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Abstract. In industrial environments, machine faults have a high
impact on productivity due to the high costs it can cause. Machine gen-
erated event logs are a abundant source of information for understanding
the causes and events that led to a critical event in the machine. In this
work, we present a Sequence-Mining based technique to automatically
extract sequential patterns of events from machine log data for under-
standing and predicting machine critical events. By experiments using
real data with millions of log entries from over 150 industrial computer
numerical control (CNC) cutting machines, we show how our technique
can be successfully used for understanding the root causes of certain
critical events, as well as for building monitors for predicting them long
before they happen, outperforming existing techniques.

1 Introduction

In today’s industry, the success of manufacturing companies highly depends
on reliability and quality of their machines and products for their production
process. Unexpected machine failures in production processes are bounded to
high repair costs and production delays [1]. Therefore, understanding and pre-
dicting critical situations before they occur can be a valuable source for avoiding
unexpected breakdowns and saving costs associated to the failure.

Log-files keep a record on the flow of states and activities performed by
the machine presenting therefore an important source of information on how a
machine “behave” prior to a critical situation [2]. Understanding what are the
causes that lead to specific critical situations in a machine can help engineering
and maintenance teams to build a problem diagnosis and repair the machine. In
many industries, this task is still bounded to high manual efforts, as the mainte-
nance staff must go through the data in order to evaluate what are the possible
causes for critical events, demanding expert domain knowledge of the system.
Automatically diagnosing and even predicting when critical events are about to
occur can thus represent a significant advantage in the industry for both critical
event diagnosis, i.e., understanding what caused a critical event, to critical
event prediction, monitoring and alarming when a critical event is about to
occur even before it happens, enabling pre-intrusion to avoid system problems.
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Fig. 1. Event-Based Prediction based on Sequence Mining. The sequential rule
“〈B, C, D〉 ⇒ ε” describes the sequence of 3 events that always appear in sequence
before the target (critical) event (ε). This information can be used for monitoring and
predicting interesting target events in advance.

This paper focuses on the latter. This requires some short-term anticipation of
upcoming critical event based on evaluation of the running state of the system.

The critical event prediction approach to be introduced by this paper is
based on the batch offline analysis of logged error events. Frequent patterns of
sequences of events that lead to errors are mined from the logs used to construct
a monitor which can posteriorly observe events during runtime. Upcoming target
critical events are then predicted by monitoring the events that have occurred
recently before present time (cf. Fig. 1). Experiments on industrial data of indus-
trial computer numerical control (CNC) cutting machines have shown superior
prediction performance in comparison with the most well-known event-based
prediction algorithms in that area.

The rest of this paper is organized as follows. Section 2 presents related work
in the area of event based predictive maintenance. Section 3 describes the under-
lying collected dataset used for our experiments in this work. Section 4 presents
the necessary data preparation steps for our algorithm. Section 5 presents our
proposed algorithm which is evaluated and compared against the state of the
art in Sect. 6. Section 7 then concludes the paper.

2 Related Work

In light of Industry 4.0, intelligent analysis of machine generated data specially
for the task of predictive maintenance has gained increased attention recently.

Salfner et al. published a broad survey on the application of log analysis
for what they call short-term online failure prediction. The goal is to predict
the occurrence of failures during runtime based on the current system state [3].
They proposed in [2] an online failure prediction technique based on log files by
using hidden semi-Markov predictor (HSMM) and appropriate pre-processing of
the data. Two HSMMs are trained from previously recorded log data: one for
failure and one for non-target sequences. Online failure prediction is then accom-
plished by computing likelihood of the observed error sequence for both mod-
els and by applying Bayes decision theory to classify the sequence (and hence
the current system status) as failure-prone or not. They evaluated their app-
roach on commercial telecommunication system data reporting failure prediction
F-Measure up to 0.66.
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Vilalta et al. proposed a prediction technique by applying itemset min-
ing on a set of events preceding a target event on computer network data [4].
The dataset is partitioned in failure and non-failure event sets w.r.t. a target
event. Events preceding the target event in a time window constitute the failure
event sets. Vilalta et al. then applies association rule mining for extracting
frequent and valid association rules on the partitioned dataset. In this process,
the failure event sets are checked against frequency (support test) and validity
(confidence). In contrast to sequence mining techniques (as this work is based
upon), the event sets are unordered, so the chronological sequence of events plays
no role in the training process. Consequently, our work considers the chronolog-
ical order of occurring events. Vilalta et al. reported that depending on the
target event, the prediction accuracy of their approach can significantly vary.
Meanwhile they observed that for an event they had a false negative error rate
of only around 4.5%, for another target event the error rate was so high as 83%
with the same algorithm parametrization. We have made similar observations
which will be discussed in Sect. 6.2.

