Test Case/Step Minimization for Visual
Programming Language Models and Its
Application to Space Systems

Paulo Nolberto dos Santos Alarcon®) and Valdivino Alexandre de Santiago
Junior

Instituto Nacional de Pesquisas Espaciais (INPE),
Av. dos Astronautas, 1758, Sao José dos Campos, Sdo Paulo, SP, Brazil
paulonsalarcon@gmail.com, valdivino.santiago@inpe.br

Abstract. Visual Programming Languages have been widely used in
the context of Model-Based Development, and they find a particular
appeal for the design of satellite subsystems, such as the Attitude and
Orbit Control Subsystem (AOCS) which is an extremely complex part
of a spacecraft. The software testing community has been trying to
ensure high quality products with as few defects as possible. Given that
exhaustive generation and execution of software test cases are unfeasi-
ble in practice, one of the initiatives is to reduce the sets of test cases
required to test a Software/System Under Test, while still maintaining
the efficiency (ability to find product defects, code coverage). This paper
presents a new methodology to generate test cases for Visual Program-
ming Language models, aiming at minimizing the set of test cases/steps
but maintaining efficiency. The approach, called specification Patterns,
modified Condition/Decision coverage, and formal Verification to support
Testing (PCDVT), combines the Modified Decision/Condition Coverage
(MC/DC) criterion, Model Checking, specification patterns, and a min-
imization approach by identifying irreplaceable tests in a single method,
taking advantage of the benefits of all these efforts in a unified strategy.
Results showed that two instances of PCDVT presented a lower cost
(smaller number of test steps) and, basically, the same efficiency (model
coverage) if compared with a specialist ad hoc approach. We used the
AOCS model of a Brazilian satellite in order to make the comparison
between the methods.

Keywords: Model-Based Testing * Test case/step minimization - Model
Checking - Specification patterns

1 Introduction

In space systems engineering, quality assurance represents an important role in
the system development. Due to the critical and complex nature of a spacecraft,
the development of methodologies, methods and techniques to assure its overall
quality before launching is highly necessary [1].

© Springer International Publishing AG 2017

O. Gervasi et al. (Eds.): ICCSA 2017, Part VI, LNCS 10409, pp. 160-175, 2017.
DOI: 10.1007/978-3-319-62407-5_11

Test Case/Step Minimization for Visual Programming Language Models 161

The Attitude and Orbit Control Subsystem (AOCS) [2] is one of the most
important and complex subsystems of a satellite. It is the subsystem responsible
for maintaining the spacecraft attitude and orbit ensuring the success of the
mission. AOCS must present high quality and robustness. One way to obtain
the quality of a system is through well defined processes such as testing. In the
context of software development, testing [3,4] is one of the several processes
related to Verification & Validation [5].

In order to bring quality assurance to earlier phases, several projects adopt
the Model-Driven Development (MDD) [6] strategy where models are tested,
verified and improved before the concrete implementation of a complex sys-
tem/subsystem. As a consequence, models developed can be used to automat-
ically generate test cases through Model-Based Testing (MBT) [7] where such
test cases are partially or completely generated from a model describing some
aspect (i.e. functionality, performance) of a software product.

A common issue in MBT is test case explosion. In other words, if very detailed
models are considered, the amount of test cases to be executed is considerably
great [7] making impossible the execution of such test cases withing feasible time.
Hence, many studies aim to reduce the amount of test cases necessary to be
executed via test case minimization [8-11]. However, test case minimization has
been exploited more in the context of regression testing. Thus, it is interesting
to investigate and propose new solutions for test cases which are going to be run
for the first time.

This work presents a new methodology to generate a minimized set of
test cases directly from certain types of Visual Programing Languages (VPLs)
while maintaining efficiency of the test suite. Our approach, called specifica-
tion Patterns, modified Condition/Decision coverage, and formal Verification to
support Testing (PCDVT), combines the Modified Decision/Condition Coverage
(MC/DC) criterion [12], Model Checking [13], specification patterns mappings
for Linear Temporal Logic (LTL) [14], and a minimization approach by identify-
ing irreplaceable tests [11] in a single method, taking advantage of the benefits of
all these efforts in a unified strategy. We present an empirical evaluation where
we compare two instances of PCDVT against a set of test cases created by a
specialist ad hoc approach [15]. All test cases were run over an AOCS model of a
Brazilian satellite and the number of test steps and MC/DC coverage obtained
for each test suites were compared. The two instances of PCDVT presented
a lower cost (smaller number of test steps) and, basically, the same efficiency
(model coverage) if compared with the specialist ad hoc approach.

