
Data Processing with KETCindy

Yasuyuki Kubo(B)

National Institute of Technology, Yuge College, Ehime, Japan
kubo@gen.yuge.ac.jp

Abstract. KETCindy is helpful not only for making TEX documents
needing mathematically precise artwork but also for performing data
processing efficiently. Furthermore, graphs obtained using KETCindy can
be used in TEX documents without conversion.

1 Introduction

Spreadsheet software, such as Excel, is convenient for checking simple statistics
and calculations. Entries can be easily typed into corresponding cells, and by
selecting a range, such things as data number, average, and total can be displayed
on the status bar and confirmed immediately. Scatter charts and line graphs can
also be displayed on the screen if selected from the menu. However, as this report
will show, KETCindy [1] can be used to handle complicated data processing with
greater efficiency than spreadsheets such as Excel.

The advantage of KETCindy for data processing can be illustrated with an
example from a project the author participated in. The project analyzed pollu-
tants found in a certain area since 2013 onwards. Figure 1 shows part of the data
(April 1st 2015 to February 29th 2016) as displayed in an Excel spreadsheet. The
names of pollutants are displayed in the first row, e.g. PM2.5, PM10, etc.

To obtain the average level of each pollutant measured in ppm over the
period, the following formula

=AVERAGE(B2..B336)

was entered in cell B337 of the Excel file and applied to all cells to the right.
Also, in order to obtain the moving average [2] of PM2.5, the following for-

mula

=AVERAGE(B2,B8)

was entered in cell J8 and applied to all the other cells in the column. By applying

=IF(MOD(ROW(B7),7)=0,AVERAGE(B2:B8),"")

to the column, the average of every week could be displayed in every 7th cell.
c© Springer International Publishing AG 2017
O. Gervasi et al. (Eds.): ICCSA 2017, Part IV, LNCS 10407, pp. 240–250, 2017.
DOI: 10.1007/978-3-319-62401-3 18

Data Processing with KETCindy 241

Fig. 1. Table of pollutants

However, it was not easy to make an average list every week. For example,
by entering either

=AVERAGE(INDIRECT(ADDRESS(2+7*(ROW(C1)-1),2)&":"&ADDRESS(1+7*
(ROW(C1)),2)))

or

=AVERAGE(OFFSET(B2,(ROW(B2)-2)*7,0,7,1))

in cell J2 and copying down, the formula tended to be more error prone and
difficult to correct. Furthermore, calculation of the monthly average was made
more difficult because the number of days of each month varied. In the case of
Excel, a macro can be used but with difficulty.

To avoid the above difficulties encountered while attempting to use Excel,
the author turned to Cinderella in order to complete the task more efficiently.
Cinderella is a type of DGS (dynamic geometry software) developed by J. R-
Gebert and U. Kortenkamp [3]. Unlike other DGS, it incorporates CindyScript,
an easy-to-use programming language. CindyScript handles data in addition to
numerical values and character strings called lists. A vector (sequence data), for
example, can be expressed as vec=[1,3,5]. In addition, a matrix (table data)
can be expressed as a double nested list. For example, mat=[[1,3,5],[2,4,6]]
is a matrix of 2 rows and 3 columns. Also we can use functions of CindyScript
to handle lists as explained in [4]. The following is some samples of functions in
CindyScript which are subsequently used to define new functions in this paper.

int1..int2 lists integers from int1 to int2
Ex : 3..7=[3,4,5,6,7]

list int takes the int-th element of list
Ex : [2,5,7,1] 3=7

242 Y. Kubo

append(list,expr) adds expr to list such as list++[expr]
Ex1 : append([1,2],5)=[1,2,5]
Ex2 : append([1,2],[5])=[1,2,[5]]

apply(list,oper) applies the operation oper to all elements of
list
Ex : apply(3..5,f(#)])=[f(3),f(4),f(5)]

select(list,bool) selects the elements of list that are true
Ex : select(3..7,isodd(#))=[3,5,7]

sum(list) sums all the elements of list if they are all
numbers
Ex : sum(-1..3)=5

row(mat,int) gives the int-th row of mat, if mat is a matrix
Ex : row([[1,3,5],[2,4,6]],2)=[2,4,6]

column(mat,int) gives the int-th column of mat, if mat is a matrix
Ex : row([[1,3,5],[2,4,6]],2)=[3,4]

transpose(mat) transposes a matrix mat
Ex : transpose([[1,3,5],[2,4,6]])

=[[1,2],[3,4],[5,6]]

Here # represents the running variable, successively taking the value of all ele-
ments in the list.

