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Abstract. Model selection in Gaussian Process Regression (GPR) seeks
to determine the optimal values of the hyper-parameters governing the
covariance function, which allows flexible customization of the GP to
the problem at hand. An oft-overlooked issue that is often encountered
in the model process is over-fitting the model selection criterion, typi-
cally the marginal likelihood. The over-fitting in machine learning refers
to the fitting of random noise present in the model selection criterion
in addition to features improving the generalisation performance of the
statistical model. In this paper, we construct several Gaussian process
regression models for a range of high-dimensional datasets from the UCI
machine learning repository. Afterwards, we compare both MSE on the
test dataset and the negative log marginal likelihood (nlZ), used as the
model selection criteria, to find whether the problem of overfitting in
model selection also affects GPR. We found that the squared exponential
covariance function with Automatic Relevance Determination (SEard) is
better than other kernels including squared exponential covariance func-
tion with isotropic distance measure (SEiso) according to the nLZ, but
it is clearly not the best according to MSE on the test data, and this is
an indication of over-fitting problem in model selection.

Keywords: Gaussian process · Regression · Covariance function ·
Model selection · Over-fitting

1 Introduction

Supervised learning tasks can be divided into two main types, namely classifi-
cation and regression problems. Classification is usually used when the outputs
are categorical (discrete class labels), whereas, regression is concerned with the
prediction of continuous quantities. Gaussian process is defined as a distribution
over functions, and inference takes place directly in the space of functions, i.e.
the function-space view. Gaussian process regression is not a new area of study,
it has been extensively used in research areas such as machine learning, statistics
and engineering. In the literature, Gaussian process regression has been widely
used for many real-world problems, including time series analysis. For instance,
Duvenaud et al. (2013) applied GPR to the total solar irradiance dataset and
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obtained good results, and Williams and Rasmussen (2006) also used GPR for
modelling atmospheric CO2 concentrations.

Model selection approaches for GPR seek to determine good values for the
hyper-parameters of the model, typically via maximising the marginal like-
lihood or via cross validation (Williams and Rasmussen 2006). Cawley and
Talbot (2007) discusses an over-fitting issue that arises in model selection with
Gaussian processes classification. They claim that for GP classification, covari-
ance functions with large parameters clearly demonstrate the over-fitting issue,
where reducing the value of the model selection criterion results in a model with
worse generalisation performance. This is because the model selection criterion
is evaluated over a finite set of data, and hence is a performance estimate with
a non-negligible variance.

In this paper, we first describe the background methodology for applications
of Gaussian progress regression, and then give some examples of covariance func-
tions commonly used in GPR. The reminder of the paper the describes model
selection practices for GPR, and the causes of over-fitting in model selection, how
one can detect it, and how this issue can be avoided. Finally we present empiri-
cal results using UCI benchmark datasets (2013), showing that over-fitting the
model selection criterion is a potential pit-fall in practical applications and GPR,
and present our conclusions.

2 Background

Regression analysis is a vital tool in applied statistics as well as in machine
learning. It aims to investigate the influence of certain variables X on a certain
outcome y (Walter and Augustin 2010).

The linear regression model is one of the most common models used to study
the linear relationship between a dependent variable y and one or more indepen-
dent variables X. The reason for its popularity is due to both the conceptual and
computational simplicity of fitting a linear model. However, linear regression is
dependent on some assumptions (Briegel and Tresp 2000), for example, the true
relationship in the data must be approximately linear for good prediction using
a linear model, but unfortunately this often is not the case for real-life data.
Therefore, standard linear regression is generalized in many ways and here we
use Bayesian linear regression as a treatment to the linear model (the following
exposition is based on that given by Williams and Rasmussen 2006).

In Bayesian linear regression, we need to have a prior belief regarding the
values of the model parameters that is combined with the likelihood function,
describing the distribution of the data, to find the posterior distribution over
the parameters. We can write down a generative model for our data.

f(x) = xT w, y = f(x) + ε,

where f(x) is our modelling function, ε is some form of additive noise, and y
is the observed target values. The input vector is defined as x and parameter
vector of the linear model as w. We also assume that ε are an independent
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and identically distributed (i.i.d.) sample from a zero-mean normal distribution,
i.e. N(0, σ2

n). It follows that y = xT w + ε : ε ∼ N(0, σ2
n). Both noise and

model assumptions enable us to identify the probability density of the observa-
tions given the parameters which is known as the Likelihood function, which is
given by
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n∏
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In Bayesian linear regression, we assume that a prior distribution over the para-
meters is also given. For example, a typical choice is w : N(0, Σp)

p(w) =
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Now, by using Bayes’ rule, we can obtain the posterior distribution for the para-
meters, which is given by

p(w | y,X) =
p(y | X,w)p(w)∫
p(y | X,w)p(w)dw

.