This paper is structured as follows. Section 2 presents the main character-
istics the VPLs must possess so that PCDVT can be used. Section 3 presents
the PCDVT methodology. Section 4 shows an overview of the Brazilian satellite
AOCS model we used as case study. Experimental assessment where we com-
pared two instances of PCDVT with a specialist ad hoc test case generation
approach is in Sect. 5. Section 6 presents related work. In Sect.7, we show the
conclusions and future directions of this research.

162 P.N. dos Santos Alarcon and V.A. de Santiago Junior

2 Visual Programing Languages: Required Features

The PCDVT methodology was designed to support block diagram and state-
transition VPLs. Our methodology assumes that VPLs must have the following
features: (i) the model is composed by blocks and sub-blocks; (ii) each block can
present decisions impacting the outcome; and (iii) each possible outcome can
lead to different blocks and execution paths. Figure 1 shows an example of VPL
model presenting the features described above. Some VPLs which follow these
characteristics are SciLab/Xcos [16], Yed [17], and Simulink [18].

State 2
Start State 1 b ifbc>=13*b State 3
=1 End

Fig. 1. Example of a general VPL code (model)

3 The PCDVT Methodology

The methodology was developed aiming to make it feasible the generation of
test cases directly from some types of VPLs, by reducing the effort to execute
the test suite. Furthermore, PCDVT relies on the MC/DC criterion to expedite
the qualification of an MDD process since this is an important criterion consid-
ered in the DO-178C standard [12]. The PCDVT methodology is presented in
Fig. 2. In the next subsections, we will detail the methods and principles of the
methodology.

3.1 MC/DC Analysis and Derivation of LTL Properties

MC/DC is a coverage criterion developed in the context of structural (white
box) testing aiming to assure that each condition, in a program’s decision, must
be tested for all possible results at least once, and every program’s decision must
be tested for all possible results at least once [19].

Figure 3 presents the algorithm to identify the conditions in accordance with
MC/DC criterion. In other words, this algorithm takes as input the model and
outputs all representations of transitions composed by the source state, s;, the
destination state, sy, and the condition that independently affects the outcome or
True otherwise. Such conditions or True are latter used to generate the LTL prop-
erties to support the Model Checking process. In Fig. 3, we have: M =Model;
t = State transition in the model; ¢; = Condition in a given transition; I = Set
of conditions that independently affects the decision; C: Set of all conditions or
True values; s; = Source state, sy = Destination state; ©: Set of representations
of transitions.

Test Case/Step Minimization for Visual Programming Language Models 163

Model MC/DC Model Checking | Minimization

Model Definition

Analisys and Properties Translation to
Generation PROMELA
PROMELA

lLTL Properties Model

Formal Verification ||Counterexamples

(SPIN)

est Minimization|

(Irreplaceable
Tests)

Test
Suite

Fig. 2. The PCDVT methodology

Data: Model, M
Result: Set of representations of transitions, ©
CREN]
C+0
for each t € M do
for each ¢; € t do
if ¢; € I then
‘ C <+ CUc;
end
else
‘ C +— CUTrue
end
end
end
O «— OU{(si,s5,¢i)}
return ©

©C © N O U A WN

B oR R R e
LN I VI

Fig. 3. MC/DC analysis

Figure4 shows how the algorithm presented works for a simple block. For
Block 1, the algorithm will generate 2 conditions to be tested, while for the
other blocks it will consider the condition True. Thus, the set of conditions (C)
for all blocks, considering the algorithm shown in Fig. 3, becomes {u; = 1,u1! =
1, True, True, True}.