3 Data Description

The log datasets used in this study derives from a real production scenario of a
industrial computer numerical control (CNC) cutting machine system from the
company TRUMPF GmbH + Co. KG, one of the world’s biggest providers of
machine tools. Overall, we collected big log datasets from 154 unique machines.
Altogether, there are more than 4 million logged events in the datasets.

A log dataset is a collection of events recorded by various applications/-
components running on the machine (see Table 1). An event in this setup consists
mainly of an unique and representative event code indicating an entering state or
action being performed by the machine (ex.: Machine door opened), a timestamp
indicating when the event occurred and an event severity class (Info, Warning,
Error, etc.). They can have a systematic nature or be caused by an human inter-
vention on the machine. Events reflect the developers’ original idea about what
are the valuable states to report.

Table 1. A piece of a real log file (with renamed event codes and messages for Blind
Review) from a computer numerical control (CNC) cutting machine

Timestamp Eventcode Severity Message

12/22/2014 07:24:23 300 Info Data transfer 12345

12/22/2014 07:57:49 600 Warning Check XX level

12/22/2014 08:01:28 900 Error Error in YY system

In our application, we have altogether more than 1400 unique event codes
from different categories. Although our approach can be used to predict any
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arbitrary target event, we focus particurlaly on predicting events which signalize
critical machine events and situations.

4 Data Modeling

The first challenge that arises when applying Sequence Mining is how to proper
model the raw machine log data into a sequence representation for the sequence
miner to find patterns on. This section describes the necessary steps to transform
the raw event logs into proper temporal event sequences used as input for the
model to be proposed by this paper - while comparing to other modeling methods
presented in the literature.

4.1 Static Time Window

Time window based approaches are techniques that group all events logs pre-
ceding a target event within a given time interval (the window size, cf. [4]). All
grouped events within the time window are called a target sequence. i.e., a tar-
get sequence is a positive case containing the target critical event. Non-Target
sequences denote sequences that have occurred between target sequences: start-
ing at the beginning of the sequence, non-overlapping time windows of size W
that do not intersect the set of time windows preceding target events (target
sequences) are considered negative cases.

A big drawback of such strategies for data modeling is caused by the use of
grids (partitioning the data in equidistant time intervals). In general, grid-based
approaches heavily depend on the positioning of the grids: sequential patterns
may be missed if they are inadequately oriented or shaped. Therefore, alternative
data modeling strategies are desired.

4.2 Dynamic Time-Window: The Clustering Strategy

The clustering/tupling strategy for grouping events in a log file has been first
presented by Tsao et al. in [5] and further discussed and analyzed by Hansen
et al. in [6]. Tupling basically refers to grouping (clustering) events that occur
within a pre-defined time interval in the log. The intuition underlying this app-
roach is that two entries in the log, if related, are likely to occur near in time
[6]. Consequently, if their inter-arrival time distance is below a predetermined
threshold Δt (called the coalescence window), they are placed in the same group
(called tuple). Lal and Choi have shown that the tupling method can also be
used for clustering events that are related to the same target category in time
[7]. They have reported that the clusters can successfully gather bursts of events
in the machine logs. This is formalized in Definition 1.

Definition 1. Cluster Based Sequence: given are n timestamped, chrono-
logically ordered log entries e1, ..., en. Let ti stands for the time of occurrence of
event ei and Δt be a user specified threshold parameter. Then a sequence S in
a sequence database SDB is represented by S = {〈ei, ..., ek〉|i, k ∈ [1, n], i < k :
tj+1 − tj < Δt, j ∈ [i, k − 1]}.
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After this step (which is independent of the target critical event to be pre-
dicted), a label definition of a target and non-target sequence (cf. Sect. 4.2)
must be provided in order to specify which events in the sequences of the
database will serve as possible patterns for pattern recognition techniques to
act upon. Given an target critical event ε, the set of target sequences (posi-
tive cases) is a subset of the sequence database SDB which contains the tar-
get critical event ε. i.e., the set of target sequences for a target critical event
ε = {S ∈ SDB|ε ∈ S}. Only events which appears prior to the appearance of
the target event in the target sequence are relevant to be analyzed as the cause
of possible critical situations This is defined in Definition 2 and shown in Fig. 2.

