
A Model-Based Testing Method for Dynamic
Aspect-Oriented Software

Maria Laura Pires Souza and Fábio Fagundes Silveira(B)

Federal University of São Paulo – UNIFESP, São José dos Campos, Brazil
malaura.s1@gmail.com, fsilveira@unifesp.br

Abstract. Aspect-oriented programming (AOP) is used to implement
crosscutting concerns such as persistence and safety in program units
called aspects. To ensure that these concerns behave as specified and
do not introduce faults into the application, rigorous software testing
practices should be applied. Even though there are statements in the
literature that the adoption of AOP takes a software to get better qual-
ity, it does not provide correctness by itself. Therefore, the test remains
an important activity to ensure aspects are correctly integrated into the
main system. Additionally, in a dynamic environment: new aspects may
be incompatible with aspects already woven; and aspects to be removed
can hold the system to an inconsistent state. Available approaches in
the literature do not directly investigate the problem of testing dynamic
aspects within the context of a target application. This paper presents
a method to apply tests in dynamic aspects that verify the interactions
between aspects and classes, as well as among aspects. Aiming to sup-
port the method, we also introduce a model to represent the dynamic
behavior of aspects and a new strategy to derive testing cases. To eval-
uate the effectiveness of the test cases generated by the method, muta-
tion operators were applied to the model and simulated with a model
checker. Results showed that the approach is capable of detecting faults
in dynamic aspects interactions into a target application.

Keywords: Dynamic aspect-oriented · Model-based testing · Mutation
testing

1 Introduction

Aspect-oriented programming (AOP) consists in a programming technique that
supports the implementation of cross-cutting concerns, such as persistence, secu-
rity, and logging in units called aspects, where such concerns are implemented.
To ensure that these additional concerns behave as specified and do not intro-
duce defects in the application, rigorous and different test levels should be made
in the application. Besides, these tests should be extended to the interaction
between these aspects and also to the classes of the target application. The divi-
sion of a system known as separation of concerns refers to the ability to identify,

c© Springer International Publishing AG 2017
O. Gervasi et al. (Eds.): ICCSA 2017, Part VI, LNCS 10409, pp. 95–111, 2017.
DOI: 10.1007/978-3-319-62407-5 7

http://orcid.org/0000-0002-2063-2959

96 M.L.P. Souza and F.F. Silveira

encapsulate, and manipulate concrete portions of software that are relevant to
a particular concern [11].

Some difficulties can be verified when applying tests in aspects composi-
tions [2,13] in a dynamic environment: loaded aspects may be incompatible with
aspects already read and/or running; and removed aspects can lead the system
to an inconsistent state.

Available approaches in the literature do not directly investigate the problem
of testing dynamic aspects within the context of a target application. So, in order
to find solutions to some of the problems mentioned above, this paper presents
a testing method for dynamic AO applications. The method, called MESOADI,
contemplates the verification of interactions between dynamic aspects, aiming
to improve the behavioral tests between classes and aspects, and in composites
of dynamic aspects, seeking to reduce the resources involved, such as effort and
test time.

This paper is organized as follows: Sect. 2 presents AO definition, especially
about dynamic aspects and model-based testing definition. Section 3 briefly sum-
marizes related works on testing dynamic systems. Next, Sect. 4 describes the
proposed method with their elements and a case study description. Section 5
highlights the main results and discussion are described. Finally, Sect. 6 con-
cludes the paper and points out future works.

2 Dynamic AOP and Model-Based Testing

Aspect-oriented (AO) development was proposed due to the difficulties encoun-
tered in the treatment of code spreading and interlacing during maintenance
and software development. Its purpose is to separate levels of concerns during
development. The most common examples of crosscutting concerns, which are
separated by AO, are those relating to non-functional requirements such as per-
sistence, logging, authentication, security, fault tolerance, among others.

AOP introduces new concepts to the software development process. Among
them is the aspect, which is the encapsulation unit of a crosscutting concern [2].
The aspects have structural and/or behavioral attributes that can be applied to
various parts of the system. The process of insertion of the aspects, known as
weaving, is responsible for injecting the aspects into the modules in which they
should act. Weaver is the tool that combines object-oriented (OO) code with the
AO code for the operation of the final system.

