Light-Weight Cloud-Based Virtual Computing
Infrastructure for Distributed Applications
and Hadoop Clusters

Vladimir Korkhov®™), Sergey Kobyshev, Alexander Degtyarev,
and Alexander Bogdanov

St. Petersburg State University,
7/9 Universitetskaya nab., St. Petersburg 199034, Russia
v.korkhov@spbu.ru

Abstract. Virtualized computing infrastructures are often used to cre-
ate clusters of resources tailored to solve tasks taking into account par-
ticular requirements of these tasks. An important objective is to eval-
uate such requirements and request optimal amount of resources which
becomes challenging for parallel tasks with intercommunication. In pre-
vious works we investigated how light-weight container-based virtualiza-
tion can be used for creating virtual clusters running MPI applications.
Such cluster is configured according to the requirements of particular
application and allocates only necessary amount of resources from the
physical infrastructure leaving space for co-allocated clusters running
without conflicts or resource races. In this paper we investigate similar
concepts for MapReduce applications based on Hadoop framework that
use Cloudply virtualization tool to create and manage light-weight vir-
tual Hadoop clusters on Amazon cloud resources. We investigate perfor-
mance of several Hadoop benchmarks in different deployment scenarios
and evaluate effects of resource sharing and limitation on application
performance.

Keywords: Virtualization - Containers + Virtual cluster

1 Introduction

In this paper we explore possibilities of container-based virtual infrastructures
to enable parallel and distributed applications. In previous research [1,2] we
examined how flexible configuration of light-weight virtualized computing and
networking resources can influence application performance and enable multi-
tenancy with minimal impact of simultaneously running MPI applications on
each other. Here we focus on deployment and execution of distributed data
processing frameworks in virtual container-based clusters, namely we investi-
gate the dependency of Hadoop benchmarking suite performance on resource
restrictions and existence of other simultaneously running applications.

© Springer International Publishing AG 2017
O. Gervasi et al. (Eds.): ICCSA 2017, Part V, LNCS 10408, pp. 399-411, 2017.
DOI: 10.1007/978-3-319-62404-4_29

400 V. Korkhov et al.

The driving ideas for this investigation are the following:

— Enable efficient use of available resources (physical machines or VMs) by par-
titioning them into independent virtual clusters that can be used in parallel

— Allocate just as much resources as needed to solve particular problem

— Limit resource use by simultaneously running clusters with light-weight vir-
tualization technologies

Platform and tools that are used for the experiments:

— Core infrastructure: Amazon cloud

— Fine-grained resource partitioning: Docker containers

— Container management: Docker Swarm

— Resource/application configuration and management: Cloudply

— Distributed computing and data-processing framework: Apache Hadoop

— Benchmarks: TestDFSIO, TeraSort benchmarking suite (TeraGen + TeraSort
+ TeraValidate), MRBench

Apache Hadoop [3] is a platform for building distributed computing and
data processing applications that rely upon massive distributed data storage
and distributed computing nodes. Hadoop file system uses data distribution and
replication across hosts and racks of hosts to ensure data protection against fail-
ures and enable parallel processing of different data blocks located near different
computing nodes thus minimizing overheads on sending data across the network.

There are several use-cases that might benefit from Hadoop virtualiza-
tion. First, some virtualization platforms provide extra capabilities for high-
availability and fault-tolerance which can be important to keep Hadoop master
daemons alive. For example, such functionality in VMWare is examined in [6].
Another approach to build fault-tolerant frameworks for distributed applications
with special attention to master-node fault-tolerance was presented and evalu-
ated in [11,12], however it is not directly applicable to Hadoop clusters. Second,
it might be required to deploy dynamic Hadoop clusters of particular size for
particular periods of time to solve a particular problem. Such model of using
resources on-demand is provided by cloud computing, and major cloud providers
offer services of dynamic Hadoop cluster deployment, namely Microsoft Azure
HDInsight or Amazon EMR. However, better control on resource utilization
and configuration of the cluster according to target application requires involve-
ment into such automatic services. Third, virtualization of the infrastructure
helps sharing resources with other Hadoop clusters or other applications which
helps better resource utilization. Even in the cloud model computing resources
are issued as virtual machines of predefined capabilities which might not be
fully utilized by a single application thus fine-grained resource utilization con-
trol with light-weight virtualization might be helpful. Some relevant theoretical
background and analysis of approaches to build cloud middleware using message
passing and scaling control along with scaling in distributed cloud application
architecture are given in [13,14].

