
A Rigorous Evaluation of the Benefits
of Usability Improvements Within Model

Checking-Aided Software Inspections

Luciana Brasil Rebelo dos Santos1(B),
Valdivino Alexandre de Santiago Júnior2, and Albino Vieira Freitas1

1 Instituto Federal de Educação,
Ciência e Tecnologia de São Paulo (IFSP) - Campus Caraguatatuba,

Av. Bahia, 1739, Caraguatatuba, São Paulo, SP, Brazil
lurebelo@ifsp.edu.br, albinofreitas7@gmail.com
2 Instituto Nacional de Pesquisas Espaciais (INPE),

Av. dos Astronautas, 1758, São José dos Campos, São Paulo, SP, Brazil
valdivino.santiago@inpe.br

Abstract. In this paper, we show the results of a controlled experiment
aiming at assessing the benefits of usability improvements for software
inspection methodologies that rely on Model Checking. This work has
been carried out in the context of the SOLIMVA 3.0 methodology which
uses Model Checking to help in the inspection of software designs. A tool,
XMITS, has been developed to support SOLIMVA 3.0. Thus, we com-
pared the benefits in terms of cost mainly related to the Modeling activity
of SOLIMVA, by using the new (3.0) and the previous (2.0) versions of
XMITS. We considered 20 sets of UML behavioral diagrams from two
different space application systems and the ATM system. Results backed
by statistical analysis show that XMITS 3.0 was better than XMITS 2.0,
helping to decrease the total time spent in the Modeling phase. This fact
confirms that true usability improvements in software products can have
a significant impact on processes such as inspection.

1 Introduction

The scientific community has increased efforts to carry out more rigorous assess-
ments, such as experimental studies and quasi-experiments. One of the main
reasons is that ‘there is an increasing understanding in the software engineering
community that empirical studies are needed to develop or improve processes,
methods, and tools for software development and maintenance’ [1]. Various sur-
veys with gathered data of an assorted number of papers addressing controlled
experiment show the relevance of software engineering experiments to industrial
practice and scientific maturity of software engineering research [1–3].

Inspections are used to identify defects in software artifacts. Design docu-
ments can be inspected to verify whether software requirements were correctly
captured. In this way, inspection methods help to improve software quality, espe-
cially when used early in software development. Inspections of software design
c© Springer International Publishing AG 2017
O. Gervasi et al. (Eds.): ICCSA 2017, Part V, LNCS 10408, pp. 591–606, 2017.
DOI: 10.1007/978-3-319-62404-4 44



592 L.B.R. dos Santos et al.

can be especially crucial since design defects, such as problems of correctness
and completeness with respect to the requirements or internal consistency, can
directly affect the quality and effort required for the software development [4].
Nevertheless, the number of companies where software inspection is part of the
culture and organizational process is still small compared to the benefits of its
use. Therefore, the development of techniques that are applicable in the scenarios
normally found in software companies can make the use of inspection effective.

Model Checking [5–7] is the most popular Formal Verification method which
has been receiving much attention from the academic community due to its
mathematical foundations. It has been adopted in the industry, as well. Model
Checking is a formal automatic verification technique that, given a finite-state
model of a system (also known as a Transition System (TS)) and a formal prop-
erty, systematically verifies whether this property is satisfied by that model [5].
However, despite its benefits, in general, practitioners still avoid using Model
Checking in their projects due to aspects such as high learning curve and cost,
and the lack of commercially supported tools. Thus, efforts to build tools and
automate the process for the use of Formal Verification can facilitate and encour-
age a wide acceptance of Formal Methods in every day software development.
In this line, approaches that translate industry non-formal standards such as
UML (Unified Modeling Language) [8] to model checkers notation are a great
step towards this goal.

In this context, we had started a work to study, analyze and manipulate UML
diagrams to make feasible the use of Model Checking addressing inspection in the
software industry. For this, a methodology called SOLIMVA [9] was developed
aiming to translate several UML behavioral diagrams (sequence, activity, and
state machine) into Transition Systems (TSs) to support Model Checking-aided
software inspections. XMITS - XML Metadata Interchange to Transition System
[10] - is the tool that supports the conversion of the UML diagrams representation
to the input language of NuSMV [11] model checker. The diagrams are processed
and converted into Transition System (TS), the basis for Model Checking tool
entry. So, basically the main goal of XMITs is to transform the UML diagrams
into TSs.