Fig. 2. For a given target critical target event ε, target and non-target clusters are
depicted, highlighting target relevant sequences.

Definition 2. Target Relevant Sequences1: A sequence set SDBε of Target
Relevant Sequences for a target critical event ε is a subset of subsequences from
a sequence database SDB defined as:

SDBε ={S′|S′ � S, S ∈ SDB}, S′ =〈ei, .., ej〉, ej = ε, �k > j : ek = ε ∧ ek ∈ S.

Concluding this section, static time windows are sensitive to window resolu-
tion and position. Clustering based-approaches on the other side are position-
independent and only depend on the resolution (coalescence window). Since crit-
ical events are rather rare, our approach just searches for patterns within target
relevant sequences, dramatically reducing the search space.

5 Approach

Sequence Mining is a data mining technique that focuses on finding statistically
relevant patterns in a sequence form for a given data set. We propose an approach
to extract sequential patterns from temporal data to predict the occurrence of
target events, such as critical situations logged by a machine. The first step in
order to apply sequence mining to log data is transformation of the log into a
proper sequence representation for the sequence miner to find patterns on, as
discussed in the last section. In this section, we propose a prediction technique
based on transforming the event prediction problem into a search for all frequent
and valid sequences preceding a target event. Patterns are then integrated into
a rule-based model for prediction.
1 We use the notation ‘�’ to denote subsequence and ‘⊂’ to denote subset relations.
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5.1 Mining Sequential Patterns

A sequence in our context denotes a chronological ordered list of itemsets (each
item is a machine event). The support (frequency) of a sequence Sj in a sequence
database SDB is defined as the portion of sequences S ∈ SDB, such that Sj �
S. Let minsup be a threshold on the support value: a sequence Sj is deemed
frequent iff support(Sj) > minsup. The problem of mining sequential patterns is
to discover all frequent sequences. For our implementation in this work, we utilize
the algorithm SPADE [8]. SPADE is an efficient algorithm that decomposes the
original problem of finding frequent patterns into smaller subproblems which
can be solved independently using efficient lattice search techniques and join
operations. Nonetheless, several algorithms featuring different properties have
been proposed in the literature for this task [9].

Mining Sequential Rules. Once the frequent sequences are known, they can
be used to obtain rules that describe the relationship between different sequence
events. We are particularly interested if it is possible to infer the probability of
appearance of a target critical event (ε) given an observed previous sequence of
events. To solve this kind of problem, using sequence mining by mining frequent
sequences alone is very limited. For example, consider the pattern S = 〈X, ε〉,
which means that it is possible that ε appears frequently after an observed
sequence X. In this case, we talk about a sequential rule, denoted by X ⇒ ε,
derived from 〈X, ε〉.
Definition 3. ε-Rule: a ε-sequential-rule, for a target event ε, is a sequence in
the form R = 〈X, ε〉, whereby X is a sequence in R preceding the target event ε.
In this case we write: R = 〈X, ε〉 = (〈X〉 ⇒ ε) = (X ⇒ ε).

The challenge is: there may be also many cases where X is not followed by ε
in SDB. For prediction, we need a measurement of the conditional probability,
that if X occurs, ε will also occur afterwards. The measure is the confidence
defined as:

confidenceSDB(X ⇒ ε) = P (ε | X) =
supportSDB(〈X, ε〉)
supportSDB(〈X〉) (1)

The higher the confidence, the higher the probability, that ε occurs after X.
Given a user-specified minimum confidence (minconf ), sequential mining algo-
rithms extract all rules which fulfills the condition, i.e., those that comply to
the minimum desired confidence. Note that due to the apriori property, for a
frequent sequence S = 〈X, ε〉, all the subsequences of X are also frequent, also
those which do not contain ε. For this reason, they are filtered out of the output
from the sequence miner. We call this result set the ε-Rules Data Base RDBε

(cf. Algorithm 1). Sequence mining can thus be leveraged for creating sequen-
tial rules delivering the probability of occurrence of an critical situation in the
machine given a previously observed sequence.
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5.2 Filtering the Noise

Machinery logs often contain events that are unrelated to a specific critical target
event, but due to different processes logging in the machine simultaneously, the
target event may be interlaced with unrelated events. Applying Sequence Mining
techniques for the task of predicting future critical situations can deliver many
sequential patterns from which many of them may be redundant and have no
stronger predictive power. The apriori property states: if a sequence S = 〈X, ε〉 is
frequent w.r.t. minsup, so is every sequence S′ with S′ � S. The Sequence Mining
algorithm will thus output all subsequences of X for every closed sequence S, as
a possible explanation to ε if they pass the confidence test.