Light-Weight Cloud-Based Virtual Computing Infrastructure 401

Moreover, virtualization brings new possibilities to integrate Hadoop work-
loads into a datacenter or cloud infrastructure:

— Elasticity allows to grow or shrink clusters as needed in order to release
resources to other applications or decrease costs;

— Multi-tenancy enables several virtual clusters share a single physical cluster
(or VM-based cluster) and keep high level of isolation;

— In some cases, security requires to distribute computational and data parts
of Hadoop (TaskTracker and DataNode) onto separate machines; however
keeping them close (e.g. within a single host or VM) increases data locality
and performance.

One of the main benefits of virtualized environment is the possibility to tune
capacity of every node precisely to suit application needs. In contrast, in a native
environment every node has fixed characteristics, and application must be tuned
to fit resources. However, some applications are designed to be deployed on small
nodes and are not able to use all capabilities of powerful hosts. Another case is
using a heterogeneous infrastructure, e.g. mixture of two- and four-core processor
hosts; in this case it is reasonable to virtualize four-core hosts as two two-core
hosts to make clusters more homogeneous.

The benefits of Hadoop virtualization will only make sense when it will not
hamper the performance much. Moreover, it is even more attractive in case it
helps to distribute available resources more efficiently between multiple applica-
tions or Hadoop clusters: virtualization can provide higher hardware/VM utiliza-
tion by consolidating multiple Hadoop clusters and other workload on the same
physical/VM cluster. In this paper we will evaluate several scenarios of running
Hadoop in light-weight container clusters over Amazon cloud virtual machines
with a set of benchmarks: MRBench, Test DFSIO, TeraGen, TeraSort, TeraVal-
idate. With these tests we will quantify performance and overheads of running
Hadoop in Docker container clusters, especially in case of multiple containers
running within a single VM. In our setup container clusters are managed by
Docker Swarm, and overall control over infrastructure and application deploy-
ment is done by a Cloudply tool. Cloudply takes blueprints of cluster setup and
application deployment and with help of Docker Swarm rolls out computing
nodes, configures the application, monitors the execution and workload.

The paper is structured as follows: Sect. 2 gives an overview of related work in
managing virtual Hadoop clusters; Sect. 3 describes our experimental setup and
tools; Sect. 4 shows experimental results for several scenarios of virtual Hadoop
cluster deployment; Sect. 5 discusses the results and Sect. 6 concludes the paper.

2 Related Work

There are a number of works that look into running distributed data process-
ing frameworks, in particular Hadoop, in virtual environments. Detailed analysis
of virtualized Hadoop performance with VMWare vSphere is presented in [5].
Apache presents discussion on strengths and weaknesses of virtual Hadoop in [4].

402 V. Korkhov et al.

Some container-based deployments of Hadoop and their analysis, in particular
based on Docker Swarm, appeared in publications recently [7—10]. Most of such
works, however, do not focus on evaluation of how we can efficiently utilize avail-
able resources by their simultaneous use with several distributed applications,
in particular Hadoop clusters, which is the focus of our research.

3 Deploying Hadoop in Virtual Container-Based DCI

In this section we describe the concept of our approach and architecture of our
testbed — virtual container-based distributed computing infrastructure (DCI).
For the basic infrastructure in our testbed we rely upon Amazon AWS: instances
of t2.]arge and t2.medium virtual machines. Every virtual machine runs one or
several Docker containers that are managed by Docker Swarm. Actual configu-
ration of nodes, application deployment and general setup and management is
performed by the Cloudply tool (see Fig.1).