Regarding dynamic aspect-oriented programming (DAOP), it is possible to
apply and remove aspects to a system at runtime, without the need to restart
it, which is very useful when designing real world applications. Dynamic aspects
are a necessary mechanism, especially if one aspect implements a crosscutting
concerns at one point and the requirement for functionality changes dynamically,
on the fly. One of the advantages of DAOP is that it removes AOP overhead
when aspects are not required [1]. Also, it allows dynamic configuration of aspect
behavior and aspect reconfiguration depending on the state of the base system.

A Model-Based Testing Method for Dynamic Aspect-Oriented Software 97

Testing plays a critical role in any software development project. However,
it is often overlooked as an expensive activity and hampered by the wide vari-
ety of programming languages, operating systems and hardware platforms that
constantly evolve [12]. This creates serious problems in the software production
phase, leading to high costs, poor business reputation and even killing human
beings.

Model-Based Testing (MBT) consists of a technique for automatically gen-
erating a set of test cases (TC) by using models extracted from the software
requirements [3]. Before any software testing activity, one has to validate the
model to be sure that it will not cause any errors in the software or vice versa,
so this model also needs to be tested. This way, there are rules for modeling soft-
ware, as it is necessary for everyone involved in software development to have a
standard model and know how to interpret them. There are several techniques
for specifying systems that are used to add more stringency to the MBT, such as
Finite State Machines (FSMs), which was used in this paper, Statecharts, and
Petri nets.

The strategies TCs generation aim to verify if an implementation is correct
with its specification, through the execution of activities of test and validation
in systems described by models [8]. Although the strategies have a common goal,
the difference between them is the cost, the size of the set and the effectiveness in
finding defects in the system. For this paper, an extension of the Binder’s Round-
Trip Path strategy (RTP) was used. The RTP strategy traverses the FSM graph
through an algorithm and generates a tree called State Transition Tree (STT)
corresponding to that path, where the initial state is the root node.

3 Related Works

Several researches on AO systems and dynamically adaptive systems show up
important works in these areas. Zhang and Cheng [15] separated the adaptive
behavior and specifications of non-adaptive behaviors into dynamic programs.
For this, a process was introduced for the construction of adaptive models, auto-
matically generating adaptive programs of the models, besides checking and
validating the models. For the authors, the main tasks for the adaptation of a
point are to identify the states that are suitable for adaptation and to define
adaptive transitions from these states. Zhao et al. [16] propose a definition for
non-adaptive program and adaptive program through finite state machines. For
them, adaptation is an action that changes the behavior of a state in one FSM
to a state into another FSM.

Fuentes and Sánches [7] published a paper with the objective of presenting
an extension of the Unified Modeling Language (UML) for the construction of
aspect-oriented models. Silveira et al. [13] proposed the METEORA, a state-
based testing method for AO programs, which provides classaspect and, more
specifically, aspectaspect faults detecting capabilities. Ferrari et al. [6] describe
an approach based on mutation testing for AspectJ programs. Lindström
et al. [10] propose the use of AOM (Aspect-Oriented Models) mutation to test
crosscutting concerns.

98 M.L.P. Souza and F.F. Silveira

4 The MESOADI Method

The MESOADI method aims to apply state-based tests in dynamic aspects,
through a model of behavioral representation of interactions between dynamic
aspects. The model, called MEADI, consists of states, pseudo-states, and tran-
sitions and are based on models proposed by Zhang and Cheng [15] and Zhao
et al. [16].

MEADI is composed of several FSMs with transitions between them. Each
time an aspect is added or removed, the model represents an adaptation to the
time and system at runtime, switching to another FSM, which represents the new
behavior. This adaptation corresponds to an action that changes the behavior
of a state in one FSM to a state in another FSM.

States that are added or removed by aspects have <<aspect>> stereotypes
and are yellow in color, while states added by classes are white in color. The
change from one FSM to another happens through special transitions called
priority transitions. They have colors in these transitions that indicate whether
the aspect has been added (red) or removed (blue). In addition, the MEADI has
an element that indicates when a pointcut is encountered and the type of advice
that acts on it. Table 1 shows the advice representation and the possible priority
transitions for a joinpoint in a transition t and state S, where t comes from. From
the table, we see that the priority transition always shows the advice contained
in the aspect that was added or removed and the transition in which it is applied.
The state S appears in the priority transition because there are times when the
transition is executed and when it goes to the other FSM needs to return to
the state before the transition in which the aspect affects. An example is when
a security aspect is added with advice before for password verification before
moving on to the next state. The added aspect leads to the state that checks
the password and if the password is incorrect, it must go back to the previous
state and not continue to the next state (as would happen if the password were
correct).

Table 1. Advices and priority transitions representations.