Consequently, some post-processing noise remotion techniques become neces-
sary in order to remove noisy, unpredictive and redundant patterns which reduce
the size of the returned rule set. In the following, some definitions will be pre-
sented which will be necessary for presenting the post-processing noise remotion
strategy.

Definition 4. Confidence Gain: given two sequential rules Ri, Rj ∈ RDBε

with Ri � Rj. The confidence gain of Rj w.r.t. Ri is defined as:

confidencegain(Rj , Ri) = confidenceSDB(Rj) − confidenceSDB(Ri) (2)

With the confidence gain, we measure the increase in predictive informa-
tion gained by augmenting the left-hand of a rule Ri to an augmented rule Rj .
We identify a sequential rule as redundant in RDBε if it delivers no gain in
confidence. Formally:

Definition 5. Redundancy-Free Rule: given a sequential rule Rj ∈ RDBε.
The rule Rj is deemed redundancy-free iff:

∀Ri � Rj , Ri ∈ RDBε : confidencegain(Rj , Ri) > 0 (3)

Otherwise it is deemed redundant.

If a rule is not redundancy-free, it is deemed redundant and it is filtered out
as noise in our approach. Consequently, a rule Rj is deemed redundant, if there
exists another rule Ri with: Ri � Rj and confidence(Ri) = confidence(Rj).
Due to the anti-monotonicity property of the support constraint, Ri is at least
as frequent as Rj [8]. Consequently, we eliminate all redundant sequences that
are not more predictive than any of their proper subsequences.

The rationale is that, sequential patterns can be augmented with noisy events
which do not contribute to a increase in confidence gain at predicting the target
event ε. Take for example R1 := 〈e1, e2, e3, n〉 ⇒ ε as a rule with high confidence
and with a noise event n. In this case, the event n does not contribute to a better
predicability when compared to its subsequence rule R2 := 〈e1, e2, e3〉 ⇒ ε. And
in this case the prediction lead time of R2 is per definition better that the
prediction lead time of R1, as n comes after e3 as last element in the rule. R1 is
thus a redundant rule and can be removed from the result set.
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In case Rj is a redundancy-free rule, we keep Rj and eliminate all those Ri,
with Ri � Rj . I.e., we eliminate all sequences, which are less predictive than
any of its proper super-sequences. This leads to the concept of a redundancy-free
sequence set :

Definition 6. Redundancy-Free Sequence Set: given a sequence set KB ⊆
RDBε, KB is a Redundancy-Free Sequence Set if:

∀R ∈ KB : R is redundancy-free (4)

We still must guarantee, that we output all possible redundancy-free sequen-
tial rules from RDBε. For this, we introduce the concept of concept-covering
sequence set. Intuitively, a set of rules KB is concept-covering if adding any new
rule ∈ RDBε into KB always results in redundancy.

Definition 7. Concept-Covering Sequence Set: given a sequence set KB ⊆
RDBε, KB is concept-covering if:

∀R ∈ RDBε\KB : R is not redundancy-free (5)

In our definition KB must be redundancy-free and concept covering. We
output KB as knowledge base instead of RDBε, which contains just a small set
of high confident and non-redundant rules. The knowledge base KB is guaranteed
to contain only rules which do not contain noisy events w.r.t. Definition 4.

5.3 Building a Sequence-Based Predictive Model

The resulting redundancy-free and concept-covering set of rules KB (Definition 7)
can be leveraged to build the so called predictive monitor .

Definition 8. Monitor: a function that takes as input a sequence S and out-
puts a predicted event if any of the rules in a knowledge base KB matches the
input sequence:

Monitor(S) := {ε | R ∈ KB, R = (X ⇒ ε) : X � S} (6)

Please note that due to the filtering of redundant rules (Definition 5) the
monitor guarantees that no sequences which may be subsequences from each
other can match an input sequence, avoiding redundant matches.