The denominator is known as the marginal likelihood p(y | X) and does not
involve the parameters (weights), hence it can often be neglected. In the following
steps, we get closer to the computation of the posterior distribution for the
parameters.

p(w | y,X) ∝ exp
(

− 1
2σ2

n

(y − XT w)T (y − XT w)
)

exp
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.

Therefore, the posterior is recognised as a Gaussian distribution with w̄ = σ−2
n

A−1Xy as a mean and as a covariance matrix A−1 = ( 1
σ2
n
XXT + Σ−1

p )−1, i.e.

p(w | y,X) : N(w̄,A−1).

Having specified w, making predictions about unobserved values, f(x∗), at coor-
dinates, x∗, is then only a matter of drawing samples from the predictive distri-
bution p(f∗ | x∗,X,y) which is defined as:

p(f∗ | x∗,X,y) =
∫

p(f∗ | x∗,w)p(w | y,X)dw.
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The predictive posterior is once again Gaussian:

p(f∗ | x∗,X,y) ∼ N(σ−2
n xT

∗ A−1Xy,xT
∗ A−1x∗).

In fact, both the parameter posterior and posterior predictive distribution pro-
vide a useful way to quantify our uncertainty in model estimates, and to exploit
our knowledge of this uncertainty in order to make more robust predictions on
new test points (Do 2007).

2.1 Gaussian Processes in Regression

Over the past few years, there has been a tremendous interest in applying
non-parametric approaches to real-world problems. Numerous studies have been
devoted to Gaussian processes (GPs) because of their flexibility when compared
with parametric models. These techniques use Bayesian learning, which usually
leads to analytically intractable posteriors (Csató 2002), however that is not the
case for GPR.

A Gaussian distribution is a distribution over random variables, x ∈ R
n,

which is completely specified by a mean vector μ and a covariance matrix Σ,

p(x;μ,Σ) =
1

(2π)
n
2 |Σ| exp

[
−1

2
(x − μ)T Σ−1(x − μ)

]
.

We can write this as x ∼ G(μ,Σ). Gaussian random variables are very useful
in statistics and machine learning because they are very commonly used for
modelling noise in statistical algorithms (Do 2007).

According to Rasmussen (2004), a Gaussian process (GP) is defined as “a
collection of random variables, any finite number of which have (consistent)
joint Gaussian distributions”. A Gaussian process is a distribution over functions
which is fully specified by the mean function, m(x), and a covariance function,
k(x, x′), of a process f(x), where

m(x) = E[f(x)], (1)
k(x, x′) = E[(f(x) − m(x))(f(x′) − m(x′))]. (2)

We can now obtain a GP from the Bayesian linear regression model in which,
f(x) = φ(x)T w, with w : (0, Σp). Both mean function and covariance function
are obtained as

E[f(x)] = φ(x)T
E(w) = 0, (3)

E[f(x)f(x′)] = ϕ(x)T E[wwT ]ϕ(x)T Σpϕ(x′). (4)

Hence, f(x) and f(x′) are jointly Gaussian with zero mean and covariance func-
tion ϕ(x)T Σpϕ(x′).

The mean function is commonly defined to be zero, “which is not a strong
limitation if the data is centred in preprocessing” (Blum and Riedmiller 2013).
The covariance function defines the similarity between values of the function
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as a function of the data points and plays an important role in controlling
the properties of Gaussian Processes (Williams and Rasmussen 2006). Gaussian
processes are a technique for expressing prior distributions over functions for
one or more input variables. Given a set of inputs, x(1), . . . , x(n), we can draw
samples f(x(1)), . . . , f(x(n)) from the GP prior:

f(x(1)), . . . , f(x(n)) : (0,K).

Although drawing random functions from the prior is important, we want to
extract the information that the training data delivers about the function.