Advice Symbol Added Aspect Removed Aspect

before b{t, S} -b{t}

around ar{t, S} -ar{t}

after a{t, S} -a{t}

When the priority transitions are found, they take priority over the other
transitions, and the FSM moves to the state they point, already on another
machine. This occurs in specific states, called quiescent states [15], only where
the aspect is added or removed. The reason for the adaptations to occur only in
the quiescent states is because before reaching these states, the program has no
change in its behavior. Even if an aspect is added or removed at any time, the

A Model-Based Testing Method for Dynamic Aspect-Oriented Software 99

behavior of the program will change when this aspect is sensitized, causing the
program to find the priority transition, which will lead to the transition to the
FSM that models the new behavior.

The great limitation of the FSMs as a visual formalism for the description
of complex systems is due to the problem of the explosion of the number of
states and transitions that occur as the system becomes more complex [9]. To
deal with this problem, the application under testing is modeled and tested by
submodules.

4.1 Case Study: An Intelligent Transportation System

MESOADI was applied to two different case studies. The one chosen to be
reported here refers to an intelligent transportation system [14]. The system,
called ITS, is made up of a set of context-sensitive vehicles, and it was adapted
to the dynamic OA context by Fuentes and Sánches [7].

In the ITS, vehicles navigate autonomously from a given origin to a predeter-
mined destination. Each vehicle travels along a “virtual circuit”, which has to
be previously calculated with the aid of a GPS for a given target point [7]. This
circuit can be any outdoor arena, and the vehicle can travel inside it. The vehi-
cle receives the information from the GPS periodically, the time interval being
dependent on the vehicle speed.

When driven autonomously, the vehicle needs to build a real-time perception
of its surrounding environment so that, if an error occurs, it makes decisions
about its next move. Before a trip, vehicles are notified with the information
and guidelines of the “virtual circuit”.

As the vehicle receives information from your GPS periodically, an error-
handling module (an aspect) should monitor that the response time of the GPS
is never exceeded, and react when this constraint is violated. If this constraint is
violated, an error handling strategy must be applied. One possible solution is the
temporary use of GPS data from a nearby vehicle. However, this is only possible
if the vehicle is in circulation on a highway where the neighboring vehicles are
going in the same direction and with an almost constant speed. If the vehicle
is in the city, where the behavior of the vehicles is less predictable, information
about other vehicles is out of use, and the human driver would be forced to
manually control the vehicle until the GPS recovers.

A UML class diagram is shown in Fig. 1a to describe the ITS classes. This
diagram shows two classes: (1) the Context class that store information about
the current context of the vehicle, as speed mode (fast or slow) and type of
path (city or highway); and (2) the Coordinator class which ensures that the
foregoing elements cooperate properly so that the car is driven safely. This last
class implements the behavior of the vehicle on or off, the driving mode is chosen
(manual - when the driver drives the vehicle - or automatic - when the vehicle
sails autonomously) and, in addition, there is verification of the next position
it should follow if it is in automatic mode using GPS. Figure 1b shows a class
diagram for the aspects of error handling and the change of context. Class names
contain the <<aspect>> stereotype indicating that class is one aspect.

100 M.L.P. Souza and F.F. Silveira

(a)

(b)

Fig. 1. Class diagram of (a) Coordinator and Context classes; and (b) ErrorHandling and
ChangeContext aspects.

Fig. 2. MEADI with the ErrorHandling aspect added and removed from the application.

Using the MESOADI, Fig. 2 presents the MEADI with the ErrorHandling aspect
that contains the FSM Vehicle and the FSM VehicleError. The aspect checks the
length of time the vehicle has to receive information from your GPS. If an error
occurs that is not resolved with respect to time, it needs to assume the manual
mode. The modeling will not consider the various situations that may cause the
error, only that an error has occurred that may or may not be corrected, because
in this way the main objective, which is to show the iteration with the dynamic
aspect, will be reached. This aspect is added to the system whenever the vehicle
is navigating intelligently, so when the vehicle is navigating manually, the aspect
can be removed. When the priority transition is found in the FSM Vehicle, one

A Model-Based Testing Method for Dynamic Aspect-Oriented Software 101

aspect is added, and this transition is followed up to the FSM Vehicle. The same
happens when a priority transition is found in the FSM VehicleError, it will follow
to FSM Vehicle, where the aspect does not exist.

