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Abstract. In this paper, we propose coastal water quality mapping process using
the combination of in-situ measurements and remote sensing data. Water maps
is processed by an hybridization of fuzzy model and genetic algorithm which
exploits remotely sensed multispectral reflectances to estimate coastal water
quality. The relation between the water parameters and the subsurface reflectances
is modeled by a set of fuzzy rules extracted automatically from the data through
two steps procedure. First, fuzzy rules are generated by unsupervised fuzzy clus‐
tering of the input data. In the second step, genetic algorithm is applied to optimize
the rules. Our contribution has focused on the use of several water parameter maps
to construct a graphical tool named Pollution Signature Draw (PSD) in order to
characterize the water quality. Water characterization is then evaluated by
analyzing several types of PSDs related to typical sites selecting the most repre‐
sentatives’ ones. After, the selected PSDs are introduced in a classifier system to
generate a pollution map (PM) associated the studied area. The proposed approach
was tested on Algiers bay and has highlighted four pollution levels corresponding
to High Pollution (HP), Medium Pollution (MP), Low Pollution (LP) and Clear
Water (CW).

Keywords: Remote sensing data · Fuzzy clustering · Genetic optimization ·
Pollution signature · Coastal water classification

1 Introduction

Under the pressure of the human and industrial activities, the Algerian coast had under‐
gone profound environmental changes affecting the quality of its water. The current
environment’s ministry methods for establishing water pollution are analysis and meas‐
urements done in laboratories. These techniques are very accurate, however they remain
insufficient and very expensive for assessing and monitoring water quality on Algerian
coast that extends on 1200 km [1]. Actually, remote sensing can overcome this constraint
by providing an alternative for water quality monitoring over a range of temporal and
spatial scales. Imagery from recent satellites with improved spectral and spatial resolu‐
tion and the integration of the Geographic Information System (GIS) technologies offer
a valuable tool for developing management plans for water pollution and thus allowing
quicker and more effective actions to be taken. In this work, we are interested to this
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type of data to, first, map water quality indices. Then construct Pollution Signature Draw
PSD in order to characterize the quality of this water. Finally, we propose a new water
quality classification to highlight most polluted sites of Algiers bay.

Remote sensing of water quality monitoring is evaluated by several substances which
affect its optical properties. Conventionally, three main components are used to estimate
marine water quality in coastal areas. These components are: Suspended Particulate
Matters “SPM”, chlorophylls “Chl” and dissolved organic matter “DOM” [2]. To these
components, we are also interested to water Turbidity (Turb) and its transparency meas‐
ured by Secchi Disk Depth (SDD).

Various approaches have been developed to estimate coastal water quality parame‐
ters from remote sensing data. Due to the simultaneous presence of the three main water
components, the relation between water components and remotely subsurface reflec‐
tances is complicate and is considered as no-linear. So, the first developed algorithms
were empirical and semi-analytical models [3, 4]. With the increase of spectral infor‐
mation and the complexity to solve the inverse model, new estimation algorithms
inspired from natural phenomena have emerged. Neural networks were successfully
used to implement the inverse model and to properly address the non-linearity problem
[5]. Besides neural networks, fuzzy systems have proved to be particularly effective in
identifying non-linear models too [6]. The most popular approach to fuzzy modeling is
based on the identification of fuzzy rules, which describe in linguistic terms the water
parameters concentration/marine subsurface reflectance relationship. Furthermore, an
optimization process is usually added to tune these fuzzy rules so that the fuzzy method
implements the desired inverse model. Using this approach, a mapping process of coastal
water classification is proposed in order to estimate the boundaries of coastal zones
according to different water types. To attend this goal, we have followed the next steps
(see Fig. 1):

• Water quality estimation maps: water quality maps are estimated using fuzzy
systems. It consists of identifying fuzzy rules [7] which describe the relationship
between water quality parameters and their corresponding reflectance. These rules,
extracted from unsupervised clustering of training data, determine the actions that
water parameter must perform if some conditions on multispectral reflectance are
satisfied. After, an accurate definition of the rules coefficients is assigned to genetic
algorithm (GA). This latter searches the best chromosomic structure that codifies the
different parts of the fuzzy rules to give best optimization results.