Fig. 1. Schematic view of the application deployment visualized by Cloudply

Cloudply accepts YAML-based descriptions of target infrastructure and
applications: Network Blueprint to describe network structure, Security Blue-
print to manage application secrets, Application Blueprint to describe applica-
tion configuration:

Light-Weight Cloud-Based Virtual Computing Infrastructure 403

ApplicationBlueprint:
name: "DockerSwarmHadoop"
description: "DockerSwarmHadoop description"
applicationType: "GENERAL"
componentGroups:
- ComponentGroup:
name: "Namenode Swarm Component Group"
description: "hadoop namenode"
producedServices:
- Service:
name: "hdfsUI"
description: "HDFS web UI"
portRange:
- 50070
- Service:
name: "yarnUI"
description: "Yarn web UI"
portRange:
- 8088
- ComponentGroup:
name: "Slave Swarm Component Group"
description: "hadoop slave nodes"

Application Blueprint describes the high-level architecture of the application:
components that will be used, services and their ports. In our case we will use
only two component groups: one for Hadoop namenode and another one for
Hadoop slave nodes. For the namenode we specify two ports: one for HDFS web
interface (port 50070) and another one for YARN web interface (port 8088) Next
we need to describe Infrastructure of our application. It contains all information
about resources which application requires.

infrastructureBlueprints:
- InfrastructureBlueprint:
name: "DockerSwarmHadoop Infra"
description: "DockerSwarmHadoop infrastructure"
agentName: "docker-swarm-agent'
managedComponents:
- DockerSwarm:
name: "docker-swarm"
agentName: "AWS"
dockerAgentName: "docker-swarm-agent"
etcd: "chefOl.cloudply.org:2379"
size:
cpu: 2
memory: 4096
storage: 20

404 V. Korkhov et al.

agentSettings:
hosted_zone: "cloudply.org."
subnet: "subnet-eff245a6"
image: "ami-6d1c2007"
keypair: "kobyshev.sergey"
region: "us-east-1"
instance_type: "t2.medium"
provisionings:
- ChefProvisioning:
chefServer: "chefOl.cloudply.org"
domain: "cloudply.org"
ssh: "kobyshev - centos"
publicIpRanges:
- "0.0.0.0/0"
workerCount: 2
servicePorts:
docker: 12376
docker-swarm: 12377
dockerUI: 19000
docker-swarm-data-plane: 4789
docker-swarm-control-plane: 7946

In the infrastructure part we describe the Docker Swarm manage component.
The manage component prepares templates for some often used components such
as gateways, security applications, docker hosts and so on. In our case we need to
create Docker Swarm which we will use for deploying a Hadoop cluster; for this
we specify an agent which we will use to setup Docker Swarm. In our case we
will use Amazon agent (AWS) which contains secrets to work with Amazon APIL
Next, we specify dockerAgentName. After uploading YAML to Cloudply engine
an agent with this name will be created automatically and configured to work
with Docker. For Docker Swarm we also specified etcd which contains all infor-
mation about network using by Swarm. Then we specify hardware parameters
for virtual machines: in our example we use t2.medium instances. In agentSet-
tings part we specify parameters which are specific for Amazon cloud. Then
we specified Chef server. Applications use Chef for provision, configuring and
preparing nodes. We also can use Ansible provisioning system. Next, in Amazon
we can specify our private domain, to make all nodes accessible from the same
domain. Then we specified ssh key used in keypair. All ssh parameters should
be created before. Then we specify Ip ranges that can access Docker Swarm
resources. Than we specify the number of swarm workers. Finally, we describe
all ports used by Docker Swarm.

After describing Docker Swarm we need to describe Components groups. Most
fields the same. As before we describe two component groups, one for Hadoop
namenode, second for Hadoop slaves. The last part of application description is
deployment part, which integrates all pieces of application together. In our case
application is simple and it contains only one infrastructure blueprint.

Light-Weight Cloud-Based Virtual Computing Infrastructure 405

4 Evaluation of Virtual DCI

For evaluation of the deployment of Hadoop on virtual container-based cluster
over Amazon cloud resources we execute a number of standard Hadoop bench-
marks: TestDFSIO, TeraSort (including TeraGen and TeraValidate), MRBench.

TestDFSIO benchmark is a read and write storage throughput test for HDFS.
It performs stress-testing of the distributed filesystem, discovers performance
bottlenecks, in particular in networking as the write test does twice as much I/0
as the read test and generates substantial networking traffic. This benchmark
gives an overall estimation of how fast the cluster is in terms of I/0.