The initial state of the FSM Vehicle is called OFF because the vehicle is off.
When the vehicle is switched on, the FSM moves to the ON state, where the
vehicle is stationary, waiting for the driving mode to be activated to accelerate
the vehicle. This driving mode can be manual, leading to the MANUAL state,
or automatic, leading to AUTOMATIC state. In this last state, the vehicle starts
driving without a driver, so you need to check the speed mode (CHEKINGSPEED
state) and the type of the path (CHEKINGPATH) to adapt to the environment.
In addition, a “virtual circuit” is plotted and the POSITION state contains the
precise information about the next point at which the vehicle will be driven.
When the priority transition is found in FSM Vehicle, one aspect is added, and
this transition is followed up to FSM VehicleError. The added aspect is responsi-
ble for verifying that the GPS data is received at the correct time and adds two
new states to the model: TIMECOUNTER and ERRORHANDLING.

This aspect has a before advice with pointcut in the transition nextPosition
because it does a time count before checking the next position. This time count
is done in the state TIMECOUNTER. If the time count ends and the GPS has
not yet returned any position, that is the time is longer than expected, a tran-
sition to apply a strategy to this error leads for the ERRORHANDLING state,
where a treatment strategy error message is applied. If the strategy is efficient
and corrects the error, the system continues in automatic mode. Otherwise, the
system switches to manual mode.

The ChangeContext aspect is responsible for detecting the message that may
result in changes to the contextual information, requiring an appropriate update
of the context. It notices changes in speed mode and path type. The aspect
contains a pointcuts in the checkSpeed transition and checkPath transition. When
the speed mode check transition is called, if the speed value exceeds a certain
constant value, the vehicle is considered to be in the fast mode. Otherwise, it is
in the slow mode. If it goes from slow to fast or vice versa, the ChangeContext
aspect will make this change. The same occurs when the vehicle is in the city
and goes to a highway or vice versa.

Figure 3 shows the MEADI that contain the states added by this aspect. In
this example, the FSM Vehicle starts the system without any aspect and when
a priority transition is found (e11 or e12), it is followed, because the Change-
Context aspect has been added. At this point, the transition takes the system
to the FSM ChangeContextVehicle, where two states are added, CHANGESPEED
and CHANGEPATH. The advice is of the type around, because these states are
substitutions of the states CHECKINGSPEED and CHECKINGPATH, respectively,
given the condition that the speed or path has been changed. When the aspect
is removed from the system, the transition e21 or e22 will be found, going to the
FSM Vehicle.

102 M.L.P. Souza and F.F. Silveira

Fig. 3.MEADI with the ChangeContext aspect added and removed from the application.

4.2 Dynamic Combined Reacheability Tree

A state transition tree (STT) is the result of applying the RTP strategy to
an FSM, and each path is a set of arcs from which a TC is derived. However,
strategies developed for the OO paradigm, in general, can not be directly applied
to the AO paradigm, taking into account the different specificities that exist for
the treatment of cross-cutting concerns [13]. Furthermore, in a dynamic context,
these strategies do not address the addition and removal of states and transitions
at runtime.

In this work, STTs were modified and named Dynamic Combined Reachabil-
ity Tree (DCRT) so that they can be applied to dynamic AO systems. DCRTs
have priority transitions that take them to the other DCRTs. Each time a pri-
ority transition is found, it leads to the root of another tree, from which the
TCs are derived. That is, the number of existing trees for the model is equal to
the number of adaptations that the program may suffer, both when an aspect is
added or removed. When there are static aspects or aspects already combined in
the application, the states that represent them will be in the built DCRTs and,
therefore, the number of trees will remain the same.

When an aspect is added, a pseudo-state will be the root of the new DCRT.
This is due to the fact that a DCRT or TCs can not start with a transition
and then a root state. In this case, it is necessary to have an initial state as
root, which will be the pseudo-state. For the removed aspects, as the priority
transition only indicates that it has been removed, it does not appear in the
DCRT and therefore does not need to have a pseudo-state as root. The pseudo-
states have the same priority transition nomenclature, but with the e uppercase,
for example, for an e11 transition, the pseudo-state will be E11.

In DCRTs, states are represented by their names in capital letters, transitions
by their names in lowercase letters, conditions are in square brackets and the
returns of functions in parentheses, also in lowercase letters. The details of the
construction of these DCRTs are presented below.