We improved our tool with many important features. Some advancement
mainly related to usability aspects are addressed in this new version of XMITS
(3.0). The major differences relating to the older version (2.0) are: (i) Interface -
the user has an interface where he/she can choose the diagrams and generate the
TS or the NuSMV input language. In version 2.0, the user should build a Java
class to handle XMITS; (ii) Graph format file - the TS output was a txt file in
version 2.0. Now, one can also generate another output file, where it is possible
to visualize the Transition System in graph format, observing its states and
transitions, which substantially facilitates the system model validation process,
before applying Model Checking; and (iii) Installer - an installer was generated
to create an executable with any necessary dependencies.

In this paper, we present a controlled experiment, a rigorous evaluation, to
realize how usability improvements in software products impact on processes,



A Rigorous Evaluation of the Benefits of Usability Improvements 593

such as inspections based on Model Checking. This work has been carried out
in the context of the SOLIMVA 3.0 methodology which uses Model Checking to
help in the inspection of software designs. We compared the benefits in terms of
cost, i.e. the amount of time spent, mainly related to the Modeling activity of
SOLIMVA, by using the new (3.0) and the previous (2.0) versions of XMITS.
Twenty sets of UML behavioral diagrams from two different complex space appli-
cation systems and the Automated Teller Machine (ATM) case study have been
evaluated. Results backed by statistical analysis show that XMITS 3.0 was bet-
ter than XMITS 2.0, helping to decrease the total time spent in the Modeling
phase. We believe that true usability improvements in software products that
support Verification & Validation (V&V) processes, such as inspection, can have
a significant impact on such efforts.

This paper is structured as follows. Section 2 shows an overview of the
SOLIMVA 3.0 methodology and the new version, 3.0, of the XMITS tool. The
controlled experiment where we compared the two different versions of our tool
in the context of SOLIMVA is in Sect. 3. Section 4 presents related work. In
Sect. 5, we state the conclusions and future directions of this research.

2 SOLIMVA and XMITS: Versions 3.0

The verification process established in SOLIMVA 3.0 essentially consists of
sequence of scenarios to be checked. Scenarios focus on how the system behaves
to implement its functionalities. The analyst gathers requirements from software
specifications. In practice, such requirements are generally expressed within UML
use case models or simply in Natural Language. SOLIMVA 3.0 suggests using
specification patterns [12] to direct the formalization of properties in Compu-
tation Tree Logic [5]. The corresponding UML behavioral diagrams that repre-
sent the solution to meet the requirements (use cases or pure textual require-
ments) are taken into account. These UML diagrams (sequence, behavioral state
machine, and activity) are input to XMITS. XMITS performs a three-step trans-
lation. First, it translates individual types of diagrams (Sequence Diagram,
Activity Diagram, Behavioral State Machine Diagram) into a TS in a simple
intermediate format. After that, XMITS merges all single TSs into a unified TS.
Finally, the tool transforms this unified TS into the notation of the NuSMV
model checker. By running NuSMV with the unified TS and the properties in
CTL, it is possible to determine if there are defects with the design of the software
product. In case the TS does not satisfy a certain property, a counterexample
is presented by the model checker. The workflow of SOLIMVA 3.0 is shown in
Fig. 1.

XMITS interoperates with two other tools: Modelio 3.2 [13], that is the soft-
ware used to produce the UML artifacts. The design artifacts are then exported
into XMI (XML Metadata Interchange) format, and are inputted to XMITS;
and the NuSMV model checker. Currently, XMITS consists of six modules (one
more than its older version): the Reader, that transforms the XMI file to a
list of tags; the Converter, that transforms the list of tags to a single TS; the



594 L.B.R. dos Santos et al.

Fig. 1. Schematic view of SOLIMVA 3.0 using XMITS. Adapted from [5].

TUTS (The Unified Transition System), that transforms the single TSs to the
unified TS; the Bridge module, that transforms the unified TS into the model
checker notation; and the Global module, which is responsible for several impor-
tant functions, such as the creation of the TS data structure and the Printer,
where one can visualize the TS tree. A detailed description of these modules is
presented in [10]. And finally, the Interface module, which is explained in next
subsection.

2.1 The Interface Module

The Interface module was developed to support the tool graphical views.
This module uses the JavaFX API, which in turn, has the purpose to express
user interfaces, using a declarative programming style [14]. The module also
works with Graphviz, an open source free software for graph visualization [15].
Graphviz uses DOT [16], a language to draw hierarchical or layered directional
graphs. In this way, Graphviz can be used for visualization of Transition Systems.
The GraphViz Java API is adopted to call Graphviz through the Java applica-
tion. This module, composed of four classes: the Main class, the Controller class,
the Graphviz class, and the Dot class.