Let’s take as example a monitor MR with a single rule R := 〈A,B〉 ⇒ E.
The monitor must make the decision (prediction) to fire or not an alarm while
observing the sequence of logged events of the machine for the target critical
event. This is a typical binary decision case where each monitor’s decision can
fall into the following 4 categories:

– TP - True-Positive (Hit): an alert/alarm occurs and the target criti-
cal event is observed in the given sequence after the alert. The sequences
〈A,B,C,E〉 and 〈E,A,B,C,E〉 for example are counted as hit for MR.
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Algorithm 1. Sequence Based Failure Predictor (SBFP)
1: procedure SBFP(Target Event ε, Input Data Logs, minsup, minconf , Δt)

2: SDB ← TemporalCluster(Logs, Δt) � Cluster log files w.r.t. Definition 1

3: SDBε ← FRS(ε, SDB) � Extract Failure Relevant Sequences w.r.t. Definition 2

4: FS ← SequenceMiner(SDBε, minsup) � Sequence Miner, e.g. SPADE

5: RDBε ← SET ()

6: for all S ∈ FS do � Filter valid ε-Rules w.r.t. Definition 3

7: if S is ε-Rule AND confidenceSDB(S) ≥ minconf then

8: RDBε.add(S)

9: end if

10: end for

11: KB ← redundancy-free and concept covering subset from RDBε w.r.t. Definitions 6 and 7

12: return Monitor(KB) � Build Monitor with Knowledge Base KB w.r.t. Definition 8

13: end procedure

– FP - False-Positive: false alarms. E.g. 〈A,B,C〉 and 〈E,A,B,C〉 for MR.
– TN - True-Negative: no alarm is raised and the observed log sequence does

not contain the target event. E.g. 〈B,A,C〉 for MR.
– FN - False-Negative (Miss): no alarm has been raised but the target event

was observed in the sequence. E.g. 〈A,C,E〉 for MR.

Based on these premises, an intensive evaluation of the presented rule-based
predictive model will be performed and discussed in the next section. The tech-
nique is summarized in Algorithm 1.

Computational Efficiency. Looking for all frequent eventsets is in the worst
case exponential in the number of single event types. Note that the Algorithm1
(line 4) only scans SDBε and not the sequence database SDB itself in search for
sequential patterns. Since the number of sequences containing target events is
much lower than the total number of sequences, we scan a much smaller projec-
tion of SDB in initial steps guaranteeing inexpensive computational efficiency in
both memory and time in first steps. However, the complexity of the approach is
highly dependent on the complexity of the sequence mining algorithm chosen in
this step. In our case, we deploy the SPADE algorithm, which features a linear
scalability w.r.t. the number of sequences [10]. Finally, the line 7 of the algorithm
filter out all frequent sequences which do not contain the target event ε or are
invalid w.r.t. minimum confidence minconf .

6 Evaluation

We carry out extensive experiments with the proposed predictive model, lever-
aging real world log datasets from industrial computer numerical control (CNC)
cutting machine systems (cf. Sect. 3). The performance of the proposed approach
is then compared to the state-of-the-art method in event prediction proposed by
Vilalta et al. [4]. As a reminder, Vilalta et al. proposed a method based
on time window modeling of the log data (cf. Sect. 4.1), where they apply tem-
poral itemset mining to extract association rules for predicting target critical
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events. Please note that the underlying assumption of the method proposed by
Vilalta et al. is that the chronological sequence in which the events appear
prior to a critical event is not significant. Just the set of logged events, indepen-
dent of the sequence in which they appear in the log, are leveraged by Vilalta
et al. for their prediction model. We claim that the set of events alone is not
as powerful as the actual chronological order of the events in the set (Sequence
Mining) for our use-case.

