carried out using only arithmetic of real
numbers, their computation times are significantly shorter than those of A—(i) and
A—(ii). Moreover, the computation time of B—(i) is 47 % of the computation time of

B—(ii).
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Table 1 Computation times for the methods A—(i), A—(ii), B—(i) and B—(ii)

Method A=) A(ii) B-() B-(ii)

Time [s] 2.45 5.22 0.33 0.70

. 1010 1 2 1010

3 - 15

& 12]% a 12

= 100717 = 10

-g = !". g = = = —g

A% P e xxslt", - :”;

5 10 BT T e # s T, ek o 114

Z 0 - T S e = 10

% - . &‘ = -

& * P T & PR,
1071 = 10 - -

- -
0 200 400 600 800 1000 0 200 400 600 800 1000

(@) Index of eigenvalue (b) Index of eigenvalue

Fig. 4 Relative residual norms for each eigenpair. (a) B—(i): Recursion formula (16)—(18). (b)
B-—(ii): Inverse iteration method

Next, we show the accuracy of the computed eigenpairs. Figure 4 shows the
relative residual norms for the eigenpairs obtained by B—(i) and B—(ii) after the
eigenvalues are computed using the dhLV algorithm. The horizontal axis is the index
of eigenvalues in descending order of the absolute value, and the vertical axis is the
relative residual 2-norms (||Sx — Ax||2/||x]|2) corresponding to each eigenpair.

From Fig. 4, we can observe the following. The relative residual norms of the
eigenpairs computed with B—(i) are at most 10™'", and more accurate eigenpairs are
obtained for smaller absolute eigenvalues. The eigenpairs computed with B—(ii) are
more accurate than those computed with B—(i); the relative residual norms of all the
eigenpairs are at most 10713

The above examples demonstrate that the proposed method is more efficient
than the recursion formula or the inverse iteration method with complex arithmetic.
The methods B—(i) and B—(ii) are effective in terms of CPU time and accuracy,
respectively. A possible future method may be a hybrid of B—(i) and B—(ii). In
particular, the inverse iteration method, in which the initial vector is given by an
approximate eigenvector obtained by B—(i), may give accurate results efficiently.

5 Concluding Remarks

In this paper, we showed that eigenvector entries for the structured nonsymmetric
banded matrix are distributed radially from the origin. Using this property, we
proposed a new method for computing all the eigenvectors using only arithmetic of
real numbers. If all the eigenvalues are obtained, then, absolute values of complex
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eigenvectors can be computed using the recursion formula or the inverse iteration
method with real arithmetic, and multiplying these by the arguments gives all the
complex eigenvectors. Numerical examples show that the computation time can be
reduced by computing the absolute value and the argument separately and avoiding
complex arithmetic. The proposed recursion formula can compute eigenvectors
more efficiently than does the inverse iteration method in terms of computation
time. Eigenvectors computed by the inverse iteration method are more accurate than
those computed by the recursion formula. Rounding error analysis for the recursion
formula is still remaining as a future work.
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Abstract The Lotka-Volterra (LV) system describes a simple predator-prey model
in mathematical biology. The hungry Lotka-Volterra (hLV) system assumed that
each predator preys on two or more species is an extension; those involving
summations and products of nonlinear terms are referred to as summation-type and
product-type hLV systems, respectively. Time-discretizations of these systems are
considered in the study of integrable systems, and have been shown to be appli-
cable to computing eigenvalues of totally nonnegative (TN) matrices. Monotonic
convergence to eigenvalues of TN matrices, however, has not yet been observed in
the time-discretization of the product-type hLV system. In this paper, we show the
existence of a center manifold associated with the time-discretization of the product-
type hLV system, and then clarify how the solutions approach an equilibrium
corresponding to the eigenvalues of TN matrices in the final phase of convergence.
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1 Introduction

Predator-prey models in mathematical biology are often investigated through the
analysis of dynamical systems known as Lotka-Volterra (LV) systems. One of the
simplest LV systems is an integrable LV system, whose solution can be explicitly
expressed using Hankel determinants [24]. The existence of explicit determinant
solutions is sometimes said to be evidence of integrable systems. In this paper, we
refer to the integrable LV system as “the LV system” for simplicity. The LV system
describes the predator-prey relationships of 2m— 1 species, with the assumption that
species k preys on species k + 1 fork = 1,2, ...,2m —2. Species 1 has no predator
and species 2m — 1 has no prey in the LV system.

Two types of extension of the LV system have been derived in the study of
integrable systems. Extended LV systems where each predator is assumed to prey
on two or more species are called hungry LV (hLV) systems. One hLV system with
positive integer M involves summations [2, 10, 15],

duk(l) () Z Ui () — Z w—p(@) |, k=1,2,....M,,

p=1
ui—p(@) =0, ..., up(®) =0, upm,+1(6):=0, ..., upm,+m() =0, >0,
ey

where 1 (f) corresponds to the number of the kth species at continuous-time ¢ and
My := (M + 1)k — M. The other hLV system with positive integer M involves
products, as follows [2, 10].

dug(?)

= w0 ]‘[qu(z) Hvk_p(t) k=1,2,...., My +M—1,
p=1 p=1

vl_M(t) =0, ..., U()(l‘) =0, va+M(l‘) =0,..., va+2M_1(l‘) =0, t>0.

2

Here, we denote the summation-type hLV system (1) and the product-type hLV
system (2) as the hLV} system and the hLVy; system, respectively. Note that both of
these are, in the case M = 1, simply the LV system.

A skillful time-discretization of the LV system leads to the discrete LV (dLV)
system, which has a solution [9, 21] that can be explicitly expressed using the same
type of Hankel determinants as in the continuous-time case. Time-discretizations of
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the hLVy system (1) and the hLVy; system (2) are respectively given as

M (n)
1+ 804",

D _ )
w " =u" ] iy, k=12, M,
j=1 1 + 8‘”+1)uk'z_j
Wy =0, g =0, ul) =00 ul) =0, n=01....
3
M
1+ 860 v,
=1
pD =y o L k=12, M, +M—1,
148D ot
Jj=1
(n) . _ n) . _ (n) _ (n) e —
vy =0,...,05 =0, Uy ag = 0,..., Vpt M+ (M—1) - 0, n=0,1,...,
4

where superscripts with parentheses denote the discrete-time, and 8§ are discretiza-
tion parameters [9, 19]. Note that the discrete hLV; (dhLVy) system (3), and the
discrete hLVy; (dhLVy) system (4) are both simply the dLV system in the case
M = 1. The solution to the dhLVy system (3) has been written using the Casorati
determinants [9, 17]. In contrast, a solution to the dhLVy; system (4) has not yet been
explicitly shown.

Some authors have presented asymptotic analysis for the dLV system and dhLVj
system (3) as n — oo by examining their determinant solutions [11, 17], associating
them with the LR transformations [5, 7, 11, 12], or by applying the center manifold
theory to them [6, 13, 20]. Here, the existence of a center manifold enables us to
investigate local convergence and stability around equilibria [3, 23]. The center
manifold approach actually proved that the solutions to the dLV system and dhLVj
systems (3) monotonically converge as n — oo. However, we did not observe
monotonicity in the global analysis of the dLV system and dhLVj system (3) as
n— oo.

These asymptotic analyses contributed to the design of numerical algorithms
based on the dLV system and dhLVj system (3) for computing singular values
of bidiagonal matrices and eigenvalues of totally nonnegative (TN) matrices,
respectively. The monotonic convergence is also a desirable property in designing
numerical algorithms based on the dLV system and dhLV; system (3). This is
because the accuracy of computed eigenvalues is improved as the iteration number
grows larger. TN matrices appear in several branches of mathematics, such as
stochastic processes, probability, and combinatorics [1, 4, 14, 16]. Sun et al. showed
that the dhLVyp system (4) can be applied for computing eigenvalues of band
matrices, which are essentially equivalent to TN matrices [18], but the monotonic
convergence to matrix eigenvalues has not yet been reported. Watkins [22] and
Fukuda et al. [ 7] presented the relationship between band matrices and TN matrices.
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In this paper, using the center manifold theory, we clarify the asymptotic behavior
of the dhLVyy variables as n — o0o. The center manifold theory is a classical analytic
tool that requires neither explicit expressions of solutions nor relationships to the
LR transformations. It enables us to examine how to approach the equilibria of the
solutions in the final phase of the convergence, rather than global convergence of
the solutions.

The remainder of this paper is organized as follows. In Sect. 2, we first clarify
the existence of a center manifold associated with the dhLVy system (4). In Sect. 3,
by applying the center manifold theory to the dhLVy system (4), we show the
asymptotic behavior of the solutions to the dhLVy system (4) around their equilibria.
Finally, we give concluding remarks in Sect. 4.

2 Existence of the Center Manifold

In this section, we show the existence of a center manifold associated with the
dhLVy system (4), in particular, that for an auxiliary discrete system of the dhLVy;
system (4).

For convenience of explanation, we employ the subscripts M; + £ instead
of k in the dhLVy system (4). The use of the subscripts My + £, of course,
covers and distinguishes all of the dhLVy; variables. According to Sun et al. [18],
the dhLVy variables v&k) vl(‘,’;: s v&k) +m— and vl(‘,’;: Ly converge to positive
constants ca, Cmy+1, - - - » Cmp+m—1 and 0 as n — oo, respectively, where cy, ¢ >
My +¢ for £ = 0,1,...,M — 1. The equilibria ¢y, cp+1...., Cu+m—1 have
also been shown to be related to eigenvalues of TN matrices. Now, we introduce
auxiliary variables given by subtracting the equilibria cy, , ca+1, - - . » Cm+m—1 and

0 from the dhLVy variables v&k) . UI(\Z) T vl(gg 4y and Uz(t:;,z - TEspectively, as

Oy g = Uspye — Cupres k=12,..om £=0,1,....M—1, (5)

61("412+M:v1(\;:+M’ k:1727---,m_1. (6)

We then divide the dhL.Vyy system (4) into linear terms and other terms with respect
~(n) =(n) ~(n) ~(n+1) ~(n+1) ~(n+1)

10 Upy's Upg g Uy ag—g @A Oy 7 Upp Ty Upg oy

Lemma 1 Let us assume that the discretization parameter 8"+ in the dhLVy

system (4) satisfies
)]

M
1_[ (n+1)
v
My+L—p

|80 D] < [max (max
kL
p=1

M—1 M—1
(n+1)

, Tax | | Upgep — 2 | | CMy+p

p=0 p=0

(N
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— [_ n —
Let ey = [Tpmiys vt [lpmo Mt B := (1 + 8P TG earp)/ (1 +

st ]_[M_ CMy4p) and v = (v(") _1(‘:;)“,.. 171(‘214_1‘,1_1)-'— € RMntM=1 Thep,
it holds that

—(nt1 n+1) - -

§Z+Z = —8" ey, oo llvz(wk M T 1(t:11)+1i + S(H)CMk+WHU$k)+M
+ e @@ 0y k=12, .m, £=01,....M—1,
(3)
_(n+1 _ N
Uz(ng@ = .3kvl(f42+M + e (@™ 0 k=12, m—1, )

where kaH(v(”), v YY) and gy (v, v Y)Y denote multivariate nonlinear
polynomials with respect to entries of v and v+,

Proof Under the assumption of §"*!, noting that 1/(1 4 x) = 1+ Y2 (—x) for
|x| < 1, we can rewrite the equations, except for £ = M, in the dhLVy; system (4) as

j
M o0

1) _ () ) () (n+1) (n+1)

Upetrt = Upgppe | 1487 nka+li+p L4+ | =" H UMt | |

J=1 p=1
k=1,2,....m, £=1,2,....M—1. (10)
Here, by considering M, = M;— + M + 1, we can express two products,
M () M D) Q) =(n) =(n)
]_[ =1 Upgp+04p and l_[p=l Mt-l—pr USING Upps o Upg g pnneees ka+1+Z ; and
~(n+1) ~(n+1) —(n+1)
Upt+e4+1° Uy +e420 - - -+ Upgpo—1» TESPectively, as
M — —
() — (n) (n) (n)
[T e, = | TT visn [ osiar | TToM00 00
p=L+1

_ _ ()
= H (UMk+p+CMk+P) UMy +m n(ka+l+P + CMi+p) | 5

L p={+1
(11)
M —
n+1) (n+1) (n+1) (n+1)
l—[”MkH—p— l—[ UMi—i+p | UM M l_[”wa
p=L+1

_ —(n+1) —(n+1) —(n+1)
- 1_[ (UMk—1+P + ch—1+P) UMy +M l_[(ka-l—P + CM"+P) ’
L p={+1 =

12)
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-1 (=(n) . -1 =(n+1) .
where [T o0y 4, + Mgidp) = L [Lo@usy + cmep) = 1,
M—1 = +1
[[=n (@ ggﬂ, + cm4p) = 1, and ]_[ ﬁk 1)+ + cm_y4p) := 1. Moreover,

by expanding the right-hand sides of (11) and (12) and taking into account
l_[M__z+1 CMi+p 1_[[ l()CM1(+1+p = ay¢, we derive

(n) ~(n) ~(n) —(n)
l_[ UMit+t4p = QlVp4m +f(ka+e+1’ Uptettt2 o Opgy 1) (13)
M
(n+1) —(n+1) (n+1) 50+ D) 5 +D
l—[ UM+t—p = =100, +m +F (@ UMy e+ Oy o2+ Ouge—r)s - (14
(n) ~(n) —(n) (n+1) ~(n+1)
where f(ka+Z+l’ka+l+2"' Uy +l— ;) and f(ka71+l+1’ka VAT IR
17%:_1[)_1) are multivariate polynomials with respect to 171(‘2 D 171(‘2 g2
—(n) —(n+1) —(n+1) —(n+1) . .

My +0—1° and Vbt 041 Op 0420 Upgbi—1 involving no terms of
order 0 or 1, respectively. Using (13) and (14), we observe that the term
+1),,(n) M (n+1) (n) (n) M (n) :
=8t Dy Mot 1 Upet—p TV 5(")UM +o[Tpm1 Vg ¢4, ON the right-

hand side of (10) coincides with the sum of the constant ¢y, +¢, the multivariate

. . 1 — —
linear polynomial —§™ Ve, 4 oo 1101(‘4k+1)+M + 1(1;)4.4 + 3(")0Mk+lo‘kqfvz(\;k)+M’

and the multivariate nonlinear polynomial with respect to 1')1(;: Teat 171(‘,';: TR

—(n) —(n+1) —(n+1) —(n+1)

Upp 010 and U 041 Vb 0420 > UA{IkH—l‘ We can mmultageoqsly
regard the other term on the right-hand side of (10) as the multivariate
nonlinear polynomial with respect to 7.7 i 5\ and
poly p Met+e+1° Unpe+20 70 Vpg g 0—10
—(n+1) —(n+1) —(n+1) (+1) _ ~(n+1)
Upte 40410 UM1571+Z+2’ e Upg gt Since it holds that Urtott = Vpgytt + Cpy+¢ ON
the left-hand side of (10), we therefore have (8).
(n) ~(n) 7® (n) .

Furthermore, let g(Uy, Uy 4 1+- -+ Uy 4 pr—1) 1= ]_[p 0 UM +p — Vi Where yy 1=
]_[f:f_o1 CyM+p- Then, it is obvious that g(vz(vr;z, vj(l;k) T 171(‘,';: 4a—1) are multivariate
polynomials with respect to UI(W)’ vj(l;k) PR T Mk) +m— and without constants. By

using (5) and (6) in the dhLVy; system (4) with £ = M, and §"+1 satisfying (7), we
derive

—(n) —(n
. (n)g(kaJrl UMI(+1+1’ ey Mk+l+M_l)
S0 1+ 8™ y4y 50 1+ 8™yq
My+M — (n+1) Mi+M +1) = =(n+1) —(n+1) —(n+l)
1+ 80Dy, ! 80t Vg(y, s Upe 1o+ > Opgeep—1)
1+ §(rtDy,
(n) ~(n) —(Vl
S(n)g(kaJ,_l ka+1+1’ o Mk+l+M 1)

(1)
= Py 1+
IBk Mi+M 1+8(n)]/k+1
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1 ( +1) —( +1) —( +1)
i _8(n+ YA Mnk+1"“’ AZ+M—1)
1+ 80ty '

j=1

k=12,....m—1. (15)

The right-hand side of (15) comprises multivariate nonlinear polynomials with
~(n) =) =(n) ~(n) ~(n+1) =(n+1)

respect to Uy, . and UMHI Vg 41 Upg g @nd Oyt Uy
17%::_11:,1 1» except for ,Bkka 4~ This immediately leads to (9). O
Noting that v( " are given using v1 vé"), .. v,(:_lg » in the dhLVy; system (4),

we immediately see that the entries of v can be written using those of v™. Thus,

we derive a lemma concerning fy, +¢(v®, V) and gy, 4. (v®, V) involving
(n+1)
vt

Lemma 2 Let us assume that 8"tV in the dhLVy system (4) satisfies (7). There
exist multivariate nonlinear polynomials with respect to entries of v\, denoted by
Ffue+e(™) and gag 0 (v™), such that

e @) = frre @, 0", k=1,2,....m, £=0,1,.... M—1,

(16)

B (") = 2@ W) k=12, m—1. 7
Proof Since vy = 0,v5 ) = 0,....vj") = 0in (10) with (11) and (12),
it is obvious that fi;, (v™, v D) is the multivariate nonlinear polynomial with
respect to vj(ul) vj(‘;) +1,...,171(‘:}) 4+ Thus, considering this in (8) with & = 1
and { = 0, we can regard v( "t as a multivariate polynomial with respect to
171(;1’1), 171(‘,';1) T Uz(wl) 4y and w1thout constants. For £’ = 1,2,...,£—1,letus assume
that vl(;ilz, are multivariate polynomials with respect to vM) , Uz(w) T ﬁgk)ﬂ L1

and without constants. Let us recall that fM +o (0™, D) s the multivariate
—(n) —(n) —(n)

nonlinear polynomial with respect to vy, '\ /.10 Vppipins-- oo Vb1 401 and

~(n+1) D ~(nt1) 7 (n) 5 (n+1)

Upge 0410 Vb 42 > Va1 - Then, we find that fy;, +¢(v'"”, v ) is also
=) ~(n) ~(n)

a multivariate nonlinear polynomial with respect t0 Uy, Ups/y gy, Upfyp -1

By combining these with (8), we see that Uz(w:g are multivariate polynomials

with respect to Ul(W)’ Uz(w)+1v el Uz(\4:+1+z—1
we observe that fiy, 1¢1+1(v®, v@*D) is also a multivariate nonlinear polynomial

with respect to Uz(\;l) U%)H’ cee 1_)1(\2+1+£-

obtain (16).

and without constants. Simultaneously,

Therefore, by induction for k and £, we
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Similarly, by taking into account the fact that Su+n (0™, D) is a multi-
=(n) —(") —(Vl)

variate polynomial with respect to v, ,, and v ka+1’ Mg +10 -+ Vg 4m—1 and
GO St —(n+1)
Uprt, s Upgtts - -+ o Upgpg—1» We have (17). o

For joining linear terms with respect to entries of v in (8), let us introduce new
variables

o . —(n) —(n)
Wagee *= ~EtUp_ p T UM 0 T Mt Vagym

k=12,....m, £=0,1,....M—1, (18)

where & ¢ := (8" Dy e oumr e fi—1)/(1 = i) and mi e == (§Wengte ane(1 +
8§ TDy) /(T Dy =8y, 11). The following lemma then gives the evolution from

nton+1of wh = w” wi”, ... wi)T € RV with wi” = (wly),
Wz(\fllk)+1v o WI(\ZZ+M—1)T € RY and ”(()n) : (UI(VrIl])+M’ 5$Z)+M""’5(nn)771+M)T
R™L,
Lemma 3 The dhLVy system (4) with §"TV satisfying (7) can be rewrit-
ten using A = diag(1,1,...,1) € RMntM=—mxMutM=m) gng B .=
diag(B1. B2, . ... Bu—1) € RUDXn=1 g4
witD = Aw® 4 fw®, v, (19)
o = Boy” + g vy, 20)

where the functions f : RMntM=1 _ RMutM=m gy o« RMuTM=1 _ Rim=1 yis

respect to w'" and v(()n) and their first derivatives Vf and Vg satisfy

f£00,0) =0, Vf(0,0) =0, 21)
£(0.0)=0, Vg(0,0)=0. (22)
. . (n+1) —(n) —(n)
Proof Using Lemmas 1 and 2, we can rewrite Wage+0 using le Uty 41+ » Unptm
as
n+1 n -(n —(n
Wz(mH2 == Bro1 (e + 8 +l)CMk+Nk—1,l)Uz(m)71+M + Uz(wZH

+ (B + S(H)CMk+Zak,l)1_)1(Vr;:+M + frtere (™)

— (Ee + 8"V ey e )&+ (@) + e (@™).
(23)

From the definitions of o ¢ and By and & ¢ and i ¢ in terms of ¢y, +¢, We can verify
that &¢ + 8"V ey o0k—10 = &e/ Br—r1 and Bunie + 8™ crg e e = Nee. We can
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then derive

+1 <
W(Mnk+z W(an+ll + fitere (0™), (24)

where fiyr, 1e(v™) = fir e (™) — G/ Bio)@mr (@) + Needuarn (™).
Since fy1+¢(v™), gy, +0(v™), and 3y, +4:(v™) are multivariate nonlinear poly-
nomials with respect to the entries of v, their linear combinations kaH(v(”)) are
also. Moreover, there exist multivariate nonlinear polynomials with respect to the
entries of w® and v, denoted by fis,+¢(w™, v{"), such that fys,+¢ (W™, vJ") =
kaH(v(”)) for each k and £. This is because some entries of v are equal to
entries of vg') and the others can be rewritten using (18) as linear combinations

of the entries of w® and v\”. Thus, we observe that fi;,++(0,0) = 0 and
Vi, +¢(0,0) = 0. Consequently, by letting f := (f|.fa.....f,) € RMntM=m
with £} := (fueo fe+1s - - - fuge+m—1) € RM, we obtain (19) with (21).

Similarly, there exist multivariate nonlinear polynomials g (w, v, () ) satisfying
g W™ 0y = 3(0™), gar10(0.0) = 0, and Vgyy,+1(0,0) = 0. Thus, we
have (20) with (22), Whereg = (ng +Ms 8My+Ms -+ - ng71+M)T S Rm_l. O

According to Carr [3] and Wiggins [23], a center manifold for the discrete
dynamical system in (19) and (20) exists if the moduli of the eigenvalues of A and B
are equal to and are less than 1, respectively. It is important to note that 0 < f; < 1
if 50D > §0 ]_[ (ch 41+p/CM+p). Lemma 3 therefore leads to the following
theorem concerning the existence of a center manifold associated with the dhLVy;
system (4).

Theorem 1 There exists a center manifold h : RM»TM=m _ R"=1 for the discrete
dynamical system in (19) and (20) derived from the dhLVy system (4) with 8™ and
80D satisfying (7) and

s l—[ Mit1Hp _ gont1). (25)
=0 CMy+p

For example, from ¢y, +p < Cpy4,+p» we find that (25) always holds if §® = §+1.
In this case, the center manifold associated with the dhLVy system (4) exists only
if (7) holds. It is obvious that a sufficiently small §"*1) always satisfies (7).

3 Monotonic Convergence

We first determine a center manifold for the discrete system defined in (19) and (20)
with (21) and (22), and then show the asymptotic behavior of its solution with the
help of theorems concerning the center manifold.

According to Carr [3] and Wiggins [23], the center manifold for the discrete
system in (19) and (20) with (21) and (22) is the function  : RMn+M=m _, Rm-1
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with £(0) = 0 and VA(0) = O, such that v = h(w®) and v{"t" = R(W D). In
other words, the center manifold 2 with 2(0) = 0 and VAi(0) = O satisfies

hAW™ 4+ fw™ h(w™))) — Bh(w™) — gw™  h(w™)) = 0. (26)

Since it has been observed that fys,+¢(w™, v{") and gy +n (W™, v{") are mul-

tivariate nonlinear polynomials with a common factor 171(‘,';: 4y in the proofs of

Lemmas 1-3, we obtain kaH(w("), 0) = 0 and ng+M(w("), 0) = 0. This
immediately leads to f(w™, 0) = 0 and g(w™,0) = 0. Thus, by letting h(w™) = 0
and taking into account the fact that Aw™ = w™ in (26), we derive

™ £ 0" 0)) — g™, 0) = h(w™) = 0. @7

Equation (27) implies that (w™) = 0 is a solution to (26). Combining this
with theorems concerning the center manifold [3, 23], we see that the asymptotic
behavior of a small solution to the discrete system in (19) and (20) with (21) and (22)
is governed by the reduced discrete system

WD =A™ 4 ™, 0) = w". (28)

Obviously, the zero solution w™ = 0is stable. Thus the zero solution to the discrete
system (19) and (20) with (21) and (22) is also so. Consequently, we have the
following theorem for monotonic convergence in the discrete system in (19) and (20)
with (21) and (22) derived from the dhLVy system (4).

n—n*

Theorem 2 There exists some positive integer n* such that |w™| < kw and

|v§)")| < k"™ for n > n* if all entries of w" and v(()") are sufficiently small,
where k and w are positive constants with o < 1.
Theorems 1 and 2 also suggest that the dhLVy variables Uz(\;k) , Uz(t:;,z TP vj(‘;k) M1

and Uz(t:;,z 1y moderately approach their equilibria in the final phase of convergence
if the discretization parameters 8™ and §"+D satisfy (7) and (25). The numerical
algorithm based on the dhLVy; system (4) can succeed to this convergence property.
For example, in the practical algorithm, we may set 8§ gt - glutnp) aq
§t) = gmth = ... = §titm) = § for some integers n; and n, where
niy1 = n; + n, + 1, and then we gradually make the value of § smaller as i grows
larger.

We here give a numerical example concerning the monotonic convergence

appearing in the dhLVy; system (4) with M = 3, m = 2 and §® = 1 forn =
(n) () (n)

0,1,....Figure 1 shows differences between the dhLVy variables v, v, ", ..., v;
and their equilibria for n = 0,1, ..., 13 under the initial settings v§0) = vg)) =
- = U;O) = 1 where the equilibria were computed beforehand using 200-digits

precision arithmetic in Mathematica. We then observe that each v,((") approaches
monotonically to its equilibrium as 7 increases.
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108

10710

10718

10'20 L 1 1 1 1 1 1
0 2 4 6 8 10 12

Fig. 1 Monotonic convergence in the dhLVy; system (4). The horizontal axis is the discrete time n

En) R vén) ..... u§”) and their equilibria

and the vertical axis corresponds to the differences between v
forn=20,1,..., 13. The solid line with opensquare: the values of |vf") — ¢/, the solid line with
opendiamond: the values of |v§") — ¢»|, the solid line with cross: the values of |v§") — ¢3, the solid
line with opencircle: the values of vi"), and the dashed line: the values of |v;") — ¢s/, the dotted

line: the values of |vé") — ¢/, the solid line: the values of |v§") — 7|

4 Concluding Remarks

In this paper, we demonstrated monotonic convergence in a time-discretization
of the product-type hungry Lotka-Volterra system, referred to as the dhLVy
system, around the equilibria of the dhL.Vy; variables. This monotonic convergence,
of course, also appears in a numerical algorithm based on the dhLVy system
for computing eigenvalues of totally nonnegative (TN) matrices. The monotonic
convergence is a valuable property in deciding the stopping criterion of a numerical
algorithm in finite arithmetic.

In Sect. 2, we investigated the existence of a center manifold associated with the
dhLVy; system. We first considered an auxiliary discrete system given by shifting
the equilibria of the dhL.Vy; variables to the origin, and dividing the discrete system
into multivariate linear and nonlinear polynomials with respect to the shifted dhLVy
variables. Next, by simplifying the auxiliary discrete system, we proved that a center
manifold associated with the dhLVy; system exists if the discretization parameters
are suitable. In Sect. 3, using theorems concerning the center manifold, we finally
obtained the monotonic convergence in the dhLVy system around the solutions’
equilibria. A future work for the dhLVy; system is to clarify how to actually find the
discretization parameters such that the associated center manifold always exists.
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A quotient difference (qd)-type dhLVy system, similar to the recursion formula
of the qd algorithm, has been formulated as a variant of the dhLVy system, and
is potentially applicable to computing eigenvalues of TN matrices [8]. It has been
established that there always exists a center manifold associated with the qd-type
dhLV; system [20]. Future work may examine local convergence in the qd-type
dhLVy system from the viewpoint of the center manifold.
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Accuracy Improvement of the Shifted Block
BiCGGR Method for Linear Systems with
Multiple Shifts and Multiple Right-Hand Sides

Hiroto Tadano, Shusaku Saito, and Akira Imakura

Abstract We consider solving linear systems with multiple shifts and multiple
right-hand sides. In order to solve these linear systems efficiently, we develop
the Shifted Block BICGGR method. This method is based on the shift-invariance
property of Block Krylov subspaces. Using this property, the Shifted systems
can be solved in the process of solving the Seed system without matrix-vector
multiplications. The Shifted Block BICGGR method can generate high accuracy
approximate solutions of the Seed system. However, the accuracy of the approxi-
mate solutions of the Shifted systems may deteriorate due to the error of the matrix
multiplications appearing in the algorithm. In this paper, we improve the accuracy
of the approximate solutions of the Shifted systems generated by the Shifted Block
BiCGGR method.