For each condition obtained via the algorithm in Fig.3, a LTL property is
generated. The LTL properties are derived via two specification patterns for
LTL. Considering the Absense Pattern with scope Between Q and R [14], Fig. 5
presents the algorithm, where the source state (s;) of the transition of the model

164 P.N. dos Santos Alarcon and V.A. de Santiago Junior

Block1
if(ul==1)

ul
else

FlagTriadSTK

Block2

else { }
Ou

In1l t1 Outl

chModSSs Block3 Block4
Block Decisions Conditions Next Block
1 1 ul=1 Block 2
ull=1 Block 3
2 0 True Block 4
3 0 True Block 4
4 0 True Outl

Fig. 4. Example of MC/DC analysis

is considered as Q, and the destination state (ss) is considered as R. The con-
dition (¢) is the formula P of the pattern present. L, is the set of all LTL
properties obtained for each property (I) obtained and © is the set of repre-
sentations of transitions obtained previously. Please note the entire pattern is
completely negated (!) to force the counterexample generation. In these algo-
rithms, we have the LTL temporal modalities Always ([]); Eventually (<>);
Until(U); and Next (o).

In Fig.6, we see the Absence Pattern properties derivation for the model
in Fig. 4. For each block, at least one LTL property is generated. For decision
blocks, each condition identified via MC/DC analysis generates a property for
the given transition. When there is no decision, the condition is always set as
True and a property is generated.

Data: Set of representations of transitions, @
Result: LTL properties due to the Absence Pattern with scope between Q (s;) and R (sy)
L, <+ 0
for each c € © do
| o 1 ([((si&!sp& <> s5) — (leUsy))
end
Lo+ Lo Ul,
return L,

Qb WN

Fig. 5. Derivation of ABSENCE PATTERN property in LTL

The other specification pattern is the Chain Response with Global scope
where the algorithm is presented in Fig. 7. Here, we considered the 2 stimulus-1
response chain, i.e. P responds to S, T. Hence, S is the source state (s;) of the
transition of the model, T is the condition (c¢) previously identified, and P is the
destination state (sf). L, is the set of all properties (I,) obtained and © is the
set of representations of transitions obtained previously.

Again, the entire pattern is completely negated (!) to force the counterexam-
ple generation. An example can be seen in Fig. 8.

3.2

Test Case/Step Minimization for Visual Programming Language Models 165

Block1
if(ul==1) _—+
" else LA
FlagTriadSTK Lo Pyt o
Block2
Y
else { }
Int outl > Outl
chModSS
Block3 Block4
Block Conditions Next Block Absence Pattern in Scope Between Q and R
1 ul=1 Block 2 1([1((Block1&!Block2&<> Block2)—(!(ul==1)uBlock2)
ull=1 Block 3 1([1((Block1&!Block3&<> Block3)—(!(ul!=1)UBlock3)
2 True Block 4 1([1((Block2&!Block4&< > Block4)—(!(True)uBlock4)
3 True Block 4 1([1((Block3&!Block4&<> Block4)—(!(True)uBlock4)
True Outl 1([1((Block4&!Out1&<> Outl)—(!(True)uOutl)

Fig. 6. Example: LTL properties for Absence Pattern

Data: Set of representations of transitions, ©
Result: LTL Properties due to the Chain Response Pattern with Global scope
L.+ 0
for each c € © do
| L < ([[(si&o <> ¢ = o(<> (c& <> s¢))))
end
L, <+ L.Ul,
return L,

[N B VU VIS

Fig. 7. Derivation of CHAIN RESPONSE property in LTL

Block1
if(ul==1) —+
ul "
FlagTriadSTK else Lo >
Block2
Y
else { }
Inl Outl]
chModSS
Block3 Block4
Block Conditions Next Block Response Chain Pattern in Scope Global
1 ul=1 Block 2 1([1(Block1&o<> (ul==1)—0(<>((ul==1)&<> Block2)))
ull=1 Block 3 1([1(Block1&o<> (ul!=1)—o0(<>((ul!=1)&<> Block3))))
2 True Block 4 1([1(Block2&o<> (True)—o(<>((True)&<> Block4))))
3 True Block 4 1([1(Block3&o<> (True)—o(<>((True)&<> Block4))))
4 True Outl 1([1(Block4&o<> (True)—o(<>((True)&<> Outl))))

Fig. 8. Example: LTL properties for Response Chain Pattern

Model Checking

Model Checking is a method used to verify if system behavioral models corre-
spond to the specification [13]. Using a formal specification, typically described
as temporal logic, the model checker (tool that has an implementation of Model
Checking) explores the model searching for inconsistencies and returning a coun-
terexample showing the flaw.