We evaluate the prediction performance of a Monitor in a holdout setting
using binary classification performance metrics such as the precision and the
recall. The point of partition of the dataset is set to the 50%th-index of the
target critical event in the log: log events to the left of this point are used for
training and in the right for testing, assuring that both partitions contain the
exact same occurence number of the target event in it and that the training data
lies on the past of the test data. The precision of a monitor is the percentage of
times the monitor signals a critical event, and the critical event actually occurs
(i.e., the ratio of correct critical situation signals to the total number of critical
situation signals). The recall of a monitor is the percentage of critical events
signaled prior to their occurrence. We leverage the Fβ-Measure which balances
the precision and the recall, as a target function to be optimized (maximized):

Fβ -Measure = (1 + β2) · (
Precision · Recall

(β2 · Precision) + Recall
) (7)

The F1-Measure is the most widespread metric for comparing or evaluating
classifiers. Two other commonly used F measures are the F2-Measure, which
weights recall higher than precision, and the F0.5-Measure, which puts more
emphasis on precision than recall. We argue, that for the use-case in question
(predicting machine critical events), the F0.5-Measure is more relevant, as the
precision of the monitor/predictor is more important than the recall, i.e., misses
are in our scenario not so bad as false alarms. This argument lies on the assump-
tion that producing false alarms may generate reaction costs, so we prefer more
conservative and confident models in opposite to more general ones. For this
reason, we set the F0.5-Measure as the main evaluation metric to be used in this
work.

Given a target critical event, we are interested in answering following ques-
tions: How does the proposed approach perform at predicting the target critical
event? Which parametrization leads to best prediction performance? Which pre-
diction lead time can we expect for predicting the target event in our context?

These questions will be answered on top of experiments. Domain experts
ranked the 13 most relevant target critical events to be analyzed in this work.
We select the machine log dataset where the most important ranked target event
most often occurs for a detailed evaluation in Sect. 6.1. The other remaining 12
target events are also be analyzed and evaluated across varying machine datasets
in Sect. 6.2.
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6.1 Parametrization and Prediction Performance

We optimize the 3 parameters of the proposed approach, namely the coalescence
window (Δt), the minsup and minconf parameters through grid search [11] for
the F0.5-Measure as scorer function. In grid search the set of trials is formed by
assembling every possible combination of values and the best parametrization
w.r.t. scorer function is returned. The overall best parameter space is identi-
fied and used for training the end model. Our grid search yells as result the
parameters Δt = 450 s, minsup = 10% and minconf = 70% as the overall best
parametrization of the model which optimizes the F0.5-Measure.

Naturally, the minimum desired support and confidence parameters (minsup

& minconf ) have a big impact on the prediction performance. The use of a
low support can allow rare rules to pass the frequency test, but this comes at
the cost of increasing the complexity of the search space generating excessively
many rules. For our scenario, setting minsup = 0.1 turned out to be optimal since
mining more rules (by setting a lower minsup) did not the enrich the knowledge
base significantly (i.e., most new rules are redundant below this value w.r.t.
confidence gain).

Figure 3 shows how the prediction performance behave in dependence of the
confidence parameter. The minimum desired confidence (minconf ) is a trade-off
between precision and recall. Rules with high confidence make predictions only
with strong evidence so they lead to overall higher precision, but they often also
lead to low recall rates.

Last but not least, the coalescence window also impact the prediction perfor-
mance as well as the prediction lead time of the proposed algorithm. As can be
seen on the Fig. 4 (left), all other parameters being equal, the prediction perfor-
mance increases together with larger coalescence windows up to a certain point.

Fig. 3. Variation of prediction metrics depending on the minimum desired confidence
parameter.
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Larger coalescence windows enable us to capture more information preceding
target events. But just until to the point where the number of collisions2 causes
several sequences to be merged, loosing contrast for separating the events which
are related to the target critical event and those which are not.

Figure 4 (right) shows the distribution of the prediction lead time for the
tested dataset. Prediction models which are based on modeling the log data
with a static time window strategy are bounded to a maximum prediction lead
time of the size of the window itself, which is not our case. Such a data modeling
strategy enables a flexible short-term prediction lead time, which can be by
orders of magnitude longer than the coalescence window parameter itself (up to
40 min), as shown in Fig. 4 (right).

Fig. 4. Left: Variation of prediction performance (F0.5-Measure) in dependence of
the coalescence window. Right: Distribution of Monitor’s prediction lead time with a
kernel density estimator for the optimized model.

Table 2 shows the prediction results for the overall best parametrization
(Δt = 450 s, minsup = 0.1, minconf = 0.7). By means of comparison, the
performance of the state-of-the-art method from Vilalta et al. is also pre-
sented. We set its time window parameter to be W = 660 s, which optimizes the
F0.5-Measure.