TeraSort is a benchmark that sorts a large amount of data as fast as possi-
ble. It combines testing the HDFS and MapReduce layers of a Hadoop cluster.
TeraSort sorts a large number of 100-byte records. It performs significant com-
putation, networking, and storage I/O workloads; it is often considered to be
representative of real Hadoop workloads. The benchmark is divided into three
parts: generation, sorting, and validation. TeraGen creates the data and is simi-
lar to TestDFSIO-write except that large computation is done during generation
of random data. The map tasks write directly to HDF'S, and there is no reduce
phase. TeraSort does the actual sorting and writes sorted data to HDFS in a
number of partitioned files. TeraValidate reads all the sorted data to verify that
it is in order.

MRBench runs small jobs a number of times and checks whether small jobs
are responsive. It is a complimentary benchmark to the large-scale TeraSort
benchmark suite to check whether small job runs are running efficiently on the
cluster. The test focuses on the MapReduce layer as its impact on the HDFS
layer is very limited.

The infrastructure and Hadoop clusters are deployed according to several
tests scenarios:

Scenariol: The cluster is composed a set of t2.large VMs (2 vCPUs, 8 GB
RAM); every VM runs a single Docker container that uses full VM resources
without constraints; Hadoop is deployed with 1 namenode and 2 worker nodes;

Scenario2: The cluster is composed a set of t2.large VMs; every VM runs a
single Docker container constrained to use only 4 GB RAM; Hadoop is deployed
with 1 namenode and 2 worker nodes;

Scenario3: The cluster is composed a set of t2.large VMs; every VM runs two
Docker containers, each constrained to use only 4 GB RAM; two Hadoop clusters

406 V. Korkhov et al.

are deployed in parallel on containers 1 namenode and 2 worker nodes; thus every
VM is shared between two simultaneously running Hadoop clusters.

Figures 2, 3, 4, 5 and 6 illustrate experimental results of running the bench-
marks in all 3 scenarios. The following section discusses the obtained results.

MRBench, TestDFSIO write u TestDFSIO read

TeraGen, TeraSort u TeraValidate

30

B MRBench I TeraGen
I TestDFSIO I TeraSort
write [TeraValid.
42 I TestDFSIO 25
read
E E
g R g 15
2% I 75
18 I I I I 0
Scenariol Scenario2 ~ Scenario3-1 Scenario3-2 Scenario1 1 2
Fig. 2. Benchmark execution time for different scenarios
200
2.5
150‘“\‘\\ H\ “‘ 0
= \ L (| a2
5 | ‘u | “ o ‘
4] L >1.5 i/
%100 ‘ ‘ H“H‘H ““‘\ H“M 5 'Rl B namenode]
@ | \ if I 5 | -
=] “ i i 21.0 slave 1
‘ ‘ ‘ \\ ‘ H slave2 M siave 2
5°\ i w i
\\‘ \‘ h H‘ (A \ \ 05/
H"‘HJ “\“ ‘\w
WAL L 0.0
05:00 10.00 15 00 20 00 05:00 10:00 15:00 20:00
Time Time
(mm:ss) (mm:ss)
2
00 3.0
|
| |
150 | | ,\2'5
9 ORI ® 20
s | A =
- \\“ T \ l 210 5 save2
50 || I Il S |
‘m“ “w‘w‘” \““““ | 05
I I .
il | [
o DU B AL 00
02,00 04:00 02:00 04:00 06:00
Time Time
(mm:ss) (mm:ss)
200 2.5
20
o
| Q15
] ode 1
’\ L el
I it A || || stave 1.2 1.0
(I (I | /| romenote2| 2
Rl MO L N
ur‘%{“]w il i I | |l savo ‘
i “ {1 (“‘I[‘1‘ B slave 22 05 M slave 22
L e
H IS L ull 00
05.00 10:00 05:00 10:00 15:00 20:00
Time Time
(mm:ss) (mm:ss)