166 P.N. dos Santos Alarcon and V.A. de Santiago Junior

In addition to the LTL properties, it is necessary to build the formal Tran-
sition System (T'S) which represents the behavioral modeling of the system
under consideration. We used the SPIN Model Checker [20], and thus we need
to transform the VPL model into the PROMELA language. We relied on the
proposal of [21] where each block diagram is converted into a state-transition
model described in PROMELA.

Figure9 shows an example of this process where first each block identifier
is labeled and then the transitions and its trigger conditions are grouped in an
intermediate file. With such information, the PROMELA model is built retriev-
ing the information from the original model.

Model

Block1
if(ul==1)

ul (28}
else [0 P»{mt out|

Block2

FlagTriadSTK

else { ¥
In1 out1]

hModSs
chMo Block3 Block4

Intermediate File

PROMELA Model

State: Block 1
Destination:Block 2
Condition: ul==1
Destination: Block3

Block1:

do

::ul?(1)->goto Block2
1:ul?(!1)->goto Block3

Condition: ul!=1 — > od;
State: Block 2
Destination: Block 4 do

State: Block 3 :: goto Block4
Destination: Block 4 d;

od;
State: Block 4 Block3:
Destination: Outl do
::goto Block4
od;
Block4:
do
::goto Outl

od;

Fig. 9. Example of translation from VPL to PROMELA

The main idea related to Model Checking in PCDVT is to consider the
counterexamples as test cases. Each of the properties obtained in the previous
steps (Figs. 5 and 7) are checked against the T'S.

3.3 Minimization

The last step of PCDVT is the minimization of the test suite previously obtained
via Model Checking. Test case minimization is a process of test suite reduction
with low impact in the ability to find defects according to this new test suite.
In PCDVT, the minimization process is made via the greedy algorithm com-
bined with the irreplaceable tests evaluation strategy [11]. In this strategy, test
cases are evaluated according to their requirement coverage and execution time.
Tests with wide requirement coverage and low execution time receive higher
weights. When a requirement is verified by only one test case, then it is auto-
matically chosen to compose the optimized test suite. Since the irreplaceable test

Test Case/Step Minimization for Visual Programming Language Models 167

strategy was developed in the context of regression tests, it uses information not
available during the test creation, such as execution time. The algorithm was sligh-
tly adapted in PCDVT. Each LTL property is treated as a requirement and the step
count is treated as the execution time, since it directly affects the test duration.
A counterexample analysis was added before the minimization process, were
the counterexample steps are analyzed and labeled in accordance with their sim-
ilarity, based on the work of [10]. Figure 10 describes the redundancy analysis
algorithm, where: CE: Set of all counterexamples obtained in the Model Check-
ing step; ce;: Counterexample in the set C'E, being also considered as a set of
test steps; n: Labeling operator. An example of redundancy analysis is shown
in Fig. 11 where test case 1 is contained in test case 2, then, according with the

Data: Set of all counterexamples, CE
Result: Set of labeled counterexamples, CE;

1 CE; + 0

2 for each ce; € CE do

3 for each ce;j € CE, i< jdo

4 if ce; == ce; then

5 ce; < n(ceq, cej)

6 cej + n(cej, ce;)

7 end

8 else

9 if ce; > cej N ce;j C ce; then
10 | cei « n(ceq,cej)

11 end

12 else

13 if ce; < cej N ce; C cej then
14 | cej < mn(cej,ce;)
15 end

16 end

17 end

18 end

19 CE; %CEZUCeiUCE]‘
20 end
21 return CE;

Fig. 10. Redundancy analysis algorithm

Test Case 2
Requirement:

Redundancy
Analysis

Test Case 2

Requirement:
Req2

Steps:
1goto A
2 goto C
3 goto A
4 goto B
5 goto A
6 goto B
7 goto D

Fig. 11. Example of redundancy analysis

168 P.N. dos Santos Alarcon and V.A. de Santiago Junior

Test Suite NewTest Suite
Testl:
Steps: 20
Requerements:
Reql
Req3
Req5
Test2: N
Steps: 22 Tesge-ps: 22
Re(:{t;:rlements: Greedy Requerements:
Req3 ™ Irreplaceable > ;:g;
Req4 Req4
Test3: Test3:
Steps: 5 Steps: 5
Requerements: Requerements:
Req2 Req2
Test4: Test4:
Steps: 18 Steps: 18
Requerements: Requerements:
Reql Req1
Req3 Req3
Reqg5 Reg5

Fig. 12. Example of minimization run

algorithm of Fig. 10, test case 2 is associated with the requirements verified by
test case 1. With all requirements mapped for all tests, the Greedy algorithm is
executed combined with the irreplaceable tests strategy [11], reducing the test
suite (see Fig.12).