Given a noise-free training data,

D = {(x(i), y(i)) | i = 1, . . . , n} = {X, f}.

according to GP prior, the joint distribution of the training outputs, f , and the
test outputs f∗ is given by

[
f
f∗

]
:
(

0,

[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
.

In order to make predictions, we need to obtain the posterior distribution over
functions. It is also necessary to restrict the prior to contain only functions which
agree with D. The posterior distribution is obtained from the condition {X∗, f∗}
on D = X, f , and it is Gaussian.

f∗ | X∗, X, f : N(K(X∗, X)K(X,X)−1f,K(X∗, X∗) −K(X∗, X)K(X,X)−1K(X,X∗))

However, the data of real world problems are typically noisy. Thus we need to
define a GP for noisy observations.

D = {X,y}, where y = f + ε.

We assume additive noise, ε ∼ N(0, σ2I), and can derive the predictive distrib-
ution by conditioning on D = {X,y} that gives a Gaussian with

μ = K(X∗,X)[K(X,X) + σ2I]−1y, (5)
Σ = K(X∗,X∗) − K(X∗,X)[K(X,X) + σ2I]−1K(X,X∗). (6)

Now if we give a new ‘test’ input x∗, the predictive distribution of the corre-
sponding f(x) is readily obtained. In practice, the predictive mean, denoted μ,
of the GP is used as a point estimate for the function output, while the vari-
ance can be interpreted as uncertainty bounds (±2σ error-bars) on this estimate
(Girard and Murray-Smith 2005).

The main aim of using Gaussian processes regression is for prediction. In the
case of having D-dimensional input vector x mapped onto an N -dimensional
feature space, m is an n×1 vector and Σ is an n×n matrix. More computational
power is needed for implementing Gaussian processes regression when we have
multivariate inputs.
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The covariance function of the Gaussian process, that allows the model to find
the high-level description of the data properties, can be specified as a hierarchical
prior. For example, covariance function is used to identify the inputs that are
useful in predicting the response. Inference for these covariance hyper-parameters
can be performed using Markov chain sampling (Bernardo et al. 1998).

2.2 The Covariance Functions

There are three main concerns in Gaussian processes regression, namely the
choice of the covariance function, the selection of variables, and the choice of good
values of hyper-parameters which effectively control the complexity of the model
(Shi and Choi 2011). Choosing a suitable covariance kernel is crucial because it
determines almost all generalization properties of a Gaussian processes model
(MacKay 1999).

There are a variety of different covariance functions that can be used in a
Gaussian processes regression model, including stationary and non-stationary
covariance functions. Stationary covariance functions, which are invariant under
translation, are the most often used in GPR. One can simply assume that the
mean is constant (zero), which means the process is stationary (Shi and Choi
2011). Stationary covariance functions depend only on the distance between the
inputs, x, such that the covariance function expresses the covariance between yp

and yq (Williams and Rasmussen 2006). The formula is written as,

cov(f(xp), f(xq)) = k(xp,kq) = exp
(

−1
2
|xp − xq|2

)
.

1. Squared Exponential Covariance Function (SE):
This function is a smooth function of the inputs and is a common choice of
covariance function because it has some nice properties, namely it can be
integrated against most functions that we need in Gaussian processes.
The form is given by

kSE(xp,xq) = σ2
f exp

(
− (xp − xq)2

2r2

)
+ σ2

ε δpq,

where σ2
f is the magnitude, r is the length scale that characterize variation,

and σ2
ε represents noise.

2. Automatic Relevance Determination Covariance Function (SE-ARD):
The SE-ARD covariance function for multi-dimensional inputs is considered
as a more general form of the squared exponential kernel:

kSE-ARD(xp,xq) = σ2
f exp

(
−1

2

D∑

d=1

(x(d)
p − x

(d)
q )2

r2d

)
,

The parameter rd is the characteristic length scale of dimension d. The rel-
evancy of input feature can be determined by rd, for instance, If rd is very
large, then the feature is irrelevant (Snelson 2006)
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3. The Matérn Covariance Function:
The formula of this type of covariance function is given by

kMatérn(x, x′) =
21−v

Γ (v)

(√
2v|x − x′|

r

)v

Kv

(√
2v|x − x′|

r

)
,

where both v and r are positive parameters, v determines the smoothness
and Kv is an amended Bessel function (Abramowitz 1966). When v → ∞,
then kMatérn(x,x′) becomes squared exponential covariance function.