1 Introduction

We consider solving linear systems with multiple right-hand sides

AX = B, (1)
(A+oDHX© =B, )

where A € C"™" is a non-singular matrix, X, X ©,B e C™t and o € C. The linear
systems (1) and (2) are called “Seed system” and “Shifted system”, respectively.
These linear systems appear in many scientific applications such as the eigensolver
based on contour integral [8], lattice quantum chromodynamics (QCD) calculation,
and so on.

As methods for solving linear systems with multiple shifts and single right-
hand side, Shifted Krylov subspace methods have been proposed such as the
Shifted BiCGSTAB({) method [5], the Shifted GMRES method [6]. Shifted Krylov
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subspace methods are based on the shift-invariance property of Krylov subspaces.
Using the shift-invariance property, the Shifted systems can be solved in the process
of solving the Seed system without matrix-vector multiplications.

On the other hand, Block Krylov subspace methods have been proposed for
solving linear systems with multiple right-hand sides such as the Block BiCG
method [7], the Block BICGSTAB method [4], and the Block BiICGGR method [10].
These methods can solve the linear system with multiple right-hand sides efficiently
in terms of the number of iterations and the computation time compared with the
standard Krylov subspace methods for single right-hand side.

In this paper, we extend the Block BiCGGR method to the Shifted Block
BiCGGR method for solving the Shifted systems (2) efficiently. The Shifted Block
BiCGGR method can generate highly accurate approximate solutions of the Seed
system. However, the accuracy of the approximate solutions of (2) deteriorate due
to the error of the matrix multiplications appearing in the algorithm. In this paper,
we also improve the accuracy of the approximate solutions of the Shifted systems.

This paper is organized as follows. In Sect. 2, the Block BICGGR method is
briefly described. In Sect.3, the Shifted Block BiCGGR method is developed.
Moreover, we improve numerical stability of the Shifted Block BICGGR method. In
Sect. 4, the modified Shifted Block BICGGRrQ method is proposed for computing
more accurate approximate solutions of the Shifted systems. Section 5 provides the
results of numerical experiments to show the performance of the proposed method.
This paper is concluded in Sect. 6.

2 Block BiCGGR Method

In this section, we describe the Block BICGGR method [10] for solving the linear
system (1). Let X;+; € C™L be a (k + 1)th approximate solution of (1). Xp is
computed so that the condition:

Xir1 = Xo + Zir1, Zit1 € B 45 (As Ro)

is satisfied. Here, Ry = B — AXj is an initial residual, and %,(DH(A; Ry) is a Block
Krylov subspace defined by

k
B (AiRo) = 3> AR | ¢ € CE(j=0.1.....Kk)
j=0

The corresponding residual Ry is written as

Rit1 = B— AXy41 = Ry — AZit1 € B55(A;Ro).
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We define the (k + 1)th residual Ry of the Block BICGGR method as

Riy1 =B —AX;y = Hk+1(A)R;(iifG) € BR (A Ry). 3)

Here, R,((]j_i?G) € C"™L and Hy41(A) denote the (k + 1)th residual generated by the

Block BiCG method and the matrix polynomial of degree k + 1, respectively. The
)

matrix R,(c]ij is computed by the following recurrence relations.

RECO — pBico) _ g

’

BiCG BICG BICG
RPCY = RO _APP Oy € B2, (A5 Ry), (4)
BiCG BiCG BiCG
Pl(c+11 ) = Rl(c+11 '+ Pl(c “Og, e %’EH(A;RO), (5)
where P,((]j_i?G) € C™L qy, By € CI*L. From (4) and (5), the recurrence relation of
(BICG) . .
R, 1s rewritten as

icG icG icG icG
R,(ﬁ_ll ) = —AR,((B1 Doy + R/((Bl e+ yicrou] — R,(El ) Vi1 (6)

Here, the matrix yx—; € C** is defined as yx—1 = ;' Bi—1, and I; denotes L x L
identity matrix. The matrix polynomial Hy4(A) is defined as follows:

Hi1(A) = (I = §GA)H(A), &€ C, Ho(A) =1. @)

Here, I denotes the n x n identity matrix.

We construct the recurrence relations for computing the residual Ryy; =

Hk+1(A)R,((]ii?G). From (4), (5) and (7), the recurrence relations for computing the

matrices Hk+1(A)R,(iifG), Hk+1(A)P,((BiCG) , and Hk+1(A)P,(ii?G) can be constructed

as follows:
Hes1(A) R;(fﬁfc) — Hy(A) R}((BiCG) — GAH(A) R}((BiCG) — AHp P}({BiCG)ak’
Hiv1(A) P/((BiCG) — Hy(A) P/((BiCG) — GAH(A) P/((BiCG)’
Hk+l(A)P]((]j_i?G) = Hiy1(A) Rl(c]-gi-i?G) 4 Hin(A) P}((BiCG) 5.

Defining the matrices P, = Hk(A)P,((BiCG) € C™F and Uy = Hiy1(A)P /((BiCG)Oék €
C™L the following recurrence relations can be obtained.

Ri41 = Ry — ARy — AU, (8)
U = (P — GAP) oy, )
Pit1 = Riy1 + Urys. (10)
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From (3) and (8), the approximate solution Xj 4 is computed as follows:
Xit1 = X + GeRi + Uk (11)
The matrices «y, By are determined so that the condition:
RN L A5 (AT Ro)

is satisfied. Here, Ry € €™ is an arbitrary matrix such that RYRy and RIAP, are
non-singular. From this condition, the matrices o, Bx and y; can be obtained as
follows:

ar = (RIAP)T'RER,,

Bx = (RGAP) 'R Rig1/ Lk

Yk = (RGRY) ™" RY Rig1/ &

The scalar ¢, € C is determined so that | Ry — {tAR||r is minimized.

3 Development of the Shifted Block BiCGGR Method

In this section, we develop the Shifted Block BICGGR method for solving the Seed
system (1) and the Shifted systems (2) simultaneously. First, the Shifted Block BiCG
method is described, then the Shifted Block BICGGR method is developed. After
that, we improve numerical stability of the Shifted Block BICGGR method by using
the QR factorization of the residual matrix.

3.1 Shifted Block BiCG Method

In this subsection, the Shifted Block BiCG method is described. Let R,(:frBliCG) be the

(k+ 1)th residual of (2) generated by the Block BiCG method. The residual R\
is computed by the following recurrence relations.

ng,BiCG) _ Péa,BiCG) _ ng)’
REYD = ROPO — (A + onPTP OV € B2, A+ oLRY),  (12)

PO = RSO+ PR ¢ 9D v orE) b
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where R = B — (A + o1)X\" is the initial residual of (2), and &\”’, B\ € CL¥L,

From (12) and (13), the recurrence relation of R,(:‘ﬁiCG) is rewritten as follows:

R/((z:,_]?iCG) —— A+ UI)R]((U,BiCG)a]((U) T R}(:T,BiCG) [IL T V/fi)ﬂ;(cg)]
(14)
(0.BiCG) | (o) _ (0)
— RN
v 1, @) (@) _ (,(0)\—1p(0)
Here, the matrix y,_ is defined as y, | = (o, ,Bk_l.
For the Block Krylov subspaces 93,? (A; B) and 93,? (A + ol; B), the following
shift-invariance property holds [9].
B2(A;B) = BE(A + ol B).
Hence the residual matrices R,((]j:(fc) € B ,(A; B) and R,(('Z’r?icc) € B ,(A+0l;B)
belong to the same Block Krylov subspace %,(DH (A; B). For the matrices R and

k1
RP9 | we assume that the following relation holds:
BiCG BICG -
R = RETT @™ (1)

(0) LXL
Here, m,, € C*%.

Using the relation (15), the Eq. (6) can be transformed as follows:

BiCG BiCG -
RS =~ 44 0D
+ R,(:T’BiCG)JT;EU) [IL + oo + Yr—104] (U/E(j.)l)_l (16)

BiCG _
_Rl(ca—ll )nlia—)lyk—lak(ﬂlg—)l) 1

By comparing the coefficients of (14) and (16), the matrices Jr,g_)l , oz,(f), and y,fg) are

determined as follows:

Jflfj_)l =7 I + ooy + yemran] — 1 i1, (17)
of” = 1 o (m )7 (18)
v =1y (19)

3.2 Shifted Block BiCGGR Method

In this subsection, we develop the Shifted Block BICGGR method. Let X, ,(('21 e cmt
be a (k + 1)th approximate solution of (2) generated by the Shifted Block BICGGR
method. The corresponding residual R,(::L) | € C™L is defined as follows:

RO, =B—(A+0DX?), = H\ (A +oRETD € B (A +ol,RY).
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Here, H,i‘_?l(A + ol) is a matrix polynomial of degree k + 1 defined as
H (A +ol) = [1 — A+ 01)] HOA + ol),

where é‘,ia) e C, and H(()U)(A +ol)=1.
For the matrix polynomials Hy41(A) and H,:L)l (A4o1), we find a scalar 921) ,€C

such that
H\(A+0l) = Hit1(A)/6,9). 20

0)

Using the relation (20), the matrix polynomial H,ﬁ +1(A + o) is expressed as
H\(A +ol) = [1 — 4 + crl)] HO@A + oT)
_ [1 e 01)] Hi(A)/6°)
— (1 _ 70 (0) _ (o) (0)
= (1 =08 H(A)/6,"" — §"AH(A) /6, 2D
On the other hand, H, ,ﬁi_)l(A + ol) is also written as
HE)\(A +ol) = H(A)/6), — GAHK(A) /6%, (22)

Comparing the coefficients of (21) and (22), 9,5?1 and §,£U) can be obtained as
follows:

07 = (1 + 0806 ,6 =1, (23)

@) — t./(1+ 0.

From the relations (15) and (20), the residual R,(::L)l is expressed as
RE = R (1) /65 (24)

Using the relation (24), the approximate solution X,ﬁ?l and the matrices U,(f) =

H,((‘:_)I(A + o)P"P O, P,(Ql = H,E(_?I(A + aI)P,((iBliCG) can be computed as

follows:
X = X0 + 7R 700 + U,
U = PO — 5 Rl — (s — AP x5 ] 6

P,(;:L)l = Rk+1(ﬂ;§?1)_l/91£?1 + U/ia)ylia)-
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Set Xo =0,Ry=Py=B,y-1 =0y,
setX\” = 0,P" =B,2') =1\ = 1,007 =1,
Choose Ry € C*L,
Fork=0,1,...,
Solve (RAP) oy = RERy, for oy,
Gk =Tr [(ARO)MR] /Tr [(AR)TAR, ],
Up = (P — GAP) o
Xiv1 = Xi+ QR + Uy,

// --— shift part -—— //

n,fi)l = n,gc) (I + ooy 4+ 104) — 7‘1@1 Vi1 O,

off =% (s}

o =4/(1+0L),

U =P ck R(m™) ™ = (Re — APLoy) ()| /6L
X0 =x° +¢ R, >/e,£’+U£"%

6% 7(1+o§) ©

/] mmmmm e //

Riy1 = Ry — G AR, — AU,

Solve (R{/Ry) i = R/ Ri-1/ G for 1,
Prt1 = Riy1 + U Yk

APyt = AR + AU,

// --— shift part -—— //
1 =m wm )~
P/£+:*Rk+l(”k+1) 1/6k+l+Uk Vk ’
/] mmmmmm e //

End For

Fig. 1 Algorithm of the Shifted Block BICGGR method

By summarizing the above equations, algorithm of the Shifted Block BICGGR
method shown in Fig. 1 can be obtained.

3.3 Improvement of Numerical Stability

When the number L of right-hand sides is large, the residual norm may not converge
due to numerical instability. This numerical instability comes from the loss of linear
independence among column vectors of n x L matrices. In this subsection, numerical
stability of the Shifted Block BiCGGR method is improved by orthonormalizing the
column vectors of the residual Ry [3].

The residual Ry is factored as

= Oiér (25)
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by the QR factorization. Here, Oy is an n x L matrix such that Q,EIQ/( =1, and & is
an L x L upper triangular matrix.
Using (25), the Eqs. (8), (9), (10) and (11) are rewritten as follows:

Ort1Tk+1 = Ok — GAQk — AV,
Vk = (Sk — é‘kASk)O{//(,
Sk+1 = Okt1 + Vavss
Xir1 = Xi + [eQx + Vil &k
Here, V, = Ukék_l € (CnXL, Sy = Pkék_l € (CnXL, Th+1 = §k+l§k_l € (CLXL, Ol]/( =
Gkt € CPLand y) = &yidl, € CP The L x L matrices o and y; are
computed by
o = (R{AS) ™Ry O
Vi = (R QO™ R Qi1 /i
The scalar ¢ is determined so that ||Qx — {AQk || is minimized.
Then, the recurrence relations for the Shifted systems are modified. The matrix

77 € CE*L s defined as 71" = 7”’&". Using the matrix 7r,*, the recurrence
relations (17), (18), and (19) are rewritten as follows:

T = [”li(g)(IL + 00} + Tyl o)) — T V/i—l“//c] Tt1- (26)
I A A A @7)
v = m Oy (28)

The approximate solution X,ﬁj_)l and the matrices U, (0), P,(fgl can be computed as
follows:

X =X+ 67067 + U,
U = PVa =50 [ 0um ) — (0~ ASie) i (S 161, 29)
P = Qe DT /05 + U (30)

By summarizing above equations, algorithm of the Shifted Block BiCGGRrQ
method shown in Fig. 2 can be obtained.
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Perform the QR factorization Qy&y = B
Set Xy = 0,5 =Qo,Y., =0, 70 = 50,
Set X\”) = 0,P” =B, 7Y = 1,7\ = £;,6\7) =
Choose Ry € C"™*L,
For k=0,1,...,

Solve (REAS,) oy = RELQ for o,

G =Tr [(AQ)" Ox] /Tr [(AQ)AQK] .

Vi = (Sk — GASK) oy,

X1 = Xi+ [ GOk + Vil &,

Ok 11Tky1 = Ok — GAQ — AV,

S = w1,

// —--— Shift part -—— //

mi) = (w00 +n o) = w7
/ — / —

O‘liw = ﬂk(O-)al/kaJrll(nk(fl)) g

4% =& /(1+0G),
U]EU): (o) (0‘) Ck(o‘)[ (/(o‘)) (Qk*ASkak)Tk+1(ﬂk+l) }/9

X0 =X +c 0 (x )16 + U7,
653—( 14046,
/] mmmmm e //

Solve (Rng)%( = Rng+1/Ck for ’}’/(,
Skr1 = O+1 +VaYss
ASpy1 =AQks1 +AVY,,

// —--— shift part -—— //
e (S
P1<(+1*Qk+l(”k+l) '/8 +|+U 7’1( ),
/] ————— //
End For

Fig. 2 Algorithm of the Shifted Block BICGGRrQ method

3.4 Preliminary Experiments

In this subsection, the performance of the Shifted Block BiCGGRrQ method is
evaluated. The test matrix used in the preliminary experiments is epb2 [2]. The
structure of the matrix is real and nonsymmetric. The size of the matrix and
the number of nonzero elements are 25,228 and 175,027, respectively. The right-
hand sides B and the matrix R, are given by the random number generator. The
number L of the right-hand sides is 1,2,...,16. The shift parameter o is 0.01.
The iteration is stopped when the stopping conditions ||R||r/||Bllr < 107! and

||R,(f)||p/ |Bllr < 107'2 are satisfied. Preliminary experiments are carried out in

double precision arithmetic on MATLAB R2015b.
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Fig. 3 The true relative 10!
residual norm of the seed -
system and that of the shifted
system generated by the
Shifted Block BICGGRrQ
method

T T T T T T T T

—@— Seed of SB-BiCGGRQ
—{l— Shift of SB-BICGGRIQ (o =001 )

True relative residual norm

TN T Y TN TN T R TN N S S S B |

0 2 4 6 8 10 12 14 16
Number of right-hand sides, L

Figure 3 shows the true relative residual norm of the Seed system and that of the
Shifted system generated by the Shifted Block BICGGRrQ method. The true relative
residual norm of the Seed system and that of the Shifted systems are calculated by
IB — AXc|le/|IBll and ||B — (A + o)X ||/ || B||. respectively. The true relative
residual norms of the Seed system are sufficiently small for all L. When L = 1, that
of the Shifted system is also sufficiently small. However, those of the Shifted system
are large in the case of L > 2. When L > 2, the main operation of the Shift part is
the product of an n x L matrix and an L X L matrix.

In [10], it is reported that the error of the matrix multiplication causes the
accuracy deterioration of the approximate solutions. In the next section, we try
to improve the accuracy of the approximate solutions of the Shifted systems by
reducing the number of matrix multiplications.

4 Accuracy Improvement of Approximate Solutions
of the Shifted Systems

In the previous section, we developed the Shifted Block BiCGGR method and
the Shifted Block BICGGRrQ method. Through the preliminary experiments, it
is shown that the accuracy of the approximate solutions of the Shifted system
generated by the Shifted Block BiCGGRrQ method is not good in the case of
L > 2. Soitis expected that the accuracy of the approximate solutions of the Shifted
systems can be improved by reducing the number of matrix multiplications.

In this section, we modify the Shifted Block BICGGRrQ method in order to
improve the accuracy of the approximate solutions of the Shifted systems.
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4.1 Modification of the Shifted Block BiCGGRrQ Method

Using (27), the Eq. (29) can be transformed as follows:

6OV = _ D0, [IL _ tk_—:l(”li(-;-fi)_lnli(a)]

(31)
+ (QéU)P]((U)n,IZ(U) _ é‘]gU)ASk)aka-q-](ﬂk(G)) 1 /(U)
Similarly, using (23) and (28), the equation (30) can be transformed as follows:
9/51)1131(21 /i(ﬂ Q1+ (1 +08) - 07U 7 )y (32)

We define the matrices f’(g) e C™L, IA](G) € C™E, and p, ©) ¢ CL*L a5 i’,(f) =
0P 7@, U = Q(U)P(“) 1@ and 1 = (1)) '7 75, respectively.

Using these matrices, the Eqs (3 1) and (32) can be simplified as follows:

0 = =670 [ 1= ()7 |+ B — 6 As004 57 ™

P/(j.)l =01+ (1 +08)U /ig)V/i

From (26), the matrix ,ul(j_)l can be computed as:

M/(jr)l =1 +oa + [IL (M(U)) l] Vi 19%-

The approximate solution X,ii)l is computed by the following equation.

X =X+ @00+ U ) 7 60°.

By summarizing above equations, algorithm of the modified Shifted Block BiCG-

GRrQ method shown in Fig. 4 can be obtained. In this algorithm, the matrices oc,ig)

and y,ia) are no longer required.

4.2 Computational Costs

The main computational costs per iteration of the Shifted Block BICGGR method,
the Shifted Block BICGGRrQ method, and the modified Shifted Block BICGGRrQ
method are shown in Table 1. s denotes the number of shift parameters. In this table,
the operations “SPMM”, “Block Dot”, “Block AXPY”, and “QR” are defined as
follows:

e SPMM: The product of the n x n sparse matrix A and an n X L matrix.
* Block Dot: The product of an L x » matrix and an n X L matrix.
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Perform the QR factorization Qy&y = B,
Set Xo = 0,50 = Qo,Y_; = O, 7 = &,
Set X\%) = 0,87 = 0, m\” =&l =100 =1,
Choose Ry € C"™L,
Fork=0,1,...,

Solve (RHASy) oy = RHQy for o,

G =Tr [(AQ)" Qi) /Tr [(AQK)"AQY],

Vi = (Sk — GiASk) o,

Xiv1 = X+ [G Ok + Vi &k

Ok1Thr1 = Ok — GAQk — AV,

k1 = Tr1&e

// ——-— Shift part —--- //
W =t+ oo+ |- W) o o,

(% =G/ (1+ 08,

X =X 1+ ([0 + 07w @)1 /6l

9153 = (1+068)6°,

/ / —
nk(fl) = nk(c)ulgfr)l T

// —mmmmmm e //

Solve (ROHQ/()M( = Iéngk+l/Ck for ’)4(,
Sk+1 = Okv1 + V¥
ASpy1 =AQy1 +AVLY,

// —--- Shift part --—- //

BT} = Ot + (1 +06)0 7y,

/] ————— //
End For

0 = =50 [1L— ()] + (B - ¢V As o

o)\ —
o

Fig. 4 Algorithm of the modified Shifted Block BICGGRrQ method

Table 1 Main computational costs per iteration of the three Shifted Block Krylov subspace

methods
Method SPMM Block Dot Block AXPY QR
Shifted Block BiCGGR 2 2 Ss+4 0
Shifted Block BiCGGRrQ 2 2 S5s+5 1
Modified Shifted Block BICGGRrQ 2 2 4s+4 1

s denotes the number of shift parameters
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Fig. 5 The true relative 10' ; , . : : T . T
residual norm of the seed g r madified SB-BICGGRQ 1
system and that of the shifted 8 2 [ ‘ el =) ]
2 107+ —— Shift of modified SB-BICGGRIQ (@ =001 ) | -
system generated by the = L 4
modified Shifted Block 3 5[ W ]
BiCGGRrQ method 7z 107 7
2 10%f ]
s Tt ]
s 101 [ ]
- 10"4 L 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

Number of right-hand sides, L

* Block AXPY: The operation of Z = Y 4 X, where X, Y and Z are n x L matrices,
and « is an L x L matrix.
¢ QR: The QR factorization of an n x L matrix.

4.3 Preliminary Experiments

In this subsection, the performance of the modified Block BICGGRrQ method is
evaluated through the preliminary experiments. The experimental conditions and
the experimental environment are the same as Sect. 3.4.

Figure 5 shows the true relative residual norm of the Seed system and that of
the Shifted system generated by the modified Shifted Block BiICGGRrQ method.
For L > 2, the true relative residual norms of the Shifted system calculated by the
modified Block BiICGGRrQ method are smaller than that by calculating the Shifted
Block BiCGGRrQ method.

S Numerical Experiments

In this section, the performance of the Shifted Block BICGGRrQ method and the
modified Shifted Block BICGGRrQ method is evaluated.

Test problem is a linear system with non-Hermitian matrix, which derived from
lattice quantum chromodynamics (QCD) calculation [1]. The size n of the matrix
is 1,572,864, and the number of nonzero elements is 80,216,064. The number L of
right-hand sides is 12. The right-hand sides B is set as B = [e}, es,...,er], where
e; is a jth unit vector. The elements of the matrix Ry are given by a random number
generator. The shift parameter o is ¢ = 0.001,0.002,...,0.01. The iteration is
stopped when the stopping conditions ||Ri||r/||B|lr < 107! and ||R,((”)||p/||B||p <
10712 are satisfied.



184 H. Tadano et al.
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Fig. 6 True relative residual norm for each shift point
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Fig. 7 True relative residual history of the Shifted Block BICGGRrQ method and the modified
Shifted Block BiCGGRrQ method. (a) Shifted Block BiCGGRrQ. (b) Modified Shifted Block
BiCGGRrQ

Numerical experiments are carried out in double precision arithmetic on CPU:
Intel Xeon E5-2620v3 2.4 GHz (6 cores) x 2, Memory: 64 GB, Compiler: gfortran
ver. 4.9.2, Compile options: -03 -fopenmp. All calculations are parallelized by
OpenMP with 24 threads.

Figure 6 shows the true relative residual norm for each shift point. For the Seed
system, the Shifted Block BICGGRrQ method and the modified Shifted Block
BiCGGRrQ method can generate high accuracy approximate solution. However,
the accuracy of the approximate solutions of the Shifted systems are not good even
though the stopping condition is satisfied. By using the modified Shifted Block
BiCGGRrQ method, we can generate more accurate approximate solutions.

Figure 7 shows the true relative residual history of the Shifted Block BICGGRrQ
method and the modified Shifted Block BICGGRrQ method in the case of 0 =
0.001, 0.002,0.003 and 0.004. When o = 0.001, the true relative residual norm of
the Shifted Block BiICGGRrQ method stagnates around 4.6 x 10~7. On the other
hand, that of the modified Shifted Block BiCGGRrQ method decreases around
3.8 x 10710,
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The elapsed time of the Shifted Block BiCGGRrQ method and that of the
modified Shifted Block BICGGRrQ method are 2305.58 and 1814.38 s, respectively.
In this numerical experiment, the relative residual norm of the Shifted Block
BiCGGR diverged.

6 Conclusions

In this paper, we have developed the Shifted Block BICGGR method and the Shifted
Block BiCGGRrQ method for solving linear systems with multiple right-hand sides
and multiple shifts. Then, we have proposed the modified Shifted Block BICGGRrQ
method in order to improve the accuracy of the approximate solutions of the Shifted
systems. By using the modified Shifted Block BICGGRrQ method, the accuracy of
the obtained approximate solutions was improved.

Our future work is to precisely analyze the cause of the accuracy deterioration of
the approximate solutions of the Shifted systems.

Acknowledgements This work was partly supported by JSPS KAKENHI Grant Numbers
15K15996, 25286097, 25870099, and University of Tsukuba Basic Research Support Program
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Memory-Saving Technique for the
Sakurai-Sugiura Eigenvalue Solver Using
the Shifted Block Conjugate Gradient Method

Yasunori Futamura and Tetsuya Sakurai

Abstract In recent years, a numerical quadrature-based sparse eigensolver—the
so-called Sakurai—Sugiura method—and its variants have attracted attention because
of their highly coarse-grained parallelism. In this paper, we propose a memory-
saving technique for a variant of the Sakurai—Sugiura method. The proposed
technique can be utilized when inner linear systems are solved with the shifted block
conjugate gradient method. Using our technique, eigenvalues and residual norms
can be obtained without the explicit need to compute the eigenvector. This technique
saves a considerable amount of memory space when eigenvectors are unnecessary.
Our technique is also beneficial in cases where eigenvectors are necessary, because
the residual norms of the target eigenpairs can be cheaply computed and monitored
during each iteration step of the inner linear solver.

1 Introduction

In this study, we consider a standard eigenvalue problem:
Au = Au (1)

where A € C™" is a Hermitian matrix, A € R is an eigenvalue, and u € C"\{0} is
an eigenvector. We consider a case where all eigenvalues located in a certain interval
are needed, and assume that A is large and sparse.

In 2003, the Sakurai—Sugiura method (SSM) [12] was proposed for computing
eigenvalues in a specified region and associated eigenvectors of large sparse non-
Hermitian generalized eigenproblems. In the algorithm for the SSM, multiple linear
systems must be solved in order to obtain the eigenspace of the target eigenvalues.
This step dominates the complexity of the method. Because each linear system can
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be solved independently, the SSM has the potential to be highly efficient in recent
massively parallel computational environments.

While the SSM was originally proposed to be applicable to non-Hermitian
problems, several ways have been proposed for taking advantage of the symmetries
of matrices. Specifically, in [3, 8, 9], efficient approaches are proposed to solve the
linear systems in the SSM that applicable for Hermitian (or real symmetric) standard
eigenproblems using the shift invariance of the (block) Krylov subspace. These
approaches have been applied to large-scale problems from practical applications.

In some of these applications, the memory requirements for storing vectors are
critical for large problems, because the matrices of the problems are sufficiently
sparse or computed on-the-fly. In addition, there are cases where eigenvectors are
not required, where only eigenvalues must be computed.

In this paper, to accommodate the demands for reducing memory requirements,
we propose a technique for computing eigenvalues and the residual norms of the
eigenproblem without explicitly calculating eigenvectors. This technique applies in
cases where the shifted block conjugate gradient method with residual orthogonal-
ization (SBCGrQ) [3] is applied to solve the linear systems in the algorithm of the
SSM.

The remainder of this paper is organized as follows. In Sect.2, the SSM and
SBCGrQ are briefly described. In Sect. 3, we propose a memory-saving technique
for computing eigenvalues and residual norms. In Sect.4, we investigate the
effectiveness of the proposed technique through numerical experiments by applying
it to three problems derived from practical applications. Finally, concluding remarks
are presented in Sect. 5.

2 The Sakurai-Sugiura Method with the Shifted Block
Conjugate Gradient Method

In this section, we briefly introduce the eigensolver SSM and the linear solver
SBCGrQ.
The SSM is a projection method that introduces a contour integration as follows:

Sm

1
.ggz"(zI—A)—Ide, m=0,1,....M—1 )
2w Jr

where i is the imaginary unit, I is a positively oriented Jordan curve on the complex
plane, I is the identity matrix of order n, and V € C™ is a matrix formed by
linear independent column vectors. The elements of V are randomly chosen when
there is no preliminarily given information for the target eigenvectors. Let n be the
number of eigenvalues inside I" (counting multiplicity) and S = [So, S1, ..., Su—1]-
According to the Cauchy’s integral formula, the range space of S is spanned by the
eigenvectors corresponding to the eigenvalues inside I, provided that LM > np
and that L is greater than or equal to the maximum multiplicity of the eigenvalues
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inside I'. The SSM extracts the eigenpairs from the range space of S with some
projection technique. There are several approaches for extracting the eigenpairs,
including the Hankel-type method [5, 12], the Rayleigh—Ritz-type method [4, 13]
and the Arnoldi-type method [6]. The corresponding solvers are referred to as SS—
Hankel, SS-RR, and SS—Arnoldi, respectively. The SSM was originally proposed
with L = 1 in [12]. Block versions (L > 2) were proposed to capture degenerate
eigenvalues and improve numerical stability [4, 5].