A Model-Based Testing Method for Dynamic Aspect-Oriented Software 103

4.3 A New Strategy to Derive Test Sequences – RTPMESOADI

In order to construct the DCRT from the dynamic modeling of the aspects, an
adaptation of the original Round-Trip Path (RTP) method [3] was performed,
named RTPMESOADI. For each change in the MEADI, a new DCRT is constructed.
The main change in the RTP relates to its stopping criterion, established as
follows:

– When an aspect adds a state that is applied before, around, or after a tran-
sition, the transition t that precedes it and indicates the type of advice is
saved. When the state appears again:
• If the transition that precedes it is equal to t, then the DCRT repeats the

state and stop the path;
• Otherwise, the tree passes through the state and continues its generation

obeying the original RTP stop criterion [3], that is, stop the path when
a state is repeated or when it is a final state.

For the MEADI of Fig. 3, six DCRTs are derived using the RTPMESOADI. The
roots of these DCRTs are: initial state of the FSMs (1) Vehicle; (2) ChangeCon-
textVehicle; quiescent states (3) e11; (4) e12; (5) e21; and (6) e22. For example,
when the ChangeContext aspect is added, if the e11 priority transition from FSM

(a) (b)

(c)

Fig. 4. DCRTs: (a) initial state of the FSM Vehicle; (b) quiescent state e21; and
(c) quiescent state e11. The red nodes are leaf nodes. (Color figure online)

104 M.L.P. Souza and F.F. Silveira

Vehicle to the FSM ChangeContextVehicle is found, a pseudo-state E11 is the root
of a new DCRT. The same happens with the e12 priority transition. The e21
and e22 priority transitions also lead to the creation of two new DCRTs, but
the root of these DCRTs corresponds to the states that these transitions point
to. Figure 4 shows the DCRTs with the root trees in an initial state Vehicle, a
quiescent state with the addition of the aspect (e11) and a quiescent state with
the aspect removal (e21).

The same occurs for the MEADI of Fig. 2 that four DCRTs are derived
using the algorithm. The roots of these DCRTs are: initial state of the FSMs
(1) Vehicle; (2) VehicleError; quiescent states (3) e31; and (4) e41.

With the TC derivation strategy used (RTPMESOADI), DCRTs were created
where each path corresponds to an abstract TC. For TCs to have coverage of
100%, all paths of all DCRTs must be traversed.

5 Results and Discussion

To evaluate MESOADI and its elements, we measured the effectiveness of testing
sequences generated by this method through the use of mutation testing. In this
section, Mutation Operators (MOs) are described for aspect-oriented models to
be evaluated through fault-based testing. Then, we report the translation of
the ITS to timed automata in a model-checker called UPAAL. So, the MOs are
applied to the automata for their simulation with the TCs derived from the
RTPMESOADI. Finally, the mutation scores are obtained.

MOs used here were based on and adapted from [10]. The work developed
a mutation-based search for static AOP models. Therefore, for each of the pro-
posed MOs, adaptations occurred in relation to the cited work. The MOs focus
on the aspects and elements of AO (pointcuts and advice) because they are syn-
tactic structures present only in AO models. Table 2 shows the MOs and their
descriptions related to pointcuts and advices, respectively.

5.1 Timed Automata and Model-Checker

MESOADI was also analyzed using timed automata through the use of a model-
checking tool called UPPAAL1. Timed automata are FSMs that are extended with
clocks. The main focus in the use of UPPAAL in this work is the use of a model
checker algorithm to simulate the result of the application of the TCs derived
from the algorithm RTPMESOADI, not the verification of time or performance.

Timed automata are finite state machines with timing constraints associated
with their edges and states, and are intended to model the behavior of real-
time systems [5]. In a timed automata clocks are represented by a finite set of
real-valued variables C and events are represented by a finite alphabet Σ.

A network of timed automata A1|| . . . ||An over (Σ, C) is the parallel com-
position of n timed automata over (Σ, C), where components are required to

1 Available at: http://www.uppaal.org/.

http://www.uppaal.org/

A Model-Based Testing Method for Dynamic Aspect-Oriented Software 105

Table 2. Mutant operators to pointcuts and advices.

Mutantion operator – pointcuts Description

Pointcut weakening (PCW) Adds the pointcuts that should be in the
FSM, but also adds new pointcuts in
transitions that are not affected by the
aspect

Incorrect pointcuts (IPC) Add in the FSMs only the pointcuts that
are not contained in the original FSMs

Pointcut strengthening (PCS) Does not selecting one or more pointcuts,
selecting only a subset of correct
pointcuts

Mutantion operator – advices Description

Advice on incorrect pointcut (AIP) Associating existing advice with
pointcuts that are also existent but
incorrect

Advice replacement at pointcut (ARP) Change the types of advices in the FSMs

synchronize on delay transitions and discrete transitions are required to be syn-
chronized on complementary actions [10]. An action a? is complementary to a!.

