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Abstract. A huge amount of historical information about the evolution of a
software project is available in software repositories, namely bug repositories,
source control repositories, archived communications, deployment logs, and
code repositories. By mining the evolutionary history of a software, we have
designed prediction models to assist software developers by predicting bug
attributes like priority, severity, assignee and fix time. We have evaluated the
uncertainty in the software in terms of entropy arises due to source code changes
done in files of the software to fix different issues. To support software man-
agers, we have designed prediction models to predict potential values of entropy
and different issues, namely bugs, improvements in existing features (IMPs) and
new features (NFs) over a long run. In this research work, we have developed
mathematical models to assist software managers and developers in bug triag-
ing, bug fixing and different software maintenance related tasks. Our work has
been validated on issue and code change data of several open source projects,
namely Eclipse, Open office, Mozilla and Apache.

1 Problem Statement and Its Importance

Advancement in internet and communication technologies has given impetus to the
development and usage of Open Source Software (OSS). Various open source software
repositories: source control repositories, bug repositories, archived communications,
deployment logs, and code repositories are available online and easily accessible.
These repositories help bug triager/developers in the bug resolving process and also in
the evolution of the software products. Software repositories are helpful in under-
standing the development of a software. Different predictions can be made about the
development of a software by using the information available in different software
repositories. It will be again helpful for planning different aspects of the software
evolution. The bug report history is stored in bug reporting and tracking systems
(BugZilla, Jira, Mantis, Trac, Gnats, Fossil and Bugtracker.net) separately. Reporting a
bug requires several parameters/attributes to be filled at the time of bug submission.
Some attributes such as summary, reporter and submission date are entered during the
initial submission and remain constant. Other attributes such as severity, priority,
resolution, status, assignee and milestone are entered later on in the bug fixing process
and can be updated.
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Bug priority describes about the urgency and importance of fixing a bug. It can be
assigned into 5 levels from 1 to 5. Priority level 1 is the highest and priority level 5 is
the lowest priority. Another important bug parameter is severity. Severity is one of the
ordinal attribute which is used to measure the effect of the bug on the software func-
tionality. Open source projects have used seven severity levels from 1 (Blocker) to 7
(Trivial). During bug fixing process, correct bug severity assignment and prioritization
help in bug assignment/bug fix scheduling and resource allocation. In case of failure of
this, resolution of important bugs will be delayed. A bug priority and severity pre-
diction system will be helpful for software developers to fix reopened or newly reported
bugs. In the available literature, several studies have been conducted for the proposal of
severity and priority prediction [1–10]. Prediction of bug priority and severity needs
historical data on which we can train the classifiers. But, unavailability of bug history
for a software, especially for a new one, is a problem. In this situation, building
prediction models based on cross project is the solution. No author has attempted to
work on cross project validation in case of bug severity and priority prediction. In this
paper, we have conducted a study to predict bug priority and severity by using bug
summary (a brief description about the bug) in the context of cross project [27, 29, 33].

The absence of Association Rule Mining based study for bug fix time and assignee
prediction motivated us to propose bug fix time and assignee prediction models
[28, 30, 31]. To assist bug triaging process, Apriori algorithm has been used

• to predict the bug fix time by using the bug severity, priority, summary terms and
assignee and

• to predict the assignee of a newly reported bug by using the bug severity, priority
and summary terms.

In Open Source Software (OSS), users located at different geographical locations
participate in the evolution of the software by reporting bugs and requesting for the
new features (NFs) and improvements in the existing features (IMPs). Software
developers do source code changes in files of the software to fix bugs or to meet the
demands of the users. These source code changes in a given time period can be used to
measure the potential complexity of code changes, i.e. possible code changes in the
software over a long run. OSS evolves as a result of these modifications. An empirical
understanding of different issues fixing and changes done in source code files can help
software mangers to plan different evolutionary aspects of a software. We proposed
mathematical models for prediction of potential bugs to be detected or fixed [32]. We
have also predicted new features and improvements in existing features that can be
incorporated in the software over a long run. The code change complexity has been
quantified by using entropy based measures. Then, the potential entropy has been
predicted by using Cobb-Douglas function [15]. We also extended Cobb-Douglas
based diffusion models to incorporate the impact of different issues on the complexity
of code changes. The rest of the paper is organized as follows: Sect. 2 gives the related
literature. Section 3 presents the research questions deigned for this study. Proposed
solution for the research questions and its novelty has been discussed in Sect. 4.
Present status and future research plan have been presented in Sect. 5. Finally, the
paper has been concluded in Sect. 6.
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2 Related Work