In this study, we use SS—Hankel to solve (1). With SS—-Hankel, a sequence of
small LxL matrices .#,, = VIS, (m =0,1,...,2M—1) are computed. Then, block
Hankel matrices Hyy € CH*IM and the shifted Hankel matrix Hy;, € CEMXEM are
respectively formed as follows:

My M - My
My My My

Hiy = : : : (3)
My— Mg - -+ Moy—2
and
My My e My
- My M My

My My -+ May—1

The target eigenvalues can be computed with a reduced generalized eigenvalue
problem

Hpyy = vHimy ®)

provided that rank(S) = n, because the eigenvalues of the non-singular part of (5)
are equivalent to the target eigenvalues of (1)—i.e. A = v [5]. The corresponding
eigenvectors are given by u = Sy.

In order to compute (2) numerically, some quadrature rule is applied. We
approximate S, by

N
Sw= Y will'GI—A)'V (6)
j=1

where N is the number of quadrature points, z; and w; are a quadrature point and a
weight, respectively, and {; = (z; — y)/p is a normalized quadrature point defined
with a shift parameter y € C and a scale parameter p > 0 such that the absolute
values of {; (j = 1,2,...,N) are close to unity for numerical stability. Let X; be the
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solution of a linear system (with multiple right-hand sides):
(Gl —A)X; =V. @)

For this numerical quadrature case, //Zk, S‘, I:ILM, I:IEM, D, and y are defined
analogously with S,». When the number of the target eigenvalues is much smaller
than n, the parameters L, M, and N are typically set so as to be much smaller than
n in practice. Strategies for efficient parameter setting are described in [14]. In the
reminder of this paper, we assume that L, M, and N are much smaller than 7.

In many publications [3, 4, 6, 8, 12, 13], the trapezoidal rule with a ellipsoidal
contour path is preferred for the numerical contour integration. In such case, we set
{; = cosb; + iarsin;, wj = p(arcos6; + isin6;)/N and z; = y + p{;, where
0, =Q2n(j—1/2))/N(j=1,2,...,N). Here, p, y, and ar > 0 denote the center,
the horizontal radius and the aspect ratio of the ellipse, respectively.

To solve small generalized eigenvalue problems of (I:IEM, I:ILM), we convert the

problem to a standard eigenproblem with a low-rank approximation of Hiu, using
singular value decomposition (SVD). Then, we approximate the eigenvalues and
eigenvectors as A & A= y+pbandu ~ a = S’ﬁ, respectively. The procedure
for the low-rank approximation and for solving the small eigenvalue problem is
described in Algorithm 1.

In order to compute (6), linear systems with multiple right-hand sides (7)
should be solved for each quadrature point z;. The SSM is embarrassingly parallel,
because (7) can be solved independently. Owing to this feature, eigensolvers using
numerical quadrature (such as the SSM and the FEAST algorithm [11]) have been
actively studied.

SBCGrQ was proposed in [3] as a method for solving linear systems with
multiple shifts and multiple right-hand sides, and it has been applied to the linear
systems in the SSM. SBCGrQ is based on the block CGrQ method (BCGrQ) [2]
and the block bi-conjugate gradient (BiCG) method [10]. It is derived from the fact
that n x L residual matrix of the k-th iteration of block BiCG, which applied to (7)
(denoted by R;k)), can be represented as

RY = 0Wel, ®)

Algorithm 1 Hankel_eig

Input: H5,, Hiy, 80 <8 <1)

Output: V;,;, eank (0 = 1,2, ..., Arank)

: Compute SVD: USWH = ﬁILM (The diagonals of X' are in descending order)

. Let gy be the number of singular values greater than 6%,

: Let Xy be the leading ngnx X fpyni submatrix of X

: Let Uy and W, be the submatrices of leading n,,,x columns of U and W, respectively
: Compute eigenpairs (V;,#;) of 2071/2 UngIZMWOE(;l/Z

L 5= woxy

AN N AW =
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Algorithm 2 Shifted block conjugate gradient method with residual orthogonal-
ization (SBCGrQ). Here, O,x;, is the n x L-dimensional zero matrix, I; is the
L-dimensional unit matrix, qr(-) indicates the QR decomposition, and t > 0 is the
tolerance for the residual norms
Imput: A,V,z; (j=1,2,...,N)
Output: )ij (j=12,...,N)

X0 = 0,6 =0tV =1,

2: 0@ = qr(V)

3: gj“’) = A0 = 0 p;o) = PO = QO

4: for k = 0,1,... until max; ||5;’j(k)||F < 7||V||g do:

50 a® = (P0M(—a)p®)7!
6 QFFD kD = gr(Q® — APMg M)
7o AEFD = phtD A
8. Pl = gkt 4 pt plhtDH
9: forj=1,2,..., N do:
k1 0 =Dy =1 oy mE m ] sk
10: Ej( ) _ D) [IL-FZJ-&“‘) + {p(k) _Ej()(fj( )) }(a(k D)~ p® a“‘)] Ej()
. (k) __ =1 (k+1)
11: % _a(k)(p(kJrl)) lgj + 1 1 H
k =1 (k1) [ ()~ -
12: ﬂ;)za(k)(p(k—i-l)) Ej( )(fj()) (a(k)) p(k+1)
. (k+1) __ (k) (k) (k)
> Xék+1) _Xj +Pj O(ll;) (k)
. — k+1
14: P =%+ pUg;
15: end for
16: end for
17: K =k

18: X =x" forj=1.2.....N

provided that RJ(.O) = Q(O)gj(o) holds initially. Here gj(k) € CMI is a non-singular
matrix and Q® is the orthonormalized residual matrix of the k-th iteration of
BCGrQ, which is applied to the linear system —AX = V.

The pseudo-code for SBCGrQ is shown in Algorithm 2. The outputs f(] (=
1,2,...,N) are the approximate solutions to (7). As we can see in the pseudo-code,
we can update the solutions to (7) (forj = 1,2, ..., N) with only L sparse matrix-
vector products per iteration. This is the most attractive property of SBCGrQ. We
hereinafter refer to the k-loop in Algorithm 2 as the outer iteration. A shifted block
CG algorithm is also proposed by Birk et al. [1]. They apply a deflation technique
to their algorithm.

3 Memory-Saving Technique

In this section, we propose a memory-saving technique to compute the eigenvalues
and the residual norms of the eigenproblem in the eigenvalue computation using
the SSM and SBCGrQ. This technique is applicable to eigenproblems where
eigenvectors are unnecessary.
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3.1 Memory-Saving Computation of Eigenvalues

We first consider constructing H ; and H,; without explicitly computing and storing
Xi(j=12,....,N) andS‘m (m=0,1,...,M —1). In order to compute

N
M = VI8 =Y "W VIX;,
Jj=1

we need only VHXj, rather than X; itself. According to the 13th and 14th lines in
Algorithm 2, VHX(k+1) nd VHP(k+1) are given by the recurrences VHX(kH) =
VHX(k) + VHP(k) V‘) and VHP(kH) = yvHQKk+th 4 VHP(k) ,B(k) respectively, by

I b
multlplylng VH from the left. meg to the orthogonal property of the sequence
of the residual matrices of block CG [10], we have

Q(k)HQ(Z) =0 (£=0,1,...,k—1), 9)

where O;x; is the L x L zero matrix. This implies that VEQ*+1) = O;,;. Hence
VHP;k+1) = VHPJ(.k) ,B;k) . Therefore, we can compute VHXj(kH) , without the explicit
matrix-matrix product involving the dimension n, yet with recurrences of the L x
L matrices. Thus, we do not need to store X(k) and P(k) in order to compute the

eigenvalues. Note that, because we cannot compute S w1th0ut explicit X;, we cannot
obtain eigenvectors using the technique above.

3.2 Memory-Saving Computation of Residual Norms of
Eigenproblem

When computing the eigenvalue, residual norms are typically used to predict
the accuracy of the approximate eigenvalues. Here, we propose a technique for
computing the (absolute) residual norm of the eigenproblem ||Az — ;\ﬁ| |» without
explicit eigenvectors. Because the square of the residual norm is given by

A& — Aa|3 = (A@ — Ai)" (Aa — Adi)
= a"A% — 230" Aa + A2
= (FMSHA2SH — 225" SHASy + A25MSHSH),

it can be calculated by an order-LM vector y and by the order-LM matrices ®; =
SHS, @4 = SHAS, and ©,, = SHAS.
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Now, we consider computing @y, &4, and 4> without explicit matrix multipli-
cations involving the large matrix A. The (m, £)-th (L x L) submatrix of Of (F =
I,A,AZ) can be expressed as follows:

N N

(OF)me = Y Y wilwit! T XMFX;

i=1 j=1

(here, (OF)m ¢ is represented by Op((m—1)L+1 : mL, (€—1)L+1 : £L) in MATLAB
notation). Therefore, their calculation requires XiHXj, XiHAXj, and XiHAZXj.
Next, let us focus on the SBCGrQ algorithm shown in Algorithm 2. First, let
RY =V — (51 —A)X"

be the residual matrix corresponding to X;k) . Based on (8) and (9), and because Xj(K)
can be expressed as X;K) =5 Q(k)C;k) with matrices C;k) € CHL, we have

H
Xl.(K) R](.K) = Oprxr. Because we also have

H H H H
X R = My g0 0
the following holds:
H H H
x07ax® = 5xP7x P xO"y. (10)

In addition, because VHR](.K) = A(O)HQ(O)HQ(K)EI.(K) = Oy and VHR](.K) = VHy —
ZjVHXj(K) + VHAX;K), we have

ViAX S = Zvix® — vy, (11)
Based on the equations

H H H
ROTRE = VA — x07Ax ™ 4+ X0 A2x 0

H H H
and R R](.K) =0 Q(K)HQ(K)SJ-(K) =5 éj(K) , and based on (10) and (11), the
following holds:

H H H
XA = g7 — X OVHY 4 x0T Ax ).

H H H
Thus, we can compute X! AX].(K) and X AZXI.(K) if we have g]FK) gi(K), VHX]-(K) ,
i ) ) )
VHY, and Xi(K) Xj(K). Note that, we have already derived the recurrences for com-

H H
puting VHX;K) in Sect. 3.1. Therefore, we can compute X AX].(K) and x© AZXI.(K)
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. .. . . (K) . &P &) ..
without explicitly computing and storing X;™ if we have X;™ X; (i,j =
1,2,...,N).

H

We now describe the derivation of the recurrences for computing X(K) X(K)
Based on (9), and because X( ) = = OuxL, P(O) = 0O and P( ) can be expressed
as P(k) S Q(Z)G( ) with matrices G( ) e CL*L, both Q(k+1)HP(k) Oprx1 and

X(k) O**D = 0,4, hold. Based on these relations and the 13th and 14th lines in
Algorlthm 2, the following L x L matrix recurrences are derived:

H H H
Xi(k+1) X;k+1) :Xi(k) )(j(k)+Xi(k) Pj(-k)()é;k)

(12)
H H H H
+al(k) (Xj(k) Pl(k))H+a§k) Pz('k) ng)a](k),
H H H H
Xi(k+1) P,('kH) :Xi(k) P;k)ﬂ;k)+a§k) PL('k) P,('k)ﬂ;k)’ (13)
and
H H H
P§k+l) P](_k+1) :IL+,3,-(k) Pl('k) P](k)ﬂ;k)’ (14)

where [} is the identity matrix of order L. Here, the initial values are set such that

H
X(O) X(O) X(O) P(O) = Opxr and P(O) P(O) = I;. Because the terms at the right-
hand s1de in (12) (13) and (14) are all known at the end of the k-th iteration, we

can compute X; (0 X; % without the explicitly computing the product of X; (0 and

X; & ), yet with recurrences of the L x L matrices. This indicates that eventually we
can compute the residual norms of the eigenproblem without explicit operations and
storage involving X; ) and Pj(.k) .

The pseudo-code for the resulting algorithm is shown in Algorithm 3. Both
SS—Hankel and SBCGrQ are included in a single pseudo-code. In order to easily
recognize that there is no explicit matrix product involving dimension n in the

H
recurrences for X(k) X(k) , we introduce following symbols: 7, = VHX;k) , W =

H H H H
VHP(k), X,(Jk) — X(k) X(k) ¢(k) — X(k) P(k) (Ik) — P(k) P(k), (K) = Xi(K) AXj(k)

and W;K) X; (0 A2X (K) . The outputs 7; are equal to ||Au; — iui|| / ||ii12,<|| in exact
arithmetic. We refer to them as the relative residual norms in this study. In case
A; = 0, only the numerator (the absolute residual norm) of 7; may be computed and
used to assess the accuracy of the eigenvalues.

We now discuss the memory requirement for our technique. If the matrix A is
sufficiently sparse, the storage of n x L matrices is dominant, and the storage of L x L
matrices is negligible, because L < n. Thus, we can compare memory requirement
by counting the number of n x L matrices that should be stored in the algorithms
of the SSM and SBCGrQ. Using our technique, the SSM does not require S,, (m =
0,1,...,M — 1) and SBCGrQ does not require X; and P; (j = 1,2,...,N). Note
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Algorithm 3 Algorithm of SS-Hankel with SBCGrQ using our proposed memory-
saving technique. Here, O, is the n x L-dimensional zero matrix, I; is the L-
dimensional unit matrix, qr(-) indicates the QR decomposition, and > 0 is the
tolerance for the residual norms
Input: A, V,z,w;, gy, 0,6 (j=1,2,...,N)
Output: i T

1: (Beginning of SBCGrQ)

2 X" = 0§ V=0V =14,
3: Qp® = qr(V)
4 E,-(O) = A0 = pO), P;O) = PO = QO
5: fork =0, 1,... until max; ||£"[|r < t||V]|r do:

6:  a® = (P0"(—a)ph)”

7. Q*FD kD = gr(® — APWE®)
8: AktHD = p(k'H)A(k)
9: Pt = g+ 4 pt pktDH
10: forj=1,2,...,Ndo:

k1 ) /o (—1) —1 =1 H 1«
11: 5,-( ) = plktn [1L+Zja(k)+{p(k)—§j()(§j )) }(a(k D)~ p a(k)] 5,-()

k =1 (k+1
12: aj()_a(k)(p(k—i-l)) S( )

(k —1 (k1) [k —1 H
B = ) ) ) e
14: ﬂ(k+1) 1 + oVa _(k)

. (k+1) __ (k) p(k)
15: w; = ;' B;
16: end for
17: fori=1,2,...,Ndo:
18 forj=1,2,..., N do
(k+1 (k k) (k oH (& oH k) *
19: i ) _ Xu)+¢) () () (¢ ))H () ”ij)aj()
. k+1) _ (k) (k) (k)H (k) (k)
k41 k k) ok

21 7T,-5-+) I+5() ()5;)
22: end for
23: end for
24: end for
25: (End of SBCGrQ)
26: K =k

27: ///A,,,=Z§V:1wj§;”nj form=0,1,...,2M — 1
28: fori=1,2,...,N do:
29: forj=1,2,...,Ndo:

30: (K) — ZJXI(JK) (nl(K))H

31 W(K) E(K) E(K) (K) + AOTA©O +ZK
32: end for

33: end for

34: form=1,2,..., M do:
35: for{=1,2,...,Mdo:

m— K
36: (Ot = Yiey Y0 it w1
m— K
37: O)me = X 0 wit ™ gkl
38: (On)me = Yomy Sl wit it~ ‘v/"‘)
39: end for
40: end for

(continued)
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41: Form H;y; and I:IZM as (3) and (4)

42: [V;, ¥;, Nrank] = Hankelieig(flfM, Hi, 8)  (see Algorithm 1)
43: fori=1,2,..., ngnk do:

44: A=y 4+ py;

a5: 7= /GO0 — 200, + 120))5)/ (0505,

46: end for

Table 1 Comparison of the memory requirements of our technique with those of the standard
approach

Variable Standard approach Proposed technique
\4 nL 0

oW nL nL

p® nL nL

AP® nL nL

Xj:: (j: =1.2.....N) NnL 0

P (j=12,...,N) NnL 0

Total (2N + 4)nL 3nL

that u can be computed by 5(] without forming S. Hence, there is no need to compute
and store S, also with the standard approach. A comparison between our proposed
technique and the standard approach is shown in Table 1. The value of the memory
requirement in the table refers to the number of scalar elements that must be stored.
We assume that the right-hand side V is overwritten by Q® with our technique.
As seen in Table 1, our technique requires only 3nL elements whereas the standard
approach requires (2N + 4)nL elements. Consequently, our technique reduces the
memory requirement significantly, because we usually set N > 16.

Using the proposed technique, we can compute eigenvalues and residual norms
of the eigenproblem at a negligible cost when L, M, and N are much smaller than
n. It means that it is easy to compute the residual norms of the eigenproblem
at every outer SBCGrQ iteration. The residual norms of eigenpairs are desirable,
because in some cases, the highly accurate solution to (7) for a certain z; does not
contribute to the accuracy of the target eigenpairs. We do not have to wait for the
convergence of such solution to the linear system if we can obtain the residual norms
of the eigenproblem cheaply. This is useful not only in cases where eigenvectors
are irrelevant, but also in the cases where eigenvectors are necessary, although
in the latter case, the advantages of a small memory requirement have not been
investigated.

In the remainder of this paper, we refer to a residual norm that is explicitly
computed with & as a “true” residual norm. Similarly, we refer to an approximate

eigenvalue A explicitly computed using Xj(j) as a “true” approximate eigenvalue.
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3.3 Limitations

As described Sect. 3.2, the basis for our technique for computing the residual norm
of the eigenproblem is the computation of its square:

A — Aal|3 = (37005 — 245" 0u5 + 25" 019), (15)

and the computation for the terms at the right-hand side using the recurrences
with (block) bilinear forms. Due to this, a large cancellation error occurs when
the residual norm is relatively small. For instance, consider now that the relative
difference between 570,25 + 1270, and 245" 0,5 is approximately 1072°. In
such case, a cancellation error with approximately 20 digits occurs in (15). Thus,
using our technique with the double precision arithmetic, we cannot correctly
compute such relatively small residual norm that causes a cancellation error with
more than 16 digits. This large cancellation error was confirmed in the numerical
experiments.

In the discussion in the previous section, we assumed that the number of right-
hand sides (RHSs) involved in SBCGrQ is L. If L is large, however, it is better
to employ multiple instances of SBCGrQ and apply them to different subsets of
RHSs because as the number of RHSs increases, the computational cost per iteration
increases in O(L?). Unfortunately, our technique is only applicable when a single
SBCGrQ instance is employed and when all RHSs are treated collectively.

Furthermore, our technique is not applicable to SS-RR and SS-Arnoldi, because
an explicit manipulation of S or X; is necessary for these methods.

4 Numerical Experiments

All numerical experiments described in this section were carried out in MATLAB
R2014a. The floating-point arithmetic was executed with double precision. We
compared the approximate eigenvalues and the residual norms of the eigenproblem
computed by our technique, and the true approximate eigenvalue and the true
residual norms of the eigenproblem, respectively. The properties of the matrices
used in the examples are shown in Table 2. The intervals of the target eigenvalues
and the number of target eigenvalues are also provided. The application areas of the
problems are described in each example. For the contour path of the SSM, we used

Table 2 Properties of the matrices used in the numerical examples

Example Matrix type Size Interval # of eigenvalues
Ex.1 Real symmetric 4000 [—13,=7] 20
Ex.2 Real symmetric 25,000 [—0.78,—0.116] 31

Ex.3 Complex Hermitian 3072 [0.12,0.33] 31
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Table 3 Fixed parameters in the SSM for all experiments

Parameter Description Value
L Number of source vectors 16
M Maximum moment size 8
N Number of quadrature points 32
oR Aspect ratio of the ellipse 0.1
] Threshold for the low-rank approximation of Hyy 10~
10° — 10°
—|Ai = Adl/IAdl
10~ e 107
=T
10_6 W—W 10_6 ¢ 5
. . —~ A= Al /[ Adl
107 107} e
10712 10712 ‘ — "
. W W A
0 5 10 15 20 0 5 10 15 20
(a) Index of Eigenvalue (b) Index of Eigenvalue

Fig. 1 Differences in eigenvalues and values of residual norms of Example 1. (a) t = 10~ (b)
T=1073

an ellipse that is symmetric with respect to the real axis and intersects at each end of
the target interval. We used the trapezoidal rule for the numerical quadrature. The
fixed parameters of the SSM for all experiments are shown in Table 3.

4.1 Example 1

In this example the test problem is derived from a nuclear shell-model calcula-
tion [15]. The matrix A is a real symmetric matrix (n = 4000). The results of the
experiment are shown in Fig. 1. The parameter t in the captions of Fig. 1a and b are
the parameter of the stopping criterion for SBCGrQ, which appears in Algorithm 2.
Thus the difference of the results shown in Fig. 1a and b comes from the difference
of the values of 7. _

In the figures, A; denotes a true approximate eigenvalue, whereas A; denotes
an approximate eigenvalue computed with our memory-saving technique. The
computed eigenvalues are indexed in ascending order. We plot the (relative)
difference between A; and A—i.e, |i, — il|/ |ii|—to show that the approximate
eigenvalues are accurately computed with our technique. Note here that A and A are
equivalent in exact arithmetic. In the figures, we also plot the residual norms of the
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eigenproblem computed by our technique (denoted by 7;) and true residual norms
of the eigenproblem (denoted by r;).

For the eigenvalues, as we can see in both Fig. 1a and b, |)L —Xi |/ |A | are smaller
than 107'2. For the case of 7 = 1073, |A - X |/ |)L | are sufficiently small with
respect to their true residual norms. In Fig. 1a, we can see that the values for r; are
approximately 1077, and the values for r; are smaller than 10~'". In this case, our
technique failed to compute the residual norms correctly. This is due to the large
cancellation error that occurs in our technique. We show a result with 7 = 1073
in order to demonstrate that our technique is successful when the relative residual
norms of the eigenproblem is not so small as to cause the large cancellation. In
contrast to the result in Fig. 1a, we see that our technique can compute the relative
residual norms accurately, provided that they are greater than approximately 107°,
Here, we regard that a residual norm is accurate if its exponents are agree with that
of the true residual norm.

For the application of this example, only rough estimations of eigenvalues are
required. Our technique is useful for this kind of application, even though small
residual norms cannot be computed correctly.

4.2 Example 2

In this example, we performed the same experiment as Example 1 with a different
test matrix. The test matrix was derived from a real-space density functional
calculation [7] and is a real symmetric matrix (n = 25,000). The results of the
experiment are shown in Fig. 2a and b. In both figures, we can see that |i, — il|/ |il|
is less than 107!2, For the case of 7 = 1074, |)AL, — i,|/|il| are sufficiently small
with respect to their residual norms. In Fig. 2a, we can see that the values for 7; are

10° 10°
- 5\1 — /N\l 5\,‘
o ~ = A1 .
——T;
107 10°¢
107 107
107" 1071 S AN
0 10 20 30 0 10 20 30
(a) Index of Eigenvalue (b) Index of Eigenvalue

Fig. 2 Differences in eigenvalues and values of residual norms of Example 2. (a) r = 10~'4. (b)
r=10""*
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approximately 1077, whereas the values for 7; are smaller than 10™!!. Again, this is
due to the large cancellation error that occurs with our technique. On the other hand,
as seen in Fig. 2b, our technique can compute the relative residual norms accurately
when they are greater than approximately 107>, In this numerical example, we
observe that the differences of the eigenvalues and the values of the residual norms
show similar behavior to those observed in Example 1.

4.3 Example 3

In this example, we performed the same experiment as the previous two examples
with a different test matrix. The test matrix was derived from the computation
of quark propagators in quantum chromodynamics. This matrix is a complex
Hermitian fermion matrix [9] (n = 3072). The results of the experiment are shown
in Fig. 3a and b. In both figures, we can see that |il —i,|/|i,| are smaller than 107'2,
In Fig. 3a, we can see that the values for 7; are approximately 10~7, whereas the
values for r; are smaller than 10™!!. Once again, this is due to the large cancellation
error that occurs with our technique. On the other hand, as seen in Fig.3b, our
technique can compute the relative residual norms accurately if they are greater than
approximately 10™*. In this numerical example, we also observe that the differences
of the eigenvalues and the values of the residual norms show similar behavior to
those observed in the previous two examples.

10° S—— 10°

—|Ai = Ail /1A
1073 —-Ti 1073

-7
1076 1076 —

A = Al /A
107 107 o
1015 WV\/V\/\//\N 1015 /’\/\/\_/\/\/\/\/\/\
0 10 20 30 0 10 20 30

(a) Index of Eigenvalue (b) Index of Eigenvalue

Fig. 3 Differences in eigenvalues and values of residual norms of Example 3. (a) t = 107!, (b)
T=10"2
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4.4 Monitoring Residual Norms of Eigenproblem While
Solving Linear Systems

As we described in the previous section, we can compute residual norms of the
eigenproblem for every outer SBCGrQ iteration with relatively little computational
cost. Here, we demonstrate the computation of the relative residual norms of the
eigenproblem for every outer SBCGrQ iteration. The test matrix and the parameters
were the same as they were in Example 3, and © = 107'°. The histories of relative
residual norms for linear systems and the eigenproblem are shown in Fig.4. The
blue line with markers labeled by min lin res indicates the history of the minimum
relative residual norm for (7)—i.e., min; ||§j(k) [le/||V||g. The green line with marker

labeled by max lin res indicates the history of max; ||§j(k)||p/||V||F The other
lines labeled with eig res i indicate the i-th smallest relative residual norms of the
eigenproblem of each iteration.

In the figure, we can see that the residual norms of the eigenproblem stagnate
from around the 130th iteration because of the cancellation error. The residual
norms of the eigenproblem reaches 10~° (around the 110th iteration) well before the
residual norms of the linear systems reaches 7 = 107'°. When 107° is sufficient for
these residual norms of eigenproblem and only the corresponding eigenvalues are
necessary, the subsequent iterations are wasted. In such case, using our technique,
we can skip these wasted iterations.

100 1
1073 1
——min lin res
10°¢ | | = max linres R
—eigres 1
107 | eig res 2 i
—eigres 3
10712 1 ]
eig res 4
1015 | —eigres 5 )
0 50 100 150 200

Tteration count

Fig. 4 Histories of the residual norms of linear systems and the residual norms of the eigenprob-
lem
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5 Conclusions

We proposed a memory-saving technique for computing eigenvalues and residual
norms of the eigenproblem in cases where SBCGrQ is applied in conjunction with
the SSM. Our technique drastically reduces the memory consumption needed for
applications that eigenvectors are irrelevant, and the memory requirement for the
matrix A is negligible. In addition, our technique allows us to compute eigenvalues
and residual norms for the eigenproblem cheaply during each outer SBCGrQ
iteration. This is beneficial not only in cases where eigenvectors are irrelevant, but
also in the cases where eigenvectors are necessary, although in the latter case, the
advantages of a small memory requirement have not been investigated. We evaluated
the accuracy of eigenvalues and the residual norms of the eigenproblem computed
with our approach using three numerical examples from practical applications.
However, we observed the occurrences of large cancellation errors when the residual
norms of the eigenproblem were small. Thus, we will develop a technique to avoid
such cancellation errors in a future work.
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Filter Diagonalization Method by Using

a Polynomial of a Resolvent as the Filter
for a Real Symmetric-Definite Generalized
Eigenproblem

Hiroshi Murakami

Abstract For a real symmetric-definite generalized eigenproblem of size N matri-
ces Av = ABv (B > 0), we solve those pairs whose eigenvalues are in a real interval
[a, b] by the filter diagonalization method.

In our present study, the filter which we use is a real-part of a polynomial of a
resolvent: F = Re Y ;_, v{R(p)}*. Here R(p) = (A — pB)™'B is the resolvent
with a non-real complex shift p, and y; are coefficients. In our experiments, the
(half) degree n is 15 or 20.

By tuning the shift p and coefficients {y;} well, the filter passes those eigenvec-
tors well whose eigenvalues are in a neighbor of [a, b], but strongly reduces those
ones whose eigenvalues are separated from the interval.

We apply the filter to a set of sufficiently many B-orthonormal random vectors
{x(Y} to obtain another set {y(®}. From both sets of vectors and properties of
the filter, we construct a basis which approximately spans an invariant subspace
whose eigenvalues are in a neighbor of [a, b]. An application of the Rayleigh-Ritz
procedure to the basis gives approximations of all required eigenpairs.

Experiments for banded problems showed this approach worked in success.

1 Introduction

We solve pairs of a real symmetric-definite generalized eigenproblem of size N
matrices A and B as:

Av = ABv ey

whose eigenvalues are in the specified interval [a, b] by the filter diagonalization
method [16]. We define for this kind of eigenproblem, the resolvent with a
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complex-valued shift p as:
R(p) = (A—pB)™'B. )
In our previous papers and reports [5-9] and papers of others [1-3], the filter studied

or used was a real-part of a complex linear combination of resolvents with complex
shifts:

F=cool +Re » yiR(px) . 3)
k=1
Here, c is areal coefficient, y¢, k=1, 2, .. ., n are complex coefficients, and / is the

identity matrix. (The reason we take the real-part is to halve the cost of calculation
by using the complex-conjugate symmetry). For example, fromn = 6 ton = 16 (or
more) resolvents were used.

For a given set of size N column vectors X, the action of the resolvent Y <— R(p)X
reduces to solve an equation CY = BX for a set of column vectors Y. Here, the
coefficient matrix is C = A — pB. When C is banded, the equation may be solved
by some direct method using matrix factorization. When C is random sparse, the
equation is solved by some iterative method using incomplete matrix factorization.
In the application of the filter, the matrix factorization is a large portion of the
calculation. The total amount of memory to store the factor is also a very severe
constraint in the calculations of large size problems. When many resolvents are
used, the total amount of memory requirements is proportional to the number of
resolvents applied concurrently.