UPPAAL is a tool for validation (through graphic simulation) and verification
(through automatic model checking) of systems in real time. The idea is to
model a system using timed automata, to simulate them, and then to check
their properties. The simulation step is to run the system interactively to see
if it works as planned. In the verification step, the accessibility properties are
checked, that is, whether a particular state is accessible or not. This is called
model-checking and is basically an exhaustive search that covers all possible
dynamic behaviors of the system. Only the graphic simulation step is used for
the analysis of MESOADI. In UPPAAL, the double-circle state indicates that it
is the initial state. The system consists of a network of processes that are made
up of a set of locations. The transitions between locations define how it behaves.

Through synchronizations, it is possible to invoke or activate one or more
transitions using a previously defined synchronization channel. The use of the
“!” tag can be seen as a send and the “?” tag as a reception. When a process is
in a state from which there is a transition with c! synchronization, the only form
of this transition is activated is if there is another process in another transition
marked with c? or contrariwise.

The ITS was manually translated into automata for UPPAAL. Because the
tool does not support AOP, some adaptations were necessary. The states that
have been added by aspects are represented by the yellow color for a better
understanding of the model. When an advice is found, the automata were mod-
eled to behave as expected, bearing in mind whether the advice is before, after
or around. All transitions in the model will be represented by synchronizations.
The mutation operators that were used for the analysis do not affect variables, so

106 M.L.P. Souza and F.F. Silveira

even the transitions that in the original model exist variables will be represented
by synchronizations.

The MEADI contains several FSMs, so for the simulations all the automata
corresponding to each of these FSMs, and all the automata that have a quiescent
state as the initial state, are modeled. In ITS there are nine automata with initial
states in: (1) FSM Vehicle; (2) FSM ChangeContextVehicle; (3) FSM VehicleError;
quiescent states (4) e11; (5) e12; (6) e13; (7) e21; (8) e22; and (9) e23. Automata
1, 2 and 3 will have the names of the FSMs to which they correspond and the
automata 4, 5, 6, 7, 8 and 9 will have the name of their quiescent states, changing
the e for E. Automats that do not contain states added by aspects will not be
tested, because MOs only affect aspects. Thus, the MOs will be applied in five
automata (ChangeContextVehicle, VehicleError, E11, E12 and E31).

The mutants generated from the original models are classified as: (1) killed
mutants – when the mutant shows a behavior different from the original model;
(2) equivalent mutants – when for each possible entry of the original model, the
mutant version will show the same behavior (such mutants can not be distin-
guished from the original model by any test); and (3) stillborn mutants – when
they are syntactically illegal and therefore are not accepted by the model verifier
(for this reason, the latter are not considered in the analysis).

For the application of TCs, another process, called “TC”, is created next
to each of the automata. This process contains the TC using the synchroniza-
tions for the simulation in the automata. Figure 5 shows TC derived from the
DCRT of Fig. 4a, which uses the FSM Vehicle of the MEADI, being applied to
the original automaton no UPPAAL. In the lower right window, the vertical
arrows show the transitions and the horizontal arrows show the synchronization
between automata. The last state of the TC is called “TC passed” (in this case
it would be the “ON” state), because every time the simulator is deadlocked
(shown in the upper left window), if the last state of the “TC” process is this,
having applied a MO, it means that the mutant remains alive. If the simulator
is blocked and has not yet reached this state, it means that the TC has failed.
Therefore, the mutant is considered killed. However, if for any possible simula-
tion, the result with mutant or no mutant is the same, the mutants are called
equivalent mutants. Thus, all mutants that remain alive need to be analyzed in
order to determine whether or not they are equivalent.

In the case of stillborn mutants, the tool points to a syntax error and the
templates are not sent to the simulation.

The analysis performed with the obtained results refers to the metrics of
confidence or adequacy of the test cases generated by the MESOADI, being used
as reference the mutation scores. The automata used show all possible scenarios
for the modeling of ITS with MESOADI.