4 Brazilian Satellite AOCS Model

The AOCS [2] is a subsystem that provides information and maintain proper
spacecraft attitude and orbit during all phases of the mission, since the sepa-
ration from the launcher until the end of its operational life. In other words, it
is responsible for maintaining the space application position and orientation in
space.

The case study is a 2-dimension AOCS model of Lattes-1 satellite [22] pre-
senting 3 operation modes (see Fig. 13), being them Sun Pointing Mode (SPM),
Earth Pointing Mode (EPM) and Velocity Control Mode (VCM). Furthermore,
it presents a Fault Detection, Isolation and Recovery Module (FDIR), which
is able to trigger the SPM. The AOCS was developed to be tolerant to single
and combined failure, and the FDIR must trigger the transition to mode SPM
when occur composed failure, i.e. two or more components of the same faulted
type simultaneously. We selected this case study because it comes from a critical
domain (space application) and hence it is a good example to show the usefulness
of PCDVT. Also, the use MC/DC criteria to drive the test case generation is
important in order to improve the overall code coverage during quality assurance
process.

In this model, the following sensors and actuators are considered:

Sun Sensor: Responsible for the sun direction determination. There are 7 sen-
sors, being 3 always illuminated by the Sun independently the satellite orienta-
tion; Magnetometer: Responsible for measuring the Earth magnetic field. There

Test Case/Step Minimization for Visual Programming Language Models 169

Telemetry s
EPM
= |
:SPM | ,/Actuators
FDIR
VC

Fig. 13. AOCS block diagram

are 2 magnetometers in the satellite; Gyroscope: Responsible for measuring the
satellite angular rate. There are 2 gyroscopes in the satellite; Star Tracker: Sensor
responsible for the attitude and angular rate determination with high accuracy.
This sensor is used only in the EPM mode and there are two of them; Reaction
Wheels: Actuator responsible for the attitude maneuver execution. There are
two reaction wheels for redundancy and both are used in the maneuver during
normal operation.

4.1 Operation Modes

Sun Pointing Mode (SPM) is the initial mode of AOCS and also considered as
contingency mode. It is triggered by telecommands or FDIR (see Fig.13). I
is the simplest mode, where the satellite locks its solar panes and follows the
Sun direction. In the mode the mission does not operate and only telemetry
and attitude control remain active. The satellite control is done using only sun
sensors and magnetometers for attitude determination.

Earth Pointing Mode (EPM) is the mode where the satellite executes its
mission, being always triggered by telecommands (see Fig. 13). In this mode all
components are active and the satellite keep pointing to the center of Earth by
default, but other points can be configured through telecomand.

Velocity Control Mode (VCM) is the mode where the satellite operates when
it is in rotation and needs to stabilize (see Fig. 13). In the mode the stabilization
process is done in way that no component is damaged. This is a mode that can
only be used in the beginning of the mission, since once stabilized, it must keep
pointing accordingly to the mission requirements.

5 Experimental Assessment

In order to verify the feasibility of the PCDVT methodology, an experimental
evaluation was developed using partial translation of the AOCS model. In this
model we took into account the EPM and SPM operation modes, and the FDIR
for reaction wheels. Such model is composed by 33 blocks.

170 P.N. dos Santos Alarcon and V.A. de Santiago Junior

Two test suites were generated for the specification patterns previously
defined. The test suite generated via the Absence Pattern is called PCDVT-
A, and the one generated via the Response Chain pattern is called PCDVT-RC.
Results due to PCDVT were confronted against an ad hoc approach created by
a domain specialist [15]. Two comparisons were done: cost (amount of test steps)
and efficiency (model coverage).

A test case usually comprises several test steps'. In other words:

te={ts; | ieN\{0}} (1)

where tc = test case, and ts; = test step ¢. However, one test case, tci, might have
associated only 1 test step and, for instance, a second test case, tco, might be
composed of 50 test steps. Thus, comparing the cost of two test suites considering
the amount of test cases it is not adequate. Based on this, we defined the cost
perspective of our evaluation as the total amount of test steps. Moreover, if we
consider a uniform execution time for each test step (i.e. one test step takes «
time to be executed), the amount of test steps is directly proportional to the
test suite execution time.