• PSD analysing: in this part, we focused our interest on the use of PSD tool to water
quality characterization which is evaluated by analysing several types of PSDs related
to typical sites in order to select the most representative’s ones [1].

• Pollution map: the main PSDs of typical sites are selected and introduced in
maximum likelihood classifier in order to generate a pollution map related to Algiers
bay. For this site, four pollution levels corresponding to “High pollution”, “Medium
Pollution”, “Few Pollution” and “Clear Water” are considered.
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Fig. 1. Flowchart of estimation map process.

Our paper is structured as follows; in Sect. 2 the estimation principle of water
parameters maps is described where an hybridization of fuzzy model and genetic algo‐
rithm is used. The PSD tool and water characterization are outlined in Sect. 3. Water
pollution map is presented in Sect. 4. Finally, in Sect. 5, conclusions on the developed
process are presented in order to show the contribution of remote sensing data to monitor
the coastal water pollution.

2 Water Quality Estimation Maps

In the fuzzy estimation, Takagi Sugeno Kang (TSK) model was adapted to our appli‐
cation where the relation between water component concentration yi and marine Subsur‐
face reflectance Ri is considered as locally linear [8] (see Fig. 2). Thus, the input space
is divided into crisp subspaces or clusters Ci. In each cluster Ci, yi is assumed as a linear
local function that models the variation of Ri in this cluster (yi = pi,0 + pi,1Ri, where
pi,0, pi,1 are real numbers). The global model Y  connects y1 and y2 according to their local
activation degrees 𝛽i and gives Y = 𝛽1y1 + 𝛽2y2. Whereas, in the optimization step, the
fuzzy coefficients are applied to a genetic algorithm in order to tune them and improve
the estimation map results. To implement this monetization, we took the following steps:
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• Processed data: to carry out our approach, we have used one image corresponding to
ETM+ of Landsat7 satellite covering Algiers bay. The image has been, first, geomet‐
rically corrected and transformed into radiances. After, it was corrected from atmos‐
pheric contribution by the dark point technique, converted into corresponding reflec‐
tance R and masked from the land areas. We have also used a set of in-situ meas‐
urements of SPM, Chl, Turb and SDD collected in Algiers bay. 300 samples of
punctual measurements were provided by Institut National des Sciences de la Mer
et de l’Aménagement du littoral (ISMAL) covering the studied area. They were
collected two weeks before the satellite pass. The green points of Fig. 3 show their
geographical locations on ETM+ image. According to the available data
yi = (SPM, Chl, Turb, SDD), we have built a set of data (Ri, yi) relevant to subsurface
reflectances Ri and in situ concentrations yi. Finally, we randomly split the data into
two subsets, the training-set composed of the 2/3 of initial data is used to define the
fuzzy model whereas the test-set to evaluate its performances.

Fig. 2. Fuzzy estimation principle (Takagui-Sugeno-Kang model)

Oued 
Elhamiz

Oued 
ReghaiaOued 

Elharrach

Algiers 
harbord

Fig. 3. Composed color of ETM + image (Red: TM1, Green: TM2, Blue: TM3) acquired on
Algiers bay. (Color figure online)
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• Determination of fuzzy input subspaces: using the Weighted Fuzzy C-means
(WFCM) algorithm, we divide the training data-base into crisp subspaces or clusters
Ci which share the same spectral characteristics [8]. To each cluster Ci, we define a
fuzzy set Ai and associate a triangular membership function characterized by its
parameters (a, b, c), where b corresponds to the abscissa of triangle vertex and a and
c are deduced as the intersection of the abscissas axis with the lines on the left and
the right sides of b;

• Determination of fuzzy model coefficients: To each cluster Ci, the output yi of in-situ
concentration variation is assumed to be locally linear and expressed as following
relation: yi = p0,i + pi,1R1 + pi,2R2 +…+ pi,MRM, where  RM are the M subsurface
reflectances and (pi,0, pi,1, pi,2,… , pi,M)  are real numbers. The estimation model is,
then, expressed as a set of conditions which assign each pixel to a water type under
the form of Takagi-Sugeno-Kang (TSK) rules. The premises of these rules depend
on the fuzzy sets Ai,j defined on the reflectance domain and the consequences present
the local linear yi model form, like shown by Eq. 1 [8].