While KETCindy was developed as a Cinderella plug-in to generate LATEX
source code for high quality mathematical artwork [5], it can perform several
data processing functions as well. Data processing with KETCindy is in fact
quite easy and very flexible as the next sections show.

2 Data Handling with KETCindy

2.1 Data Input, Output and Display

The following is an example of how KETCindy can be used to handle data. First,
KETCindy converts the csv file (file.csv in this case) as shown in Fig. 2

Fig. 2. View in excel

into the data named dt by the command

dt=Readcsv("file.csv");

Data Processing with KETCindy 243

if file.csv exists in a working directory. Also this command takes dt from the
directory and arranges it into a matrix. Inputting and executing the command

println(dt);

on the edit area (the area on the top right of Fig. 3), the resulting matrix is
displayed on the console (lower right of Fig. 3).

Fig. 3. Readcsv and println

Substituting Dispmat(dt) for println(dt), the matrix is displayed as tab-
separated strings on the console, as shown in Fig. 4.

Fig. 4. Readcsv and Dispmat

Conversely, tab-separated strings can be translated into a matrix using the
command, Tab2list. For example, Fig. 5 shows the data copied from the Excel
window in Fig. 2 onto a CindyScript screen.

Here the data, in double quotes following dt, is converted into a list using
the command Tab2list. Figure 6 shows the matrix which is made from dt and
displayed on the console.

When the amount of data is large, it is necessary to scroll down the screen
and look for the start and end of data to select and copy the range, which might
cause mistakes. On the other hand, the command Readcsv is useful because it
automatically selects the data and copies it into the edit area.

244 Y. Kubo

Fig. 5. Tab2list (edit area) Fig. 6. Tab2list (console)

2.2 Data Processing with KETCindy Commands

While it is necessary to scroll down the window to select a wide data range in
Excel, the commands Nrow and Ncol added by the author enable us to select it
automatically in KETCindy. Also, the translation of row data into column data is
accomplished simply by using the CindyScript command transpose. Moreover,
we can easily keep or delete some part of a large table simply by using KETCindy
commands prepared to store and substitute variables. Time consuming cell-by-
cell work is needed to accomplish these tasks in Excel. Thus, much labor can be
saved by adding commands to KETCindy.

The author will introduce the commands added to KETCindy using file.csv
as an example. Commands beginning with lower case letters were of Cindyscript
origin. Those newly defined by the author in KETCindy begin with capital letters
like other commands in KETCindy. The commands added to KETCindy to handle
matrices are as follows

Nrow(mat) returns the number of rows of matrix mat
Ncol(mat) returns the number of columns of matrix mat
RemoveR(mat,list) removes the n-th row from mat if n is in list
RemoveC(mat,list) removes the n-th column from mat if n is in list
AddR(mat,int,list) adds list to int-th row of mat
AddC(mat,int,list) adds list to int-th column of mat

For example, let dt be the data of file.csv obtained using the command

dt=Readcsv("file.csv");

We can easily delete the first row of dt with the command

dt1=RemoveR(dt,[1]);

Data Processing with KETCindy 245

Also we can easily find the number of rows and columns in dt1 using the following
commands (left side of Fig. 7) whose result is on the right of Fig. 7.

dt=Readcsv("file.csv");
dt1=RemoveR(dt,[1]);
println(Nrow(dt1));
println(Ncol(dt1));

Fig. 7. Remove 1st Row and Return Nrow, Ncol

Similarly, the results obtained by the following commands

dt2=RemoveC(dt,[1,3]); //remove 1st and 3rd columns
println(Nrow(dt2));
println(Ncol(dt2));

can be seen on the right of Fig. 8.