The presented case study contains two aspects that can be added or removed,
where one of them contains two pointcuts. The MOs were applied at these point-
cuts and their advices and all the possibilities modeled. In the examples that
will be presented, the transitions, states, and synchronizations represented by
the red color show the elements added to the model. The states, transitions,

A Model-Based Testing Method for Dynamic Aspect-Oriented Software 107

Fig. 5. Application of a TC in the automaton Vehicle

Fig. 6. Application of a TC to the automaton E12 mutated with the MO PCW

and synchronizations represented by gray color, and which contains two crossed
traces, show the elements removed. The following are the MOs analyzed from
this case study.

1. PCW : 7 mutants were generated for this operator, all killed by some TC.
Figure 6 shows an example of this MO being applied to the E12 automaton and
compared to a TC derived from RTPMESOADI. This automaton should contain
only the pointcuts of the ChangeContext aspect, however, the PCW operator
also adds another pointcut of the ErrorHandling aspect in the “nextPosition”

108 M.L.P. Souza and F.F. Silveira

(a) (b)

Fig. 7. PCI operator applied to automata (a) E11 and (b) ChangeContextVehicle.

transition. This mutant was killed because the simulator was blocked before
the end of the TC scan.

2. PCI: 6 mutants were generated by this operator. Only 2 of them could be
used since 4 mutants contained syntactic errors. The two mutants analyzed
were killed by TCs. Figure 7a shows the two pointcuts of the ChangeContext
aspect being deleted from the automaton and the pointcut of the ErrorHan-
dling aspect being added. That is, the operator adds in the automaton E11
only a pointcut that is not contained in the original automaton. In the case
of the E11 automaton, the initial state is removed and, for this reason, the
mutant is then considered to be stillborn. Figure 7b shows how the automated
ChangeContextVehicle was after the application of the PCI operator.

3. PCS: 6 mutants were generated by this operator. Of this total, 4 of them
were used and killed, and 2 were characterized as stillborns, for the same
reason as above.

4. API: 10 mutants were generated for this operator. For all of them, at least
one TC derived from the RTPMESOADI killed the mutants.

5. ARP : 10 mutants were generated by this operator. All of them were killed
by the TCs applied.

5.2 Effectiveness Level of the Generated Test Cases

DeMillo [4] provides an objective measure for the adequacy of the TCs of the P
program by defining a mutation score, which consists in evaluating the suitability
of T in relation to the test. This score ranges from 0 to 1 and the higher, the
greater the effectiveness of the test suite generated.

The generation of the mutants was done carefully and manually. None of the
mutants generated by the PCW , API, and ARP operators were considered to
be stillborn. That is, all were used in the evaluation. As no equivalent mutant
was generated by these operators, the obtained mutation scores have resulted
in 1. The mutation operators PCI and PCS were the only ones that generated
stillborn mutants.

A Model-Based Testing Method for Dynamic Aspect-Oriented Software 109

With the simulation of the application of the TCs to the automata temporized
with MOs in UPPAAL, it was observed that the TCs generated by RTPMESOADI

to the ITS presented a high degree of adequability (effectiveness). Table 3 sum-
marizes the mutation scores obtained by the mutation operator used.

Table 3. Mutation scores for the ITS using the MESOADI.

Mutation
operator

Generated
mutants

Killed
mutants

Equivalent
mutants

Stillborn
mutants

Mutation
score

PCW 7 7 0 0 1.00

PCI 6 2 0 4 1.00

PCS 6 4 0 2 1.00

API 10 10 0 0 1.00

ARP 10 10 0 0 1.00

Total 39 33 0 6

The high mutation score obtained can be explained by the fact that it is a
small system and that it generated a low number of mutants. For this reason, no
equivalent mutants were generated. To obtain a more accurate result and to gen-
erate equivalent mutants, the MESOADI and the generation of the mutants need
to be automated for the application in a more complex system and empirically
validated in a future work.

6 Conclusion and Future Work

The test activity of dynamic aspects is by no means a trivial task. In addition,
despite its importance in real-world applications, the development and testing
of dynamic aspects are still under-explored areas. In dynamic aspect-orientated,
with the addition or removal of runtime aspects, the loaded aspects may be
incompatible with aspects already read and/or running, and removed aspects
may lead the system to an inconsistent state. This work described the difficulties
encountered for modeling and applying the test activity in this type of system.