There are also different but similar approaches and successful studies which are
based on the contour integrals and moment calculations [4, 13—15], which also uses
many resolvents whose shifts correspond to the integration points.

In this report of study (and in our several previous reports [10-12]), we used
only a single resolvent with a complex shift and constructed the filter which is a
real-part of a polynomial of the resolvent as:

F =cool +Re Yy (R(p))" . )
k=1

We made some numerical experiments on a test problem to check if this approach
is really applicable.
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2 Present Approach: Filter is Real-Part of Polynomial
of Resolvent

For the large eigenproblem, we assume the severest constraint is the amount of
memory requirements. Thus, in our present study of the filter diagonalization
method, we use a single resolvent in the filter rather than many ones. The filter
we use is a real-part of a polynomial of the resolvent. In the filter operation, the
same resolvent is applied as many times as the degree of the polynomial. Each time,
the application of the resolvent to a set of vectors reduces to the set of solutions
of simultaneous linear equations of the same coefficient matrix. To solve the set
of simultaneous equations, the coefficient matrix is factored once and the factor is
stored. The stored factor is used many times when the resolvent is applied. By the
use of a single resolvent rather than many ones, even the transfer function of the
filter cannot be made in good shape, but in exchange we obtain advantages of lower
memory requirement and reduced number of matrix factorization.

2.1 Filter as a Polynomial of a Resolvent and Its Transfer
Function

We consider a real symmetric-definite generalized eigenproblem of size N matrices
A and B:

Av = ABv, where B > 0. (&)
The resolvent with a non-real complex shift p is:
R(p) = (A—pB)™'B. (6)

For any pair of the eigenproblem (4, v), we have:

1
R(p)v = A—pv' (7

The filter F is a real-part of a degree n polynomial of the resolvent:
F = cool +Re Yy {R(p)}" . (8)
k=1

Here, ¢ is a real number, and y; are complex numbers. This filter is a real linear
operator. For any eigenpair (A, v), we have:

Fv=f()v. €)
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Here, f(4) is the transfer function of the filter F' which is a real rational function of
A of degree 2n as:

. Vi
A) = cso + R 10
fQ) = coo + e;@_p)k (10)

whose only poles are located at a non-real complex number p and its complex
conjugate (both poles are n-th order).

2.1.1 Transfer Function g(¢) in Normalized Coordinate ¢

We are to solve those pairs whose eigenvalues are in the specified real interval [a, b].
By the linear transformation which maps between A € [a,b] and ¢t € [—1, 1], the
normalized coordinate ¢ of A is defined as A = ‘Hz'h + (”;“) t. We call the interval
t € [—1, 1] as the passband, intervals . < |t| as stopbands, and intervals 1 < |t| < u
which are between the passband and stopbands as transition-bands.

The transfer function g(f) in the normalized coordinate ¢ is defined by:

gt) =f(A). (11)

To the transfer function g(7), we request the following conditions:

1. |g(f)] < gsiwop When ¢ is in stopbands. Here, ggp is @ very small positive number.

2. gpass =< g(t) when and only when ¢ is in the passband. Here, gp.s is a
number much larger than ggop. (The upper-bound of g(¢) is about unity. By
re-normalization of the filter, which is the multiplication of a constant, we may
set the upper-bound to unity later.)

For convenience, we also restrict g(7) to an even function. Then the poles are pure
imaginary numbers (Fig. 1).

We just placed the poles of g(7) at pure imaginary numbers = #+/—1, and the
expression of g(7) is written as:

n o
g®) =c.,+Re .
* ; (1 + t/=1 )k

(12)
For this expression, to make g(f) an even function, we restrict coefficients oy,
k=1,2,...,n as real numbers. The real coefficients are so tuned to make the shape
of g(7) satisfies the following two conditions: (1) In the passband |¢| < 1, the value
of g(¢) is close to 1, (2) In stopbands u < ||, the magnitude of g(¢) is very small.
(See, Fig. 2). In our present study, coefficients are optimized by a method which is
similar to the least-square method.
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The interval [a,b] of eigenvalue A
and the location of pole p the shift for resolvent

shift p

t=i

Fig. 1 Specified interval of eigenvalue and location of poles (shifts)

The specified interval [a,b] and the transfer function
(The ideal version and the conceptual version)

f=1 £

f=g_pass

Fig. 2 Shapes of transfer functions (ideal and conceptual)
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2.2 Construction of Filter from Transfer Function

We construct the filter operator F' from the transfer function g(z).
Since

473

g(t) =, +Re Z

. (13)
k
k=1 (1 + tx/—l)
f() = coo + Re Z e (14)
2 (3~ p)
b b—
and also from both two relations: f(1) = g(1), A = a—; + 5 “ t,
we have relations between coefficients and the value of the shift.
Cho = Coos (15)
k(b—a\k
Ve = o (—«/—1) ( ) ) k=1,2,...n, (16)
a+b b—a
= V-1, 17
P ) + ) (17

Here after, we simply set the transfer rate at infinity ¢ to zero, thus our filter
operator is:

F=Re )y {R(p)}" . (18)

k=1

When the half-width of the interval ”;“ is a large or a small number, then

k
coefficients y;, = (— ";a v —1) oy for higher k-th terms might get unnecessary

floating point number overflows or underflows, which can be avoided by changing
the expression of the filter as:

k

F =Re Zn:ak {(—«/—1) b;aR(p)} . (19)
k=1

2.3 Procedure of Filter Operation

Here, we show the procedure of the filter operation, the action of the filter to a given
set of vectors.
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Fig. 3 Procedure of filter
operation Y <— F X

W—X;

Y—0;

for k := 1 to n do begin
Z—R(p)W ;
W (—v=1) 547
Y —Y+ouReW

end

Our filter F is specified by the degree n, a complex shift p = ‘Hz'h + h;“ V-1
and real coefficients o, k=1,2, ..., n as the above expression (19).

Let X and Y are sets of m real column vectors of size N which are represented
as real Nxm matrices. Then, the filter operation ¥ <— F X can be calculated by a
procedure shown in Fig. 3. (In the procedure, W and Z are complex N xm matrices
for work.)

2.4 Implementation of Resolvent

To calculate the action of a resolvent Z < R(p) W, we first calculate BW from W,
then solve the equation CZ = B W for Z. Here, the coefficient is C = A — pB. Since
both matrices A and B are real symmetric, C is complex symmetric (CT = C). When
both matrices A and B are banded, C is also banded. In our present experiments, the
complex modified-Cholesky method without pivoting for banded system is used for
the banded complex symmetric matrix C, even there might be a potential risk of
numerical instability.

In the calculation of Rayleigh quotient inverse-iteration which refines approxi-
mated eigenpairs, the shifted matrix is real symmetric but indefinite and very close
to singular, therefore the simultaneous linear equation is solved carefully by the
banded LU decomposition with partial pivoting without using the symmetry.

3 Filter Design

Our filter is a real-part of a polynomials of a resolvent. The coefficients of
the polynomial are determined by a kind of least-square method, which is the
minimization of the weighted sum of definite integrals in both passband and
stopbands. The definite integrals are weighted integrations of square of errors of
the transfer function from ideal one. The minimization condition gives a system of
linear equation with a symmetric positive definite matrix. However, the equations
is numerically highly ill-conditioned. Therefore, to determine accurate coefficients
in double precision, we have to make quadruple precision calculation both in the
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generation of the system of linear equations and in the solution of the generated
system by using regularization.

3.1 Design by LSQ Method

We show a method to tune o, the coefficients of g(¢), by least square like method.
First, we make the change of variable from ¢ to 6 as t = tan 6, and let h(0) = g(7).

h(0) =Y oy cos(kf) (cos 0) . (20)

k=1

Since i(6) is an even function, it is sufficient to consider only in 6 € [0, 00). The

JT].

condition of passband is also considered in 8 € [0, A

3.1.1 Method-I

Jstop and Jpug are the integrals in the stopband and in the passband (with weight 1)
of the square of difference of the transfer function 4(8) from the ideal one.

We choose a positive small number 1 and minimize J = Jgop + 1 Jpass-

For intervals [0,1] and [p,00) of ¢ correspond to intervals [0,7/4] and
[tan~! 1, /2) of 6, respectively (these give endpoints of definite integrals for
(half of) passband and a stopband). Then we have:

/2 n
S = [ )70 = Y a0 @
t

—1
- p.g=1

/4 n n
Tpass = / {1=h(O)d0 = Y, Bpgag—2Y 0, Bpo + const. (22)
0

P.q=1 p=1

Here,
/2
Ly = / cos(p) cos(gh) (cos 8’1 d6 (23)
tan—1
/4
By = / cos(ph) cos(gh) (cos B)’ 4 d6 . 24)
0

We calculated numerical values of these definite integrals by analytic closed
formulae.
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We can easily show that cos(p6) cos(gf)(cos 0)*4

— 2—(p+q+2)(1 + e—2ip9)(1 + e—2iq9)(l + eZi@)p-‘rq

p+q +
— 2~ (a2 (] 4 200 +e—2iq9)z pTyq o2ik0
k=0 k

ptq

— o~ (p+g+2) Z (p + q) {62ik0 + Rilk=p)f  ilk—q)f 62i(k—p—q)9}

X )
k=0

where i denotes the imaginary unit v/—1.
We define for an integer £ and real number a and b:

b
TZE/ cos 246 db

_)b—a =0
B (sin2€b — sin24a)/(2€) = {sinf(b — a) - cos £(b + a)}/L (otherwise)

Then for integers p and g, we have:

1 p+q<p+q

b
/a cos(ph) cos(gh)(cos )’ df = a2 2 L ){Tk + Timp + Tyt + Tptg—i)-

=0

which has a symmetry for p <> g. We can use another symmetry that 7y + Tz, and
Ty« + Tpy 4« is interchanged when k — p + g — k. Since |T| < 1/k, we calculate
the sum so that terms are added in ascending order of magnitudes of binomial
coefficients so to reduce rounding errors. Let wy = Ty + Ty, and m = p + ¢,
cx = (), the value of integral v is calculated as in Fig. 4.

The minimization condition of J = Jyiop + 1 Jpass 1S, if we set b, = %, o, reduces
to a simultaneous linear equations whose coefficient matrix is real symmetric
positive definite:

(o +nPB)a =nb. (25)
For this linear equation, &/ and & are size n matrices whose elements are 7, ,
and %,4, p,q=1,2,...,n, respectively, and also & and b are column vectors
o = [a1.0,....,0,]" and b = [by, b, ..., b,]|T, respectively. We solve this linear

equation to obtain the coefficients oy, k=1,2,...,n.
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Fig. 4 Procedure to calculate

definite integral integral (p, ¢, a, b) :=

begin
me«p+q;
co—1;
for ji=1tomdoc;—cj_y*(m—j+1)/j;
for j:=0tomdow; — Tj(a,b)+Tj_,(a,b) ;
s:=0.0;
for j := 0 to m do begin
if (j <m— j)then
s stcjx(wj+wnj)
else if (j == m — j) then
Se=stcjixw;
else
exit for
end if
end;
return v «— s/2"+1
end

3.1.2 Method-II

We assume o as a vector whose 2-norm is a constant, and we first minimize the
definite integral in the stopband:

Jstop = Z op g Qg = o' a. (26)
P-g=1

If we choose & to the eigenvector of the smallest eigenvalue of the matrix <7,
then Jgop is the minimum. But if we did so, there is no more freedom left to tune
the approximation in the passband. Thus, we introduce the following modification.
We choose a suitable small positive number €. If there are £ eigenvectors whose
eigenvalues are under the threshold ¢, let S be the subspace which is spanned by
those ¢ eigenvectors. Then, it holds Jyop < € ||||3 whenever & € S©.

The minimization condition of Jp,. under the constraint o € S® reduces to a
simultaneous linear equations whose coefficient matrix is of size £ and symmetric
positive definite.

When we extend the subspace (by increasing £), then J,.s decreases and
the approximation in passband become better, however Jy,, increases and the
approximation in stopband become worse. On the other hand, when we shrink
the subspace (by decreasing £), then Jyop decreases and the approximation in the
stopband become better, however Jp,,s increases and the approximation in passband
goes wWorse.
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We have to find a good choice of threshold € (or £) considering the balance of
both contradicting conditions of approximations in the passband and the stopband.

3.2 Examples of Designed Filters

We show in Table 1 (See Tables 2, 3, 4 and Figs.5, 6, 7), three filters (No.l),
(No.2) and (No.3) which are determined by a least-square type method (Method-
II). The good thresholds in the method are determined by trials. For the filter (No.1),
€ = 107" is used, which gives £ = 2. For the filter (N0.2), ¢ = 1072 is used, which
gives £ = 2. For the filter (No.3), ¢ = 107 is used, which gives £ = 5. When n
and p are given, the result depends only on £ the rank of subspace. The value of
threshold € is used to obtain the appropriate £. If about 15-digits reduction ratio in
stopbands (gswp &~ 10719) is desired, we need 30-digits accuracy to calculate the
least-square type method. Therefore, we used quadruple precision calculation only
in this step to obtain coefficients oy, k=1,2,...,n in double precision.) It seems
the coefficients o themselves are numerically very sensitive even the calculation is
made in quadruple precision, however it does not matter as long as the shape of the
obtained transfer function is good. For the filter (No.2), the value of u is set smaller

Table 1 Filters used in experiments

Filter n " &pass Giiop Coefficients Graph

(No.1) 15 2.0 2.37975x10~* 1.1x1071 Table 2 Figure 5
(No.2) 15 1.5 5.46471x10~° 5.8x10713 Table 3 Figure 6
(No.3) 20 2.0 1.27268x1072 2.6x1071 Table 4 Figure 7

Table 2 Filter (No.1):

- (%73
coefficients oy

3.10422 91727 23495 E—1
3.10422 91727 25609 E—1
2.85453 67519 83506 E—1
2.35515 19113 67395 E—1
1.64913 99494 59607 E—1
8.22631 58940 55446 E—2
—6.57520 79352 44120 E—4
—7.11802 27019 60262 E—2
—1.18756 19212 14338 E—1
—1.37828 28527 33139 E—1
—1.29654 88587 73316 E—1
—1.01680 66293 50991 E—1
—6.60360 83956 00963 E—2
—3.26587 11429 62141 E—2
—1.19174 53737 97113 E—2

O 0 1 N L AW~ X

—_
—_ O

— =
w AW N
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Table 3 Filter (No.2):
coefficients oy

Table 4 Filter (No.3):
coefficients oy

O 00 1 N R W= X

—_
—_ O

— e
wn A~ W

O 0 1 N L AW~

—_
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2.96820 21545 20158 E—1
2.96820 21559 16071 E—1
2.75088 15974 67332 E—1
2.31624 08572 14527 E—1
1.69794 56003 35121 E—1
9.63363 20742 38457 E—2
2.05451 20416 48405 E—2
—4.71689 11183 01840 E—2
—9.79849 96401 27541 E—2
—1.24548 37945 26314 E—1
—1.29956 87350 27408 E—1
—1.07402 42743 15133 E—1
—8.79229 80353 17280 E—2
—4.04631 99059 03723 E—2
—3.14108 29390 18306 E—2

(%73

4.83711 51618 67720 E—1
4.83711 51618 86980 E—1
3.89953 63967 72419 E—1
2.02437 88771 47818 E—1
—4.47810 12123 49263 E—2
—2.83593 39733 50968 E—1
—4.27656 83262 24258 E—1
—4.04019 57859 22469 E—1
—1.91913 38100 55309 E—1
1.49822 57109 15564 E—1
4.82023 35016 46190 E—1
6.49169 20356 99877 E—1
4.90263 91392 85137 E—1
1.69552 59243 54134 E—1
—5.78530 56855 20654 E—1
—3.72065 97434 12249 E—1
—1.44479 33647 97014 E—0
7.85556 89830 56973 E—1
—1.07607 55888 09609 E—0
1.70217 32211 25582 E—0

than that of filter (No.1), but in exchange the value of g, becomes smaller and the
value of g, becomes larger. For the filter (No.3), the value of gp is closer to 1
than that of filter (No.1), which is attained with larger degree n = 20.
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Fig. 5 Filter (No.1): magnitude of transfer function |g(?)|
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Fig. 6 Filter (No.2): magnitude of transfer function |g(?)|

About the shape parameters of the transfer function i, gpass and gop:

e If p is increased, the transition-bands become wider, then it is likely that the
number of eigenvectors whose eigenvalues are in the transition-bands increases.
The more eigenvectors exist whose eigenvalues are in transition-bands, then the
more vectors are required to be filtered to construct an approximation of the basis
of the invariant subspace.

*  When the max-min ratio of the transfer rate in the passband (related to the recip-
rocal of gpass) s a large number, the ununiformity of accuracies of approximated
pairs tends to be low.
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Fig. 7 Filter (No.3): magnitude of transfer function |g(?)|

* When gqp, the upper-bound of magnitude of transfer rate in stopbands, is not
very small, the approximation of the invariant subspace will not be good and
approximated pairs will be poor.

4 Experiments of Filter Diagonalization

4.1 Test Problem: 3D-Laplacian Discretized by FEM

Our test problem for a real symmetric-definite generalized eigenproblem:
Av = ABv 27

is originated from a discretization by the finite element method approximation of an
eigenproblem of the Laplace operator in three dimensions:

(=VH)¥(x,y.2) = A¥(x.y.2). (28)

The region of the partial differential operator is a cube [0, 7r]?, and the boundary
condition is zero-Dirichlet.

For the discretization by the finite element method approximation, each direction
of the edge of the cube is equi-divided into Ny + 1, N, + 1, N3 + 1 sub-
intervals. In each finite element, basis functions are tri-linear functions which are
products of piece-wise linear function in each direction. The discretization by the
finite element method gives a real symmetric-definite generalized eigenproblem of
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matrices (In this case, both matrices A and B are positive definite, and all eigenvalues
are positive real numbers).

The size of both matrices A and B is N = N;N,N3. The lower bandwidth of
matrices is 1 +N; 4+ NN, by a good numbering of basis functions. (Although A and
B are quite sparse inside their bands, in our calculation they are treated as if dense
inside their bands).

We solve only those eigenpairs (A,v) whose eigenvalues are in a specified
interval [a, b]. Exact eigenvalues can be calculated by a simple formula. When the
numbers of sub-intervals in directions are all different, all eigenvalues are distinct.

Computer System Environment

Our calculation is made on a high end class PC system. The CPU is intel Core i7-
5960X (3.0 GHz, 8cores, 20 MB L3 cache). Both the turbo mode and the hyper-
threading mode of the CPU are disabled from the BIOS menu. The theoretical peak
performance of the CPU is 384 GFLOPS in double precision. The memory bus
is quad-channel and the total main memory size is 128 GB (8 pieces of DDR4-
2133 MHz (PC4-17000) 16 GB memory module). The operating system is CentOS 7
(64bit address). We used intel Fortran compiler ver.15.0.0. for Linux x86_64 with
compile options: -fast, -openmp.

4.2 Experiment Results

We solve an eigenproblem of large size whose discretization manner is
(N1, N2, N3) = (50, 60, 70). In this case, the size of matrices is N = 50 x 60 x 70 =
210, 000, and the lower bandwidth of matrices is w, = 1 + 50 4+ 50 x 60 = 3051.

We solved those pairs whose eigenvalues are in the interval [200, 210] (The true
count of such pairs is 91). We chose m = 200 for the number of vectors to be filtered.
In the calculation of the action of the resolvent, the modified Cholesky factorization
for the complex symmetric banded matrix is used. In experiments, three filters
(No.1), (No.2) and (No.3) are tested and elapse times are measured in seconds
(Table 5). For an approximated eigenpair (A, v) of the generalized eigenproblem,

Table 5 Elapse times (in s) (matrix size N=210, 000)

Kind of filter (No.1) (No.2) (No.3)

Total filter diagonalization procedure 2659.68 2658.44 3318.02
— Generation of random vectors 0.16 0.16 0.16
— B-Orthonormalization of inputs 90.83 90.82 90.87
— Application of the filter 2273.86 2272.92 2931.39
— Construction of invariant-subspace 213.38 213.11 214.20
— Rayleigh-Ritz procedure 81.45 81.42 81.40
Calculation of norms of residuals 220.22 220.45 219.93

Memory usage (in GB)(virtual, real) 21.5(20) 21.5(20) 21.5(20)
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the residual of the pair is a vector r = (A — AB)v. We assume the vector v of
every approximated pair is already normalized in B-norm such that v/ Bv = 1. We
use B~!-norm for the norm to the residual of an approximated pair. Therefore, the
norm of residual is A = +/r7B='r, where r = (A — AB)v and v is B-normalized is
assumed. The errors of eigenvalues are calculated by comparisons from exact values
by using the formula for this special test problem made by the FEM discretization
of Laplace operator in a cube with zero-Dirichlet boundary condition.

Fig. 8 Filter (No.1): norm of 0 . . . .
residual (matrix size
N=210, 000) 2L

Case of filter (No.1) : The graph in Fig. 8 plots the norm of the residual of each
approximated pair. In the middle of the interval of eigenvalue the norm of the
residual is about 10719, and near the both ends of the interval it is about 107°.
Their ratio is about 10*, which corresponds to the ununiformity of transfer rate
of the filter (No.1) in the passband.

The graph in Fig.9 plots the absolute error of eigenvalue of each approx-

imated pair. The errors of approximated eigenvalues are less than 1072, and
approximated eigenvalues are accurate to about 14 digits or more.
Case of filter (No.2) : The graph in Fig. 10 plots the norm of the residual of each
approximated pair. In the middle of the interval of eigenvalue the norm of residual
is about 107!, and near the both ends of the interval and it is about 107°. Their
ratio is about 10*, which corresponds to the ununiformity of transfer rate of the
filter (No.2) in the passband.

The graph in Fig. 11 plots the absolute error of eigenvalue of each approxi-
mated pair. The absolute errors of approximated eigenvalues are less than 1072,
and approximated eigenvalues are accurate to about 14 digits or more.

Case of filter (No.3) : The graph in Fig. 12 plots the norm of the residual of each
approximated pair. In the middle of the interval of eigenvalue the norm of the
residual is about 10719, and near the both ends of the interval it is about 1078.
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Fig. 9 Filter (No.1): error of eigenvalue (matrix size N=210, 000)
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Fig. 10 Filter (No.2): norm of residual (matrix size N=210, 000)

Their ratio is about 10?, which corresponds to the ununiformity of transfer rate
of the filter (No.3) in the passband.

The graph in Fig. 13 plots the absolute error of eigenvalue of each approxi-
mated pair. The absolute errors of approximated eigenvalues are less than 1072,
and approximated eigenvalues are accurate to about 14 digits or more.



222 H. Murakami

0k ]

12 L ]

13 B+ H+*‘f

++ 0+ + H

14 L ]

LOG,, [EIGENVALUE_ERROR]|

15 L ]

6 1 1 1 1
200 202 204 206 208 210
EIGENVALUE

Fig. 11 Filter (No.2): error of eigenvalue (matrix size N=210, 000)

LOG,, DELTA

ey . e
+, + + + +T 4+
-10 + N R T +¢+*¢+++f¢ ot 4

200 202 204 206 208 210
EIGENVALUE

Fig. 12 Filter (No.3): norm of residual (matrix size N=210, 000)



Diagonalization Using a Polynomial of a Resolvent as the Filter 223

'8 T T T T

9L ]
-10 F ]
1 b ]
12 b ]

A3 L

+
preE

14 L ]

LOG,, [EIGENVALUE_ERROR]|

15 L ]

6 1 1 1 1
200 202 204 206 208 210
EIGENVALUE

Fig. 13 Filter (No.3): error of eigenvalue (matrix size N=210, 000)

5 Timing Comparisons with Elliptic Filters

We compared our present filter to the elliptic filter. Our present filter is a real-part of
a polynomial of a resolvent. The elliptic filter is a typical filter which is a real-part
of a linear combination of resolvents.

5.1 Filter Which is a Real-Part of a Linear Combination of
Resolvents

The filter . which is a real-part of a linear combination of resolvents is written as:

k
F = cool +Re Y yiR(py) . (29)

i=1

The coefficient c is real, coefficients y; and shifts p; i=1,2,...,k are complex
numbers. We assume shifts are not real numbers and their imaginary parts are
positive. An application of . to a real vector gives a real vector. For any eigenpair
(A, v) of the original eigenproblem, we have .#v = f(A)v. Here f(A) is the transfer
function of .%, which is the following real rational function of A of degree 2k:

. (30)

k
) :coo—f-ReZAzlp

i=1
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The normal coordinate 7 of A is introduced by A = Z(¢) = (a+b)/2+ (b—a)/2-1,
which is a linear map betweenz € [—1, 1] and A € [a, b]. We define g(¢), the transfer
function in the normal coordinate ¢, by the relation f(1) = g(). Then the form of
the transfer function g(z) is:

k
Ci
g(t):coo—i-ReZt_r, (31)
i=1 !

which is a real rational function of degree 2k. Here, p; = £ (), yi = &£ - ci,
where ¢’ = (b — a)/2 is a constant. In reverse, when a real rational function g(r)
is given which can be represented in the form of expression (31), then from the
real coefficient ¢, complex coefficients ¢;, i=1, 2, .. ., k and also complex poles t;,
i=1,2,...,k, the function f(1) is determined. Thus the filter . which is a real-part
of a linear combination of resolvents is also determined.

We impose conditions for the shape of g(7) on the real axis:

* [8(0)| < gswp When 1 < [1],
* gpass < g(¢) when [f| < 1, and max g(¢) = 1,
* Zstop < 8(f) < gpass When 1 < It < .

We give [, gpass and gsop (0 > 1 and 0 < ggop K gpass < 1), then the (half)
degree k and the coefficient ¢, and coefficients and poles ¢;, 7;, i=1,2, ..., k are so
determined to satisfy the shape conditions.

5.2 Elliptic Filters for Comparisons

For comparisons, we choose the elliptic filter (also called Cauer filter or Zolotarev
filter) as the filter which is a real-part of a linear combination of resolvents, which
comes from the theory of best approximation by rational function. The elliptic filter
is so powerful that it can choose the value of p any close to unity, g, any close
to unity, and also the value of g5 any small if (half) degree k is raised. But in our
experiments to make comparisons, we choose three elliptic filters (No.E1), (No.E2)
and (No.E3), which have similar shape parameters (i, gpass» gstop) 10 OUT present
filters (No.1), (No.2) and (No.3) respectively (Table 6). We set the same values of
and gpass between the present filters and the corresponding elliptic filters, but since
the (half) degree n of the elliptic filter must be an integer, the true values ggop for the
elliptic filters are not the same but chosen smaller (better in shape). For each elliptic
filters we used, complex poles in the upper half complex plane and their complex
coefficients of g(¢) are tabulated in Tables 7, 8 and 9, respectively. Figures 14, 15
and 16 plot graphs of transfer functions g(¢) of elliptic filters for only ¢+ > 0 since
they are even functions.
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Table 6 Elliptic filters used in comparisons

Filter k " 8pass 8stop Coefficients Graph

(No.El) 8 2.0 2.37975x10™* 4151017 Table 7 Figure 14
(No.E2) 7 1.5 5.46471x107° 7.80x 10714 Table 8 Figure 15
(No.E3) 8 2.0 1.27268%x 1072 2.25x1071 Table 9 Figure 16

5.3 Elapse Times of Filtering

For an elliptic filter which is a real-part of a linear combination of resolvents, the
applications of resolvents to a set of vectors can be made in parallel, however
when the applications are made in parallel, the larger memory space is required
especially when the applications of resolvents are made by solving linear equations
by direct method (matrix factorization method). Therefore, in this experiment, the
applications of resolvents are made one by one to keep the memory requirement
low.

In both present filters and elliptic filters, in an application of a resolvent R(p;) =
(A —p;B)"'B to a set of vectors, the linear equation with complex symmetric matrix
C = A — p;B is solved by the complex version of modified Cholesky method C =
LDLT for banded matrix C and it is calculated by the same program code. For the
elliptic filters, in the calculation of R(p;) X for the set of m vectors X, we make a
matrix multiplication X’ = BX once, since X’ is the common right-hand-sides of
the set of linear equations for every p;.

We are to solve the same eigenproblem from FEM discretization of Laplacian
problem as before whose discretization manner is (N, N2, N3) = (50, 60, 70). The
size of matrices of the eigenproblemis N = 50 x 60 x 70 = 210, 000, and the lower
bandwidth of matrices is w;, = 1 + 50 4+ 50 x 60 = 3051.

The only difference from the previous experiment is the kind of filters used,
therefore elapse times are compared for the filtering procedure.

For present filter (No.1), (No.2) and (No.3), the count of matrix decomposition is
only once, however n the number of repeats of a matrix multiplication by B followed
by solution of a set of simultaneous linear equations by using the matrix factors is
15, 15 and 20, respectively. For elliptic filter (No.E1), (No.E2) and (No.E3), the
count of matrix decompositions k is 8, 7 and 8, respectively.

We measured elapse times to filter a set of m vectors for the cases m = 30
and m = 200, by using present filters (No.1), (No.2) and (No.3) and elliptic filters
(No.E1), (No.E2) and (No.E3), which are shown in Table 10. In the case of m = 30,
the elapse times are about 3 times less for present filters compared with elliptic ones,
therefore, when m = 30 the use of present filter reduces the elapse time for filtering
than elliptic filter. But in the case of m = 200, the elapse times were not so much
different between elliptic filters and present filters.