Rulei: If
(
R1 is Ai,1

)
& … &

(
RM is Ai,M

)

Then yi = pi,0 + pi,1R1 + …+ pi,MRM
(1)

• Each local model is associated with a degree of activation 𝛽i expressed as
𝛽i = min(uAi,1

(R1), uAi,2
(R2),… , uAi,M

(RM)), where uAi,j
(Rj) is the membership function

associated to the fuzzy set Ai,j. The global Y  concentration is, then, computed by
aggregating the conclusions inferred from r individual rules as followed:

Y =

r∑

i=1
𝛽i.yi

r∑

i=1
𝛽i

(2)

• Optimization of fuzzy coefficients: the obtained fuzzy coefficients are applied to
genetic algorithm. For our application, the chromosome codifies the membership
function (a, b, c) of the fuzzy sets coefficients [1]. We defined the fitness value as the
inverse of the Mean Square Error MSE. Also, we apply the arithmetic crossover and
the uniform mutation operators to generate a new population [9]. Chromosomes to
be mated are chosen by using the well-known roulette wheel selection method, which
associates to each chromosome a probability proportional to its fitness value. We
fixed the probability of crossover and mutation to 0.9 and 0.1, respectively. When
the average of the fitness values of all the individuals in the population is greater than
99% of the fitness value of the best individual or a prefixed number of iterations has
been executed, the GA is considered to have converged.

• Generalization: After optimization, we used the optimum coefficients found and
applied them to the total images to generate water maps related to each water
parameter [8].
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The estimation process of Fig. 1 was implemented in Interactive Data Language
(IDL) and applied to Algiers bay Landsat7 ETM+ image acquired on 03 june 2001 to
generate water maps related to each water parameter.

Table 1 presents an example of statistics results of SPM estimation before and
after optimization. We estimated the SPM concentrations and evaluated the perform‐
ances of the fuzzy model by calculating the mean square error MSE and the correla‐
tion coefficient 𝜌. We noticed that fuzzy estimation gives satisfactory results. Further‐
more, the optimization process improves these results, the correlation coefficient is
increased from 91% to 98%.

Table 1. Statistic comparison of SPM estimation process.

Fuzzy model Genetic optimization
MSE 𝜌 MSE 𝜌

Training data 0.0081039 0.9142 0.0015308 0.9842
Test data 0.0084515 0.9093 0.0021842 0.9762

After optimization, the fuzzy coefficients were applied to full ETM image. The
resulting maps represent the spatial variability of water constituents (SPM, Chl, Turb
and SDD) in coastal and marine surfaces. To examine this variability, we present in
Fig. 4 the maps in pseudo-colours.

For all maps, it is obvious notice that the high parameters values are located near
the coast and this phenomenon is more important for the Algiers bay. For example,
the concentration of the SPM parameter is closed to 1300 mg/l near the coast. In fact,
the data partition revealed nine clusters (Ci) which correspond to 9 nine rules (Eq. 1).
This means that this site has a high risk of pollution and presents a complex system
requiring a high number of rules to interpret this wide variability. This information
motivates us to exploit the results maps and propose a new tool to characterize the
water quality, to localize the sources of pollution and identify the most polluted sites
of Algiers bay.

3 PSD Analysing

The pollution signature draw exploits the obtained maps of Fig. 4 and provides a tool
to evaluate the water quality at any point of the bay. This signature gathers in the same
graph the marine indices in the following order: SPM, Chl, Turb and SDD and
presents the normalized concentration of each index.

Figure 5(a) shows an example of PSD taken at different distances of Oued Elhar‐
rach. In the same graph, we reported a PSD taken at the large of the bay and consid‐
ered as a reference PSD (purple color). Compared to this latter, we note high concen‐
trations of SPM, Chl, Turb recorded just at the embouchure of the oued. The
discharges poured at the oued are transported at several meters, and even kilometres
from their source as it is illustrated by the PSDs taken at 300 m, 900 m, 1500 m and
3000 m from the oued.
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Fig. 4. Coastal water indices maps for Algiers bay. (a) SPM map, (b) Chl map, (c) SDD map and
(d) Turb map.
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Fig. 5. Example of pollution signature. (a) PSDs taken at different distance from oued Elharrach,
(b) PSDs taken at different sites.