Fig. 3. MRBench: scenario 1, scenario 2, scenario 3

Light-Weight Cloud-Based Virtual Computing Infrastructure 407

25
200
2.0
150 o
= o
2 015
Q T
& 100 P I
=] o1 | O I siave 1
B2 | = | slave2
0 0.5
00:10 00:20 00:30 00:40 . 00:10 00:20 00:30 00:40
Time Time
(mm:ss) (mm:ss)
200
3.0
150 25
— o
= 020
[} g
2100 W namenode| £ 15 W namencce)
3 save1 | O | siave 1
save2 | = 1.0 M siave 2
50
0.5
0.0
00:10 00:20 00:30 00:40 00:10 00:20 00:30 00:40
Time Time
(mm:ss) (mm:ss)
200 25
2.0
150 .
— o
8 Q15
° (] B namenode 1
g 100 maers | 5 i
& siave 1.2 GE) 1.0 W siave 1.2
= M namenode2 = B namenode 2
50 B siave 21 o save 21
W siave 22 0.5 W sive22
O— — 00
00:15 00:30 00:45 01:00 00:15 00:30 00:45 01:00
Time Time
(mm:ss) (mm:ss)

Fig. 4. Terasort: scenarios 1, 2, and 3.

5 Discussion

The goal of the experimental evaluation was to check the efficiency of using
resources in distributed virtual Hadoop cluster. We compared several scenarios
of infrastructure and application deployment along with running a number of
standard benchmarks. Scenarios are explained in the previous section (Scenar-
ios 3-1 and 3-2 in figures mean results for each of Hadoop clusters running in
parallel).

Figure 2 shows the runtime of different benchmarks executed in different sce-
narios. We can see that MRBench performance does not depend on the scenario
— indeed, it focuses on MapReduce without much use of HDFS, thus it relies
mostly on CPU. In our setup every VM has two vCPUs, thus even in scenario
3 each container gets its own CPU. In turn, we see that the performance if
TestDFSIO significantly depends on the scenario: in Scenario 3 both read and
write tests perform significantly slower than in Scenarios 1 and 2 — though not

408

V. Korkhov et al.

W namenode|
slave 1
1 slave 2

00:15 00:30 00:45 01:00
Time
(mm:ss)
M namenode)|
slave 1
| slave 2
00:30 01:00 01:30
Time
(mm:ss)
B namenode 1
M siave 1.1
 siave 1.2
M namenode 2|
W slave 2.1
W siave22
00:30 01:00 01:30
Time
(mm:ss)

Memory (GB)
o -4 s NN
o o v o o

o
=)

Memory (GB)
o A SN N W
o o o o o o

o
=)

Memory (GB)
= = N g
5] o o o

o
o

o
o

M namenode|
I slave 1
M slave 2

00:15 00:30
Time

(mm:ss)

00:45 01:00

W namenode|
I slave 1
| slave 2

00:30 01:00 01:30
Time

(mm:ss)

B namenode 1
1 slave 1.1

W slave 12

W namenode 2

W slave 2.1

W siave 22

00:30 01:00
Time

(mm:ss)

01:30

Fig. 5. TestDFSIO read: scenarios 1, 2, and 3.

twice as slow but only about 1.5 times slower, which supports the statement
about efficiency of using parallel clusters. TeraSort benchmark shows only a
slight decrease of performance in Scenario 3. Again, this is a good evidence that
using parallel virtual clusters on a single set of resources (physical hardware or
VMs) can increase efficiency of using resources and decrease costs caused by
using paid cloud resources for processing workloads. In this case we managed to
process twice as much as the original TeraSort workload increasing the overall
processing time just for about 15%.

Light-Weight Cloud-Based Virtual Computing Infrastructure

409

25
150
- g20
g]
° 215
£100 W namenode| £ W namenode|
3 I siave 1 310 slave 1
W slave 2 = W slave 2
50
0.5
0.0
00:15 00:30 00:45 01:00 01:15 00:15 00:30 00:45 01:00 01:15
Time Time
(mm:ss) (mm:ss)
200
3.0
150 29
- m
9 ©20
Q =
100 W oreross| £ 15 i
=] W slave 1 o W siave 1
W slave 2 = 1.0 W slave 2
50
05
0 0.0
00:15 00:30 00:45 00:15 00:30 00:45
Time Time
(mmss) (mm:ss)
200 25
2.0
150 =
-)
= Q15
° W ramenode 1 B namenode 1
2100 el I
@ Msae12 | £10 W siave 1.2
= W namencde2| = W namenode 2
50 M slave 2.1 M slave 2.1
M slave 22 0.5 M slave 2.2
0— = = — 0.0
00:30 01:00 00:30 01:00
Time Time
(mm:ss) (mm:ss)

Fig. 6. Test DFSIO write: scenarios 1, 2, and 3.