Fig. 8. Remove 1st and 3rd Columns, and Return Nrow, Ncol

Also the command, Removemat was added by the author. The combination
of RemoveR and RemoveC returns the same results as Removemat. The following
commands

dt3=RemoveR(dt,[1]);
dt4=RemoveC(dt3,[1,3]);

246 Y. Kubo

create the matrix dt4, [[1,3],[4,6]], and the next command

dt5=Removemat(dt,[1],[1,3]);

creates a matrix dt5 identical to dt4. Furthermore, the command Submat was
added which leaves the specified part of the matrix.

Important commands that draw and label graphs are defined as follows

Linedata(list) makes a list of lists that have no empty element,
even if list has some empty elements

Linedata2(mat) makes a list of lists that has no empty element,
even if the 2nd column of mat has some empty
elements

Linegraph(. . . list. . .) makes a line graph from the data specified
Bargraph(. . . list. . .) makes a bar graph from the data specified
Putlabel(. . . list. . .) puts labels on a graph from the data specified

Here the commands Linegraph, Bargraph, and Putlabel have many arguments
as explained below.

For example, let dt be the list [21,"",22,23,"","",24,25,26,"",27,
28,""].

Then, the following command

dt1=Linedata(dt);

produces dt1 which consists of four lists

[[21,1]], [[22,3],[23,4]],
[[24,7],[25,8],[26,9]], [[27,11],[28,12]].

Furthermore, let ma be the matrix made by the following command

ma=transpose([101..113,dt]);

which consists of [101,1], [102,””], [103,3], [104,4], [105,””], [106,””], [107,7],
[108,8], [109,9], [110,””], [111,11], [112,12], [113,””]. Then, ma1 made by

ma1=Linedata2(ma);

consists of four lists

[[1,101]], [[3,103],[4,104]],
[[7,107],[8,108],[9,109]], [[11,111],[12,112]].

Data Processing with KETCindy 247

Based on these commands, the commands Linegraph, Bargraph and
Putlabel were defined to generate line graphs and bar graphs from data like
dt1 and create graph labels from data like mat1. Both Linegraph and Bargraph
take the following arguments: “name”, “hscale”, “vscale” and, “valuelist”
which has the structure of dt1. Linegraph connects points that are contin-
uously measured, while points with gaps are not connected. The argument
“hscale” gives the horizontal scale of the graph, while “vscale” gives the ver-
tical scale. Putlabel takes the following arguments: “gap”, “scale”, “depth”,
and “labellist” which has the structure of mat1 whose element is a list consist-
ing of pairs of natural numbers and labels (strings or real numbers). If there are
too many labels, labels can be skipped by specifying gaps between the labels.
Finally, “hscale” gives the horizontal scale of labels for gap=1, and “depth”
adjusts the height of the labels with respect to the horizontal axis.

2.3 Other Functions

In addition to the before-mentioned commands, other functions are defined as
follows

Average(list) gives the average of values in list
GroupAvg(list,opt) gives the average of values in list according to

opt
MovingAvg(list,int) gives the moving average of values in list by

pairing the number int (same as MovingAverage)

Although CindyScript does not have a function to obtain averages, they can
be calculated using the following formula

sum(list)/length(list);

However, by this calculation method, the expected value cannot be obtained
in the case of a list that includes blanks and strings. As in Excel, the author’s
function Average gives an average value by ignoring blanks and strings.

In this way, labor intensive work in Excel can be replaced by the addition of
efficient and easy-to-use commands.

3 Practical Example

For the data on air pollution introduced earlier, examples of data processing
are shown. The data “PM20160229.csv” is given in csv format and read by the
following command

dtorg=Readcsv("PM20160229.csv");

248 Y. Kubo

to give dtorg. The only data needed in that section is the date and part of the
measured value for PM2.5. By the following command

dtall=Submat(dtorg,2..Nrow(dtorg),1..2);

the author made a submatrix dtall from the second to the last row of the data,
the first and second columns of dtorg, using the command Submat.

3.1 Transition of Daily Values and of Moving Average per Week

The graph in Fig. 9 shows the daily change in levels of PM2.5 as measured in
ppm and the change in the moving average over the week.