In total, 34 LTL properties were generated via PCDVT using both patterns,
resulting in 34 test cases in the test suite for each pattern. After the minimization
activity, the test suite due to PCDVT-A was reduced to 1 test case while the test

Table 1. Test suite: PCDVT-A

Test case Test steps | MC/DC coverage
1 25 53%
Total/Mean | 25 53%

Table 2. Test suite: PCDVT-RC

Test case Test steps | MC/DC coverage
1 7 53%
4 25 52%
7 6 53%
11 6 53%
12 10 50%
20 6 57%
23 6 52%
30 7 53%
31 9 59%
Total/Mean | 88 53.4%

! A test step is an atomic activity to prepare or stimulate the System /Software Under
Test. The stimulus can contain the test input data and the expected results.

Test Case/Step Minimization for Visual Programming Language Models 171
suite due to PCDVT-RC was reduced to 10 test cases (see Tables1, 2 and 3%).

But, as our cost measure is the number of test steps, we presented in Fig. 14
the total test step count due to PCDVT-A, PCDVT-RC, and the specialist

Table 3. Manual test suite [15]

Test case Test steps | MC/DC coverage
1 3 45%
2 5 59%
3 8 51%
4 8 51%
5 8 52%
6 8 51%
7 8 53%
8 8 52%
9 8 53%
10 8 52%
11 8 53%
12 8 52%
13 8 53%
14 8 53%
15 8 52%
16 8 53%
17 8 52%
18 8 51%
19 8 52%
20 8 53%
21 8 52%
22 8 52%
23 8 53%
24 8 53%
25 8 52%
26 8 53%
27 8 51%
28 8 53%
29 8 53%
30 8 52%
Total/Mean | 232 52.23%

2 Note that, in these tables, the last row implies the total number of test steps and
the mean MC/DC coverage.

172 P.N. dos Santos Alarcon and V.A. de Santiago Junior

Total Step Count

250
232

200

Test Steps

M Manual EPCDVTRC EmPCDVTA

Fig. 14. Comparison of test step count for each test suite

ad doc strategy. As we note, PCDVT-A was the better solution of all with a
total of 25 test steps (a reduction of 89% compared to the ad hoc approach).
The PCDVT-RC was also better than the specialist approach (82 test steps;
reduction of 62%).

Regarding efficiency (model coverage), the three test suites presented similar
MC/DC coverage (see Fig. 15). Therefore, the results presented in this section

Average Efficiency

100,00%
90,00%
80,00%
70,00%
60,00%
52,23% 53,40% 53,00% = Manual

50,00% m PCDVT RC
mPCDVT A

MC/DC Coverage

40,00%
30,00%
20,00%
10,00%

0,00%

Fig. 15. Comparison of MC/DC coverage for each test suite

Test Case/Step Minimization for Visual Programming Language Models 173

show that both PCDVT instances, PCDVT-A and PCDVT-RC, presented a
smaller cost (amount of test steps) and basically the same efficiency (model
coverage) when compared with a specialist manual and ad-hoc approach [15].
Particularly, the instance PCDVT-A was better than PCDVT-RC in terms of
cost and was able to generate test cases for all properties obtained.

6 Related Work

For quality assurance applied to space systems engineering, several techniques
have been proposed in areas like test case generation [5,23] and formal verifi-
cation [24,25]. But no work deals with the use of model checking for test case
generation, and does not consider the MC/DC coverage criteria in the space
systems engineering context. Most of these MBT techniques are applied to func-
tional test. On the other hand, this work uses these techniques and MC/DC
coverage criteria which is associated to structural testing.

Ferrante [9] uses VPL to generate test cases, but Simulink is the only language
supported and in this method the models are enriched with test objectives. This
technique needs modifications in the models and does not consider coverage
criteria. Furthermore, each test case considers only one test objective making
the minimization impracticable.

Several approaches have been proposed where Model Checking helps test case
generation [9,26-31], but no work considers MC/DC criterion, and only Fraser
[26] deals with test case minimization.