6 Conclusions and Future Work

In this paper we presented Cloudply — an environment for creating light-weight
virtual infrastructures on top of physical or cloud resources. With help of this
tool we deployed Hadoop clusters in containers over Amazon VMs and performed
experiments to check efficiency of using resources by particular Hadoop work-
loads. For the workloads we used well-known benchmarks: MRBench, TestDF-
SIO, TeraSort.

The goal of our experiments was to demonstrate that we can increase effi-
ciency of using distributed resources — even in case of utilizing cloud resources —
by simultaneous execution of light-weight virtual clusters. As long as individual
requirements of applications are taken into account, we can increase the number
of applications occupying a single hardware node or VM by splitting it with
help of light-weight virtualization tools. These tools help to control fair resource
distribution between parallel applications within a VM (Hadoop clusters in our
case) and ensure no significant performance breakdowns for the applications.

410 V. Korkhov et al.

We have demonstrated that for some benchmarks (e.g. MRBench) execution
in parallel Hadoop clusters have not caused any performance decrease for each
cluster. Other benchmarks (e.g. TeraSort, TestDFSIO) have shown slight or
significant slowdown of each cluster in the scenario with parallel Hadoop clusters,
however the amount of overall processed workload divided by the total wallclock
time taken for processing showed good efficiency of this approach.

In future we plan to investigate the influence of infrastructure parameters
(CPU share, memory, network bandwidth and latency) for the test Hadoop
workloads to be able to automatically configure virtual light-weight clusters
on top of available hardware of cloud resources according to particular appli-
cation requirements. Potential possibility of using single cloud-based VM for
several applications running in parallel without hampering each other can help
to increase efficiency of using cloud resources and decrease overall costs. We also
plan to look into porting new applications onto the infrastructure, in particular
tools for numerical modeling of dangerous convective phenomena [15,16] and
distributed visualization and rendering [17].

Acknowledgments. The research was supported by Russian Foundation for Basic
Research (projects N 16-07-01111, 16-07-00886, 16-07-01113).

References

1. Korkhov, V., Kobyshev, S., Krosheninnikov, A.: Flexible configuration of
application-centric virtualized computing infrastructure. In: Gervasi, O.,
Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar,
D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9158, pp. 342-353. Springer,
Cham (2015). doi:10.1007/978-3-319-21410-8_27

2. Korkhov, V., Kobyshev, S., Krosheninnikov, A., Degtyarev, A., Bogdanov, A.: Dis-
tributed computing infrastructure based on dynamic container clusters. In: Gervasi,
O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan,
B.O., Stankova, E., Wang, S. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 263-275.
Springer, Cham (2016). doi:10.1007/978-3-319-42108-7_20

3. Apache Hadoop Project. http://hadoop.apache.org/

Apache Wiki: Virtual Hadoop. https://wiki.apache.org/hadoop/Virtual

5. Buell, J.: Virtualized Hadoop Performance with VMware vSphere 5.1. Performance
Study. http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/
whitepaper/vmware-virtualizing-apache-hadoop-white-paper.pdf

6. Buell, J.: Protecting Hadoop with VMware vSphere 5 Fault Tolerance. VMware
Inc. (2012). http://www.vmware.com/resources/techresources/10301

7. Zhang, R., Li, M., Hildebrand, D.: Finding the big data sweet spot: towards auto-
matically recommending configurations for Hadoop clusters on Docker containers.
In: 2015 IEEE International Conference on Cloud Engineering, Tempe, AZ, pp.
365-368 (2015)

8. Rey, J., Cogorno, M., Nesmachnow, S., Steffenel, L.A.: Efficient prototyping of
fault tolerant map-reduce applications with Docker-Hadoop. In: 2015 IEEE Inter-
national Conference on Cloud Engineering, Tempe, AZ, pp. 369-376 (2015)

=

http://dx.doi.org/10.1007/978-3-319-21410-8_27
http://dx.doi.org/10.1007/978-3-319-42108-7_20
http://hadoop.apache.org/
https://wiki.apache.org/hadoop/Virtual
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/vmware-virtualizing-apache-hadoop-white-paper.pdf
http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/vmware-virtualizing-apache-hadoop-white-paper.pdf
http://www.vmware.com/resources/techresources/10301

10.