40

20

value of everyday
moving average

4.04

4.18

5.02

5.16

5.30

6.13

6.27

7.11

8.27

9.10

9.24

10.08

10.22

11.05

11.19

12.27

1.10

1.24

2.07

2.21

date

ppm

O

Fig. 9. Average and moving average

The graph was made using the following commands

dtvalue=RemoveC(dtall,1);
graphdt1=Linedata(dtvalue);
graphdt2=Movingaverage(graphdt1,7);

Setcolor("red");
Linegraph("day",graphdt1,0.05,0.05,["color->[1,0,0]"]);
Setcolor("black");
Linegraph("week",graphdt2,0.05,0.05,["dr,3"]);

ApplymatC(dtall,"Sprintf(#,2)",1);
ptnames=Linedata2(dtlabel);
Putlabel(ptnames,14,0.05,-0.5,["rot"]);

Here the commands ApplymatR, ApplymatC were added to modify the matrix to
behave like apply. Without ApplymatC, the command

ApplymatC(dtall,"Sprintf(#,2)",1);

would be more complicated.

Data Processing with KETCindy 249

For the date expressed as a decimal number Sprintf was used, so that April
10 is displayed as “4.10” not “4.1”. Putlabel was used to add labels. And to
prevent overlap, gaps between labels were specified by skipping 14 and rotating
the labels by 90◦ with the option "rot".

3.2 Monthly Averages

To see the change in average levels of PM2.5 month by month, there was the
difficulty of identifying the months consisting of different numbers of days.

To draw the graph (Fig. 10), the prepared data, dtall, was processed in the
following way

40

20

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb
month

ppm

O

Fig. 10. Averages of each month

monlist=concat(4..12,1..2);
mavg=[];
forall(monlist,mon,

mlist=select(dtall,floor(#_1)==mon);
mavgtmp=Average(column(mlist,2));
mavg=append(mavg,[mon,mavgtmp]);

);

graphdt=Linedata(column(mavg,2));
Setcolor([0.5,0.5,0.5]);
Bargraph("bar",graphdt,1,0.05,["dr,25"]);
Setcolor("black");

monlistE=["Apr","May","Jun","Jul","Aug","Sep","Oct","Nov",
"Dec","Jan","Feb"];
labelmon=Linedata(monlistE,["st"]);
Putlabel(labelmon,1,1,-0.5);

Though the list, monlist, is not in the natural order, it caused no problem since
forall in CindyScript runs a temporary variable in the order listed.

250 Y. Kubo

4 Conclusions and Future Work

The author found that using KETCindy to process data by commands according
to complicated specifications was superior to using spreadsheet software such as
Excel. Also, TEX documents, including accurate graphs, could be created more
efficiently using KETCindy.

Furthermore, there is no need to buy expensive software to improve the
functionality of spreadsheet software, which is already expensive enough, because
all related software is freely accessible, making KETCindy especially valuable for
education.

Finally, there is room to improve the ease of use, processing speed and mod-
ifiability of commands and functions introduced. In addition, the author would
like to integrate similar commands that are still confusing.

Acknowledgments. I am deeply grateful to Professor Setsuo Takato of Toho Univer-
sity for supporting and advising me in this research. I am also grateful to Mr. Akira
Iritani, representative of Cinderella Japan, for advice on Cinderella and CindyScript
input manners.

References

1. Takato, S.: What is and how to use KeTCindy – linkage between dynamic geometry
software and KeTCindy graphics capabilities. In: Greuel, G.-M., Koch, T., Paule,
P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 371–379. Springer, Cham
(2016). doi:10.1007/978-3-319-42432-3 46

2. Moving Average. https://en.wikipedia.org/wiki/Moving average
3. CinderellaJapan. https://sites.google.com/site/cinderellajapan/
4. Cinderella.2 Documentation. https://doc.cinderella.de/tiki-index.php
5. KETpic.com. http://ketpic.com/

http://dx.doi.org/10.1007/978-3-319-42432-3_46
https://en.wikipedia.org/wiki/Moving_average
https://sites.google.com/site/cinderellajapan/
https://doc.cinderella.de/tiki-index.php
http://ketpic.com/

	Data Processing with K.5exETCindy
	1 Introduction
	2 Data Handling with K.5exETCindy
	2.1 Data Input, Output and Display
	2.2 Data Processing with K.5exETCindy Commands
	2.3 Other Functions

	3 Practical Example
	3.1 Transition of Daily Values and of Moving Average per Week
	3.2 Monthly Averages

	4 Conclusions and Future Work
	References