The Main class is responsible for starting the application using FXML, a
declarative language, XML-based, for constructing a JavaFX application user
interface; the Controller class manages the whole application manipulating the
interface and all the tool functionality; the Graphviz class is responsible for



A Rigorous Evaluation of the Benefits of Usability Improvements 595

generating the pdf file with the graphical image of the TS; and the class Dot
generates the dot file, used for the Graphiviz class to generate the image.

2.2 New Features of XMITS

As stated before, there are three main differences between the two versions,
which impacts directly the aspects of usability and cost.

Interface: In the previous version of XMITS the user was required to have
a knowledge in programming, as he/she needed to create a project in a Java
development environment. The user had to add the Java ARchive (JAR) of
XMITS and create a class to manually insert the directory of the UML files to
be processed. This process influences directly the usability of the application,
since it can cause several errors, such as inserting the wrong UML diagram
directory, syntax error in code, JAR import errors, among others.

Thus, an interface, which can be seen in Fig. 2, was developed to solve the
issues related above. Following, the description of the actions of each numbered
button is explained.

Fig. 2. XMITS graphical interface.



596 L.B.R. dos Santos et al.

1. (Add Diagrams): This button is used to insert the diagrams that will be
processed by the tool. The allowed input formats are XMI, XML and UML.
Clicking this button will open a window where diagrams can be selected.

2. (Display List): In this list, the diagrams that are selected will be displayed
and processed. The insertion of diagrams with identical names is not allowed.

3. (Delete Diagram): This button allows to delete a diagram from the list, pre-
venting it from being processed. To do this, it is necessary to select a diagram
using the mouse click and then press the 3 button or the delete key on the
keyboard.

4. (Sequence Diagram): This check box is used to indicate the existence of a
sequence diagram and allow the insertion of more diagrams. It was not men-
tioned, but according to the SOLIMVA methodology, the sequence diagram
is mandatory to generate the TS. The description of SOLIMVA is explained
in [9].

5. (Generate Files): This check box is used to enable the creation of output files.
Three types of files can be created: a text file with the Transition System rep-
resentation; a file in the pdf extension containing the image of the transition
system; and a file in smv format, that is the input for NuSMV.

6. (Execute): This button is used to perform the processing of the input dia-
grams and generate their respective output. If the check box (Generate Files)
is not checked, only the Transition System representation in txt format is
displayed on the screen.

Graphical Transition System: In the previous version of XMITS, when the
user had to validate the TS model generated, he/she should read the text file, and
then generate a graphical representation manually. This action is not a trivial
task, since it requires the user to have the knowledge of how the tool generates
the output and how it should be read to create the graphical view of the TS.
In addition, this task is very time consuming and can lead to several errors,
especially when TS has many states. Depending on the number of states, this
task can not be performed.

To solve this problem, an automatic generation of the graphical view of the
TS was developed. Graphviz is used to perform this action. This software receives
as input a file specified in Dot language and then generates an output containing
the graphic representation of the specified content, as shown in Fig. 3.

Fig. 3. TS specified in Dot language and its output after being processed by Graphviz.



A Rigorous Evaluation of the Benefits of Usability Improvements 597

Fig. 4. TS Output of XMITS in both formats.

The Interface module implements the conversion of the TS, which is repre-
sented as a linked list in the TUTS module, into a file specified in Dot language.
The class Dot has a method that traverses the linked list and construct the TS
structure specified in Dot language and save it to a String. This String is used
later to create the “.dot” file that will be processed by Graphviz. Figure 4 shows
the TS represented in both output files. Note that building the TS from the text
file is not so easy. It is necessary to follow a heuristic and understand how the
text file was constructed.

Installer: To use XMITS, an application JAR was generated and should be run
in the same directory as the folder where the Graphviz files and dependencies
are located. However, to facilitate the execution of the application and to avoid
possible errors caused by the use of Graphviz without installation, an installer
was generated through the software Inno Setup [17]. Such software allows to
create an executable with any necessary dependencies.

Thus, it was possible to join the Graphviz folder to the generated executable
file. Therefore, when the XMITS installation is run, a folder is created on the
machine’s local disk and the application’s JAR and Graphviz folder are extracted
to this directory. The user still has the option to save a shortcut of the application
executable to the desktop of the computer.



598 L.B.R. dos Santos et al.

3 Controlled Experiment

3.1 Definition

The goal of this controlled experiment is to assess the cost of the application of
SOLIMVA 3.0 which relies on Model Checking if we consider the new (3.0) and
the old (2.0) versions of XMITS. Roughly speaking, the SOLIMVA 3.0 method-
ology is split in 3 main activities: Properties formalization, Modeling, and Exe-
cution of Model Checking. The XMITS tool only relates to the Modeling activity.
Thus, we focused only on the Modeling phase which in turn is divided in three
sub-activities: Create UML Diagrams in Modelio (Dia), Generate the Unified TS
(Gen), and Validate the Unified TS (Val). But, creating UML diagrams is not
different in both versions of XMITS: it is basically a manual effort that must be
done by the designer. Hence, the cost is the time spent in the sub-activities Gen,
Val, and also the Total (Tot) time of the Modeling activity.