11.

12.

13.

14.

15.

16.

17.

Light-Weight Cloud-Based Virtual Computing Infrastructure 411

Qiao, Y., Wang, X., Fang, G., Lee, B.: Doopnet: an emulator for network per-
formance analysis of Hadoop clusters using Docker and Mininet. In: 2016 IEEE
Symposium on Computers and Communication (ISCC), Messina 2016, pp. 784—
790 (2016)

Ivanov, T., Zicari, R., Izberovic, S., Tolle, K.: Performance evaluation of virtualized
hadoop clusters. Technical report No. 2014-1, Frankfurt Big Data Lab oratory.
https://arxiv.org/ftp/arxiv/papers/1411/1411.3811.pdf

Gankevich, I.; Tipikin, Y., Korkhov, V., Gaiduchok, V., Degtyarev, A., Bogdanov,
A.: Factory: master node high-availability for big data applications and beyond.
In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Taniar, D.,
Apduhan, B.O., Stankova, E., Wang, S. (eds.) ICCSA 2016. LNCS, vol. 9787, pp.
379-389. Springer, Cham (2016). doi:10.1007/978-3-319-42108-7_29

Gankevich, 1., Tipikin, Y., Korkhov, V., Gaiduchok, V.: Factory: non-stop batch
jobs without checkpointing. In: 2016 International Conference on High Performance
Computing and Simulation, HPCS 2016, Art. no. 7568441, pp. 979-984 (2016)
Takushkin, O.: Cloud middleware combining the functionalities of message passing
and scaling control. In: EPJ Web of Conferences, vol. 108, Art. no. 02029 (2016).
doi:10.1051 /epjconf/201610802029

Takushkin, O.: Intellectual scaling in a distributed cloud application architecture:
a message classification algorithm, In: Proceedings of International Conference on
Stability and Control Processes in Memory of V.I. Zubov, SCP 2015, art. no.
7342245, pp. 634-637 (2015). doi:10.1109/SCP.2015.7342245

Raba, N.O., Stankova, E.N.: On the problem of numerical modeling of dangerous
convective phenomena: possibilities of real-time forecast with the help of multi-core
processors. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O.
(eds.) ICCSA 2011. LNCS, vol. 6786, pp. 633-642. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-21934-4_51

Raba, N., Stankova, E., Ampilova, N.: On investigation of parallelization effective-
ness with the help of multi-core processors. In: Proceedings of 10th International
Conference on Computational Science (ICCS) 2010. Procedia Computer Science,
vol. 1(1), pp. 27632768 (2010). doi:10.1016/j.procs.2010.04.310

Bogdanov, A., Ivashchenko, A., Belezeko, A., Korkhov, V., Kulabukhova, N.,
Khmel, D., Suslova, S., Milova, E., Smirnov, K.: Building a virtual cluster
for 3D graphics applications. In: Gervasi, O., Murgante, B., Misra, S., Rocha,
AM.A.C., Torre, C., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S. (eds.)
ICCSA 2016. LNCS, vol. 9787, pp. 276—291. Springer, Cham (2016). do0i:10.1007/
978-3-319-42108-7_21

https://arxiv.org/ftp/arxiv/papers/1411/1411.3811.pdf
http://dx.doi.org/10.1007/978-3-319-42108-7_29
http://dx.doi.org/10.1051/epjconf/201610802029
http://dx.doi.org/10.1109/SCP.2015.7342245
http://dx.doi.org/10.1007/978-3-642-21934-4_51
http://dx.doi.org/10.1016/j.procs.2010.04.310
http://dx.doi.org/10.1007/978-3-319-42108-7_21
http://dx.doi.org/10.1007/978-3-319-42108-7_21

	Light-Weight Cloud-Based Virtual Computing Infrastructure for Distributed Applications and Hadoop Clusters
	1 Introduction
	2 Related Work
	3 Deploying Hadoop in Virtual Container-Based DCI
	4 Evaluation of Virtual DCI
	5 Discussion
	6 Conclusions and Future Work
	References