In this section, we have presented an overview of the related studies. In text based bug
severity assessment, studies have been conducted for bug severity prediction by using
textual description, i.e. summary of bug [1–3]. In a study [4], NB, MNB, SVM, k-NN,
J48, and RIPPER classifiers have been used for bug severity prediction and results
showed that for closed source projects NB worked with significant accuracy perfor-
mance and For open source projects, SVM worked well. A method has been proposed
for the bug triage and the bug severity prediction [5]. The authors used historical bug
reports in the bug repository for extracting topic(s) and then map the bug reports related
to each topic. The authors identified corresponding reports having similar attributes:
component, product, priority and severity, with the newly submitted bug report. After
that severity for the bug and the most appropriate developer are recommended. Ref-
erence [6] suggested a concept profile-based severity prediction technique which first
analyzed historical bug reports in the bug repositories and then build the concept
profiles from them. Recently, a new approach has been proposed in [7] which assess
the accuracy of bug severity prediction by taking into consideration the unreliable
nature of the data. Results of this approach show that current prediction approaches
perform well 77–86% agreement with human-assigned severity levels. Reference [22]
predicted the priority of a bug during the software testing process using Artificial
Neural Network (ANN) and Naïve Bayes classifier. References [9, 10] used a classi-
fication based approach to compare and evaluate the Support Vector Machine
(SVM) and Naïve Bayes classifiers to automate the prioritization of new bug report by
using the categorical and textual attributes of a bug report to train the model. They have
shown that SVM performance was better than the Naïve Bayes with textual attributes
and Naïve Bayes performance was better than SVM for categorical attributes. But this
analysis has been carried out on a limited data and techniques. Cross project bug
priority and severity prediction is a new and challenging task. No attempt has been
made in available literature to discover association rules for different attributes of bug.

In OSS, source code needs to be changed frequently in order to fix different issues
reported by different users. These changes done in the files of the software system makes
the source code complex and buggy. Such source code changes can be measured by
using various complexity measures proposed in the literature. In a study [23], com-
plexity is defined on the basis of expanded system resources when the system performs a
given task by interacting with a part of software. In case of a computer system, the
complexity is defined by using the storage needed and execution time required to do the
computation. If a programmer is considered as an interacting system then the difficulty
faced by him in performing different tasks is used to measure the complexity. The task
may be of coding, testing, debugging and modification. According to thermodynamics
second law the disorder of a closed system remains constant or it increases, but it never
reduces and entropy is defined as a measure of this disorder. The Entropy of an evolving
system always increases [24]. As a software is modified or evolved, the source code
changes and these changes lead to the uncertainty or randomness in the software which
results in complex and buggy code. Entropy of a software is defined as a measure of this
uncertainty or randomness or complexity of the source code. The first attempt to predict
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the bugs by using past defects has been made by [12]. The authors numerically evaluated
the process of code change by using entropy based measures. Reference [13] proposed a
model which predicts the code change complexity of a software over a long run by using
entropy based measures. The authors also determined the rate of code change com-
plexity diffusion. The historical code change data of various components of open source
Mozilla wed browser have been used to validate the proposed model. In literature, [25,
26] have used 2-dimensional Cobb-Douglas function for software reliability modeling
to consider the impact of efforts used in testing, testing time and testing coverage. The
effect of different types of issues: bugs, NFs and IMPs, have not been considered so far
for code change complexity prediction.

3 Research Questions

We have designed following research questions for our study

Research Question 1: Does training data from other projects provide acceptable
bug priority and severity prediction results?

Research Question 2: Does the combination of training data sets provide better
performance than single training data set?

Research Question 3: Can we discover association rules between different bug
attributes that will assist the developers in bug assignment
and prediction of bug fix time?

Research Question 4: Can we predict the potential entropy that can be diffused in
the software over a period of time?

Research Question 5: Can we predict the potential bugs to be detected/fixed and
NFs, IMPs that can be incorporated in the software over a
long run?

4 Proposed Solution and Its Novelty

Active users located at different geographical locations, participate in the software
evolution by reporting bugs and requesting for the new features (NFs) and improve-
ments in the existing features (IMPs) as shown in Fig. 1.

Fig. 1. Issues (bugs/NFs/IMPs) submission in open source software
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Prediction models for bug priority and severity assist software developers in bug
triaging. The prediction models need historical data on which we can train the clas-
sifiers. But, unavailability of bug history for a software, especially for a new one, is a
problem. In this situation, building prediction models based on cross project is the
solution [17–21]. In answer to Research Question 1, we proposed cross project bug
priority and severity prediction models as shown in Fig. 2. We trained the classifiers
with summary attribute of fixed bug reports (with known labels of priority and severity)
of projects other than the testing projects.

We have used text mining [1] to extract terms/features of bug summary attributes
based on information gain criteria to train the classifiers.