3.2 Context

The experiment was conducted by the authors and we have used the directions
proposed in [18] to accomplish this evaluation. Three applications, two space
software systems developed or under development at INPE (Instituto Nacional
de Pesquisas Espaciais) in Brazil and one classical example, were considered in
our experiment. SWPDC (Software for the Payload Data Handling Computer)
is a space application product created in a project whose main goal was to out-
source the development of software embedded in satellite payload. SWPDCpM
(Software for the Payload Data Handling Computer - protoMIRAX experiment)
is an considerably improvement of SWPDC and it has been adapted to protoMI-
RAX, a hard X-ray imaging telescope under development at INPE. A balloon
will launch this instrument and it will operate between 40 to 42 Km of altitude.
The third case study is the classical ATM (Automated Teller Machine) where
the ATM interacts with a customer via a specific interface and communicates
with the bank over an appropriate communication link.

For the three software products, several scenarios have been selected. Hence,
a sample is precisely a scenario identified in accordance with the guidelines of
SOLIMVA 3.0. In total, 20 scenarios (samples) have been analyzed. Each sce-
nario is defined as a set of UML behavioral diagrams, as presented in Table 1.
Moreover, in Table 1 the number means how many diagrams of a certain type
exist for a scenario.

3.3 Hypotheses

The following hypotheses were considered in this evaluation:

– Null Hypothesis H1.0: There is no difference in cost (time spent) related
to the Gen sub-activity between XMITS 3.0 and XMITS 2.0;

– Alternative Hypothesis H1.1: There is difference in cost (time spent)
related to the Gen sub-activity between XMITS 3.0 and XMITS 2.0;



A Rigorous Evaluation of the Benefits of Usability Improvements 599

Table 1. Samples for the controlled experiment: scenarios.

Scenario Sequence Activity State machine

SWPDC - 1 1 1 1

SWPDC - 2 2 0 0

SWPDC - 3 1 0 1

SWPDC - 4 1 1 1

SWPDC - 5 3 0 1

SWPDC - 6 1 1 1

SWPDC - 7 2 1 1

SWPDCpM - 1 1 0 0

SWPDCpM - 2 1 0 0

SWPDCpM - 3 1 0 0

SWPDCpM - 4 1 0 0

SWPDCpM - 5 1 0 0

SWPDCpM - 6 1 0 0

SWPDCpM - 7 1 0 0

SWPDCpM - 8 1 0 0

SWPDCpM - 9 1 0 0

SWPDCpM - 10 1 0 0

SWPDCpM - 11 1 0 0

SWPDCpM - 12 1 0 0

ATM - 1 1 1 1

– Null Hypothesis H2.0: There is no difference in cost (time spent) related
to the Val sub-activity between XMITS 3.0 and XMITS 2.0;

– Alternative Hypothesis H2.1: There is difference in cost (time spent)
related to the Val sub-activity between XMITS 3.0 and XMITS 2.0;

– Null Hypothesis H3.0: There is no difference in cost (time spent) related
to the Total (Tot) effort between XMITS 3.0 and XMITS 2.0;

– Alternative Hypothesis H3.1: There is difference in cost (time spent)
related to the Total (Tot) effort between XMITS 3.0 and XMITS 2.0.

3.4 Variables and Description of the Experiment

The independent variables are those that can be manipulated or controlled dur-
ing the process of trial and define the causes of the hypotheses [19]. In our case,
the independent variables are both versions of XMITS (2.0 and 3.0), the selected
scenarios/samples and its UML behavioral diagrams, the ability of the profes-
sional to model software designs via UML and to validate the unified TS. In
the dependent variables, we can observe the result of manipulation of the inde-
pendent ones. The time for generating the unified TS, the time for validating
the unified TS, and the total time for the Modeling phase are the dependent
variables. All time measures were done in minutes (min).



600 L.B.R. dos Santos et al.

SOLIMVA 3.0 was executed twice considering the 20 scenarios (see Table 1):
19 scenarios refer to the two space systems, and 1 is from the ATM case study.
In the first execution we considered the current version, 3.0, of XMITS, and, in
the second execution, the previous version of XMITS, 2.0. For each version of
XMITS, we measured and recorded the time spent for generating the unified TS
(Gen 2.0, Gen 3.0), validating the unified TS (Val 2.0, Val 3.0), and the Total (Tot
2.0, Tot 3.0) time of the Modeling activity. In the first execution, we recorded
the respective times due to XMITS 3.0 (Gen 3.0, Val 3.0, Tot 3.0), and, in the
second execution, due to XMITS 2.0 (Gen 2.0, Val 2.0, Tot 2.0).