In total, 89 sequential rules have been mined for creating the predictive
monitor evaluated in this work. Without the proposed noisy reduction steps,
the maximum achievable prediction performance (F0.5-Measure) would fall from
0.65 to 0.62 and the total number of extracted rules would lie by the thousands,
which can easily exceed the capabilities of a human operator to identify interest-
ing results. Additionally, our method outperforms the state-of-the-art by both
precision and recall, leading to an overall better prediction performance.

2 Collision occurs when unrelated events are combined into the same group (cluster).
The contrary of collision is also denoted “truncation”, referring to related events
being separated into different groups when the coalescence window is too small.
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Table 2. Comparison of prediction performance results between the method proposed
by Vilalta et al. and the proposed SBFP. Both methods have been parameterized
to optimize the F0.5-Measure.

Algorithm TP TN FP FN Precision Recall FM05

SBFP 130 792 65 94 0.67 0.58 0.65

Vilaltas’ 124 1300 80 109 0.6 0.53 0.59

Number of observations differ due to the different data model-
ing strategies in both algorithms.

6.2 Performance Across Varying Target Events and Datasets

Up to this point, we discussed the main properties and influencing factors of
our proposed prediction model for a single target event in a single machine log
dataset. It remains to discuss the prediction performance of the approach beyond
an unique example. This is the goal of this section.

Naturally, within the scope and capabilities of this work, we can just provide
detailed description of the proper parametrization and prediction performance
of the proposed approach for selected cases. Nevertheless, in order to provide
a broader (but rough) overview of the capabilities of the proposed approach,
we perform the following experiment: after the labeling/ranking from domain
experts (cf. Sect. 6) we take the remaining 12 target critical events to be pre-
dicted, and select the machine log datasets in which the selected target event
appears more frequently than a given threshold (in our case in at least 20 dis-
tinct sequences). We then run our approach onto those eligible datasets without
parameter tuning. Therefore, we can not guarantee that the best solution is
found for each run, but we can provide an overview on how the prediction per-
formance roughly varies for a target event across different log datasets from
different machines for a given parametrization. The results of this experiment
is shown in Fig. 5. For each target event (E1–E12), we show the distribution of
the prediction performance when running the algorithm on different datasets in
form of Tukey boxplots.

For each run, the prediction performance (F0.5-Measure) of the algorithm for
the given target event and machine dataset is shown as a point on the boxplots
of Fig. 5. As shown in the figure, different events can be predicted to varying
degrees. Events E6 and E9 are for example generally less predictable than most
other events with the given parameters. Even for a particular event type, the
prediction performance varies significantly according to the machine log dataset
used for training and validation of the model. Results for event E10 shows a great
midspread (IQR) while for other events, like event E8, the results dispersion is by
orders of magnitude lower. This complies with previous observations of similar
work in the literate [4] (cf. Sect. 2). Considering that, the success of the algorithm
is contingent on the proper parametrization and existence of sequential pattern
of events preceding the target events in the different datasets.
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Fig. 5. Variation of prediction performance for 12 target event types without parame-
trization tuning. For each target event, the algorithm was trained and tested individ-
ually across several distinct machine log datasets. A point on the graph depicts the
prediction performance (F0.5-Measure) w.r.t. the given target event for an individual
machine log dataset.

7 Conclusion

In this work, we analyzed log files generated by industrial computer numerical
control (CNC) cutting machines from the company TRUMPF GmbH + Co. KG,
with the goal of predicting critical events in machinery log data. We presented a
Sequence-Mining based technique for mining sequential patterns of events from
log data. Sequence-Mining constitutes an extension to related approaches which
so far have just leveraged itemset and association rules mining, which did not
consider strict chronological order of events for issuing predictions. We show how
our approach with this additional property requires more evidence for issuing
positive predictions than methods based just on event sets, leading to a more
precise performance outperforming existing techniques.

Furthermore, we presented contributions in how machinery log data can be
proper modeled into sequence definitions prior to its usage in sequence mining
as well as a information gain based noise reduction technique that guarantees
that the detected patterns are related to the target critical event, reducing the
result set and increasing prediction’s performance.

Our approach is suitable for short-term predictions, achieving prediction lead
times of up to 40 min in advance for a specific critical event.

Together with domain experts, we extensively evaluated our approach and
its parametrization using real data from over 150 machines containing millions
of log entries and discuss the benefit of such techniques for the industry.
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