4. The Rational Quadratic Covariance Function (RQ):
This kernel is equivalent to adding many SE kernels together with different

length-scales. The form of the rational quadratic (RQ) covariance function is;

KRQ(x,x′) =
(

1 +
|x − x′|2

2αr2

)−α

,

where α determines the smoothness and r is the characteristic length, when
α → ∞ then RQ is identical to the SE.

5. Polynomial Covariance Function:
The Polynomial kernel is a non-stationary kernel that takes the following
form

kPoly(x,x′) = (x · x′ + σ2
0)

p,

where σ2
0 > 0 is a constant, trading off the effect of higher-order against lower-

order terms in the polynomial, and the kernel is known as a homogeneous
polynomial when σ2

0 = 0, p > 0 is the polynomial degree, which is a natural
number.

2.3 Model Selection for GP Regression

As mentioned previously, Gaussian processes are specified by their mean and
covariance functions. The purpose of covariance function is to determine the
similarity between data points that involved some free parameters known as
hyper-parameters. Indeed, the hyper-parameters are useful since they allow for
flexible customization of the GP to the problem. Therefore, it is necessary to
select the covariance functions and its hyper-parameters appropriately by the
so-called model selection process (Blum and Riedmiller 2013).

In literature, two techniques are most often discussed for model selection in
Gaussian process regression, namely marginal likelihood maximisation and cross
validation (Williams and Rasmussen 2006). We only describe the Marginal Like-
lihood method of selecting the model for GP regression, as that is the approach
we adopt in our experiments.

A reliable framework for inference over the hyper-parameters is obtained
via the Bayesian approach but good approximations are not easily derived, due
to the required complex integrals over the hyper-parameters being analytically
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intractable. In fact, it is not easy to know what the parameters of the model are
because Gaussian process model is a non-parametric model.

One can obtain the probability of the data given the hyper-parameters
p(y | X, θ) for GPs regression with Gaussian noise by marginalization over
the function values f . The log marginal likelihood is given by

log p(y | X, θ) = −1
2
yT K−1

y y − 1
2

log |Ky| − n

2
log 2π.

where Ky = Kf + σ2
nI is the covariance function for the noisy output, y, and

Kf is the covariance function for the noise-free latent function, f . The first
term from the above equation is known as a data-fit term, the second term is
a complexity penalty, and the last term is a normalizing constant (Blum and
Riedmiller 2013).

In order to tune hyper-parameters by maximizing the marginal likelihood, the
derivatives of the log marginal likelihood with respect to the hyper-parameters
are required:

∂

∂θj
log p(y | X, θ) =

1
2

tr
[
(ααT − Ky

−1)
∂Ky

∂θj

]
, where α = K−1y.

From the above equation, “any gradient based optimization algorithm can be
used to obtain the hyper-parameters that maximize the marginal likelihood of
a GP. We will call this optimization procedure training the GP” (Blum and
Riedmiller 2013).

3 Over-Fitting in Model Selection with Gaussian
Processes in Regression

In this section, we first define an over-fitting issue that rises in the context of
model selection in machine learning. Afterwards, the reasons for the occurrence of
this problem will be discussed; we will also explain how one can detect this over-
fitting issue in model selection with Gaussian processes algorithms. The methods
of preventing this problem will also be described. Finally, results obtained on a
suite of eleven real-world benchmark data sets will be demonstrated.

3.1 Over-Fitting in Model Selection

Over-fitting in machine learning refers to the fitting of a random noise in the data
in addition to it’s underlying structure by a statistical model. Over-fitting usually
occurs when a model is too complicated, for example, when the parameters are
excessively more than the number of observations. The potential consequence
of an over-fitted model is poor predictive performance, as it can amplify very
small fluctuations in the data (Joshi 2013). While the dangers of over-fitting
in determining the parameters of a model (training) are well documented, the
risk of over-fitting in tuning the hyper-parameters (model selection) is less well
appreciated.
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3.2 The Causes of Over-Fitting in Model Selection