Several algorithms and evaluation criteria have been proposed to guide the
minimization process, among which stand out Genetic Algorithms [32], code
coverage [10,26], requirement coverage [8,11], defects previously found [33], and
test execution time [11]. However most of the techniques were developed to be
applied in the context of regression testing by using information obtained after a
history of executions [11,33,34]. But, such information are not available during
the test case generation for the first time.

7 Conclusions

In this paper, we presented a new methodology, PCDVT, in order to provide
a minimized test suite (regarding the number of test steps) for VPL models.
PCDVT combines several concepts related to software testing (MC/DC, test
minimization) and formal verification (Model Checking, specification patterns)
to generate a set of test cases that in the end aims to derive a reduced set of
test steps, demanding less effort to be executed.

Results have shown that 2 instances of PCDVT, PCDVT-A and PCDVT-
RC, were better in terms of cost, and presented basically the same efficiency of
an specialist ad-hoc approach. Case study was a non-trivial system, the AOCS
of a Brazilian satellite. Particularly, the Absence Pattern with scope between Q
and R was the best of all three approaches. This demonstrates the potential of
this strategy for complex projects of space systems and other VPL applications.

174 P.N. dos Santos Alarcon and V.A. de Santiago Junior

The PCDVT methodology is partially automated. Hence, in the future we
aim to complete the full automation of the tool that supports the methodology.
We also intend to consider a more thorough model of the AOCS, with all sensors
and actuators. Considering this expanded model, we will compare PCDVT with
the specialist approach in terms of the cost and efficiency as defined in this
research. This comparison will be done via a rigorous evaluation, e.g. a controlled
experiment or quasiexperiment.

References

1. Pisacane, V.L.: Fundamentals of Space Systems. Oxford University Press, New
York (2005)

2. Wertz, J.R., Larson, W.J.: Space Mission Analysis and Design. Microcosm Press,
Hawthorne (1999). 976 p.

3. Mathur, A.P.: Foundations of Software Testing. Dorling Kindersley (India),
Pearson Education in South Asia, Delhi (2008). 689 p

4. Delamaro, M.E., Maldonado, J.C., Jino, M.: Introducdo ao teste de Software.
Elsevier, Brasil (2007)

5. Santiago Junior, V.A.: SOLIMVA: a methodology for generating model-based test
cases from natural language requirements and detecting incompleteness in soft-
ware specifications. Ph.D. thesis, Instituto Nacional de Pesquisas Espaciais (INPE)
(2011)

6. Balasubramanian, K., Gokhale, A., Karsai, G., Sztipanovits, J., Neema, S.: Devel-
oping applications using model-driven design environments. Computer 39(2), 33—
40 (2006)

7. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22(5), 297-312 (2012)

8. Campos, J., Abreu, R.: Encoding test requirements as constraints for test suite
minimization. In: 2013 Tenth International Conference on Information Technology:
New Generations (ITNG), pp. 317-322. IEEE (2013)

9. Ferrante, O., Ferrari, A., Marazza, M.: Model based generation of high coverage
test suites for embedded systems. In: 19th IEEE European Test Symposium, vol.
99(2), pp. 335-337 (2014)

10. Fraser, G., Wotawa, F.: Mutant minimization for model-checker based test-
case generation. In: Testing: Academic and Industrial Conference Practice and
Research Techniques-MUTATION, TAICPART-MUTATION 2007, pp. 161-168.
IEEE (2007)

11. Lin, C., Tang, K., Kapfhammer, G.M.: Test suite reduction methods that decrease
regression testing costs by identifying irreplaceable tests. Inf. Softw. Technol. 56,
1322-1344 (2014)

12. Holloway, C.M.: Towards understanding the do-178c/ed-12c assurance case. In: Tth
IET International Conference on System Safety, Incorporating the Cyber Security
Conference 2012, pp. 1-6 (2012)

13. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)

14. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Proceedings of the Second Workshop on Formal Meth-
ods in Software Practice, pp. 7-15. ACM (1998)

15. Alarcon, P.N.S.: Test specification and procedures for AOCS. Technical report, Sao
José dos Campos (2013)

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Test Case/Step Minimization for Visual Programming Language Models 175

Janik, 7., Zékové, K.: Online design of Matlab/Simulink and ScilLab/Xcos block
schemes. In: 2011 14th International Conference on Interactive Collaborative
Learning (ICL), pp. 241247 (2011)