In answer to Research Question 2, we used all the combinations consisting of
maximum 3 datasets from projects other than the testing project. During making the
combination of training datasets, we have excluded project which is going to be tested.
The number of combinations consisting of less than or equal to N datasets for
M available datasets/projects can be computed as shown below in Eq. (1).

XN
j¼1

M!

j! M � jð Þ! ð1Þ

Example of generating training datasets for DB dataset has been shown in Fig. 3
[29].

Based on the accuracy and f-measure performance, the best training candidate for
every testing dataset has been identified.

The absence of association rule based bug fix time and assignee prediction models
motivated us to design Research Question 3. To assist bug triaging process, we used
Apriori algorithm

Fig. 2. Cross project bug priority and severity prediction
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• to predict the bug fix time by using bug severity, priority summary terms and
assignee (Fig. 4) [28] and

• to predict the assignee of a newly reported bug by using bug severity, priority and
summary terms (Fig. 5) [30, 31].

Fig. 3. Procedure of generating training datasets for DB dataset

Fig. 4. Association rule Mining based Bug fix time Prediction
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Frequent code changes are required to fix different issues reported by users, which
results in complex code as shown in Fig. 6.

The source code changes done in the software in order to fix different issues are
quantified using entropy based measures and termed as complexity of code changes.
The quantification of code changes is based upon the Shannon entropy [11] as given in
Eq. (2):

Fig. 5. Association rule Mining based Bug Assignee Prediction

Fig. 6. Frequent changes make source code complex
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EnðPÞ ¼ �
Xn
j¼1

ðPj� log2 PjÞ; Pj � 0
Xn
j¼1

Pj ¼ 1 ð2Þ

The probability of occurrence of a change is denoted by Pj, where Pj is defined as
follows:

Pj ¼ no: of times jth file changed in a period
total no: of changes done in all the files in that period

The concept of entropy to measure the complexity of code changes has been used
by [12] as given in Eq. (3).

EðPÞ ¼ 1
MaxEntropy for Distribution � EnðPÞ

¼ 1
log2 n

� EnðPÞ ¼ 1
log2 n

� �Pn
j¼1

pj � log2 pj
� �

¼ �Pn
j¼1

pj � logn pj
� �

where pj � 0; 8 j 2 1; 2; . . .; n and
Pn
j¼1

pj ¼ 1:

ð3Þ

As the entropy (E) depends on that how many files the system have (n), to prevent
the reduction in entropy due to the rarely modified files, to get the effective entropy, the
number of recently modified files has been used to divide [12, 13]. Fifty source code
changes done in a single file are easy to recall instead of fifty single changes done in
fifty different files.

There is a challenge before us to determine the future requests that can come from
different users and to determine the potential source code change that can be done in
the software over a long run. We need to link all the issue implementations with the
source code changes of the software.

In answer of the Research Question 4, we proposed models along the line of [13, 14]
for potential entropy prediction. We defined r as the rate at which entropy is diffused in
the source code due to NFs or IMPs and s is defined as the rate at which entropy is
diffused due to bug fixes.

We have made the following assumptions for the proposed models:

• Potential entropy remains same.
• The effect of NFs/IMPs on entropy is independent and may generate bugs.
• At t = 0, entropy is zero.

The entropy diffusion per unit time can be written as follows:

d E tð Þð Þ
dt

¼ r E � E tð Þ� �þ s
E tð Þ
E

E � E tð Þ� � ð4Þ
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where E is the potential entropy to be diffused in software and E(t) is the amount of
entropy at any given time t. We solved Eq. (4) with t = 0 and E(0) = 0, we get

EðtÞ ¼ E
1� e� rþ sð Þt

1þ s
r e

� rþ sð Þt

� �

or

EðtÞ ¼ E
1� e�at

1þ ce�at

� �
ð5Þ

Here a ¼ rþ s is the rate at which entropy is diffused due to source code changes
and c ¼ s

r is a constant.
We have extended the Cobb-Douglas type function [15] to consider the effect of

NFs and IMPs on the entropy. In Eq. (6), v denotes IMPs and w denotes NFs, and µ is
the degree of the impact on the entropy.

t � mlw1�l 0� l� 1ð Þ ð6Þ

We have proposed a model to measure the entropy depending on two factors: NFs
and IMPs, and for that we extended t of Eq. (5) by using Eq. (6) as

Eðv;wÞ ¼ E
1� e�aðvl�w1�lÞ

1þ ce�aðvl�w1�lÞ

" #
ð7Þ

We have extended the Cobb-Douglas type function [15] to incorporate the effect of
NFs, IMPs and bugs on the entropy of the software. In Eq. (8), v, w and x denote the
IMPs, NFs and bugs. a and c are the effect of NFs and IMPs on the entropy.