When selecting a model, over-fitting often occurs due to the variance of the model
selection criteria. Models are typically trained via performance maximization
based on a finite set of training data, the efficiency of the model on the other
hand is not dictated based on the performance of the model using the training
data. It is instead established using the success and effectiveness of the model of
handling unseen data. The problem of over-fitting is encountered when a model
begins to memorize training data as opposed to learning to generalize from the
observed trend in the training data. For instance, if the number of parameters
is the equal to or greater than the number of data points available, a basic
linear model or learning process will be able to perfectly estimate the training
data merely through memorization of the entire training data set. However, such
elemental models and processes will frequently fail significantly when estimating
new data. As the basic model has not learned to generalize to any degree, we
experience the over-fitting problem (Joshi 2013).

According to Dietterich (1995) the major complication of over-fitting usually
emerges from the structure of the machine-learning tasks. A learning algorithm
is trained on a training dataset, but then applied to provide estimations using
new unseen data points. We are not necessarily concerned with the algorithm’s
accuracy on the training data, but instead achieving optimal predictive accuracy
on these unseen data points. The scenario of “over-fitting” arises when we try
too hard to find the very best fit to the training data (or to the model selection
criteria) and thus risk that noise will be consumed in the data due to the model
memorizing particular characteristics of the training data instead of discovering
a general predictive rule.

3.3 Detecting Over-Fitting in Model Selection

According to Cawley and Talbot (2010), fitting a Gaussian process with the
non-ARD (Auto Relevance determination) equivalent covariance function (the
Radial Basis Function (RBF) covariance function) and comparing the test error
rates, would seem like the most straightforward progression to do. For several
reasons, the ARD covariance function fails to perform as well as the non-ARD
covariance function due to the over-fitting in tuning the hyper-parameters. The
RBF is a special case of ARD where parameters constrained to be equal. Having
fewer parameters gives less scope for over-fitting.

3.4 Avoiding Over-Fitting in Model Selection

Over-fitting mainly occurs when a small dataset is used. Therefore, it is always
better to have a large data set. Thus, by using a lot of patterns the problem
can potentially be avoided. However, having an excessively high number of data
points, the algorithm is obliged to generalize and come up with a good model
to fits all the points, without having sufficient capacity to model the noise.
The convenience of choosing a large database does not always exist. There are
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times where a small database is the only available option, limiting our choice
of model development. In such cases, a technique called cross validation can be
used. This technique divides the dataset into training and testing datasets. The
model is developed using the training dataset and the validity of the model is
tested using the testing database. This process is then repeated using various
partitions of training and testing datasets. As a result of this technique, a fairly
good approximation of the underlying model is given, due to the fact that it is
tested on several partitions to achieve generalization at the maximum possible
degree (Joshi 2013).

According to Cawley and Talbot (2010) over-fitting in model selection may
seem logical, if a model selection criterion estimated over a specific number
of data observations is directly optimized. For example, over-fitting in model
selection, similarly to over-fitting in training, can be significantly harmful when
the data sample is small and the population of hyper-parameters to be tuned is
large. Similarly, under the assumption that further data are unavailable, possible
solutions to the over-fitting the model selection criterion may be analogous to
the solutions for the over-fitting the training criterion which has been tried and
tested.

4 UCI Benchmark Datasets Used in Empirical
Demonstrations

In this section, we use eleven benchmark data sets from the UCI machine learning
repository (Bache and Lichman 2013) to examine the problem of over-fitting in
model selection for Gaussian processes regression. Table 1 shows the details of
the datasets, including the number of features, and test patterns for each dataset.

Table 1. Details of data sets used in empirical comparison.

Data set Training
patterns

Testing
patterns

Number of
replications

Input
features

Airfoil self noise 1353 150 100 5

Community crime 1792 199 100 99

Concrete 927 103 100 8

dat 203 22 100 2

Energy Efficiency 692 76 100 8

Fertility 90 10 100 8

Housing 456 50 100 13

Istanbul Stock Exchange 483 53 100 8

Mpg 359 39 100 7

Servo 151 16 100 4

Yacht Hydrodynamics 278 30 100 6
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4.1 Results and Discussion

In order to examine whether the problem of over-fitting during model selection
is encountered with Gaussian processes regression, we find both mean squared
error (MSE) and negative log marginal likelihood (nLZ) of seven kernel functions
over a suite of eleven benchmark datasets. MSE is found based on the test set
as a performance evaluation criteria, while nLZ is evaluated over the training
set and used as a model selection criteria. Afterwards, the Friedman test is
used to determine whether there are statistically significant differences in either
MSE or nLZ for different covariance functions. This test is illustrated by critical
difference diagrams (Friedman test with Post-Hoc test) (Demšar 2006), which
shows the average ranks of seven kernels, as shown in Fig. 1.