When the size of matrices A and B of the eigenproblem is N and its bandwidth
is w, the amount of computation to factor a symmetric banded matrix C is O(Nw?),
and it is O(Nwm) to solve the set of simultaneous linear equations with m right-
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hand-sides after the matrix is factored. The amount of computation to multiply a
symmetric banded matrix B to a set of m vectors is also O(Nwm).

Thus, the elapse time to factor a symmetric banded matrix C of size N with
bandwidth w iS Tgecompose =~ 11Nw?, the elapse time to solve a set of m of
simultaneous linear equations using the matrix factor is Tsoe &~ HLNwm and the
elapse time to multiply a set of m vectors to a symmetric banded matrix B of size N
with bandwidth w is Tyoup &~ s Nwm. Here, t1, t, and 3 are some coefficients. Then,
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Table 10 Elapse times (in s) for filtering m vectors

m (No.1) (No.2) (No.3) (No.El) (No.E2) (No.E3)
30 621.8 622.3 728.3 2516.7 2210.2 2517.9
200 2273.9 2272.9 2931.4 3352.1 3023.7 3352.0

the elapse time of present filter can be written as:

Tpresent = Tdecompose +nx (TmulB + Tsolve + O(Nm)) 5 (32)
and the elapse time of elliptic filter by using k resolvents is written as:

Telliptic = TmulB + kX (Tdecompose + Tsolve + O(Nm)) . (33)
We have

Toresent/ N = 1 w2 + (t2 + t3)nwm, (34)
Tetiiptic/N ~ tikw* + (t2k + t3)wm .

The coefficients #;, #, and #3 depends on the system and the manner of calculation.
Since the calculation of matrix decomposition has much higher locality of data
references than the matrix-vector multiplication or the solution of linear equation
using the matrix factors, the coefficient #; must be smaller than #, or f3. From the
above expression (34), when m is small and ignorable, the elapse time of present
filter could be nearly k times faster than the elliptic filter (with no parallel resolvent
calculation) since it makes just one matrix decomposition. However, as m increases,
the advantage of the present approach seems reduced.
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6 Conclusion

For a real symmetric-definite generalized eigenproblem, the filter diagonalization
method solves those eigenpairs whose eigenvalues are in the specified interval.
In this present study, the filter we used is a real-part of a polynomial of a single
resolvent rather than a real-part of a linear combination of many resolvents to
take advantages of reductions of the amount of memory requirement and also
computation. In numerical experiments, we obtained good results.

When the filter is a real-part of a linear combination of many (8 to 16) resolvents,
for each resolvents the applications to a set of vectors can be made in parallel. For
our present method, when the filter is a real-part of a polynomial of a resolvent,
applications of the resolvent as many times as the degree of the polynomial can
be made only in sequential. However, even the potential parallelism is reduced, the
present method has an advantage that it requires only single resolvent, therefore the
amount of storage requirement is low and also the total amount of computation can
be reduced. Once a single matrix which corresponds to the resolvent is decomposed
and factors are stored, each application of the resolvent can be calculated easily and
fast. Another difficulty of the present type of filter is that the shape of the transfer
function is not so good as the shape of the filter which is a real-part of a linear
combination of many resolvents such as elliptic filter.

In this paper, three filters are constructed and they are shown with their polyno-
mial coefficients and shape parameters. By using these three filters, we made some
experiments of the filter diagonalization. For a generalized eigenproblem which
is derived from FEM discretization of the Laplace operator over a cubic region
with zero Dirichlet boundary condition, we solved some internal eigenpairs whose
eigenvalues are in the specified interval. We compared eigenvalues of approximated
pairs with exact ones, and found their agreements were good, which showed our
approach worked as expected.
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Off-Diagonal Perturbation, First-Order
Approximation and Quadratic Residual Bounds
for Matrix Eigenvalue Problems

Yuji Nakatsukasa

Abstract When a symmetric block diagonal matrix [A‘ Az] undergoes an off-

Al Ep

diagonal perturbation [ ET, Ay ], the eigenvalues of these matrices are known to

differ only by O( ”Eg‘;pnz), which scales quadratically with the norm of the per-
turbation. Here gap measures the distance between eigenvalues, and plays a key
role in the constant. Closely related is the first-order perturbation expansion for
simple eigenvalues of a matrix. It turns out that the accuracy of the first-order
approximation is also O( ”gb; |1|32 ), where E is the perturbation matrix. Also connected
is the residual bounds of approximate eigenvalues obtained by the Rayleigh-Ritz
process, whose accuracy again scales quadratically in the residual, and inverse-
proportionally with the gap between eigenvalues. All these are tightly linked, but
the connection appears to be rarely discussed. This work elucidates this connection
by showing that all these results can be understood in a unifying manner via
the quadratic perturbation bounds of block diagonal matrices undergoing off-
diagonal perturbation. These results are essentially known for a wide range of
eigenvalue problems: symmetric eigenproblems (for which the explicit constant can
be derived), nonsymmetric and generalized eigenvalue problems. We also extend
such results to matrix polynomials, and show that the accuracy of a first-order

. 2 . L
expansion also scales as O( ”;1 g) ), and argue that two-sided projection methods are
to be preferred to one-sided projection for nonsymmetric eigenproblems, to obtain
higher accuracy in the computed eigenvalues.

1 Introduction

Classical eigenvalue perturbation theory studies bounds or approximations to the
eigenvalues and eigenvectors of A 4 E for some “small” E (such as small norm or
low rank), given the knowledge of some information on A, such as an eigenpair such
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that Ax; = A;(A)x;. Such results are of interest in large-scale scientific computing
because, for example, (i) given the information of A, they give estimates for the
eigenvalues and eigenvectors of A 4 E that can be obtained cheaply (for example the
first-order expansion (1)), and (ii) they can be used to give quantitative analysis for
the accuracy of the computed eigenpairs. See [7] and [15, Ch.IV] for an overview
of eigenvalue perturbation theory.

The eigenvalues of two unstructured matrices A and A + E generally differ
by O(||E||2), or sometimes more (as large as 0(||E||;/") in the worst case, when
defective eigenvalues are present). However, there are important situations when
eigenvalues behave more nicely than such general bounds suggest, and this work
focuses on such cases.

Among the most well-known results for the (simplest and most well-understood)
symmetric case A = AT € R"™" are Weyl’s theorem |1;(A) — A;(A + E)| < | E||
(throughout, we employ the spectral norm ||A|| = 0Oyax(A) for matrices, and 2-
norm for vectors), and the first-order perturbation expansion for simple eigenvalues
(e.g. [4,§7.2.2])

T

E
MA+E) =24+
XX

+ O(IE|). M
Here x # 0 is an eigenvector such that Ax = A;(A)x. Note that this gives an
approximation A;(A) + X;ix to A;(A + E), rather than a bound as in Weyl’s theorem.

This work revolves around the less well-known (but, we argue, equally impor-
tant) quadratic perturbation bounds for eigenvalues of block-diagonal matrices that
undergo off-diagonal perturbation.

Theorem 1 ([9, 10]) Let A, E € R™" are symmetric matrices partitioned as

T
A:AIO,E= OEl’ @)
0 A, E; O
then [10]
IE|>
[Ai(A + E) — Li(A)] = , (3)
gap;
and a slightly tighter bound [9] holds:
2||E|? E|?
|Ai(A + E) — 4i(A)| < £ < IE] 4)

gap; + \/gap? +4|E> &P
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Here gap; is defined by

miny iy [Ai — Al if A € A(A1)

. . 5
miny ey [Ai — Al if A € A(A2). ®)

gap; ‘=

Note that the bound in (3) scales quadratically with the perturbation ||E||, which is
significantly smaller than Weyl’s bound ||E|| when || E|| is small. We shall look at (3)
from many different viewpoints, and one central goal of this work is to reveal the
implications of such quadratic bounds. For simplicity, we refer to situations as in (2),
where a block-diagonal matrix undergoes off-diagonal perturbation, as off-diagonal
perturbation.

We note that the bounds in (4) are sharp in the sense that without further
information, there are examples where equality is attained. This sharpness can be
confirmed by verifying that the first bound in (4) is exact for 2 x 2 matrices, and it
reduces to the second bound in the limit ||E|| — 0.

Also of interest in this work is quadratic residual bounds [6], which claims for
symmetric eigenvalue problems that defining the residual by r = Ax — A% where &

is an approximate eigenvector with ||%|| = 1 and A = 3TA% is the Rayleigh quotient,
we have
2
a—ip< M ©
gap;

where gap; is as in (5) with A; taken to be 1 x 1. The notion of gap is subtly different
between (6) and those in the literature, e.g. [1, § 4.8], [13, Thm. 11.7.1]: we explain
this more in Sect. 2.1. More generally, with the Ritz values {i i}f.‘=1 for a symmetric
matrix obtained as the eigenvalues of X’AX where X € R™* has orthonormal
columns, we have

iy <RI
N gapi’

(N
where R = AX — XA is the matrix of residuals, gap; is again as in (5), which is
“widened”, resulting in an improved bound. We derive this below in Sect. 2.2.

The first-order expansion (1) and the off-diagonal quadratic perturbation
bounds (3) are closely connected: specifically, the first-order perturbation
expansion (1) explains why off-diagonal perturbation results in quadratic eigenvalue

perturbation bounds (without information on the constant g;p‘). Conversely,

using (3) one can obtain (1), and moreover obtain the constant gipf hidden in
the trailing term O(||E||?). We shall see that the residual bound can also be regarded
as a consequence of (3). In other words, (3) can be regarded as a fundamental fact
that implies many results in eigenvalue perturbation theory.

These connections are known to experts in eigenvalue perturbation theory, but to
the author’s knowledge there is no literature that states them explicitly. One goal of
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this work is to clarify this connection, which holds not only for symmetric eigen-
value problems but also for nonsymmetric and generalized eigenvalue problems. All
this is not exactly new, in that they are simply observations that connect results in
the literature.

The second goal of this work is to extend such results to polynomial eigen-
value problems. For polynomial eigenvalue problems, the first-order perturbation
expansion (1) is known [16], but no result seems to be available on off-diagonal
perturbation analogous to (3). We shall obtain such result, and show that if

_ [Py 0 T o Eey
Pm_[ 0 PZ(*)}’ E_[Ezl(x) 0 } ®)

then
3P — il + ) =  SEKPDIE N

&ap;

for some ¢, which depends on the conditioning of the eigenvectors. The point we
wish to convey here is that the eigenvalue gap plays the same role even in polynomial
eigenvalue problems. Note that E(4;(P)) is the value of the matrix polynomial E(A)
(representing the perturbation) evaluated at A = A;(P).

All in all, in this note we investigate the quadratic eigenvalue perturbation bounds
under off-diagonal perturbation such as (3) and (9) from different viewpoints, and
reveal some of their practical ramifications.

The only reason we stated the above results for symmetric matrices is for
simplicity; extensions to nonsymmetric and generalized eigenproblems are avail-
able [8, 10, 15]. We structure this note similarly: we first discuss the symmetric case
in Sect. 2, then deal with nonsymmetric and generalized eigenvalue problems, and
treat polynomial eigenvalue problems at the end.

In what follows, for simplicity we normalize any right eigenvector to have unit
norm, and we scale the left eigenvector via the orthogonality relation such as y"x =
1 or yTP(X;)’x = 1. A;(A) denotes the ith eigenvalue of A, arranged in ascending
order if A is symmetric, and otherwise its ordering is insignificant: A;(A) denotes a
specific eigenvalue of A.

2 Symmetric Case

We start by treating the simplest case of symmetric eigenvalue problems; entirely
analogous results hold for the complex Hermitian case.

As advertised, let us first explain how (1) implies off-diagonal perturbation
should result in quadratic eigenvalue perturbation bounds. Let the matrices A, E be
as in (2), and A;(A) € A(A;) with gap, > 0. Then Ax = A,(A)x with eigenvector
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x P .
structure x = |:Oli| , and so by substituting into (1) we obtain

Ai(A + E) = Ai(A) + x"Ex + O(|E|*)

X r T X
= Li(A) + [01} [b?l EOI} [01} + O(|E|I*)

= Li(A) + O(|E|*)

"ro Er
in which we note that [)8:| [E 01 :| [)8:| = 0 due to the block structure. That is,
1

the first-order term in (1) disappears because of the structure. Thus the first term in
the perturbation expansion scales quadratically with the perturbation || E||.

2.1 First-Order Expansion and Its Constant via Off-Diagonal
Bounds

We now turn to the connection in the opposite direction and derive the first-order
expansion (1) using the quadratic bounds (3). We are not claiming the derivation
here is simpler than the standard method of differentiating the equation Ax = Ax
and left-multiplying the left eigenvector (see [4, § 7.2.2] or [16]). However, as we
shall see, the derivation here reveals the constant in front of the quadratic term || E||%.
In Sect. 3.4 we also give an explanation based on Gerschgorin’s theorem.

Using (3) we shall derive the following result, which can be seen as a variant
of (1) that reveals the constant hidden in O(||E||?). Note below that gap; can be
regard as a modified gap.

Proposition 1 Let A, E € R™" be symmetric matrices. Then

xTEx |E||?
<

A+ E) — (@) + )] (10)
XX

= gﬁﬁi )
where gap; = max (0, min;x; |A; + x;ix — Aj| = ||E|l), and gap; — gap; as E — 0.

Proof Consider the eigenvalue decomposition

At
XTAX = ,
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where X = [xi,...,x,] is an orthogonal eigenvector matrix. Then

At
XTA+E)X = - + XTEX,
An

whose (i, i) element is A; + x! Ex;. We can then apply a permutation matrix P that
moves the ith position to the first (the specific choice of P does not matter), which
gives

A+ xiTExi xiTExj
P'X"(A+ E)XP =

xiTExj An + xLEx,

T
we now partition this matrix and write P"X”(A + E)XP = [Al A i| + [ Ig EOI},
2 1

where Aj = A;+x7 Ex; is 1 x 1 (highlighted in red), a scalar, hence A} = A;+x! Ex;.
Noting that 1;(PTXT(A + E)XP) = A;(A + E), we now use Theorem 1 to obtain

E 2
A + E) — (h(A) + xTEx)| < I
gap;

where gap; := max(0, gap; — ||E||). This updated gap is obtained by using Weyl’s
bound for the lower-right (n — 1) x (n— 1) part of PTX" (A + E)XP, which is altered
from A, by the lower-right part of P X7 EXP. This establishes (10) (and hence also
the first-order expansion (1)). O
Note that gap; is different from gap;: as alluded to after (6), this difference is
reflected in the formal statements of the residual bounds and quadratic off-diagonal
perturbation bounds in the following sense: in (6) the gap is between an approximate
and exact eigenvalue. In (5) the gap is between two approximate eigenvalues,
namely the eigenvalues of A. While this subtlety is certainly present, we shall not
expound on this further as this difference diminishes as E — 0. Furthermore, they
both convey the same message that the accuracy scaled inverse-proportionally to the

gap.
2.2 Connection to Residual Bounds

Now we explain how the residual bounds (6), (7) can be obtained from the off-
diagonal quadratic perturbation bound (3).
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Recall that the Rayleigh-Ritz process employs a subspace spanned by a matrix
0 € R™* with orthonormal columns with k < n, and computes the k X k
symmetric eigenproblem QTAQ = VpAoVD, from which one extracts the Ritz
values diag(Ap), and Ritz vectors QV,. Here we examine the accuracy of the Ritz
values, and derive (6) using (3).

Consider 0+ € R™"=% which spans the orthogonal complement of Q so that
[0 O] is a square orthogonal matrix. Then we have

107 17 _ |A A
o Tal0 ¢ = 4147,

Then QTAQ = Ay, and the problem essentially reduces to quantifying the accuracy
of the eigenvalues of A;; as approximants to k of the eigenvalues of A. This is exactly
the problem treated in Theorem 1, and gives (6): again, the gap in the literature
differs subtly from what we get here. The above argument more generally gives (7).
Note how the definition of gap differs between (6) and (7); the gap is usually
much wider in (7), giving better bounds if the residual norms are of comparable
magnitudes.

3 Non-symmetric Eigenvalue Problems

The main message of the last section was the significance of the off-diagonal
quadratic perturbation bound (3) in symmetric eigenvalue problems. We now
turn to the analogous results for more general eigenvalue problems, focusing on
nonsymmetric standard eigenproblems.

3.1 Statements

Here we display the extensions of results in the previous section to nonsymmetric
matrices. When A is nonsymmetric, the first-order perturbation expansion (1)
becomes

T

mm+m=mw+§m+mwﬁ, (an

Tx

where Ax = A;(A)x as before and y is a left eigenvector, that is, y’A = yT1;(4).
Here and below, 4;(A) denotes an eigenvalue of A (not necessarily ordered, as they
can be nonreal) and A;(A + E) denotes an eigenvalue that spawns from A;(A) in
that A;(A + ¢E) is continuous in ¢t € R and A;(A + tE) — A;(A) ast — 0. The
expansion (11) holds for any scaling of x, y; we scale them so that x| = 1 and
yix=1.
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The analogue of the key result (3) becomes [4, Ch. 7] the following (ignoring the
nontrivial issue of “ordering” the eigenvalues, which can be nonreal). Note below
that neither A nor E is assumed to be symmetric, but the block structure is preserved.

Theorem 2 ([10]) Let A, E € R™" be matrices partitioned as

A1 O 0 Epp
A= , E= . 12
[0 A2i| [E21 0 i| (12)
Then [10, Thm. 5]
Ep|l||E
Ai(A+E)—Ai(A)§c” 12/l 21”’ (13)
gap;

where c is the product of condition numbers of eigenvector matrices of A+ E and A.
Theorem 2 is less sharp than Theorem 1: for example, it is not exact for 2 x 2 case.
It nonetheless suffices for the argument here.

Bounds like (13) are often stated in terms of the quantity sep [14, § 4.2], which
here is sep; = 1/[|(A2 — A;(A))""||. Note that sep; = gap;, when the matrices
are symmetric (or normal), and sep; takes into account the conditioning of the
eigenvector matrix. In this note, for simplicity we absorb this effect in the constant
¢, in order to highlight the role played by the gap throughout eigenvalue problems.

Finally, the residual bound in the nonsymmetric case becomes [14, Thm. 4.2.12]

A=Al SC||r§;|a|l|1|)i"1|| (14)
where
- yTAx
=

is the Ritz value (via two-sided projection) and r,, r; are the right and left residual
vectors defined by

ry :Ax—;\x, I :yTA—)ALyT. (15)

More generally, for block matrices (or projection onto a k > I-dimensional
subspace is employed), we have

2 IR Rl
¢ :

[Ai — Al < cap, (16)

where

Ai = L(YTAX — AYTX)
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are the eigenvalues of the matrix pencil Y7 AX —AY7X (sometimes called Ritz values
via two-sided projection), and denoting A = diag(4y, ..., Ax), R,, Ry are the right
and left residual matrices defined by

R, =AX—XA, R =YTA-AY". (17)

Below we follow the same line of argument as in Sect.2 and derive the first-
order expansion (11) and residual bound (14) using the off-diagonal quadratic
perturbation bound (13).

3.2 First-Order Expansion and Its Constant via Off-Diagonal
Bounds

Let us establish an analogue of Proposition 1 for the nonsymmetric case.

Proposition 2 Let A, E € R™" be nonsymmetric matrices, and let (A;(A), x,y) be
an eigentriplet of A such that Ax = Ai(A)x and y'A = Lj(A)y" where L;(A) is a
simple eigenvalue and x,y € C" are nonzero right and left eigenvectors. Then

"Ex _ EI?
<

AA+B) = i)+ D= (18)

where gap; := max(0, gap; — ¢||E||), where gap; is the gap between A;(A) and the
rest of the eigenvalues of A.

To establish (18) and therefore (11), assume that A is diagonalizable (this
assumption is mainly for simplicity: it can be relaxed to just A;(A) being simple,
or even to multiple eigenvalues as long as they are not defective) and consider the
eigenvalue decomposition

Al
X 'AX = ,
An
where X = [xi,...,x,] is a nonsingular eigenvector matrix. Then
Al
X' A+E)X = . + X 'EX,
An

where recalling that [y, ...,y,)” = X!, the (i, i) element is A; + y! Ex;. We can
then apply a permutation matrix P that moves the ith position to the first, which
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gives

Ai + YT Ex; v Ex;
P'X " A+ E)XP = . . (19)
y! Ex; An + YT Ex,

E; 0
where A; is 1 x 1, a scalar, hence A; = A; + y! Ex;. Noting that A;,(PTX"'(A +
E)XP) = A;(A + E), we now use Theorem 2 to obtain

T
We now partition this matrix and write PTXT(A + E)XP = |:Al A :| + |:0 Ei :|,
2

E 2
(A + E) — (u(A) + yTEx)| < c 'lg.av” ,

i

where gap; := max(0, gap; — ¢||E||); this is a lower bound for the gap between
Ai(A) + y! Ex; and the eigenvalues of the (n — 1) x (n — 1) bottom-right part of (19),
and ¢ depends on its eigenvector matrix. This establishes (18), and hence also the
first-order expansion (11).

Let us discuss the case where A; is a multiple eigenvalue. When A, is defective,
belonging to a Jordan block of size k > 1, then it is known that an O(€) perturbation
can perturb the k eigenvalues by O(e!/¥). Thus instead of a expansion with a
linear leading term, one needs to deal with an expansion where the lowest-order
term is €!/%; see [2] for details and more. On the other hand, if A; is multiple but
nondefective (i.e., semisimple), then one can essentially follow the above argument,
taking the colored block to be k x k (one needs to treat the k eigenvalues together as
otherwise the gap would be 0) and diagonalizing it by a similarity transformation,
to obtain an analogous first-order expansion for the k eigenvalues spawned from A;.
Generally, semisimple eigenvalues much in the same way as simple eigenvalues in
perturbation analysis.

3.3 Connection to Residual Bounds

Now we explain how the residual bound (14) can be obtained from (13).

For the nonsymmetric case, we analyze the two-sided projection method, which
spanned by two matrices: X € R, (hoped to approximate some right eigenvec-
tors), usually but not necessarily with orthonormal columns, and ¥ € R™* (hoped
to approximate the same left eigenvectors); however, the simple choice ¥ = X is
quite common and natural in view of the Schur form.

We then compute the kxk generalized eigendecomposition V1 (YTAX, YT X)Vy =
(Axy, I), which reduces to a standard eigenproblem if we choose Y so that ¥ TY =
I. One then extracts the approximate eigenvalues (sometimes also called Ritz
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values) as diag(Axy), and approximate right and left eigenvectors (Ritz vectors)
XVx and YVy. Here we examine the accuracy of the Ritz values, and derive (16)
using Theorem 2.

For simplicity we discuss the case Y7X = I;. Let X5, ¥ be such that [X X>], [Y Y]
are nonsingular matrices and [Y Y>]7[X X,] = I,. Then we write

A A
Y VLTAIX X5] = )
[Y V2] A[X X;] [AZI A22:|

Then YTAX = Ay, and the problem essentially reduces to quantifying the accuracy
of the eigenvalues of Aj; as approximants to k of the eigenvalues of A. This is exactly
the problem treated in Theorem 2, in which ||A;; || corresponds to the right residual
IR-|| and [|A: | to [|R[|, leading to (16).

We note that the residual bounds become linear in ||R,| if we use a one-sided
projection method with ¥ = X, as then ||R;|| will be O(1) rather than O(||R;||). This
indicates that it is worth using two-sided projection when an approximation to the
left eigenvectors is available.

3.4 Gerschgorin’s Viewpoint

Here we explain the same quadratic scaling |A;(A + E) — jk\il < ”gg

viewpoint of Gerschgorin’s theorem. We could have included such treatment in the
symmetric case, but we have deferred its treatment until now since no simplification
accrues in the symmetric case. Gerschgorin’s theorem states that

from the

rayelJn.  Ni=&eClle—ail =) layl}.
i j#i

that is, the eigenvalues of A lie in the union of Gerschgorin disks I; of radius
> i |aij] centered at a;;. Now we focus on 4;, and denoting by € an entry bounded
by |e| < ||E||, we see that

Az € € €

A .
PTX V(A + E)XP = 1 . " € € €
Arl € € €

If A; is a simple eigenvalue and E is sufficiently small, we will have I; N I; = ¢
for j # i, which means there is exactly one eigenvalue lying in 5. Let § be
a quantity smaller than gap, = min;; |A; — A4;|. Then using the diagonal matrix
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D = diag(;", 1,...,1) we have

Y € 5 ... 5

A
DP'X"'(A + E)xPD™' = 8 I
An § €---€

Now with Gerschgorin’s theorem applied to this matrix, I N I; = ¢ still holds,
and [ : |z— (A + )] < 0(682). Note the radius of I is now O(gi). Noting that
€; = y'Ex/(y"x) where x, y are the left/right eigenvectors of A corresponding to A,
it follows that A; + ¢; = A; + y"Ex/(y" x) approximates an eigenvalue of A + E to

O(gi;) accuracy.
The above diagonal scaling technique combined with Gerschgorin’s theorem is

again commonly used, for example in [15, Ch.IV].

3.5 Extensions to Generalized Eigenproblem

Analogous results for generalized eigenvalue problems can be established, using
quadratic off-diagonal perturbation bounds presented in [8]. In particular, the
Gerschgorin argument can be used for establishing quadratic perturbation bounds
for generalized nonsymmetric eigenvalue problems; see the last section of [11]. We
omit the details here.

4 Polynomial Eigenvalue Problems

We now turn to polynomial eigenvalue problems. In a polynomial eigenvalue
problem, one is to find x # 0 such that P(A)x = 0 where P(1) = Zf;o MA; €
C[A]™" is a matrix polynomial. Let E(L) € C[A]"™" be another matrix polynomial,
representing a perturbation to P(A). The first-order perturbation expansion of an
eigenvalue A;(P(A)), with A;((P + tE) (X)) depending continuously on ¢ (as in (11)),
is known [16] to be

YEQiP(A))x

Ai((P+ E)(A) = Li(P(A)) — VTP (A)x

+ O(IEQPAYII). (20)

The denominator y"P/(1)x in the first-order term is known to be nonzero when
A;(P(1)) is simple. The expansion (20) is in fact valid without the restriction that
E(A) is a matrix polynomial of the same or less degree as P(1), but here we focus
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on such cases (as otherwise the number of eigenvalues is not controlled). We can
verify that (20) reduces to the expansions (1) and (11) in the special case where
P(A) represents a linear standard eigenvalue problem P(1) = Al — A.

4.1 Analysis via Linearization

The most common approach to studying polynomial eigenvalue problems, both
in theory and practice is linearization [3]. Here we follow this standard approach
to examine the accuracy of first-order expansion (20) and to derive quadratic
perturbation bounds for matrix polynomials. The most well known and widely
used linearization is the companion linearization. For a monic matrix polynomial
P(A) = ZfzoAiAi with Ay = I, the companion linearization is defined by

—Aj—1 - —A1 —Ag
1
C= . . 1)
1

This kn x kn matrix clearly has kn eigenvalues, which match those of P(1), so we
can write A;(C) = A;(P(A)). The right eigenvectors of P(1) and C are related by the
Vandermonde structure as follows: if P(4;)x; = 0, then

A=y A=y
cl * |=X\

/\,-x /\,-x
X X

(22)

In view of the first-order expansion, we also need the left eigenvector of C. Let y be
a left eigenvector of P such that y"P(1) = 0. Then the left eigenvector of C has the
structure of the Horner shift [5, eq. (3.12)]

T T
y y
(AiAk + Ar—1)y (M + A1)y
. C=A\ )
AfAp + A1A L+ 4+ Ay)y AfA + A TA L + -+ Ay

(23)



246 Y. Nakatsukasa

We denote the right and left eigenvectors of C by x and y respectively, and
use (22) and (23) for (20) to obtain the first-order expansion of the eigenvalue A;
of P as

yT(ZJI'(:o AfEi)x

O(IEQ)P). 24
yT(Zlekf‘lAi)x+ (EAHI7) (24)

Ai((P+E)(A)) = Ai +

On the other hand, denoting by C 4+ AC the companion linearization associated with
P + E, the expansion with respect to C becomes (using (11) with A «<— C)

y'(AC)x

M(CH+AC) =1+ . +o(lac)?. (25)
y'x

which, in view of (22) and (23), is equivalent to (24); this is to be expected because
P + E and C + AC have the same eigenvalues.

The value in the equivalence between (24) and (25) is that with (25), we can
invoke the analysis for linear eigenvalue problems to examine the eigenvalues of P
and its perturbed variant. Indeed, assuming A, is a simple eigenvalue, the exact same
arguments as in Sect. 3 shows that the second-order term in the expansion (25) can
be written as ¢ ”Aacl_lz. Note that this allows for general perturbation in the matrix
C, whereas the perlturbation of interest here is structured, because, as we can see
in (23), the only elements in C that depend on P are those in the first block row. In
any case, we have proven the following result.

Theorem 3 Let P(A) = Zf:o AA; € C[A]"™" be a monic matrix polynomials of
degree k, and E(A) = Zf;(l) ME; € C[A]™". Let (A;, xi,v;) be a simple eigentriple
of P(A). Then

(g ME))x EQ)|?
Y (im0 MED) +C|| @)l

Ai((P+ E)(A)) = A; )
(( + )( )) + yT(Zf=1/\f_1Ai)x gap;

. (26)

where gap; = minjx; |A; — A;(P(A))| and c depends on the conditioning of the
eigenvector matrix of C in (21).