t � mlwkx1�ðlþ kÞ 0� l and k� 1ð Þ ð8Þ

We model to measure the effect of NFs, IMPs and bugs on the entropy diffusion
simultaneously by extending t of Eq. (5) by using Eq. (8) as

Eðv;w; xÞ ¼ E
1� e�aðvl�wk�x1�ðlþ kÞÞ

1þ ce�aðvl�wk�x1�ðlþ kÞÞ

" #
ð9Þ

In answer to Research Question 5, we considered ‘a’ as the potential issues: bug,
NFs, IMPs and NFs + IMPs, that are reported in the software over a period of time and
this follows nonhomogeneous poison process. In line of [14, 16], the following
equation has been written. We considered the logistic rate, i.e. c, for diffusion of
NFs/IMPs and bug detection in the software.
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d
dt
mðtÞ ¼ c

1þ c exp �ctð Þ a� m tð Þð Þ

where mðtÞ is the cumulative value of bug/NFs/IMPs/(NFs + IMPs) at any time t.
In above equation, we take mðtÞ ¼ 0 at t = 0, which results in Eq. (10)

mðtÞ ¼ a
1� exp �ctð Þ
1þ c exp �ctð Þ

� �
ð10Þ

Above model in Eq. (10) is used for prediction of potential bugs/NFs/IMPs/
(NFs + IMPs) at any given time.

Validation of the proposed prediction models has been done by using historical data
for several open source projects, namely Eclipse, Open office, Mozilla and Apache.
Results show that bug priority prediction accuracy in cross project context is better than
within project. Cross project priority prediction gives accuracy above 72% for SVM,
k-NN and NNET. For combined training datasets, we get accuracy which is above 73%
for all cases. Combined cross-project datasets result in improved f-measure perfor-
mance in 12 cases and improved accuracy performance in 11 cases out of 20 total cases
across all the 4 classifiers. SVM and NNET are better than k-NN and k-NN is better
than Naïve Bayes in terms of accuracy performance.

The results of cross project bug severity prediction show that Combined
cross-project datasets result in improved f-measure performance in 12 cases and
improved accuracy performance in 10 cases out of 21 total cases across all the 3
classifiers.

Non-parametric Mann-Whitney U test has shown a statistical significant difference
in f-measure performance of different training candidates for a particular testing dataset.
The two ensemble approaches: Vote and Bagging, have improved the f-measure per-
formance up to 5% and 10% respectively for the severity levels having less number of
bug reports in comparison of major severity level.

Association rule mining based prediction models for bug fix time and assignee
predictions reveal rules that will assist developers in bug triaging and fixing process.
Results show that proposed models for prediction of entropy and different issues
submitted by users give a high goodness of fit for various performance measures,
namely R2, Bias, Variation, MSE and RMSPE.

5 Current Status and Future Plans

All the proposed prediction models have been described in detail in published papers
[27–33]. In future, we will propose mathematical models to incorporate the unique
paradigms of OSS development, such as the multiple releases property and rate of issues
fixed by different types of contributors (innovators and imitators). In OSS, a number of
contributors are innovative in nature in the sense that they work without their own
implicit requirements, but for the evolution of the software product. We consider them
as innovators (core developers) and others may be imitators. Issues are fixed by the
innovators and a proportion of issues fixed, also causing to fix more issues by imitators.

Developing Prediction Models to Assist Software Developers 557



A proportion of issues which are fixed by the innovators gave an impetus to fix more
issues (imitators). We will also develop a mathematical model to embody the open
source software development. The model will be based on the rate at which new fea-
tures, feature improvements are added and the rate at which bugs are generated from
these additions. We will extend the proposed model by considering the complexity of
code changes (entropy) and discuss the release time planning of the software using the
proposed model by maximizing the user’s satisfaction level subject to fixing of issues up
to a desired level. The proposed decision model will assist management to appropriately
measure the software reliability, i.e. the issues left in the software and to determine the
optimal release-update time for open source software.

6 Conclusion

In the paper, prediction models have been proposed to assist software developers and
support managers in software maintenance and evolution. Bug reports of open source
projects have been analyzed to predict bug severity and priority in cross projects
context using text mining and machine learning techniques. We concluded that his-
torical data of other projects developed in open source environment is better priority
predictor and priority prediction in cross project context is working well. Results
indicate that cross-project bug severity prediction is a serious challenge, i.e. simply
using training data from projects in the same domain does not lead to accurate pre-
dictions. More research is needed to find out how to best describe the selection of a
training project automatically. The association rule mining can be used to mine the
association rules for bug fix time and assignee prediction. The proposed models to
predict the potential of different issues and the entropy fit the observed data.
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