1234567

Poly2
5.9091

SEiso
4.2273

Matérn
4

SEard
3

Matérn2
3.4091

Matérn3
3.6818

RQiso
3.7727

CD

Fig. 1. Critical difference diagram showing the average ranks of seven kernels with
using mean squared error (MSE)

This diagram shows the bold bars that joins the lines, such that if two or more
lines (representing models with different covariance functions) are joined by a
bar, it means these models are not statistically significantly different from each
other. It clearly shows that only poly2 is statistically worse than SEard, in terms
of generalisation performance, and the remaining differences are non-statically
significant.

Figure 2 shows the average ranks of seven kernels with using negative log
marginal likelihood. For the majority of the benchmarks, the lowest negative
log-likelihood is obtained using SEard which is not surprising because it has
more hyper-parameters. However, this is not a good result since SEard does not
always give the minimum MSE compared to SEiso. This is called “over-fitting
in model selection”. In other words, when we have such a problem the negative
log-likelihood is no longer a good indication of performance of the model. Indeed,
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1234567

Poly2
6.5455

Matérn1
5.0909

SEiso
4.8636

SEard
1.4091

RQiso
3.0909

Matérn2
3.1818

Matérn3
3.8182

CD

Fig. 2. Critical difference diagram showing the average ranks of seven kernels with
using negative log marginal likelihood (nLZ)

the SEiso kernel is a special case of SEard kernel because both are squared expo-
nential function. Thus, we should always obtain better negative log likelihood
for SEard than SEiso simply because of having a lot of different parameters
to be changed. On the other hand, sometimes the choice of hyper-parameters
will result in a model over-fitting the model selection criteria or it may result in
under-fitting the data rather than over-fitting it. The significantly lower negative
log marginal likelihood of the SEard covariance over the SEiso is not reflected
in the statistically insignificant difference in generalisation performance.

Figure 2 shows that SEiso is not significantly worse than SEard, while having
fewer hyper-parameters. This is interesting result because it suggests that unlike
classification datasets investigated by Cawley and Talbot (2010), the regression
data sets are less susceptible to be over-fitting in model selection. Although, there
is a great difference between SEard and the rest of the kernels used, SEard still
performs well in terms of MSE. This suggests that over-fitting is still a problem
but not as much as a problem in classification. In brief, we found that SEard
kernel is better than most other kernels including SEiso according to the marginal
likelihood, but it is not clearly the best according to MSE on the test datasets,
and this is an indication of over-fitting problem. It is worth mentioning that the
datasets used in this study were all rather small, however there are algorithms
for large scale GP as it is described in the GPML web page by Williams and
Rasmussen (2006), but the problem with over-fitting the model selection is most
apparent with small datasets, hence there is unlikely to be a significant problem
for larger datasets.
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5 Conclusion

The contribution of this paper is to find whether the problem of over-fitting
in model selection takes place with Gaussian processes regression, both mean
squared error (cross validated MSE) and negative log marginal likelihood (nLZ)
were found for seven kernel functions over a suit of eleven benchmark datasets.
The negative log marginal likelihood is the model selection criteria that can be
optimized, whereas the MSE is the test criteria. Afterwards, Friedman test was
used to determine whether there is a statistically significant difference in either
MSE or nLZ for different covariance functions. For the majority of the bench-
marks, the lowest negative log marginal likelihood was obtained using SEard
kernel which is not surprising because it has more hyper-parameters. We found
that SEard kernel was clearly better than other kernels including SEiso accord-
ing to the marginal likelihood, but it was clearly not the best according to MSE
on the test datasets, and this is an indication of over-fitting problem. This is
because the negative log marginal likelihood is the model selection criteria thus
it is always decreasing and MSE is getting worse or not improving. We con-
clude that over-fitting is still a problem in GPs regression but not as much as a
problem in GPs classification.
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