We have not yet examined whether the un-structured perturbation results in a
constant that is smaller than the unstructured counterpart by (25) would indicate.
To examine whether this happens, we turn to MATLAB experiments in which we
construct a random matrix polynomial P(1) companion matrix as in (21), compute
an eigentriple (A;, x;, y;), then examine the perturbation in A; when we introduce
perturbation in C in two different forms:

1. Perturb only the first block row by norm e,
2. Perturb the whole matrix C by norm e,

for some small €, which here we set to 10™*. We then examine the difference in
the accuracy of A; + y'(AC)x/(y'x) as an approximation to an eigenvalue of the
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perturbed matrix; clearly, since the second type includes the first as a special case,
the second would lead to a larger perturbation in the worst case. We experimented
with variousnand k = 2,3, ..., 10, with randomly generated perturbation matrices,
and observed that there is never a significant difference between the sensitivity of
A; under the two types of perturbations. That said, making this observation precise
seems nontrivial, and we leave it as an open problem.

4.2 Quadratic Bounds by Off-Diagonal Perturbation

We now turn to off-diagonal perturbation and derive a bound analogous to (9).

Theorem 4 Let

_|Pid) 0 _ | 0 En@®)
Pm_[ 0 Pz(x)]’ EQ)‘[EZI(A) 0 ] @7

be matrix polynomials, with P(A) being monic and degree k, and E(L) of degree
k — 1 orless. P1(X), P,(A) are square. Then

Ai 2
MPOY) = AP+ EYA) < ¢ (gg I, 28)

where gap; = min;; |A;(P(A))—A;(P(A))| and c depends on the conditioning of the
eigenvector matrix of C in (21). Moreover, the bound with “widened” gap holds:

IEQ(P))I?

Ai(P(A)) = Ai((P + E)(A)) = € ming [Py (1) — A (PO

(29)

Proof For (28), the argument is simple as we now have all the essential tools. Note
that for any eigenvalue of P;(A) that is not an eigenvalue of P,(A), the left and right

eigenvectors have the block zero structure [)8:| and |:);)1 :| Plugging this into (26),

we obtain (28).
To establish (29), first recall the eigenvector structure of C in (22) and (23). Let
n and £ denote the size of P(1) and Py (1), and ¢; the ith column of I;. Then defining

X = @i’c=l (ei ® [O(njle)xl ]) » Xo= 69;(:1 (ei ®© [Oé;("(izl) ])

and X = [X; X;] € R™ we have X = X! and X~'CX = diag(C), C) where
A(Cy) = A(P1(1)) and A(Cy) = A(P2(A)), and the perturbation E results in off-
diagonal perturbation: X~!(C + E)X = [§! ¢ ]. We then invoke Theorem 2 to
complete the proof. |
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Note that the above argument takes the opposite route from before: now we
are using the first-order expansion to obtain the quadratic off-diagonal perturbation
bound.

Observe in (28) that what matters for the perturbation in A; is the magnitude of
E(A) evaluated at A = A;; for example, the perturbation is zero if E(A;) = 0, even
if E(A) takes large values away from A;.

4.2.1 Accuracy of Eigenvalues Obtained by Projection Methods

Another implication of Theorem 4 can be observed on an approximate eigenpair
()Ak,-,fc,-) obtained via a projection method applied to polynomial eigenvalue prob-
lems. Consider for simplicity a symmetric matrix polynomial P(4). Suppose (i is Xi)
is obtained by solving VTP(ii) Vy; = 0 for some orthonormal matrix V € C™,
k < n, with %; = Vy;. Then we can write, using an orthogonal matrix [V V4],

1T 17 _ | Pi(A) Enn(d)
VYT POV = [Eﬂ(x) Pz(/\)]

where Pl(/A\,-) has )Ak,- as an exact eigenvalue, and the residual ||P(A;)%;|| (which
is computable) is bounded by ||E12(A;)|| = ||E21(A;)] (usually not computable).
Thus by the above theorem it follows that the computed eigenvalue A; has accuracy

EM(P)|? P(Ap%l?
o( I (ga(pl-))” ) = O( Il (gar): I ).
Note that the same type of quadratic bound follows for nonsymmetric matrix

polynomials, provided that we employ a two-sided projection method in which
we work with Y7P(1)X where Y and X approximate the desired left and right
eigenspaces respectively. This is exactly the same situation as in linear eigenvalue
problems, for which we need two-sided projection to obtain quadratic eigenvalue
convergence in the nonsymmetric case. Put another way, because the left and
right eigenvectors are the same for symmetric eigenvalue problems, the Rayleigh-
Ritz method automatically approximates both the left and right eigenvectors
simultaneously. The apparent difference in convergence speed for symmetric and
nonsymmetric eigenvalue problems (which is present e.g. in the QR algorithm and
Rayleigh quotient iteration) comes from the fact that the algorithm is implicitly
employing a one-sided projection method, not because the convergence is inherently
hindered by lack of symmetry.

5 Discussion

This work examined the ramifications of the fact that off-diagonal perturbation
of a block diagonal matrix (or matrix polynomial) result in perturbation in the
eigenvalues that scale quadratically with the norm of the perturbation. The quadratic
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scaling hinges on the block structure of the matrices as in (3) or (27), which the
eigenvectors inherit. In fact, even tighter bounds can be obtained if further block
structure is present, such as block tridiagonal [12]. In addition to some indicated
in the text, possible future directions include investigating the accuracy in the
expansion and residual bounds and in such cases, examine the implications in terms
of the eigenvectors, and overcoming the case where the gap is too small for the
bounds to be of use. Eigenvalue perturbation theory is a well-established yet active
and useful area of research.
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An Elementary Derivation of the Projection
Method for Nonlinear Eigenvalue Problems
Based on Complex Contour Integration

Yusaku Yamamoto

Abstract The Sakurai-Sugiura (SS) projection method for the generalized eigen-
value problem has been extended to the nonlinear eigenvalue problem A(z)w = 0,
where A(z) is an analytic matrix valued function, by several authors. To the best of
the authors’ knowledge, existing derivations of these methods rely on canonical
forms of an analytic matrix function such as the Smith form or the theorem of
Keldysh. While these theorems are powerful tools, they require advanced knowledge
of both analysis and linear algebra and are rarely mentioned even in advanced
textbooks of linear algebra. In this paper, we present an elementary derivation of
the SS-type algorithm for the nonlinear eigenvalue problem, assuming that the
wanted eigenvalues are all simple. Our derivation uses only the analyticity of the
eigenvalues and eigenvectors of a parametrized matrix A(z), which is a standard
result in matrix perturbation theory. Thus we expect that our approach will provide
an easily accessible path to the theory of nonlinear SS-type methods.

1 Introduction

Given an n x n matrix A(z) whose elements are analytic function of a complex
parameter z, we consider the problem of finding the values of z for which the linear
simultaneous equation A(z)w = 0 has a nonzero solution w. Such a problem is
known as the nonlinear eigenvalue problem and the value of z and w that satisfy this
condition are called the eigenvalue and the eigenvector, respectively. The nonlinear
eigenvalue problem arises in many fields of scientific and engineering computing,
such as the electronic structure calculation, nonlinear elasticity and theoretical fluid
dynamics.

There are several algorithms for solving the nonlinear eigenvalue problem,
including the multivariate Newton’s method [14] and its variants [13], the nonlinear
Arnoldi method [21], the nonlinear Jacobi-Davidson method [3] and methods based
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on complex contour integration [1, 2, 4, 22]. Among them, the last class of methods
have a unique feature that they can compute all the eigenvalues in a specified region
on the complex plane enclosed by a Jordan curve (i.e., simple closed curve) I".
In addition, they have large grain parallelism since the function evaluations for
numerical integration can be done for each sample point independently. In fact,
[1] reports that nearly linear speedup can be achieved even in a Grid environment,
where the interconnection network among the computing nodes is relatively weak.

These algorithms can be viewed as nonlinear extensions of the Sakurai-Sugiura
(SS) method for the generalized eigenvalue problem Ax = ABx [16]. To find the
eigenvalues within a closed Jordan curve I" in the complex plane, the SS method
computes the moments y, = [, z'u*(A — zB)"'vdz, where u and v are some
constant vectors, and extracts the information of the eigenvalues from the moments.
To justify the algorithm, Weierstrass’s canonical form [5] for (linear) matrix pencils
is used. Similarly, existing derivations of the SS-type algorithms for the nonlinear
eigenvalue problem rely on canonical forms of the analytic matrix function A(z).
Specifically, Asakura et al. uses the Smith form for analytic matrix functions [6],
while Beyn and Yokota et al. employ the theorem of Keldysh [11, 12]. These
theorems are intricate structure theorems, which give canonical representations of
A(z) that are valid on the whole domain enclosed by I". On the other hand, they
require advanced knowledge of both analysis and linear algebra and are rarely
introduced even in advanced textbooks of linear algebra.

In this paper, we present an elementary derivation of the SS-type method for the
nonlinear eigenvalue problem, assuming that all the eigenvalues of A(z) in I” are
simple. Instead of the whole domain enclosed by I", we consider an infinitesimally
small circle I' around each eigenvalue z;. This allows us to use the analyticity of the
eigenvalues and eigenvectors of a parametrized matrix A(z), which is a well-known
result in matrix perturbation theory [9, p. 117][10, Chapter 2, Sections 1 & 2], to
evaluate the contour integral along ;€. Then we aggregate the contributions from
each I'¢ to evaluate the contour integral along I". This is sufficient for theoretical
justification of the nonlinear SS-type algorithm in the case of simple eigenvalues.
We believe that this provides an easily accessible approach to the theory of SS-type
methods for the nonlinear eigenvalue problem. We emphasize that our focus here is
not to propose a new algorithm for the nonlinear eigenvalue problem, but to provide
an elementary derivation of the SS-type nonlinear eigensolver.

This paper is structured as follows: In Sect. 2, we develop a theory for computing
the eigenvalues of A(z) based on the complex contour integral. The algorithm based
on this theory is presented in Sect. 3. Section 4 gives some numerical results. Finally,
we give some concluding remarks in Sect. 5.

Throughout this paper, we use capital letters to denote matrices, bold small letters
to denote vectors, roman small letters and Greek letters to denote scalars. AT and A*
denote the transpose and the Hermitian conjugate of a matrix A, respectively. I,
denotes the identity matrix of dimension n. For x € C", {x} denotes a subspace of
C" spanned by x.
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2 The Theory

Let A(z) be an n x n matrix whose elements are analytic functions of a complex
parameter z in some region of the complex plane. Let I" be a closed Jordan curve
within that region and assume that A(z) has m eigenvalues z;, 2, ..., 2, within
I'. We further assume that they are simple eigenvalues, that is, simple zeroes of
det(A(z)), and the number m is known. In the following, we refer to z;, z, . . ., Z, as
nonlinear eigenvalues of A(z).

For a fixed value of z, A(z) is a constant matrix and therefore has n eigenvalues.
We refer to them as linear eigenvalues of A(z). Also, we call the eigenvectors of a
constant matrix A(z) linear eigenvectors. If z; is a nonlinear eigenvalue of A(z), A(z;)
is singular and at least one of the linear eigenvalues of A(z;) is zero. Moreover, since
21,22, - - - » Zm are simple eigenvalues, only one of the » linear eigenvalues become
zero at each of them. We denote the linear eigenvalue that becomes zero at z = z; by
Ai(z). Note that z; is a simple zero of A,(z) because otherwise z; will not be a simple
zero of det(A(z)).

Since A;(z) is a continuous function of A(z) near z; [10, p. 93, Theorem 2.3], it
remains to be a simple linear eigenvalue of A(z) in the neighborhood of z = z; and
has one-dimensional right and left eigenspaces. Let x;(z) and y;(z) be the (linear) left
and right eigenvectors, respectively, chosen so that y* (z)x;(z) = 1. Also, let X;(z) €
C™ =D and Y;(z) € C"™"~D be matrices whose column vectors are the basis of the
orthogonal complementary subspaces of {y;(z)} and {x;(z)}, respectively, and which
satisfy Y (z)Xi(z) = I,—;. From these definitions, we have

yi (@) [ yr@xi) yr@Xi@ ] _[1 07
[Y,-*@} [xi() %@ ] = [Y,-*(z)xi@ Y,-*<z>xi(z)} = [0 1,1_1} -0

Note that x;(z), yi(z), Xi(z) and Y;(z) are not yet uniquely determined under these
conditions.
Now we show the following basic lemma.

Lemma 2.1 Let I'S be a circle with center z; and radius €. For sufficiently small e,
Ai(2) is an analytic function of z within I and all of X;(2), yi(z), Xi(z) and Y;(z) can
be chosen to be analytic functions of z within I'f.

Proof For a sufficiently small €, A;(z) is a simple linear eigenvalue of A(z)
everywhere in I'S. In this case, it is well known that A;(z) is an analytic function
of zin I*. See [9, p. 117] for the proof. Let P;(z) € C™" be a projection operator
on the right eigenvector of A(z) belonging to A;(z) along the left eigenvector. It is
also shown in [10, p. 93, Theorem 2.3] that P;(z) is an analytic function of z in ¢
for sufficiently small €.

Now, let XEO) # 0 be a (linear) right eigenvector of A(z;) corresponding to A,(z;)
and set x;(z) = Pi(z)xfo) . Then x;(z) is an analytic function of z and belongs to the
right eigenspace of A;(z). Moreover, since x;(z;) = Pi(zi)xl(.o) = xl(.o) # 0, x;(2)
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remains nonzero within I if € is sufficiently small. Thus we can adopt x;(z) as a
(linear) right eigenvector corresponding to 1;(z).

Next, let y§°) # 0 be a (linear) left eigenvector of A(z;) corresponding to A,(z;)
and Xi(o) € C™ =1 be a matrix whose column vectors are the basis of the orthog-
onal complementary subspace of {5750)}. Set X;(z) = (I — Pi(2)) Xl.(o). Then, X;(z) is
an analytic function of z. Also, its column vectors are orthogonal to the (linear) left
eigenvector of A(z) corresponding to A;(z), which we denote by ¥;(z), since

V10X =¥ @ U -P@) X" = (§/@ - §@) X" =0, )

where we used the fact that P} (z) is a projection operator on the left eigenvector
along the right eigenvector. Moreover, since X;(z;) = (I — P;(z;)) Xfo) = Xi(o) , Xi(2)
remains to be rank n— 1 within I'¢ if € is sufficiently small. In this situation, the col-
umn vectors of X;(z) constitute the basis of the orthogonal complementary subspace.

Finally we note that for sufficiently small €, the matrix [x;(z) X;(z)] is of full rank
since the column vectors of X;(z) are orthogonal to the left eigenvector, while the
left and right eigenvectors are not orthogonal for a simple eigenvalue [15]. Hence
we can define a vector y;(z) and a matrix Y;(z) € C"™*"=1 by

¥ -1
9] = e xar. G
It is clear that y;(z) and Y;(z) are analytic functions of z and x;(z), y;(z), Xi(z) and
Yi(z) satisfy Eq. (1). From Eq. (1), it is apparent that Y;(z) is of rank n — 1 and its
columns are the basis of the orthogonal subspace of x;(z). Finally, y;(z) is a (linear)
left eigenvector corresponding to A;(z) since it is orthogonal to the columns of X;(z)
and the eigenspace is one-dimensional.
Thus we have constructed x;(z), yi(z), X;(z) and Y;(z) that satisfy all the
requirements of the lemma. O
Using the result of Lemma 2.1 and Eq. (1), we can expand A(z) in ;€ as
¥ (2) ¥ (2)
AR = [%() Xi() ] Y ) Ve (o) }

[y (2A@xi() yF (Z)A(Z)Xi(z)i| [Y?‘ (Z)}
| Y (2A@2)xi(2) Y (2)A(2)Xi(z) ] LY (2)

_ RGN v, @
=[x@X@1)| "7 (Z)A(Z)Xi(Z)} [Y;"(z)} ¥

}A(z) [xi(2) Xi(2) | [

= [xi(2) Xi(2) ]

where all the elements and submatrices appearing in the last line are analytic
functions of z.
As for the submatrix Y (z)A(z)X;(z), we can show the following lemma.

Lemma 2.2 For sufficiently small €, Y (z)A(2)X;(z) is nonsingular within I'*.
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Proof Since € is sufficiently small, we can assume that there is no other nonlinear
eigenvalues of A(z) in I’ than z;.

Now, assume that Y;*(z)A(z)X;(z) is singular at some point z = Z in I'¢. Then
there is a nonzero vector p € C"! such that Y;*(2)A(2)X;(2)p = 0. It then follows
from Egs. (4) and (1) that X;(z)p is a (linear) right eigenvector of A(Z) corresponding
to the linear eigenvalue 0. Hence, Z is a nonlinear eigenvalue of A(z). But because
A(2) has no other nonlinear eigenvalues than z; in I, we have z = z;. On the other
hand, x;(Z) = x;(z;) is also a (linear) right eigenvector of A(Z) corresponding to
the linear eigenvalue 0. Since the matrix [x;(z) X;(Z)] is of full rank (see Eq. (1)),
x;(z) and X;(Z)p are linearly independent. Thus the null space of A(Z) is at least
two-dimensional. But this contradicts the assumption that z = z; is a simple zero of
det(A(z)). Hence Y;* (z)A(z)X;(z) must be nonsingular within I, O

Combining Lemma 2.2 with Eq. (4), we have the following expansion of A(z)™!
valid everywhere in IS except at z = z;:

1 _ T ‘ Ai(x)~! 0" [y,-*(z)}
A = X’(Z)][ 0 {Yi*(z)A(z)x,-(z)}“] vl @

In the right hand side, 4;(z) is analytic except at z = z;. All other elements and
submatrices are analytic everywhere in I';. Note that {Yl* (2)A (z)Xi(z)}_l is analytic
because A(z), X;(z) and Y;(z) are analytic (see Lemma 2.1) and Y (2)A(2)Xi(z) is
nonsingular, as proved in Lemma 2.2.

We now define the complex moments i, s, ..., Lam—1 by complex contour
integration as

wp(a, v) = ! ¢ 2Pu*A(z) A () v dz, (6)
2mi Jr

where u and v are some constant vectors in C". The next lemma shows that these
complex moments contain information on the nonlinear eigenvalues of A(z) in I".

Lemma 2.3 The complex moments can be written as

m

pp(u,v) = Z vi(u,v)z!, (7

i=1

where {v;(u, V) }!_| are some complex numbers. Moreover, {v;(u, V)}/_ are nonzero
for genericu and v.

Proof Let I' (i = 1,...,m) be a circle with center z; and with sufficiently small
radius €. In I', the integrand is analytic everywhere except inside I, ..., IS, so

we only need to consider the integration along I'.
Since € is sufficiently small, Lemma 2.1 ensures that we can choose analytic
Xi(2), yi(z), Xi(z) and Y;(z) within I'. Of course, A;(z) is also analytic in [*. In
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addition, since A4;(z) has a simple zero at 7 = z;, it can be expressed as A;(z) =
(z — zi)pi(z), where p;(z) is analytic and nonzero in I'.
Now, from Eq. (5), we have

AR = LT x@Y () + X Y @QARX) T Y@ (8)
By differentiating Eq. (4) with respect to z, we have
A'Q) = N @x@)yf ) + () {xi @)y} @)}
+ (XY QARXQY] (2)} ©)
Combining Egs. (8) and (9), we have

AR A (D) = L)W @x)Y] (@) + x)y @) x@)y @)
+Ai@x @Y () (XY DARDX() Y (2))

X (Y (DARX()) T YA (D)

_— x@yr @)+ @
72—z pi(z)

+ x@y @ Xy @)

D v e @AeXe Y )
72—z pi(@

+Xi(2) (Y QARX(D)) T Y (DA (). (10)

x;(2)y; ()

Note that in the rightmost hand side of Eq. (10), the second, third and fifth terms are
analytic and vanish by contour integration. Hence,

1
) 95 Pu*A(2) A () v dz
27Tl 1—-[_5

1 1
o SOV KT XY O | va:

= v;(u,v)z/, (11)
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where
vi(u,v)

= u'xi(z)y; (z)) |:In {Xi(@) Y @)A@)Xi(z) Y (Zi)}/:| v. (12

N 1
pi(z)

In deriving the last equality of Eq. (11), we used the fact that all the factors in the

integrand except 1/(z — z;) is analytic in I'*. v;(u, v) is nonzero for generic u and v,

since v;(u, v) can be written as u*Xv, where X is a nonzero constant matrix.
Finally, we have

1
o) = - PutA@ A Qv
271 Jr

G|

Z gﬁ Pu*A(R) A (D) vdz

p 2mi Iy

=Y viw,v)z. (3)
i=1

This completes the proof. O
Note that we could adopt the definition

1
pp(u,v) = o ﬁz”u*A’(z)A(z)_lvdz, (14)

instead of Eq.(6) and get the same result, although the expression for v;(u, v) in
Eq.(12) is slightly different. So the order of A(z)~' and A’(z) does not actually
matter.

Once {u,(u,v) }12)261 have been computed, we can extract the information on the
nonlinear eigenvalues {z;}_, from them in the same way as in the algorithm for the
linear eigenvalue problem [16]. To this end, we first define two Hankel matrices H,,
and H; by

Mo M1t Um—1 M1 M2 o U
M1 M2t Um M2 M3 Ml
Hy = . . . Hy,=| . .. . (15)
Hm—1 Ko =+ Uom—2 Mm Mm+1 = Pam—1

Here we have suppressed the dependence of (1, on u and v for brevity. The next
theorem shows how to compute the nonlinear eigenvalues from H,, and H,;. This
is exactly the same theorem used for the linear eigenvalue problem in [16], but we
include the proof for completeness.
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Theorem 2.4 Assume that A(z) has m simple nonlinear eigenvalues 71,22, ..., Zm
within I'. Assume further that v;’s defined by Eq. (12) are nonzero fori = 1,...,m.
Then, z1,22, . .., Zm are given as the m eigenvalues of the matrix pencil Hy, — AH,,

defined by Eq. (15).

Proof Define a Vandermonde matrix V,, and two diagonal matrices D,, and A,, by

Vin = . .. , (16)
len—l Zgl—l . Z%_l
D,, = diag(vy,va, -+, vp), (17)
AW! = diag(Z17Z25"' 7ZW1)' (18)
Then it is easy to see that H,, = V,,D, V. and H; = V,,D,,A,,V]. Since v; #
0@ =1,...,m), D, is nonsingular. Also, since the m nonlinear eigenvalues are
distinct, V,, is nonsingular. Thus we have
A is an eigenvalue of H,, — AH,,.
& H,, — AH, is singular.
< A, — Al, is singular.

& kA = z. 19)
This completes the proof. O
We can also compute the (nonlinear) eigenvectors corresponding to zj, 22, - - - , Znm

by slightly modifying the lemma and the theorem stated above. Let n-dimensional
vectors So, S, - - - , Sy—] be defined by

sp(V) = ! , 95 PAQ)T'A(Qvdz (p=0,1,...,m—1). (20)
2mi r

Then we have the following lemma.

Lemma 2.5 The vector s, can be written as
sp(v) = ZZ,PUi(V)Xi(Zi), 2D
i=1

where {0;(V)}/L, are some complex numbers. Moreover, {0;(V)}/L, are nonzero for
generic V.
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Proof Let ¢; be the j-th column of I,. Then we have from Egs. (20), (13) and (12),
. 1 D —1 47
sp(v) = ;ej i 9&1‘ e'A(z)" A'(r)vdz

= Z €€, V)

J=1

n m

=Y evilej V)7

j=1i=1

- 1
= Zz{’xi(zi)yf‘ (z) |:In + iz {Xi(z) Y (@)A@)Xi(z) Y (Zi)}/i| \4
i=1 A
=Y oi(vxi(z). (22)
i=1
where
1
0i(v) = ¥; (z)) |:In + pi(z) {Xi(@)Y] (2)A)Xi(z) Y] (Zi)}/:| V. (23)
Apparently, 0;(v) is nonzero for generic v. O
Denote by w; the (nonlinear) eigenvector of A(z) corresponding to the eigenvalue
z;, that is, w; = x;(z;). Then wy, wa, ..., w,, can be computed as follows.
Theorem 2.6 Ifo; # Ofori=1,...,m, the eigenvectors are given by
Wi Wa. .. Wl = [s0.81,....8u1] V" (24
Proof From Lemma 2.5, [sg, 1, . . . , Su—1] can be written as
[SOa sla ceey sm—l]
= |:Z Z?Ui(V)Xi(Zi), ZZ}Ui(V)Xi(Zi)s cee Z Zlm_lffi(V)Xi(Zi):|
i=1 i=1 i=1
= [01X1(21), 02X2(22)5 - - - » O X (Zm)] V,Z. (25)

Hence,

[01X1(21), 02X2(22), - - - s OXon (@m)] = [S0. 14+ Su—1] Vi, (26)
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The theorem follows by noting that if o; # 0, 0,X;(z;) is a nonzero vector that
satisfies A(z;)x;(z;)) = Ai(z)xi(z;) = 0 and is itself a nonlinear eigenvector
corresponding to z;. O

3 The Algorithm

In this section, we present an algorithm for computing the nonlinear eigenvalues of
A(z) that lie within I" based on the theory developed in the previous section. For
simplicity, we restrict ourselves to the case where I is a circle centered at the origin
and with radius r.

In the algorithm, we need to approximate the contour integrals in Egs. (6)
and (20) with some quadrature. Since they are integrals of an analytic function over
the entire period, we use the trapezoidal rule [ 19, 20], which converges exponentially
and therefore is an excellent method for the task. When the number of sample points
is K, Egs. (6) and (20) become

rp+1 K—1 . . .
mpy) =" Y o AGw) A (e, @7
Jj=0
P bt j
M =" > o TV AGwl) T A (raf) v, (28)
Jj=0

respectively, where wx = exp (*7').
Using these expressions, the algorithm can be written as in Algorithm 1.

Algorithm1: Finding the eigenvalues in I" and corresponding eigenvectors]
1)  Inputn,m,r, K, uand vAD

2)  wg =exp (ZI’(”)

) forj=0,1,..., K—-1

) § = roy

) tj = A A (§)v

) end for

y forp=0,1,...,2m—1

) sy = r”;l ;(=—01 w[({p-l—l)/tj
) pp = u’s,

0) end for

1) Construct H,, and H;, from 1o, ft1, ..., lom—1.

2) Find the eigenvalues z1, 22, . .., 2w of Hy — AH,,.
3) Compute [Wi, W2, ..., W] = [So,S1,...,Sm—1] VT
using the matrix V,, defined by Eq. (16).

(14) Output z1,22,...,2, and Wi, W,..., W,

~_~ — —

[
(
(
(3
(4
(5
(6
(7
(8
(9
(1
(1
(1
(1
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Concerning the use of Algorithm 1, several remarks are in order.

1. In this algorithm, the computationally dominant part is step 5, where the solution
of linear equations with coefficient matrix A(;) forj = 0, 1,..., K—1is needed.
This operation is repeated for K different values of §;. However, as is clear from
the algorithm, these K operations can be done completely in parallel. Thus the
algorithm has large-grain parallelism.

2. In step 13, since V,, is a Vandermonde matrix, multiplying V7 can be done
using a specialized solver for Vandermonde systems [7]. This is faster and more
accurate than first constructing V,, explicitly and then using a general-purpose
solver such as the Gaussian elimination.

3. Though this algorithm presupposes that m, the number of eigenvalues in I, is
known in advance, this is often not the case. When m is unknown, we can choose
some integer M, which hopefully satisfies M > m, run the algorithm by replacing
m with M, and compute {v;}!_, by v; = €[ V;;'HyV;,"e;. In this case, M — m of
{z1,225- .., 2m} are spurious eigenvalues that do not correspond to the nonlinear
eigenvalues of A(z) in I". These spurious eigenvalues can be distinguished from
the true ones since the corresponding |v;|’s are very small. This technique was
proposed in [17] for the (linear) generalized eigenvalue problem and its detailed
analysis is given in [1]. There is also a technique to determine m using the
singular value decomposition of Hy,. See [8] for details.

4 Numerical Examples

In this section, we give numerical examples of our Algorithm 1. The experiments
were performed on a PC with a Xeon processor and Red Hat Linux using the
Gnu C++ compiler. We used LAPACK routines to solve the linear simultaneous
equation with coefficient matrix A(§;) and to find the eigenvalues of the matrix
pencil H; — AH,,.