Wiese, R., Eiglsperger, M., Kaufmann, M.: yFiles visualization and automatic lay-
out of graphs. In: Jinger, M., Mutzel, P. (eds.) Graph Drawing Software, pp.
173-191. Springer, Heidelberg (2004). doi:10.1007/978-3-642-18638-7_8
Hanselman, D.C., Littlefield, B.: Mastering Matlab 7. Pearson/Prentice Hall,
Upper Saddle River (2005)

Chilenski, J.J., Miller, S.P.: Applicability of modified condition/decision coverage
to software testing. Softw. Eng. J. 9(5), 193-200 (1994)

Bartocci, E., DeFrancisco, R., Smolka, S.A.: Towards a GPGPU-parallel SPIN
model checker. In: Proceedings of the 2014 International SPIN Symposium on
Model Checking of Software, pp. 87-96 (2014)

Yamada, C., Miller, D.M.: Using spin to check simulink stateflow models. Int. J.
Netw. Distrib. Comput. 4(1), 65-74 (2016)

Araujo, H.A.B.: AOCS design specification. Technical report, Sao José dos Campos
(2012)

Alarcon, P.N.S., Carvalho, F.G.M., Simoes, A.R.: Geragdo automatica de casos de
teste aplicada ao projeto de aocs de satélites artificiais. In: XX Congresso Brasileiro
de Automatica (CBA 2014), pp. 1652-1659 (2014)

Gan, X., Dubrovin, J., Heljanko, K.: A symbolic model checking approach to ver-
ifying satellite onboard software. Sci. Comput. Program. 82, 44-55 (2014)
Nardone, V., Santone, A., Tipaldi, M., Glielmo, L.: Probabilistic model checking
applied to autonomous spacecraft reconfiguration. In: 2016 IEEE Metrology for
Aerospace (MetroAeroSpace), pp. 556-560 (2016)

Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: a survey.
Softw. Test. Verif. Reliab. 19(3), 215-261 (2009)

Ferrante, O., Marazza, M., Ferrari, A.: Formal specs verifier ATG: a tool for model-
based generation of high coverage test suites. In: 19th IEEE European Test Sym-
posium, vol. 99(2), pp. 335-337 (2014)

Zeng, H., Miao, H., Liu, J.: Specification-based test generation and optimization
using model checking. In: Symposium on Theoretical Aspects of Software Engi-
neering (TASE 2007) (2007)

Enoiu, E.P., Causevic, A., Ostrand, T.J., Weyuker, E.J., Sundmark, D., Pettersson,
P.: Automated test generation using model checking: an industrial evaluation. Int.
J. Softw. Tools Technol. Transf. 18, 335-353 (2014)

Yeolekar, A., Unadkat, D., Agarwal, V., Kumar, S., Venkatesh, R.: Scaling model
checking for test generation using dynamic inference. In: 2013 IEEE Sixth Inter-
national Conference on Software Testing, Verification and Validation, pp. 184-191
(2013)

Gent, K., Hsiao, M.S.: Functional test generation at the RTL using swarm intel-
ligence and bounded model checking. In: 2013 22nd Asian Test Symposium, pp.
233-238 (2013)

Wang, S., Ali, S., Gotlieb, A.: Minimizing test suites in software product lines using
weight-based genetic algorithms. In: Proceedings of the 15th Annual Conference
on Genetic and Evolutionary Computation, pp. 1493-1500 (2013)

Dandan, G., Tiantian, W., Xiaohong, S., Peijun, M.: A test-suite reduction app-
roach to improving fault-localization effectiveness. Comput. Lang. Syst. Struct.
39(3), 95-108 (2013)

Singh, R., Santosh, M.: Test case minimization techniques: a review. Int. J. Eng.
Res. Technol. (IJERT) 2(12) (2013)

http://dx.doi.org/10.1007/978-3-642-18638-7_8

	Test Case/Step Minimization for Visual Programming Language Models and Its Application to Space Systems
	1 Introduction
	2 Visual Programing Languages: Required Features
	3 The PCDVT Methodology
	3.1 MC/DC Analysis and Derivation of LTL Properties
	3.2 Model Checking
	3.3 Minimization

	4 Brazilian Satellite AOCS Model
	4.1 Operation Modes

	5 Experimental Assessment
	6 Related Work
	7 Conclusions
	References