The cost is simply considered as the amount of time spent for each of the
tasks: the lower the time, better the cost. XMITS 3.0 and 2.0 ran in a computer
with an Intel Core(TM) i3-4005U CPU @ 1.70 GHz Multicore processor, 4 GB
of RAM, running Microsoft Windows 10 Professional 64-bit operating system.

A statistical evaluation for verifying data normality has been done in five
steps: (i) by using the Shapiro-Wilk test [20] with a significance level α = 0.05;
(ii) by using the Anderson-Darling test [21] with a significance level α = 0.05;
(iii) checking the skewness of the frequency distribution; (iv) visually inspecting
the Q-Q plot; and (v) visually inspecting the histogram. This 5-step verification
gives a greater confidence in the conclusion on data normality compared to an
approach that is based only on a normality test (e.g. Shapiro-Wilk, Anderson-
Darling), considering the effects of polarization due to the length of the sam-
ples [22].

If we concluded that data are from a normally distributed population, then
the t-test would be applied with α = 0.05. Otherwise, we applied the nonpara-
metric Wilcoxon test (Signed Rank) [23] with α = 0.05, too. However, if the
samples presented ties, we applied a variation of the Wilcoxon test, the Asymp-
totic Wilcoxon (Signed Rank) [23], suitable to treat ties with significance level
α = 0.05.

3.5 Validity

The validity evaluation takes into account the risks that may compromise the
validity of the experiment.

Threats to internal validity compromise the confidence in stating that there
is a relationship between dependent and independent variables [22]. We can not
assert that the samples/scenarios were randomly selected because their choice
depends on the software products under evaluation. One factor that could com-
promise the internal validity of the experiment is the professional skills in the
validation of the unified TS, since the same TS must be validated twice, one for
each version of the tool (3.0 and 2.0). To minimize the effects of this factor, we
first performed the experiment with version 3.0 of XMITS, which favors version
2.0, as the professional already knows the TS at the time of its validation when
executing version 2.0.

One category of threat to external validity is the population threat. In this
threat, we wish to realize how significant is the sample set (scenarios set in our
case) of the population used in the study. In this sense, it is pertinent to examine



A Rigorous Evaluation of the Benefits of Usability Improvements 601

Table 2. Cost (time spent in min) due to each of the activities: results and mean value.

Scenario Gen 2.0 Gen 3.0 Val 2.0 Val 3.0 Tot 2.0 Tot 3.0

SWPDC - 1 5 0.5 7 4 34 26.5

SWPDC - 2 5 0.4 1 1 22 17.4

SWPDC - 3 4 0.4 4 8 21 21.4

SWPDC - 4 4 0.5 11 7 32 24.5

SWPDC - 5 5 0.5 11 3 47 34.5

SWPDC - 6 4 0.5 8 6 25 19.5

SWPDC - 7 4 0.6 10 8 42 36.6

SWPDCpM - 1 4 0.3 4 1 13 6.3

SWPDCpM - 2 3 0.3 3 1 13 8.3

SWPDCpM - 3 3 0.3 5 2 17 11.3

SWPDCpM - 4 3 0.3 4 1 11 5.3

SWPDCpM - 5 4 0.3 3 1 11 5.3

SWPDCpM - 6 3 0.3 3 1 10 5.3

SWPDCpM - 7 3 0.3 3 1 11 6.3

SWPDCpM - 8 3 0.3 5 3 18 13.3

SWPDCpM - 9 3 0.3 3 1 11 6.3

SWPDCpM - 10 3 0.3 2 1 10 6.3

SWPDCpM - 11 3 0.3 2 1 10 6.3

SWPDCpM - 12 3 0.3 2 0.5 9 4.8

ATM - 1 3 0.5 11 4 30 20.5

x̄ 3.6 0.375 5.1 2.775 19.85 14.3

the population used in the experiment. Even though the choice of samples were
not random as previously mentioned, altogether the set of UML behavioral dia-
grams that characterize all scenarios contains most of the important fragments,
components, states which define the UML diagrams. Thus, we believe that our
choice of the set of samples is considerably satisfactory.