Example 1 Our first example is a small symmetric quadratic eigenvalue problem
taken from [18]:

—10A2+2+10
20242042 —11A2+2+9 sym.
AQR)= —A242-1 22242243 —12A2+410 . (29)

A242A4+2  —2A%24+A—1 —A2—2A+2 —10A24+21+12
3024A—2  —AZ43A-2 AZ-22—1 20243141 —11A24+31+10

This problem has ten distinct eigenvalues and their values are (to three deci-
mals) [13]:

-127 —-1.08 —-1.0048 —-0.779 —0.512

0.502  0.880 0.937 1.47 1.96. (30)
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Table 1 Computed eigenvalues, their residuals and the values of v; for Example 1

i Eigenvalue z; Residual V;

1 +8.14126840 + 3.48672318i 6.95 x 107! =+0.00000000 + 0.00000000i
2 —0.51176193 — 0.00000000i 4.62 x 1071 +0.10296094 — 0.15679519i
3 —1.07716760 + 0.00000072i 223 % 107° —0.00000929 — 0.00000217i
4 —1.00483822 + 0.00000000i 7.37 x 10~ —1.22943061 + 0.25648078i
5 —0.77909458 — 0.00000000i 5.33 x 10711 +1.65030210 + 0.71552727i
6 +0.50241527 + 0.00000000i 4.54 x 10712 —0.03125232 + 0.34335409i
7 +0.87992728 + 0.00000000i 3.23 x 107! —0.06281529 — 0.235624138i
8 +0.93655066 — 0.00000000i 5.81 x 10711 +0.00985445 + 0.10564969i

Five eigenvalues of A(z) are given in bold

We applied our method with » = 1.0 to find the eigenvalues in the unit disk
with center at the origin. There are five eigenvalues of A(z) in this circle. We set
M = 8 (see item (iii) of the previous subsection) and K = 128. The computed
eigenvalues z; of Hy; — AHy is shown in Table 1, along with the residual of the
computed eigenvectors w; and the values of v;. Here the residual is defined by ||
AG)wi ||/ (T AG) llooll Wi -

Among the eight computed eigenvalues, z; and zs through zg are inside the
circle and have relatively large value of |v;|. Thus we know that they are wanted
eigenvalues. In fact, they have small residuals of order 10~'!. Hence we can say
that we have succeeded in finding all the five eigenvalues in the circle and the
corresponding eigenvectors with high accuracy.

On the other hand, z4 is located outside the circle and z; and z3 have small value
of |v;|. This shows that they are either unwanted or spurious eigenvalues. Among
these three eigenvalues, z4 has a large value of |v;| and its residual is as small as
that for the inner eigenvalues. Thus it seems that this is a true outer eigenvalue
that has been computed accurately. This occurs because the effect of the poles of
u*A(z)7'A’(z)v just outside the circle remains due to numerical integration. This
phenomenon occurs also in the algorithm using Tr(A(z) ~'A’(z)) and is analyzed in
[1] in detail.

Example 2 Our next example is a medium size problem whose elements have both
linear and exponential dependence on z. Specifically,

AQR) = A —zl, + €B(z). 31)

where A is a real nonsymmetric matrix whose elements follow uniform random
distribution in [0, 1], B(z) is an anti-diagonal matrix with antidiagonal elements ¢*
and € is a parameter that determines the degree of nonlinearity. This test matrix
is used in [1]. In the present example, n = 500 and we applied our method with
r = 0.7. It is known that there are ten eigenvalues in the circle. We set M = 12 and
K = 128. The result are shown in Table 2.
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Table 2 Computed eigenvalues, their residuals and the values of v; for Example 2

i Eigenvalue z; Residual v

1 +0.18966905 + 0.63706191i 2.13x 10714 +1.17984929 — 0.22981043i
2 —0.43247175 — 0.71100593i 3.68 x 107° +0.00000000 — 0.00000000i
3 —0.51507157 — 0.45900079i 472 x 1071 —0.98601173 — 6.36155661i
4 40.18966905 — 0.63706191i 8.81 x 10715 —1.41428395 — 1.01002310i
5 40.59154350 — 0.25937027i 8.23 x 1071 +5.09208563 — 0.07378654i
6 +0.59154350 + 0.25937027i 1.49 x 10714 —4.13045809 — 4.87142384i
7 +0.33336324 — 0.18217042i 4.14 x 10714 —8.04725134 + 0.10007238i
8 +0.33336324 + 0.18217042i 6.92 x 10~ +6.45071565 + 3.77328737i
9 —0.54261232 — 0.00000000i 1.52 x 10714 —1.37030828 + 1.66944385i
10 —0.08820357 — 0.00000000i 1.78 x 10713 —3.03924483 + 3.67246714i
11 —0.43248417 4 0.71102419i 6.22 x 107 —0.00000000 — 0.00000000i
12 —0.51507157 + 0.45900079i 8.56 x 10~1° +1.97883460 + 0.79241891i

Ten eigenvalues in the circle are given in bold

Fig. 1 Distribution of the Imz
eigenvalues in Example 2 -
{0 Eigenvalues |
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\d
-0.7 * (e) 07 Rez
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\ ¢/
N
N~ ¢
M -0.7

Among the twelve computed eigenvalues, the ten eigenvalues except for z, and
z11 are inside the circle and have large value of v;. Accordingly, these are judged
to be the wanted eigenvalues. This is confirmed by the fact that the corresponding
residuals are all of order 10™!%, Hence we can conclude that our algorithm again
succeeded in finding all the wanted eigenvalues in this example. The computed
eigenvalues in the complex plane are shown in Fig. 1.
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5 Conclusion

In this paper, we presented an alternative derivation of the SS-type method for
the nonlinear eigenvalue problem. We assumed that all the eigenvalues in the
specified region are simple and considered contour integrals along infinitesimally
small circles around the eigenvalues. This allowed us to use the analyticity of the
eigenvalues and eigenvectors of a parametrized matrix A(z), which is a well-known
result in matrix perturbation theory, instead of the canonical forms of A(z) described
by the Smith form or the theorem of Keldysh. We believe this will provide an easily
accessible approach to the theory of the nonlinear SS-type method.
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Fast Multipole Method as a Matrix-Free
Hierarchical Low-Rank Approximation

Rio Yokota, Huda Ibeid, and David Keyes

Abstract There has been a large increase in the amount of work on hierarchical
low-rank approximation methods, where the interest is shared by multiple commu-
nities that previously did not intersect. This objective of this article is two-fold,;
to provide a thorough review of the recent advancements in this field from both
analytical and algebraic perspectives, and to present a comparative benchmark of
two highly optimized implementations of contrasting methods for some simple yet
representative test cases. The first half of this paper has the form of a survey paper, to
achieve the former objective. We categorize the recent advances in this field from the
perspective of compute-memory tradeoff, which has not been considered in much
detail in this area. Benchmark tests reveal that there is a large difference in the
memory consumption and performance between the different methods.

1 Introduction

The fast multipole method (FMM) was originally developed as an algorithm
to bring down the ¢(N?) complexity of the direct N-body problem to &'(N)
by approximating the hierarchically decomposed far field with multipole/local
expansions. In its original form, the applicability of FMM is limited to problems
that have a Green’s function solution, for which the multipole/local expansions
can be calculated analytically. Their function is also limited to matrix-vector
multiplications, in contrast to the algebraic variants that can perform matrix-matrix
multiplication and factorizations. However, these restrictions no longer apply to the
FMM since the kernel independent FMM [103] does not require a Green’s function,
and inverse FMM [2] can be used as the inverse operator instead of the forward
mat-vec. Therefore the FMM can be used for a wide range of scientific applications,
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which can be broadly classified into elliptic partial differential equations (PDE)
and kernel summation. Integral form of elliptic PDEs can be further categorized
into boundary integrals for homogeneous problems, discrete volume integrals, and
continuous volume integrals.

Scientific applications of FMM for boundary integrals include acoustics [59, 97],
biomolecular electrostatics [105], electromagnetics [33, 42], fluid dynamics for
Euler [96] and Stokes [88] flows, geomechanics [92], and seismology [22, 95].
Application areas of FMM for discrete volume integrals are astrophysics [14],
Brownian dynamics [75], classical molecular dynamics [84], density functional
theory [90], vortex dynamics [106], and force directed graph layout [107]. FMM
for continuous volume integrals have been used to solve Schrodinger [108] and
Stokes [79] equations. More generalized forms of FMM can be used as fast kernel
summation for Bayesian inversion [3], Kalman filtering [74], Machine learning
[49, 72], and radial basis function interpolation [54].

All of these applications have in common the key feature that they are global
problems where the calculation at every location depends on the values everywhere
else. Elliptic PDEs that represent a state of equilibrium, many iterations with global
inner products for their solution, dense matrices in boundary integral problems, all-
to-all interaction in N-body problems, and kernel summations with global support
are all different manifestations of the same source of global data dependency. Due to
this global data dependency, their concurrent execution on future computer architec-
tures with heterogeneous and deep memory hierarchy is one of the main challenges
of exascale computing. For global problems that require uniform resolution, FFT
is often the method of choice, despite its suboptimal communication costs. The
methods we describe here have an advantage for global problems that require
non-uniform resolution. For such non-uniform global problems multigrid methods
are known to do quite well. Whether the reduced synchronization and increased
arithmetic intensity of the FMM will become advantageous compared to multigrid
on future architectures is something that is yet to be determined.

Many of the original FMM researchers have now moved on to develop algebraic
variants of FMM, such as J#Z-matrix [55], #¢2-matrix [57], hierarchically semi-
separable (HSS) [26], hierarchically block-separable (HBS) [82], and hierarchically
off-diagonal low-rank (HODLR) [1] matrices. The differences between these
methods are concisely summarized by Ambikasaran and Darve [2]. These algebraic
generalizations of the FMM can perform addition, multiplication, and even factor-
ization of dense matrices with near linear complexity. This transition from analytic
to algebraic did not happen suddenly, and semi-analytic variants were developed
along the way [39, 103]. Optimization techniques for the FMM such as compressed
translation operators and their precomputation, also fall somewhere between the
analytic and algebraic extremes.

The spectrum that spans purely analytic and purely algebraic forms of these
hierarchical low-rank approximation methods, represents the tradeoff between
computation (Flops) and memory (Bytes). The purely analytic FMM is a matrix-
free .#2-matrix-vector product, and due to its matrix-free nature it has very high
arithmetic intensity (Flop/Byte) [9]. On the other end we have the purely algebraic



Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation 269

methods, which precompute and store the entire hierarchical matrix. This results
in more storage and more data movement, both vertically and horizontally in
the memory hierarchy. When the cost of data movement increases faster than
arithmetic operations on future architectures, the methods that compute more to
store/move less will become advantageous. Therefore, it is important to consider
the whole spectrum of hierarchical low-rank approximation methods, and choose
the appropriate method for a given pair of application and architecture.

There have been few attempts to quantitatively investigate the tradeoff between
the analytic and algebraic hierarchical low-rank approximation methods. Previously,
the applicability of the analytic variants were limited to problems with Green’s
functions, and could only be used for matrix-vector products but not to solve
the matrix. With the advent of the kernel-independent FMM (KIFMM) [103] and
inverse FMM (IFMM) [2], these restrictions no longer apply to the analytic variants.
Furthermore, the common argument for using the algebraic variants because they
can operate directly on the matrix without the need to pass geometric information
is not very convincing. Major libraries like PETSc offer interfaces to insert one’s
own matrix free preconditioner as a function, and passing geometric information
is something that users are willing to do if the result is increased performance.
Therefore, there is no strong reason from the user’s perspective to be monolithically
inclined to use the algebraic variants. It is rather a matter of choosing the method
with the right balance between its analytic (Flops) and algebraic (Bytes) features.

The topic of investigating the tradeoff between analytic and algebraic hierarchical
low-rank approximation methods is too broad to cover in a page-constrained article.
In the present work, we limit our investigation to the compute-memory tradeoff in
a comparison between FMM and HSS for Laplace and Helmholtz kernels. We also
investigate the use of FMM as a preconditioner for iterative solutions to the Laplace
and Helmholtz problems with finite elements, for which we compare with geometric
and algebraic multigrid methods.

2 Hierarchical Low-Rank Approximation: Analytic
or Algebraic?

In this section we review the full spectrum of hierarchical low-rank approximations
starting from the analytic side and proceeding to the algebraic side. The spectrum is
depicted in Fig. 1, where various techniques like between the analytic and algebraic
extremes. One can choose the appropriate method for a given architecture to achieve
the best performance.
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Kernel independent
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Compressed operators Precomputation
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Fig. 1 The compute-memory tradeoff between the analytic and algebraic hierarchical low-rank
approximation methods. Various techniques lie between the analytic and algebraic extremes

2.1 Analytic Low-Rank Approximation

On the analytic end of the spectrum, we have classical methods such as the
Treecode [10], FMM [8, 50], and panel clustering methods [56]. These methods
have extremely high arithmetic intensity (Flop/Byte) due to their matrix-free nature,
and are compute-bound on most modern architectures. One important fact is that
these are not brute force methods that do unnecessary Flops, but are (near) linear
complexity methods that are only doing useful Flops, but they are still able to remain
compute-bound. This is very different from achieving high Flops counts on dense
matrix-matrix multiplication or LU decomposition that have &’(N?) complexity. The
methods we describe in this section can approximate the same dense linear algebra
calculation in &'(N) or (N log N) time.

As an example of the absolute performance of the analytic variants, we refer
to the Treecode implementation—Bonsai, which scales to the full node of Titan
using 18,600 GPUs achieving 24.77 PFlops [14]. Bonsai’s performance comes not
only from its matrix-free nature, but also from domain specific optimizations for
hardcoded quadrupoles and an assumption that all charges are positive. Therefore,
this kind of performance cannot be transferred to other applications that require
higher accuracy. However, viewing these methods as a preconditioner instead of a
direct solver significantly reduces the accuracy requirements [5, 67].

2.2 Fast Translation Operators

A large part of the calculation time of FMM is spent on the translation of multipole
expansions to local expansions (or their equivalent charges). Therefore, much work
has focused on developing fast translation operators to accelerate this part of the
FMM. Rotation of spherical harmonics [94], Block FFT [37], Planewaves [51] are
analytic options for fast translation operators.

These translation operators are applied to a pair of boxes in the FMM tree
structure that satisfy a certain proximity threshold. This proximity is usually defined
as the parent’s neighbors’ children that are non-neighbors. This produces a list of
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boxes that are far enough that the multipole/local expansion converges, but are
close enough that the expansion does not converge for the their parents. Such an
interaction list can contain up to 63 — 3> = 189 source boxes for each target box.
Out of these 189 boxes, the ones that are further from the target box can perform the
translation operation using their parent box as the source without loss of accuracy.
There are a few variants for these techniques that reduce the interaction list size
such as the level-skip M2L method [93] and 8, 4, 2-box method [95]. There are
also methods that use the dual tree traversal along with the multipole acceptance
criterion to construct optimal interaction lists [35], which automates the process of
finding the optimal interaction list size.

Another technique to accelerate the translation operators is the use of variable
expansion order, as proposed in the very fast multipole method (VFMM) [87],
Gaussian VFMM [21], optimal parameter FMM [29], and error controlled FMM
[32]. There are two main reasons why spatially varying the expansion order in the
translation operators is beneficial. One is because not all boxes in the interaction list
are of equal distance, and the boxes that are further from each other can afford to
use lower expansion order, while retaining the accuracy. The other reason is because
some parts of the domain may have smaller values, and the contribution from that
part can afford to use lower expansion order without sacrificing the overall accuracy.

The translation operators can be stored as matrices that operate on the vector
of expansion coefficients. Therefore, singular value decomposition (SVD) can
be used to compress this matrix [43] and BLAS can be used to maximize the
cache utilization [40]. Some methods use a combination of these techniques like
Chebychev with SVD [39] and planewave with adaptive cross approximation (ACA)
and SVD [61]. The use of SVD is a systematic and optimal way of achieving what
the variable expansion order techniques in the previous paragraph were trying to
do manually. Precomputing these translation matrices and storing them is a typical
optimization technique in many FMM implementations [78].

One important connection to make here is that these matrices for the translation
operators are precisely what .7#>-matrices and HSS matrices store in the off-
diagonal blocks after compression. One can think of FMM as a method that has
the analytical form to generate these small matrices in the off-diagonal blocks,
without relying on numerical low-rank approximation methods. To complete this
analogy, we point out that the dense diagonal blocks in .7#>-matrices and HSS
matrices are simply storing the direct operator (Green’s function) in FMM. Noticing
this equivalence leads to many possibilities of hybridization among the analytic
and algebraic variants. Possibly the most profound is the following. Those that
are familiar with FMM know that translation operators for boxes with the same
relative positioning are identical. This suggests that many of the entries in the
off-diagonal blocks of .7#>-matrices and HSS matrices are identical. For matrices
that are generated from a mesh that has a regular structure even the diagonal
blocks would be identical, which is what happens in FMM:s for continuous volume
integrals [78]. This leads to &'(1) storage for the matrix entries at every level of the
hierarchy, so the total storage cost of these hierarchical matrices could be reduced to
O (log N) if the identical entires are not stored redundantly. This aspect is currently
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underutilized in the algebraic variants, but seems obvious from the analytic side. By
making use of the translational invariance and rotational symmetry of the interaction
list one can reduce the amount of storage even further [31, 34, 91]. This also results
in blocking techniques for better cache utilization.

2.3 Semi-analytical FMM

The methods described in the previous subsection all require the existence of an
analytical form of the multipole/local translation operator, which is kernel depen-
dent. There are a class of methods that remove this restriction by using equivalent
charges instead of multipole expansions [7, 15, 77]. A well known implementation
of this method is the kernel independent FMM (KIFMM) code [103]. There are also
variants that use Chebychev polynomials [36], and a representative implementation
of this is the Black-box FMM [39]. As the name of these codes suggest, these
variants of the FMM have reduced requirements for the information that has to be
provided by the user. The translation operators are kernel-independent, which frees
the user from the most difficult task of having to provide an analytical form of the
translation operators. For example, if one wants to calculate the Matérn function
for covariance matrices, or multiquadrics for radial basis function interpolation,
one simply needs to provide these functions and the location of the points and the
FMM will handle the rest. It is important to note that these methods are not entirely
kernel independent or black-box because the user still needs to provide the kernel
dependent analytic form of the original equation they wish to calculate. Using the
vocabulary of the algebraic variants, one could say that these analytical expressions
for the hierarchical matrices are kernel independent only for the off-diagonal blocks,
and for the diagonal blocks the analytical form is kernel dependent.

FMM for continuous volume integrals [38] also has important features when con-
sidering the analytic-algebraic tradeoff. The volume integrals are often combined
with boundary integrals, as well [104]. One can think of these methods as an FMM
that includes the discretization process [70]. Unlike the FMM for discrete particles,
these methods have the ability to impose regular underlying geometry. This enables
the use of precomputation of the direct interaction matrix in the analytic variants
[78], and reduces the storage requirements of the dense diagonal blocks in the
algebraic variants.

2.4 Algebraic Low-Rank Approximation

There are many variants of algebraic low-rank approximation methods. They can be
categorized based on whether they are hierarchical, whether they use weak admissi-
bility, or if the basis is nested, as shown in Table 1. For the definition of admissibility
see [45]. Starting from the top, #-matrices [12, 55] are hierarchical, usually use
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Table 1 Categorization of algebraic low-rank approximation methods

Method Hierarchical Weak admissibility Nested basis
J-matrix [55] Yes Maybe No
% -matrix [57] Yes Maybe Yes
HODLR [1] Yes Yes No
HSS [26]/HBS [82] Yes Yes Yes
BLR [4] No Yes No

standard or strong admissibility, and no nested basis. The analytic counterpart of
the 7 -matrix is the Treecode. The .5#2-matrices [16, 57] are also hierarchical and
use standard or strong admissibility, but unlike .7Z-matrices use a nested basis. This
brings the complexity down from &'(NlogN) to &'(N). The analytic counterpart of
the .s#%-matrix is the FMM. The next three entries in Table 1 do not have analytic
counterparts because analytic low-rank approximations do not converge under weak
admissibility conditions. Hierarchical off-diagonal low-rank (HODLR) matrices
[1, 6], are basically s#-matrices with weak admissibility conditions. Similarly,
hierarchically semi-separable (HSS) [26, 101], and hierarchically block-separable
(HBS) [82] matrices are .#>-matrices with weak admissibility conditions. The
block low-rank (BLR) matrices [4] are a non-hierarchical version of the HODLR,
with just the bottom level. A summary of implementations and their characteristics
are presented in [89].

For methods that do not have weak admissibility, it is common to use geometrical
information to calculate the standard/strong admissibility condition. This depen-
dence on the geometry of the algebraic variants is not ideal. There have been various
proposals for algebraic clustering methods [46, 71, 85]. This problem requires even
more advanced solutions for high dimension problems [80]. Stronger admissibility
is also problem for parallelization since it results in more communication. There
have been studies on how to partition hierarchical matrices on distributed memory
[68]. There are also methods to reduce the amount of memory consumption during
the construction of HSS matrices [73].

The categorization in Table 1 is for the hierarchical matrix structure, and any low-
rank approximation method can be used with each of them during the compression
phase. The singular value decomposition is the most naive and expensive way to
calculate a low-rank approximation. QR or LU decompositions can be used to
find the numerical rank by using appropriate pivoting. Rank-revealing QR [24] has
been proposed along with efficient pivoting strategies [25, 53, 64]. Rank-revealing
LU [23] also requires efficient pivoting strategies [65, 66, 83]. Rank-revealing LU
is typically faster than rank-revealing QR [86]. There are other methods like the
pseudo-skeletal method [44] and adaptive cross approximation (ACA) [11, 13],
which do not yield the optimal low-rank factorizations but have a much lower
cost. ACA has a better pivoting strategy than pseudo-skeletal methods, but can
still fail because of bad pivots [18]. The hybrid cross approximation (HCA) [17]
has the same proven convergence as standard interpolation but also the same
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efficiency as ACA. Yet another class of low-rank approximation is the interpolative
decomposition (ID) [28, 82], where a few of its columns are used to form a well-
conditioned basis for the remaining columns. ID can be combined with randomized
methods [76], which has much lower complexity. For a nice review on these
randomized methods see [58].

3 Low-Rank Approximation for Factorization

3.1 Sparse Matrix Factorization

Hierarchical low-rank approximation methods can be used as direct solvers with
controllable accuracy. This makes them useful as preconditioners within a Krylov
subspace method, which in turn reduces the accuracy requirements of the low-rank
approximation. High accuracy and completely algebraic methods are demanding in
terms of memory consumption and amount of communication, so they are unlikely
to be the optimal choice unless they are the only solution to that problem.

There are two ways to use hierarchical low-rank approximations for factorization
of a sparse matrix. The first way is to perform the LU decomposition on the
sparse matrix, and use hierarchical low-rank approximations for the dense blocks
that appear during the process [98, 100, 101]. The other way is to represent the
sparse matrix with a hierarchical low-rank approximation and perform an LU
decomposition on it [46—48]. The main difference is whether you view the base
method as the nested dissection and the additional component as HLRA or vice
versa. The former has the advantage of being able to leverage the existing highly
optimized sparse direct solvers, whereas the latter has the advantage of handling
both sparse and dense matrices with the same infrastructure.

There are various ways to minimize the fill-in and compress the dense blocks
during factorization. These dense blocks (Schur complements) are an algebraic form
of the Green’s function [99], and have the same low-rank properties [27] stemming
from the fact that some of the boundary points in the underlying geometry are
distant from each other. Formulating a boundary integral equation is the analytical
way of arriving to the same dense matrix. From an algebraic point of view, the
sparse matrix for the volume turns into a dense matrix for the boundary, through the
process of trying to minimize fill-in. Considering the minimization of fill-in and the
compression of the dense matrices in separate phases leads to methods like HSS +
multifrontal [98, 100, 101].

Ultimately, minimizing fill-in and minimizing off-diagonal rank should not
be conflicting objectives. The former depends on the connectivity and the latter
depends on the distance in the underlying geometry. In most applications, the closer
points are connected (or interact) more densely, so reordering according to the
distance should produce near optimal ordering for the connectivity as well. The
same can be said about minimizing communication for the parallel implementation
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of these methods. Mapping the 3-D connectivity/distance to a 1-D locality in the
memory space (or matrix column/row) is what we are ultimately trying to achieve.

3.2 Dense Matrix Factorization

The methods in the previous subsection are direct solvers/preconditioners for sparse
matrices. As we have mentioned, there is an analogy between minimizing fill-
in in sparse matrices by looking at the connectivity, and minimizing the rank
of off-diagonal blocks of dense matrices by looking at the distance. Using this
analogy, the same concept as nested dissection for sparse matrices can be applied
to dense matrices. This leads to methods like the recursive skeletonization [62],
or hierarchical Poincare-Steklov (HPS) [41, 81]. HPS is like a bottom-up version
of what nested dissection and recursive skeletonization do top-down. For high
contrast coefficient problems, it makes sense to construct the domain dissection
bottom-up, to align the bisectors with the coefficient jumps. There are also other
methods that rely on a similar concept [19, 52, 69, 102]. Furthermore, since many
of these methods use weak admissibility with growing ranks for 3-D problems,
it is useful to have nested hierarchical decompositions, which is like a nested
dimension reduction. In this respect, the recursive skeletonization has been extended
to hierarchical interpolative factorization (HIF) [63], the HSS has been extended to
HSS2D [99]. There is also a combination of HSS and Skeletonization [30]. There
are methods that use this nested dimension reduction concept without the low-rank
approximation [60] in the context of domain decomposition for incomplete LU
factorization. One method that does not use weak admissibility is the inverse FMM
[2], which makes it applicable to 3-D problems in &'(N) without nested dimension
reduction.

4 Experimental Results

4.1 FMMvs. HSS

There have been few comparisons between the analytic and algebraic hierarchical
low-rank approximation methods [20]. From a high performance computing per-
spective, the practical performance of highly optimized implementations of these
various methods is of great interest. There have been many efforts to develop new
methods in this area, which has resulted in a large amount of similar methods with
different names without a clear overall picture of their relative performance on
modern HPC architectures. The trend in architecture where arithmetic operations are
becoming cheap compared to data movement, is something that must be considered
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carefully when predicting which method will perform better on computers of the
future.

We acknowledge that the comparisons we present here are far from complete,
and much more comparisons between all the different methods are needed in order
to achieve our long term objective. The limitation actually comes from the lack of
highly optimized implementations of these methods that are openly available to us
at the moment.

In the present work we start by comparing exaFMM—a highly optimized
implementation of FMM, with STRUMPACK—a highly optimized implementation
of HSS. We select the 2D and 3D Laplace equation on uniform lattices as test
cases. For HSS we directly construct the compressed matrix by calling the Green’s
function in the randomized low-rank approximation routine. We perform the matrix-
vector multiplication using the FMM and HSS, and measure the time for the
compression/precalculation and application of the matrix-vector multiplication. We
also measure the peak memory consumption of both methods.

The elapsed time for the FMM and HSS for different problem sizes is shown
in Fig. 2. In order to isolate the effect of the thread scalability of the two methods,
these runs are performed on a single core of a 12-core Ivy Bridge (E5-2695 v2). For
the 2D Laplace equation, the FMM shows some overhead for small N, but is about
3 orders of magnitude faster than HSS for larger problems. For the 3D Laplace
equation, the FMM is about 2 orders of magnitude faster than HSS for smaller N,
but HSS exhibits non-optimal behavior for large N because the rank keeps growing.

The large difference in the computational time is actually coming from the heavy
computation in the sampling phase and compression phase of the HSS. In Fig. 3,
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Fig. 2 Elapsed time for the matrix-vector multiplication using FMM and HSS for different
problem sizes
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we show the percentage of the computation time of HSS for different problem sizes
N. “Sample” is the sampling time, “Compress” is the compression time, and “Mat-
Vec” is the matrix-vector multiplication time. We can see that the sampling is taking
longer and longer as the problem size increases. This is because the rank & increases
with the problem size N, and both sampling and compression time increase with the
kand N.

The peak memory usage of FMM and HSS is shown in Fig. 4 for the 3D Laplace
equation. We see that the FMM has strictly &'(N) storage requirements, but since
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the rank in the HSS grows for 3D kernels it does not show the ideal &'(N log N)
behavior. The disadvantage of HSS is two-fold. First of all, its algebraic nature
requires it to store the compressed matrix, where as the FMM is analytic and
therefore matrix-free. Secondly, the weak admissibility causes the rank to grow
for 3D problems, and with that the memory consumption grows at a suboptimal
complexity.

4.2 FMM vs. Multigrid

If we are to use the FMM as a matrix-free &'(N) preconditioner based on hierarchical
low-rank approximation, the natural question to ask is “How does it compare against
multigrid?”, which is a much more popular matrix-free &'(N) preconditioner for
solving elliptic PDEs. We perform a benchmark test similar to the one in the
previous subsection, for the Laplace equation and Helmholtz equation on a 3D
cubic lattice [—1, 1]3, but for this case we impose Dirichlet boundary conditions
at the faces of the domain. The preconditioners are used inside a Krylov subspace
solver. The runs were performed on Matlab using a finite element package IFISS.
Our fast multipole preconditioner is compared with the incomplete Cholesky (IC)
factorization with zero fill implemented in Matlab and the algebraic multigrid
(AMG) and geometric multigrid (GMG) methods in IFISS. The FMM code is
written in C and called as a MEX function.

The convergence rate of the FMM and Multigrid preconditioners for the Laplace
equation is shown in Fig.5, for a grid spacing of h = 27°. “AMG” is algebraic
multigrid, “GMG” is geometric multigrid, “Inc Chol” is incomplete Cholesky. The
€ value represents the accuracy of the FMM. We see that the FMM preconditioner
has comparable convergence to the algebraic and geometric multigrid method. Even
for a very low-accuracy FMM with € = 1072, the convergence rate is much better
than the incomplete Cholesky. We refer to the work by Ibeid et al. [67] for more
detailed comparisons between FMM and Multigrid.

A similar plot is shown for the Helmholtz equation with grid spacing of & = 27>
and wave number k = 7 in Fig. 6. The nomenclature of the legend is identical to
that of Fig. 5. In this case, we see a larger difference between the convergence rate
of FMM and Multigrid. Even the FMM with the worst accuracy does better than the
multigrid. We have also confirmed that the FMM preconditioner has a convergence
rate that is independent of the problem size, up to moderate wave numbers of «.