The MESOADI constitutes a proposal for the application of state-based tests
for dynamic aspects. The behavior represented by MEADI is described through
several Finite State Machines (FSMs), which have transitions (adaptations)
between them, allowing to represent how the system can adapt as the context
change occurs, in this case, adding or removing aspects dynamically. For the
derivation of the test cases (TCs) several Dynamic Combined Reachability Tree
(DCRT) are constructed, by means of the RTPMESOADI, where each one repre-
sents an adaptation suffered by the test application in a dynamic way. From the
constructed trees, we obtain the TCs, derived from the sequences of transitions
of these trees. The results obtained by the application of MESOADI showed that

110 M.L.P. Souza and F.F. Silveira

the generated test sequences presented a high degree of suitability considering
the mutation scores obtained in the evaluation.

Future work includes the development of a tool to support the MESOADI
and carrying out an experimental study to evaluate in a more rigorous way the
proposed approach.

Acknowledgments. The authors would like to thank CNPq (grant 455080/2014-3)
and FAPESP for financial support.

References

1. Alam, F.E., Evermann, J., Fiech, A.: Modeling for dynamic aspect-oriented devel-
opment. In: Proceedings of the 2nd Canadian Conference on Computer Science
and Software Engineering, pp. 143–147. ACM (2009)

2. Alexander, R.T., Bieman, J.M., Andrews, A.A.: Towards the systematic testing of
aspect-oriented programs. Rapport technique, Colorado State University (2004)

3. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley Professional, Boston (2001)

4. DeMillo, R.A.: Mutation analysis as a tool for software quality assurance. Technical
report, DTIC Document (1980)

5. Dong, J.S., Hao, P., Qin, S., Sun, J., Yi, W.: Timed automata patterns. IEEE
Trans. Softw. Eng. 34(6), 844–859 (2008)

6. Ferrari, F.C., Rashid, A., Maldonado, J.C.: Towards the practical mutation testing
of AspectJ programs. Sci. Comput. Program. 78(9), 1639–1662 (2013)

7. Fuentes, L., Sánchez, P.: Dynamic weaving of aspect-oriented executable UML
models. In: Katz, S., Ossher, H., France, R., Jézéquel, J.-M. (eds.) Transactions on
Aspect-Oriented Software Development VI. LNCS, vol. 5560, pp. 1–38. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03764-1 1

8. Fujiwara, S., Bochmann, G.V., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Trans. Softw. Eng. 17(6), 591–603
(1991)

9. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

10. Lindström, B., Offutt, J., Sundmark, D., Andler, S.F., Pettersson, P.: Using muta-
tion to design tests for aspect-oriented models. Inf. Softw. Technol. 81, 112–130
(2016)

11. Moreira, R.M., Paiva, A.C., Aguiar, A.: Testing aspect-oriented programs. In: 2010
5th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6.
IEEE (2010)

12. Myers, G.J., Sandler, C.: The Art of Software Testing. Wiley, Hoboken (2004)
13. Silveira, F.F., da Cunha, A.M., Lisbôa, M.L.: A state-based testing method

for detecting aspect composition faults. In: Murgante, B., et al. (eds.) ICCSA
2014. LNCS, vol. 8583, pp. 418–433. Springer, Cham (2014). doi:10.1007/
978-3-319-09156-3 30

14. Sivaharan, T., Blair, G.S., Friday, A., Wu, M., Duran-Limon, H., Okanda, P.,
Sørensen, C.F., EU FET: Cooperating sentient vehicles for next generation auto-
mobiles. In: ACM/USENIX MobiSys 2004 International Workshop on Applications
of Mobile Embedded Systems (WAMES 2004 Online Proceedings) (2004)

http://dx.doi.org/10.1007/978-3-642-03764-1_1
http://dx.doi.org/10.1007/978-3-319-09156-3_30
http://dx.doi.org/10.1007/978-3-319-09156-3_30

A Model-Based Testing Method for Dynamic Aspect-Oriented Software 111

15. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: Proceedings of the 28th International Conference on Software Engineer-
ing, ICSE 2006, pp. 371–380. ACM, New York (2006)

16. Zhao, Y., Li, Z., Shen, H., Ma, D.: Development of global specification for dynam-
ically adaptive software. Computing 95(9), 785–816 (2013)

	A Model-Based Testing Method for Dynamic Aspect-Oriented Software
	1 Introduction
	2 Dynamic AOP and Model-Based Testing
	3 Related Works
	4 The MESOADI Method
	4.1 Case Study: An Intelligent Transportation System
	4.2 Dynamic Combined Reacheability Tree
	4.3 A New Strategy to Derive Test Sequences -- RTPMESOADI

	5 Results and Discussion
	5.1 Timed Automata and Model-Checker
	5.2 Effectiveness Level of the Generated Test Cases

	6 Conclusion and Future Work
	References