3.6 Results

In this section, we present and discuss the results of our controlled experiment.
By using the 5-step approach to check data normality, we concluded that none of
the measured data come from a normal distribution. As a matter of record, the
greatest p-value due to Shapiro-Wilk test was from Val 2.0: 0.004077. And the
greatest one due to Anderson-Darling test was from Tot 2.0: 0.002769. We clearly
see that these values are below the significance level, α, and hence we reject the
null hypothesis that the population is normally distributed. We also checked the
skewness, Q-Q plot and histograms in accordance with our proposed approach.

Since there are ties, we applied the nonparametric test Asymptotic Wilcoxon
(Signed Rank) [23]. In Table 2, we show the time measures (in min) and the



602 L.B.R. dos Santos et al.

Table 3. Cost (time spent in min) due to each of the activities: Asymptotic Wilcoxon.

Hypothesis p-value

1: Gen 3.0 ↔ Gen 2.0 1.907e − 06

2: Val 3.0 ↔ Val 2.0 0.000679

3: Tot 3.0 ↔ Tot 2.0 3.815e − 06

mean value (x̄) regarding the six data sets. Thus, for scenario SWPDC - 1, the
designer took 5 min to generate the unified TS by using XMITS 2.0 (Gen 2.0)
while he/she took 4 min to validate the unified TS via XMITS 3.0 (Val 3.0).

Table 3 shows the p-values due to the Asymptotic Wilcoxon test and the
boxplots are in Fig. 5. Based on these results, we conclude that all three null
hypotheses (H1.0 to H3.0) were rejected because the p-values are below α. Sta-
tistically speaking, there is difference in cost if we apply SOLIMVA 3.0 via the
two different versions of the XMITS tool. In a pairwise comparison, i.e. Gen 2.0 ×
Gen 3.0, Val 2.0 × Val 3.0, Tot 2.0 × Tot 3.0, the mean values (x̄) of XMITS
3.0 are all smaller than the respectives mean values of XMITS 2.0. We then
conclude that applying SOLIMVA 3.0 with XMITS 3.0 is better than doing the
same with XMITS 2.0.

Gen 2.0 Gen 3.0 Val 2.0 Val 3.0 Tot 2.0 Tot 3.0

0
10

20
30

40

Cost

Ti
m

e 
(m

in
)

Fig. 5. Cost (time spent in min) due to each of the activities: boxplots.



A Rigorous Evaluation of the Benefits of Usability Improvements 603

4 Related Work

This section presents some of the research literature related to this paper (not
exhaustive), showing works that deal with software inspections using software
support. First, we show some approaches that deal with inspection-aided tools
related to software design. Then, works which encompass controlled experiments
applied to inspection techniques are addressed.

Taba and Ow [24] developed a web-based tool, ArSeC, to support their pro-
posed model. It is designed to detect and remove the defects in the first two
phases of software development. The model suggests designing and using a com-
prehensive database that contains potential defects and their causes stored. This
engine alerts the inspectors about the possible defects and shows the possible
causes. The work [25] presents AutoInspect, a tool for semi-automated inspec-
tion of design documents. The tool was developed in the context of Turkish
Aerospace Industries. The tool facilitates and increases the inspection efficiency
in the tasks that in their experience has shown to be tedious and effort intensive,
e.g., browsing through a long design Word document and checking formats, etc.
As outputs, a list of defects found during inspection, and a design verification
report (in PDF format) are created.

A tool-based approach that tries to identify potential document quality
defects is presented in [26]. This tool-based analysis relies on best practices
for software documentation. The tool checks software development documents
against implemented document quality rules. It covers the range from require-
ments across system, architecture and design, up to test specifications. Sinha et
al. [27] have developed an approach for automated and ‘edittime’ inspection of
use cases based on the construction and analysis of models of use cases. The mod-
els contain linguistic properties of the use case text along with the functional
properties of the system under discussion. The author of the use case enters
Natural Language text and issues found with the underlying model are listed by
the tool. Li and Liu [28] designed methods of deriving functional scenarios and
generating inspection tasks by applying consistency properties to each scenario.
They implemented these specific methods in a support tool. The inspector has to
derive functional scenarios from specification first. Then, the consistency prop-
erties need to be applied to each functional scenario to create inspection tasks,
which should be examined by the inspector to ensure the consistency.

The papers presented so far show tools that were developed to support partic-
ular techniques/methodologies, normally to deal with issues on specific contexts.
We did not find any available tool that could be adapted to our needs. We are
interested in a more broad way to perform requirements checking, which can
be applied in different contexts. Our approach allows that an informal language
(UML), still quite popular, can continue to be used for creating the design of
software systems. The complexity for the use of formal methods (Model Check-
ing, in this case) is almost completely hidden from the practitioner, and thus it
has a high potential to be applied in practice. SOLIMVA 3.0 can be applied to
any software product that uses UML as the modeling specification language.