The strong scaling of FMM and AMG are shown in Fig. 7, which includes the
setup phase and all iterations it took to converge. All calculations were performed
on the TACC Stampede system without using the coprocessors. Stampede has
6400 nodes, each with two Xeon E5-2680 processors and one Intel Xeon Phi
SE10P coprocessor and 32GB of memory. We used the Intel compiler (version
13.1.0.146) and configured PETSc with “COPTFLAGS=-03 FOPTFLAGS=-03
-with-clanguage=cxx
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-download-f-blas-lapack -download-hypre
-download-metis -download-parmetis

-download-superlu dist -with-debugging=0”. For BoomerAMG
we compared different relaxation, coarsening, and interpolation methods and found
that

“-pc_hypre boomeramg relax type all
backward-SOR/Jacobi

-pc_hypre boomeramg coarsen_ type
modifiedRuge-Stueben

-pc_hypre bommeramg interp type classical” gives the best per-
formance. We use a grid size of N = 4096 and run from 1 to 1024 cores using
up to 16 cores per node on Stampede. For this particular Poisson problem on
this particular machine using this particular FMM code we see an advantage over
BoomerAMG past 512 cores.

5 Conclusions and Outlook

We have shown the contrast between the analytical and algebraic hierarchical low-
rank approximations, by reviewing the contributions over the years and placing them
along the analytical-algebraic spectrum. The relation between Treecode, FMM,
KIFMM, black-box FMM, .##-matrix, .#¢2-matrix, HODLR, HSS, HBS, and BLR
were explained from the perspective of compute-memory tradeoff. This birds-eye
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view of the entire hierarchical low-rank approximation landscape from analytical to
algebraic, allows us to place ideas like precomputation of FMM translation matrices
and relate that to storage reduction techniques for the algebraic variants.

Some important findings from this cross-disciplinary literature review are:

+ Translational invariance of the FMM operators suggest that .7#>-matrices (and
the like) have mostly duplicate entries, which many are redundantly storing at
the moment.

e The analytical variants can now perform factorization and are kernel indepen-
dent, so the decision to use the algebraic variants at the cost of consuming more
memory should be made carefully.

¢ The kernel-independent variants of FMM can be used as a matrix-free O'(N)
compression technique.

e The use of SVD to compress the FMM translation matrices, makes the work on
variable expansion order and its error optimized variants redundant.

e The hierarchical compression should not be applied directly to the inverse or
factorizations of sparse matrices just because they fill-in. One must first try to
minimize fill-in, and then compress only the dense blocks that cannot be avoided.

The comparison benchmarks between FMM and HSS are still preliminary
tests for a very simple case. However, they clearly demonstrate the magnitude of
the difference that lies between the various hierarchical low-rank approximation
methods. The comparison between FMM and multigrid is also a very simple test
case, but it reveals the previously unquantified convergence properties of low-
accuracy FMM as a preconditioner. Of course, for such simple problems the FMM
can give the exact solution in finite arithmetic and therefore solve the problem in
a single iteration. The interesting point here is not the fact that it can be used as
a preconditioner, but the practical performance of the low-accuracy FMM being
significantly faster than the high accuracy FMM, even if it requires a few iterations.

There is much more that can be done if all of these complicated hierarchical low-
rank approximation methods could somehow be made easier to code. We believe
a modular view of these methods will help the developers though separation of
concerns. Instead of everyone coding a slightly different version of the whole thing,
we could each choose a module to focus on that fits our research interests, and
contribute to a larger and more sustainable ecosystem. A few ideas to facilitate the
transition to such a community effort are:

1. Create a common benchmark (mini app) for each of the modules.

2. Gradually propagate standards in the community, starting from the major codes.
3. Develop a common interface between the hierarchical structure and inner kernels.
4. Do not try to unify code, just have a standard with a common API (like MPI).
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Recent Progress in Linear Response Eigenvalue
Problems

Zhaojun Bai and Ren-Cang Li

Abstract Linear response eigenvalue problems arise from the calculation of exci-
tation states of many-particle systems in computational materials science. In this
paper, from the point of view of numerical linear algebra and matrix computations,
we review the progress of linear response eigenvalue problems in theory and
algorithms since 2012.

1 Introduction

The standard Linear Response Eigenvalue Problem (LREP) is the following eigen-

value problem
A Bf|u u
ol = 1) ®

where A and B are n X n real symmetric matrices such that the symmetric matrix
AB| . o . . . .
|:B A:| is positive definite. Such an eigenvalue problem arises from computing

excitation states (energies) of physical systems in the study of collective motion of
many particle systems, ranging from silicon nanoparticles and nanoscale materials
to the analysis of interstellar clouds (see, for example, [12, 27, 33, 34, 38, 50] and
references therein). In computational quantum chemistry and physics, the excitation
states and absorption spectra for molecules or surface of solids are described by
the Random Phase Approximation (RPA) or the Bethe-Salpeter (BS) equation. For
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this reason, the LREP (1) is also called the RPA eigenvalue problem [17], or the
BS eigenvalue problem [5, 6, 42]. There are immense recent interest in developing
new theory, efficient numerical algorithms of the LREP (1) and the associated
excitation response calculations of molecules for materials design in energy science
[16, 28, 40, 41].

In this article, we survey recent progress in the LREP research from numerical
linear algebra and matrix computations perspective. We focus on recent work since
2012. A survey of previous algorithmic work prior to 2012 can be found in [2, 51]
and references therein. The rest of this paper is organized as follows. In Sect. 2, we
survey the recent theoretical studies on the properties of the LREP and minimization
principles. In Sect. 3, we briefly describe algorithmic advances for solving the LREP.
In Sect. 4, we state recent results on perturbation and backward error analysis of the
LREP. In Sect. 5, we remark on several related researches spawn from the LREP (1),
including a generalized LREP.

2 Theory

Define the symmetric orthogonal matrix

L[5, I,
J = 2 |:In —In:| . 2)

It can be verified that JTJ = J? = I, and

JT[_g_ﬂjz[ 0 A_B] (3)

This means that the LREP (1) is orthogonally similar to

[ A

where K = A — Band M = A + B. Both eigenvalue problems (1) and (4) have the
same eigenvalues with corresponding eigenvectors related by

L=rl] e []=00) )

. . . [AB]. .
Furthermore, the positive definiteness of the matrix |:B Ai| is translated into that

both K and M are positive definite since

t[AB], [A+B 0 | _[MO
! [BA:|J_|: 0 A—B:|_[0Ki|' ©
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Because of the equivalence of the eigenvalue problems (1) and (4), we still refer
to (4) as an LREP which will be one to be studied from now on, unless otherwise
explicitly stated differently.

2.1 Basic Eigen-Properties

It is straightforward to verify that

nf=r b = )=l @
X X —X —X
This implies that the eigenvalues of H come in pair {A, —A} and their associated

eigenvectors enjoy a simple relationship. In fact, as shown in [1], there exists a
nonsingular @ € R™" such that

K=¥A>Y" and M= oo", (8a)

where A = diag(A;,As,...,A,) and ¥ = @~ T, In particular

WA WA [wAwA][A O
H[cp —cp}_[cp —cp}[o —A] (8b)

Thus H is diagonalizable and has the eigen-decomposition (8b).

The notion of invariant subspace (aka eigenspace) is an important concept for
the standard matrix eigenvalue problem not only in theory but also in numerical
computation. In the context of LREP (4), with consideration of its eigen-properties
as revealed by (7) and (8b), in [1, 2] we introduced a pair of deflating subspaces of
{K, M}, by which we mean a pair {7, ¥} of two k-dimensional subspaces % < R”"
and ¥ C R” such that

K% €V and MYV C%. ©)]

Let U € R™ and V € R™* be the basis matrices of % and 7, respectively.
Then (9) can be restated as that there exist Kr € R** and Mz € R¥* such that

KU = VKr and MV = UMg, (10)

and vice versa, or equivalently,

glVol=|vo Hr with Hg := 0 KR,
0ouU 0U Mg 0
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i.e., ¥ @ % is an invariant subspace of H [1, Theorem 2.4]. We call {U, V, Kg, Mr}
an eigen-quaternary of {K, M} [57].

Given a pair of deflating subspaces {%, 7} = {Z(U),#(V)}, a part of the
eigenpairs of H can be obtained via solving the smaller eigenvalue problem [1,
Theorem 2.5]. Specifically, if

s | O KR|{I|_ 4 D] _. 92
e [ ] =4[] e "

i|) is an eigenpair of H. The matrix Hy is the restriction of H onto

A

vy
Ux
¥V @ % with respect to the basis matrices V @ U. Moreover, the eigenvalues of Hg
are uniquely determined by the pair of deflating subspaces {%, 7'} [2].

There are infinitely many choices of {Kr, Mg} in (10). The most important one
introduced in [57] is the Rayleigh quotient pair, denoted by {Krq, Mrq}, of the
LREP (4) associated with {Z(U), Z(V)}:

then (A, |:

Krg := (U™V)T'UTKU and Mgq := (VTU)"'VTMV, (12)

and accordingly,

H, =
fQ [ﬁfRQ 0

Note that Hrqg so defined is not of the LREP type because Krq and Mgq are not
symmetric unless U™V = I,. To circumvent this, we factorize W := UTV as W =
W] W,, where W; € RP* are nonsingular, and define

0 Wy TUTKUW;!

Hsg := = [Ws @ Wi]Hro[W2 & Wi] 7"
SR |:W2_TVTMVW2_1 0 i| [W> @ Wi]Hgq[W> & Wi]

13)

Thus Hgq is similar to Hsg. The latter is of the LREP type and has played an
important role in [1, 2] for the LREP, much the same role as played by the Rayleigh
quotient matrix in the symmetric eigenvalue problem [36].

Up to this point, our discussion is under the assumption that {Z(U), Z(V)} is a
pair of deflating subspaces. But as far as the construction of Hgrq is concerned, this
is not necessary, so long as UTV is nonsingular. The same statement also goes for
Hsgr. In fact, a key component in [2, 58] on eigenvalue approximations for the LREP
is the use of the eigenvalues of Hgg to approximate part of the eigenvalues of H.
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2.2 Thouless’ Minimization Principle

Back to 1961, Thouless [49] showed that the smallest positive eigenvalue A; of the
LREP (1) admits the following minimization principle:

A1 = min p;(u, v), (14)
u,v
where p;(u, v) is defined by

i8]

[uTu — vTo|

Pr(”s U) = (15)

The minimization in (14) is taken among all vectors u, v such that uTu — vTv # 0.
By the similarity transformation (3) and using the relationships in (5), we have

xTKx + yTMy
pi(u,v) = p(x,y) := T (16)
2|xty|
and thus equivalently
A1 = min p(x, y). (17)
X,y

The minimization here is taken among all vectors x, y such that xTy # 0 [53].

We will refer to both p,(u,v) and p(x,y) as the Thouless functionals but in
different forms. Although p,(u, v) = p(x,y) under (5), in this paper we primarily
work with p(x, y) to state extensions of (17) and efficient numerical methods.

2.3 New Minimization Principles and Cauchy Interlacing
Inequalities

In [1], we have systematically studied eigenvalue minimization principles for the
LREP to mirror those for the standard symmetric eigenvalue problems [7, 36]. We
proved the following subspace version of the minimization principle (14):

k
1
E Ai = _ min trace(UTKU 4 VTMV), (18)
p 2 Utv=i

among all U,V € R™ Moreover if Ay < As41, then for any U and V that attain
the minimum, {Z(U), Z(V)} is a pair of deflating subspaces of {K, M} and the
corresponding Hrq has eigenvalues +1; (1 < i < k).
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Equation (18) suggests that
1
5 trace(UTKU + VTMV) subjectto UTV = I, (19)

is a proper subspace version of the Thouless functional in the form of p(-,-).
Exploiting the close relation through (5) between the two different forms of the
Thouless functionals p;(-, -) and p(-, -), we see that

T
1
trace( Ul (AB|U ) subjectto UTU — V'V =21, UV =VTU  (20)
2 v] |BA||lV

is a proper subspace version of the Thouless functional in the form of p,(-, -). Also
as a consequence of (18), we have

T

k
Z)L,- _ ! min trace([‘[ﬂ |:2 §i| [[‘ﬂ) 21

2 uTy—vTv=2y
uTv=vTu

among all U,V € Rk,

In [1], we also derived the Cauchy-type interlacing inequalities. Specifically, let
U,V € R™ guch that UTV is nonsingular, and denote by +u; (1 < i < k) the
eigenvalues of! Hrq, where 0 < 1 < --- < uy. Then

Ai < i <Y Aignk forl <i <k, (22)

where y = \/min{/c(K),/c(M)}/cosé(GZ/,7/), % = ZU) and v = Z(V).
Furthermore, if Ay < Agyy and A; = p; for 1 < i < k, then {%, 7'} is a pair
of deflating subspaces of {K, M} corresponding to the eigenvalues +4; (1 <i < k)
of H when both K and M are definite.

2.4 Bounds on Eigenvalue Approximations

Let U, V € R and UV = I. {#(U),%(V)} is a pair of approximate deflating
subspaces intended to approximate {Z (®1), Z(¥1)}, where @ = @ 1) and ¥; =
W 1:k)- Construct Hgg as in (13). We see Hsg = Hgq since UTV = I,. Denote the
eigenvalues of Hgg by

Mk = S S g S = ke

In [1], it was stated in terms of the eigenvalues of Hsg which is similar to Hgq and thus both have
the same eigenvalues.
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We are interested in bounding

1. the errors in y; as approximations to A; in terms of the error in {Z(U), Z(V)} as
an approximation to {Z(®;), Z(¥)}, and conversely

2. the error in {Z(U), Z(V)} as an approximation to {Z(®;), Z(¥;)} in terms of
the errors in y; as approximations to A;.

To these goals, define

k
Sii= ) (i = AD). (23)
i=1

We know 0 < A; < u; by (22); so §; defines an error measurement in all u; as
approximations to A; for 1 < i < k. Suppose A; < Ay41. Itis proved in [58] that

k
s = AD sin Oy (U, P [F <8 < D A7 - tan® Oyy—1 (U, MV)
i=1
A2 =2
" in @1 (U, &))|%,
T cos? Op—1 (U, MV) I'sin Gy (U @)

(24a)

k
Ay = ADsin O (V. W) <6 < Z A% - tan? g1 (V, KU)

i=1

PENDY:

+ in Og—1(V, ¥)| 12,
COSZQKH(V,KU)”SIH k=1 (V. ¥1) I

(24b)

where ©®y,—1 (U, &;) is the diagonal matrix of the canonical angles between sub-
spaces Z(U) and Z(®) in the M~ -inner product, the largest of which is denoted
by 0y-1 (U, @), and similarly for 8y,—1 (U, MV), Og—1(V,¥1), and Ox—1 (V, KU)
(see, e.g., [58] for precise definitions). As a result,

. ]
[| sin @y—1 (U, @) < \/ 5 ‘ 5 (252)
A1 =M
. Sk
|| sin Og—1 (V, ¥)||r < ) 5 (25b)
v =X

The inequalities in (24) address item 1 above, while item 2 is answered by these
in (25).
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3 Numerical Algorithms

In [2], we reviewed a list of algorithms for solving the small dense and large sparse
LREPs up to 2012. In the recent work [42] for solving dense complex and real
LREDP, authors established the equivalence between the eigenvalue problem and real
Hamiltonian eigenvalue problem. Consequently, a structure preserving algorithm
is proposed and implemented using ScaLAPACK [10] on distributed memory
computer systems. In this section, we will review recently proposed algorithms for
solving large sparse LREPs.

3.1 Deflation

Whether already known or computed eigenpairs can be effectively deflated away
to avoid being recomputed is crucial to numerical efficiency in the process of
computing more eigenpairs while avoiding the known ones. In [4], we developed
a shifting deflation technique by a low-rank update to either K or M and thus the
resulting K or M performs at about comparable cost as the original K or M when it
comes to do matrix-vector multiplication operations. This deflation strategy is made
possible by the following result.

LetJ = {ij : 1 <j <k} C{l,2,...,n}, and let V € R with rank(V) = k
satisfying Z(V) = Z(¥.y)), or equivalently V = Y. ;0 for some nonsingular
Q0 € RFk Let £ > 0, and define

o [0 K} — [0 K+$VVT] 26)
MO M 0

Then H and H share the same eigenvalues +A; for i ¢ J and the corresponding
eigenvectors, and the rest of eigenvalues of H are the square roots of the eigenvalues
of A% + £00T, where A, = diag(A;,, ..., A;). There is a version of this result for
updating M only, too.

3.2 CG Type Algorithms

One of the most important numerical implications of the eigenvalue minimization
principles such as the ones presented in Sect.2.2 is the possibility of using
optimization approaches such as the steepest descent (SD) method, conjugate
gradient (CG) type methods, and their improvements. A key component in these
approaches is the line search. But in our case, it turns out that the 4D search is a
more natural approach to take. Consider the Thouless functional p(x,y). Given a
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search direction [qi| from the current position |:y :| , the basic idea of the line search
p X

[27, 29] is to look for the best possible scalar argument # to minimize p:

mtin px +1tp,y+1q) (27)

on the line {|:y i| +t [qi| i te R} . While (27) does have an explicit solution
X p

through calculus, it is cumbersome. Another related search idea is the so-called
dual-channel search [13] through solving the minimization problem

min p(x + sp, y +14), (28)

where the search directions p and ¢ are selected as the partial gradients V,p and
V,p to be given in (31). The minimization problem (28) is then solved iteratively
by freezing one of s and ¢ and minimizing the functional p over the other in an
alternative manner.

In [2] we proposed to look for four scalars &, B, s, and ¢ for the minimization
problem

i V), 29
ue@((%l,lile@(wp(u v) (29)

i/glftp(ax +sp. By + 19) =
where U = [x,p] and V = [y, ¢g]. This no longer performs a line search (27) but
a 4-dimensional subspace search (4D search for short) within the 4-dimensional
subspace:

{[,By—}— tq} for all scalars o, B, s, and ¢, . (30)
ox + sp

There are several advantages of this 4D search over the line search (27) and dual-
channel search (28): (1) the right-hand side of (29) can be solved by the LREP
for the 4 x 4 Hsg constructed with U = [x,p] and V = [y, g], provided UV is
nonsingular; (2) the 4D search yields a better approximation because of the larger
search subspace; (3) most importantly, it paves the way for a block version to
simultaneously approximate several interested eigenpairs.

The partial gradients of the Thouless functional p(x,y) with respect to x and y
will be needed for various minimization approaches. Let x and y be perturbed to
x + p and y + ¢, respectively, where p and g are assumed to be small in magnitude.
Assuming xTy # 0, up to the first order in p and ¢, we have [2]

1 1
px+p.y+q) = px.y) + Ty P [Kx —p(x.y)y] + oy q" My — p(x,y) ]
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to give the partial gradients of p(x, y) with respect to x and y

1 1
Vip= L [Kx—p@,y)y], Vyp= . [My—pxy)a]. (31)
xly xTy

With the partial gradients (31) and the 4D-search, extensions of the SD method
and nonlinear CG method for the LREP are straightforward. But more efficient
approaches lie in their block versions. In [39], a block 4D SD algorithm is
presented and validated for excitation energies calculations of simple molecules in
time-dependent density functional theory. Most recently, borrowing many proven
techniques in the symmetric eigenvalue problem such as LOBPCG [19] and
augmented projection subspace approaches [15, 18, 23, 37, 55], we developed an
extended locally optimal block preconditioned 4-D CG algorithm (ELOBP4dCG)
in [4]. The key idea for its iterative step is as follows. Consider the eigenvalue
problem for

Mo 01
A—AB = [0 K}—A[l 0} (32)

which is equivalent to the LREP for H in (26). This is a positive semidefinite pencil
in the sense that A — AoB > 0 for Ay = 0 [25, 26]. Now at the beginning of the
(i 4+ 1)st iterative step, we have approximate eigenvectors

o._ [ - |y
0N ._ j i—1) j .
7 = X;i) , g = = forl <j < m,

J

where n,, is the block size, the superscripts (i—1) and (i) indicate that they are for the
(i — 1)st and ith iterative steps, respectively. We then compute a basis matrix [gj
of

np

Ui - o ,")B1. 7). (33)

J=1

where IT is some preconditioner such as A~! and %, (IT[A — ,o(x(~i), y;i))B], Z,@) is

the mth Krylov subspace, and then compute two basis matrices V and U for the
subspaces

¥ = Z(V1) + span {y "V, for 1 <j < m}. (34a)

U = R(Uy) + span {7, for 1 <j < m}. (34b)
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respectively, and finally solve the projected eigenvalue problem for

T
U o vol [ o UkU utv
[0 V} (H = A1) [0 U] - [VTMV 0 ]_A[ VTU] (35)

to construct new approximations zj(-lﬂ) for 1 <j < n,. Whenm = 2in (33), it gives
the LOBP4dCG of [1].

As an illustrative example to display the convergence behavior of ELOBP4dCG,
Fig. 1, first presented in [4], shows iterative history plots of LOBP4dCG and
ELOBP4dCG on an LREP arising from a time-dependent density-functional theory
simulation of a Na, sodium in QUANTUM EXPRESSO [39]. At each iteration i,
there are 4 normalized residuals ||#z — uz||i/((||#]l1 + ©)|z]l1) which move down
as i goes. As soon as one reaches 1078, the corresponding eigenpair (i, z) is deflated
and locked away, and a new residual shows up at the top. We see dramatic reductions
in the numbers of iterations required in going from from m = 2 to m = 3, and

LOB4dCG with deflation (no preconditioner, m=2) LOBP4dCG with deflation (m=2)
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Fig. 1 Top row: convergence of LOB4dCG (i.e., m = 2) without preconditioning (left) and with
deflation (right). Bottom row: convergence of extended LOB4dCG (ELOB4dCG) with m = 3
without preconditioning (left) and with deflation (right)
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in going from “without preconditioning” to “with preconditioning”. The powers
of using a preconditioner and extending the searching subspace are in display
prominently. More detail can be found in [4].

3.3 Other Methods

There is a natural extension of Lanczos method based on the following decompo-
sitions. Given 0 # vg € R"” and 0 # uy € R”" such that Mvy = uy, there exist
nonsingular U, V € R™" such that Ve; = avy and Ue; = Bug for some o, 8 € R,
and

U'KU =T, V™MV =D, (36)

where T is tridiagonal, D is diagonal and UTV = I,. Partially realizing (36) leads
to the first Lanczos process in [46]. A similar Lanczos process is also studied in
[11] for estimating absorption spectrum with the linear response time-dependent
density functional theory. There is an early work by Tsiper [52, 53] on a Lanczos-
type process to reduce both K and M to tridiagonal. Generically, Tsiper’s Lanczos
process converges at only half the speed of the Lanczos process based on (36).

Recently, Xu and Zhong [56] proposed a Golub-Kahan-Lanczos type process that
partially realize the factorizations:

KX = YG, MY = XG",

where G is bidiagonal, XTKX = I, and Y"MY = 1I,. The basic idea is to
use the singular values of the partially realized G to approximate some positive
eigenvalues of H. Numerical results there suggest that the Golub-Kahan-Lanczos
process performs slightly better than the Lanczos process based on (36).

The equations in (8a) implies KM = ®A%®~!. Noticing Aiz for 1 <i < klie
in low end of the spectrum of KM, in [48] the authors devised a block Chebyshev-
Davidson approach to build subspaces through suppress components of vectors in
the direction of eigenvectors associated with Aiz for i > k + 1. Numerical results
there show that the approach can work quite well.

Most recently, structurally inverse-based iterative solvers for very large scale
BS eigenvalue problem using the reduced basis approach via low-rank tensor
factorizations are presented in [5, 6]. In [21], an indefinite variant of LOBPCG is
also proposed.
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4 Perturbation and Error Analysis

First we consider the perturbation of the LREP (4). Recall the eigen-decompositions
in (8), and let
WAV Al
7= I:_q)A—l/z q)A—l/J 37

Suppose H is perturbed to H with correspondingly positive definite K and M.
The same decompositions as in (8) for H exist. Adopt the same notations for the
perturbed LREP for H as those for H except with a tilde on each symbol. It was
proved in [57] that

max (7 = il = 12117l max{ 157 - M. 1R - K123 (382)
ZM ks, L N2 Z 13— M + IR — K. (38b)

These inequalities involve the norms ||Z||, and ||Z||2 which are not known a priori.
But they can be bounded in terms of the norms of K, M, their inverses, and bounds
onAjand A,,.

Previously in Sect.2.1, we note that for an exact pair {%, 7} of deflating
subspaces we have (10). In particular, KU = VKrq and MV = UMpgq, where
U € R™ and V € R™* are the basis matrices for % and ¥, respectively.
When {% , ¥} is only an approximate pair, it would be interesting to seek backward
perturbations AK and AM to K and M, respectively, such that

(K+ AK)U = VKgrq and (M + AM)V = UMgq. (39)

In the other word, {%Z, ¥} is an exact pair for {K + AK,M + AM}. Since K and

M are symmetric, we further restrict AK and AM to be symmetric, too. The first

and foremost question is, naturally, if such perturbations AK and AM exist, i.e., if
the set

= {(AK.AM) : AK" = AK, AM" = AM € R"™" satisfying (39)},  (40)

is not empty. Indeed B # @ [57]. Next we are interested in knowing

= i AK AM 41
nU.V) = min  (JAK] + | AM]). @1
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where || - || is some matrix norm. Without loss of generality, we assume UTU =
VTV = I;. It is obtained in [57] that

M (U. V) = 20 %x (Kno) I — | U %k (Kro) 2

+ 2% M) I~ VI s o)1 “2)
mU., V) = |Zk(Kro)ll2 + [|%Zu(Mro)ll2, 43)

where nr and 7, are the ones of (41) with the Frobenius and spectral norms, respec-
tively, and Zx (Krq) := KU — VKgrq and Zy (Mrq) := MV — UMRgq. An immediate
consequence of such backward error analysis is bounds on approximation errors by
the eigenvalues of Hgq to some of those of H.

There are a couple of recent work [47, 54] on the perturbation of partitioned
LREP. Let K and M be partitioned as

k  n—k k  n—k
_ « [ K K], ok [ My M,
k= n—k|:K21 K> and M = n—k| My M> ' (44)

If K1 = Mj; = 0, then {Z, ¥y} is a pair of deflating subspaces, where %) = ¥, =
%’([g‘}) But what if K»; # 0 and/or M, # 0 but tiny in magnitude? Then {%, %o}

can only be regarded as a pair of approximate deflating subspaces, and likely there
would exist an exact pair {%, ¥V} of deflating subspaces nearby. Specifically, we
may seek

@ =20, V=2V with U= [”‘] V= [1"}
P Q
for some P and Q. It resembles the well-known Stewart’s perturbation analysis for
the standard and generalized eigenvalue problems [43—45]. The study along this line
for the LREP has been recently conducted in [54].

Alternatively, if Ko = My = 0 in (44), then eig(H) = eig(H;) U eig(H,),
A(/; Ié’:| fori = 1,2, and eig(H) is the set of eigenvalues of H and
similarly for eig(H;). Again what if K»; # 0 and/or M»; # O but tiny in magnitude?
They may be treated as tiny perturbations. It would be interesting to know the effect
on the eigenvalues from resetting them to 0, as conceivably to decouple H into two
smaller LREPs. It is shown that such an action brings changes to the eigenvalues
of H at most proportional to ||Ka1||3 + ||Ma1]|3 and reciprocally proportional to the
gaps between eig(H,) and eig(H,) [47].

where H; = |:
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5 Concluding Remarks

Throughout, we have focused on recent studies of the standard LREP (4) with the
assumption that K and M are real and symmetric as deduced from the original
LREP (1). There are several directions to expand these studies by relaxing the
assumption on K and M and, for that matter, accordingly on A and B.

An immediate expansion is to allow K and M to be complex but Hermitian and
still positive definite. All surveyed results with a minor modification (by changing
all transposes to conjugate transposes) hold. Most of the theoretical results in
Sects. 2.2 and 2.3 are still valid when only one of K and M is positive and the other
is semidefinite, after changing “min” in (17) and (14) to “inf”.

Although often K and M are definite, there are cases that one of them is indefinite
while the other is still definite [35]. In such cases, all theoretical results in Sects. 2.2—
2.4 no longer hold. But some of the numerical methods mentioned in Sect. 3.3,
namely, the Lanczos type methods in [46] and the Chebyshev-Davidson approach
[48], still work. Recently in [24], a symmetric structure-preserving I"QR algorithm
is developed for LREPs in the form of (1) without any definiteness assumption.

The following generalized linear response eigenvalue problem (GLREP)

[14, 32, 33]
A Bllu Y A|lu
I R e )

was studied in [3], where A and B are the same as the ones in (1), and and X' and
A are also n x n with ¥ being symmetric while A skew-symmetric (i.e., AT =

X
—-A h that
) suc a[AE

transformation, we can transform GLREP (45) equivalently to

[1?4 ﬂ [ﬂ - [Eo+ bf)j [ﬂ ’ (46)

where EI_ = E_ is nonsingular. Many results parallel to what we surveyed so far
for the LREP (4) are obtained in [3].
Both (4) and (46) are equivalent to the generalized eigenvalue problem for

A — AB with A = M0 , B = 01, or 0 E- )
0K I, 0 E+ 0

Since A — 0 - B = A is positive definite, A — AB falls into the category of the so-
called positive semi-definite matrix pencils (positive definite if both K and M are
positive definite). Numerous eigenvalue min-max principles, as generalizations of
the classical ones, are obtained in [8, 9, 20, 22, 30, 31] and, more recently, [25, 26].

:| is nonsingular. Performing the same orthogonal similarity
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