Furthermore, the comparison between the PSDs of different sites provides an
appreciation of water quality by its degree of pollution and hence, allows the detec‐
tion of the risky sites. Figure 5(b) shows the average PSDs taken at risky sites
(Algiers harbour, Oued Elharrach, oued Elhamiz and oued Reghaia). We also reported
in the same graph a reference PSD taken at the large of the bay. It can be seen that
Algiers harbour has the highest signature.

4 Pollution Map

Water classification based on the nature of waters components was proposed by
Morel and Prieur [10]. Waters of the Case-I are those for which phytoplankton has a
role in determining the water optical properties. Whereas the Case-II are determined
or strongly influenced by the particulate and dissolved organic matter including the
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main water constituents as SPM, Chl and DOM. This classification is widely used
until nowadays. In this context and from forementioned findings, we typify Algiers
Bay coastal waters on the basis of the PSD characterization.

4.1 Selection of Risky Sites

According to the PAC’s reports, Algiers’s bay gathered about 70% of industrial and urban
dismissals of PAC’s basins [11]. It is considered as point of meting of all rejects of rivers
(Oued el-harrach, Oued El-Hamiz and Oued Reghaia). Around 110.4 Hm3/year of
domestic wastewater are discharged in this bay. Add to this, 5.4 millions m3/an of indus‐
trial wastewater coming from industrial cities which surround the bay (Hussein Dey, Bordj
ElKiffan, Elhamiz and Rouiba). It should be noted that the water purification rate is around
47% for PAC region and it mainly concern Réghaia and Rouiba basin’s without missing the
oil pollution due to Algiers’s harbour. These remarks reveal a high risk on some sites which
need the integration of remote sensing tool in order to follow as well temporal as spatial of
their pollution degree.

4.2 PSD Analysis

The analysis of some PSD related to risky sites (Fig. 5(b)) allows the evaluation of the
pollution degree of these sites. Indeed, the PSDs of oued Elharrach and Oued Reghaia
are similar. These sites are characterized by the same type of discharges (industrial
discharges and wastewater). Also, oued Elhamiz has a low PSD value compared to
those of oued Elharrach and oued Reghaia, but it remains significant when compared
to the reference PSD. Thus, Algiers harbour is assigned to case-I (Strong Pollution),
Oued Elharrach and Oued Reghaia are affected to the case-II (Average Pollution)
while Oued Elhamiz is considered as case-III (Slight Pollution).

From risky sites relevant to different cases of water quality (Strong pollution,
Average Pollution and Slight Pollution), we have selected some ROIs (region Of
Interest) and extract their corresponding value in SPM, Chl, SDD and Turb images
(see Fig. 6(a)). Also, we selected an ROI in clear water and urban area to construct a
training data of five classes. Using Maximum Likelihood [12], the classification
result is shown in Fig. 6. The pollution map highlights the most affected sites which
present a high pollution risk. To evaluate our results and with a lake of ground realty,
we compare our map to PAC (Plan d’Action Cotier) reports established on Algiers
bay [11]. The obtained map highlights the risky sites which are cited in PAC reports.
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Fig. 6. Algiers bay water classification. (a) ROIs selection, (b) Pollution map

5 Conclusion

In this work, we proposed a coastal water quality using the combination of multispectral
imagery and in-situ measurements. The first part is focused on the estimation and
mapping of coastal water indices using an hybridization of fuzzy modeling and genetic
optimization. The generalization of this hybridization to full images provides a map
representing the spatial variability of water indices in the coastal and marine areas.
Second and from these maps, Pollution Signature Draw “PSD” is constructed to char‐
acterize the water quality and to determine the boundaries of coastal zones with different
water types. Finally, the comparison of some PSDs taken at risky sites of Algiers bay
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highlighted the pollution degree of each site and allowed a water quality classification.
The latter was coherent with the ground truth of the studied site. Moreover, and using
multi-temporal remote sensing images, a PSDs analysis can give an important infor‐
mation for coastal water quality monitoring in order to determine seasonal and yearly
changes. These objectives are under consideration for future works.
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