604 L.B.R. dos Santos et al.

[29] compared two Inspection Technique, MIT 1 - Model Inspection Tech-
nique and UCE - Use Case Evaluation, for Usability Evaluation by means of a
controlled experiment that measured efficiency, effectiveness, perceived ease of
use, and perceived usefulness. The two techniques aim to support the identifica-
tion of usability defects through the evaluation of use cases specifications. The
results indicate that MIT 1 allows users to find more usability defects in less
time than UCE. However, UCE was considered easiest to use and more useful
than MIT 1. The work [30] proposed a metric based reading (MBR) technique
used for requirements inspections, whose main goal is to identify specific types
of defects in use cases. They performed a controlled experiment to ascertain if
the usage of MBR really helps in the detection of defects in comparison with a
simple Checklist technique. The experiment result revealed that MBR reviewers
were more effective at detecting defects than Checklist reviewers, but they were
not more efficient, because MBR reviewers took longer than Checklist reviewers
on average.

The last two works presented controlled experiments, each one comparing two
techniques, the first for usability defects in use cases and the second comparing
the reading technique to checklist technique, also related to use cases. We didn’t
find experiments dealing with Model Checking aiming inspection as our approach
does. Besides, SOLIMVA proposes to check requirements not only from use cases,
but also requirements expressed in natural language.

5 Conclusions

In this work we presented a controlled experiment aiming at assessing the ben-
efits of usability improvements for software inspection methodologies based on
Model Checking. For this, we compared the two versions (2.0 and 3.0) of XMITS,
the tool developed to support the SOLIMVA 3.0 methodology, which uses Model
Checking to help in the inspection of software designs. The results backed by
statistical analysis showed that the cost to perform the Modeling activity of
SOLIMVA using the new version of XMITS (3.0) was better than XMITS 2.0. We
considered 20 sets of UML behavioral diagrams from two different space applica-
tion systems and the ATM system to perform the experiment. This fact suggests
that usability improvements on software products are valuable and can produce
significant impact on process such as inspection, which is strongly dependent on
the human factor.

Future directions include advances on usability issues of XMITS, but regard-
ing to another activity of SOLIMVA, the Execution of Model Checking. Such
improvements include to inform the user the type of error that is occurring when
some inconsistency is found in the model when applying Model Checking. In the
current version, the encountered problem is not detailed. Another constraint is
related to the counterexample generated, when finding an inconsistency. The
model checker shows the state where the requirement (property) was not satis-
fied within the TS. However, it is necessary to automatically specify the UML
diagram where this inconsistency was found and, more than that, the exact



A Rigorous Evaluation of the Benefits of Usability Improvements 605

point in this diagram where the property was not satisfied. In addition, we will
perform another controlled experiment or quasi-experiment, considering these
improvements, addressing not only the cost but also the effectiveness relating
to the number of encountered defects, since effectiveness is a very important
question to be answered.

References

1. Sjøberg, D.I.K., Hannay, J.E., Hansen, O., ByKampenes, V., Karahasanovic, A.,
Liborg, N.-K., Rekdal, A.C.: A survey of controlled experiments in software engi-
neering. IEEE Trans. Softw. Eng. 31(9), 733–753 (2005)

2. Zannier, C., Melnik, G., Maurer, F.: On the success of empirical studies in the
international conference on software engineering. In: Proceedings of the 28th Inter-
national Conference on Software Engineering, pp. 341–350. ACM (2006)

3. Lemos, O.A.L., Ferrari, F.C., Eler, M.M., Maldonado, J.C., Masiero, P.C.: Evalua-
tion studies of software testing research in Brazil and in the world: a survey of two
premier software engineering conferences. J. Syst. Softw. 86(4), 951–969 (2013)

4. Travassos, G.H.: Forrest Shull, Jeffrey Carver, and Victor Basili. Reading tech-
niques for OO design inspections. Technical report (2002)

5. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

6. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Grumberg, O., Veith, H. (eds.) 25 Years
of Model Checking. LNCS, vol. 5000, pp. 196–215. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-69850-0 12

7. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems
in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming
1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982). doi:10.1007/
3-540-11494-7 22

8. The Object Management Group (OMG), Needham, MA, USA. OMG Unified Mod-
eling Language (OMG UML), Superstructure, V2.4.1 (2011)

9. dos Santos, L.B.R., de Santiago, Jr,. V.A., Vijaykumar, N.L.: Transformation of
UML behavioral diagrams to support software model checking. Electron. Proc.
Theor. Comput. Sci. 147, 133–142 (2014)

10. Eras, E.R., dos Santos, L.B.R., Santiago Júnior, V.A., Vijaykumar, N.L.: Towards
a wide acceptance of formal methods to the design of safety critical software: an
approach based on UML and model checking. In: Gervasi, O., Murgante, B., Misra,
S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.)
ICCSA 2015. LNCS, vol. 9158, pp. 612–627. Springer, Cham (2015). doi:10.1007/
978-3-319-21410-8 47

11. Fondazione Bruno Kessler. NuSMV home page (2015)
12. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for

finite-state verification. In: Proceedings of the International Conference on Software
Engineering, pp. 411–420. ACM, New York (1999)

13. Modeliosoft. Modelio open source community (2011)
14. Weaver, J.L., Gao, W., Chin, S., Iverson, D., Costa, A.G.M.: Plataforma Pro JavaFX

Desenvolvimento de RIA para Dispositivos Móveis e para Área de Trabalho por
Scripts com a Tecnologia Java, p. 619. Ciência Moderna LTDA, Rio de Janeiro (2010)

15. GRAPHVIZ. Graph visualization software (2017)

http://dx.doi.org/10.1007/978-3-540-69850-0_12
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/978-3-319-21410-8_47
http://dx.doi.org/10.1007/978-3-319-21410-8_47


606 L.B.R. dos Santos et al.

16. Gansner, E., Koutsofios, E., North, S.: Drawing graphs with dot: dot users manual
(2006)

17. JRSOFTWARE. Inno setup (2016)
18. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Exper-

imentation in Software Engineering: An Introduction (2000)
19. Campanha, D.N., Souza, S.R.S., Maldonado, J.C.: Mutation testing in procedural

and object-oriented paradigms: an evaluation of data structure programs. In: 2010
Brazilian Symposium on Software Engineering (SBES), pp. 90–99. IEEE (2010)

20. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete
samples). Biometrika 52(3–4), 591–611 (1965)

21. Stephens, M.A.: Tests Based on EDF Statistics. Marcel Dekker, New York (1986)
22. Balera, J.M., Santiago Júnior, V.A.: A controlled experiment for combinatorial

testing. In: Proceedings of the 1st Brazilian Symposium on Systematic and Auto-
mated Software Testing (SAST 2016), pp. 1–10. ACM (2016)

23. Kohl, M.: Introduction to Statistical Data Analysis with R. Bookboon.com, London
(2015)

24. Taba, N., Ow, S.: A new model for software inspection at the requirements analysis
and design phases of software development. Int. Arab J. Inf. Technol. (IAJIT)
13(6), 51–57 (2016)

25. Coskun, M.E., Ceylan, M.M., Yigitözu, K., Garousi, V.: A tool for automated
inspection of software design documents and its empirical evaluation in an aviation
industry setting. In: 2016 IEEE Ninth International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), pp. 287–294. IEEE (2016)

26. Dautovic, A., Plösch, R., Saft, M.: Automated quality defect detection in soft-
ware development documents. In: First International Workshop on Model-Driven
Software Migration (MDSM 2011), p. 29 (2011)

27. Sinha, A., Sutton, Jr., S.M., Paradkar, A.: Text2Test: automated inspection of
natural language use cases. In: 2010 Third International Conference on Software
Testing, Verification and Validation (ICST), pp. 155–164. IEEE (2010)

28. Li, M., Liu, S.: Tool support for rigorous formal specification inspection. In: 2014
IEEE 17th International Conference on Computational Science and Engineering
(CSE), pp. 729–734. IEEE (2014)

29. Valentim, N.M.C., Rabelo, J., Oran, A.C., Conte, T., Marczak, S.: A controlled
experiment with usability inspection techniques applied to use case specifications:
comparing the MIT 1 and the UCE techniques. In: 2015 ACM/IEEE 18th Inter-
national Conference on Model Driven Engineering Languages and Systems (MOD-
ELS), pp. 206–215. IEEE (2015)

30. Bernárdez, B., Genero, M., Durán, A., Toro, M.: A controlled experiment for eval-
uating a metric-based reading technique for requirements inspection. In: Proceed-
ings of the 10th International Symposium on Software Metrics, pp. 257–268. IEEE
(2004)


	A Rigorous Evaluation of the Benefits of Usability Improvements Within Model Checking-Aided Software Inspections
	1 Introduction
	2 SOLIMVA and XMITS: Versions 3.0
	2.1 The Interface Module
	2.2 New Features of XMITS

	3 Controlled Experiment
	3.1 Definition
	3.2 Context
	3.3 Hypotheses
	3.4 Variables and Description of the Experiment
	3.5 Validity
	3.6 Results

	4 Related Work
	5 Conclusions
	References




