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Abstract. The Weight-constrained Minimum Spanning Tree problem
(WMST) is a combinatorial optimization problem aiming to find a span-
ning tree of minimum cost with total edge weight not exceeding a given
specified limit. This problem has important applications in the telecom-
munications network design and communication networks.

In order to obtain optimal or near optimal solutions to the WMST
problem we use heuristic methods based on formulations for finding feasi-
ble solutions. The feasibility pump heuristic starts with the LP solution,
iteratively fixes the values of some variables and solves the corresponding
LP problem until a feasible solution is achieved. In the local branching
heuristic a feasible solution is improved by using a local search scheme
in which the solution space is reduced to the neighborhood of a feasible
solution that is explored for a better feasible solution. Extensive compu-
tational results show that these heuristics are quite effective in finding
feasible solutions and present small gap values. Each heuristic can be
used independently, however the best results were obtained when they
are used together and the feasible solution obtained by the feasibility
pump heuristic is improved by the local branching heuristic.

Keywords: Weighted MST · Minimum spanning tree · Feasibility
Pump · Local Branching · Heuristics

1 Introduction

Given a graph with edge costs and edge weights, the aim of the Weight-
constrained Minimum Spanning Tree (WMST) problem is to find a spanning tree
with minimum cost, such that its total weight does not exceed a given specified
integer positive limit W . The WMST problem is a NP-hard [2,21] combinator-
ial optimization problem with important applications in the telecommunications
network design and communication networks.

Several algorithms have already been proposed to the problem, either with
exact or approximation approaches for determining a feasible solution. Aggarwal
et al. [2] and Shogan [18] propose exact algorithms that use a Lagrangian relax-
ation to approximate a solution combined with a Branch and Bound strategy.
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Ravi and Goemans [15], Xue [20], Hong et al. [11] and Hassin and Levin [9] pro-
pose approximation schemes. A compilation of results and existing algorithms
to solve the problem can be found in Henn [10].

Requejo et al. [16] describe several Integer Linear Programming (ILP) for-
mulations, Agra et al. [4] describe new valid inequalities for the WMST problem,
and Requejo and Santos [17] discuss algorithms based on Lagrangian relaxations
and propose a Lagrangian relaxation combined with valid inequalities.

Another approach to the problem is to include the weight of the tree as
a second objective instead of a hard constraint. The resulting problem is the
bicriteria/biobjective spanning tree problem. Many references can be found for
this approach, see [19] among many others.

In this paper we present heuristics for the WMST problem that use mixed
integer models of the problem and allow interaction with a mixed integer pro-
gramming (MIP) solver. We describe two heuristics and, additionally these
heuristics are used together in one heuristic procedure. In the first one, the
heuristic should provide a “good” feasible solution. In the second one, the heuris-
tic should allow the improvement of an available feasible solution. For the first
heuristic, a Feasibility Pump scheme is used. Such scheme was proposed by Fis-
chetti, Glover and Lodi [6] with the goal of finding feasible solutions (if any exists)
for generic Mixed Integer Linear Programming (MILP) problems and improved
by Fischetti, Bertacco and Lodi [5] and by Achterberg and Berthold [1]. A mixed
integer formulation for the WMST problem together with a MIP solver are
used to obtain (fractional) linear relaxation solutions. These fractional solutions
are rounded such that a feasible solution (if any exists) is found. For the sec-
ond heuristic we consider a Local Branching method proposed by Fischetti and
Lodi [7] to solve MIP problems. This enumerative scheme constructs a sequence
of feasible solutions with improving (decreasing) value of costs which is consid-
ered a very effective improving method for large scale problems. Again a mixed
integer formulation for the WMST problem together with a MIP solver are used
with the objective to explore reduced feasible regions.

The structure of this paper is as follows. In Sect. 2 we describe the WMST
problem and a general formulation that will be used in the heuristic schemes. In
Sect. 3 we present a Feasibility Pump heuristic applied to the WMST problem.
In Sect. 4 we present a Local Branching heuristic applied to the WMST problem.
In Sect. 5, we present computational results for the Feasibility Pump and Local
Branching schemes applied to the WMST problem. In the last section, Sect. 6,
we conclude the paper.

2 The Weighted-Constrained Minimum Spanning Tree
Problem

To define the WMST problem we consider an undirected complete graph G =
(V,E), with node set V = {0, 1, . . . , n−1} and edge set E = {{i, j}, i, j ∈ V, i �=
j}. Associated with each edge e = {i, j} ∈ E consider positive integer costs ce

and weights we. The WMST problem is to find a spanning tree T = (V,ET )
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in G, ET ⊂ E, of minimum cost C(T ) =
∑

e∈ET
ce and with total weight

W (T ) =
∑

e∈ET
we not exceeding a given limit W .

To obtain formulations for the WMST problem one can easily adapt a Min-
imum Spanning Tree (MST) formulation. For the MST several formulations are
well known (see Magnanti and Wolsey [12]) and in [16] natural and extended
formulations for the WMST problem are discussed.

It is well known (see Magnanti and Wolsey [12]) that oriented formulations
(based on the underlying directed graph) leads, in general, to tighter formulations
(formulations whose lower bounds provided by the linear relaxations are closer
to the optimum values). Thus, henceforward consider the corresponding directed
graph, with root node 0, where each edge e = {0, j} ∈ E is replaced with arc
(0, j) and each edge e = {i, j} ∈ E, i �= 0, is replaced with two arcs, arc (i, j)
and arc (j, i). Thus we obtain the arc set A = {(i, j), i ∈ V, j ∈ V \ {0}, i �= j}.
Each arc (i, j) ∈ A inherits the cost and weight of the corresponding ancestor
edge {i, j}.

Consider the binary variables xij (for all (i, j) ∈ A) indicating whether arc
(i, j) is in the MST solution. Two classical formulations for the MST on the space
of the binary variables xij can be considered [12]. To prevent the existence of cir-
cuits in the feasible solutions, and thus ensuring the connectivity of the feasible
solutions, one formulation uses the cut-set inequalities and the other formula-
tion uses the circuit elimination inequalities. The linear relaxation of both models
provide the same bound value [12]. However the number of inequalities in both
sets of constraints increase exponentially with the size of the model. In order to
ensure connectivity/prevent circuits, instead of using one of those families with
an exponential number of inequalities, one can use compact extended formu-
lations. The well-known multicommodity flow formulation using additional flow
variables can be considered. In this formulation the connectivity of the solution is
ensured through the flow conservation constraints together with the connecting
constraints, see [12]. These three formulations for the MST are easily adapted
for the WMST problem through the inclusion of a weight constraint.

A generic formulation for the WMST problem is as follows.

(WMST): min
∑

(i,j)∈A

cijxij (1)

s.t. x ∈ (MST ) (2)
∑

(i,j)∈A

wijxij ≤ W (3)

Where x = (xij) ∈ R
|A| is the solution vector and (MST ) represents a set of

inequalities describing the convex hull of the integer solutions of the MST. As
referred, several sets of inequalities can be used. We use the multicommodity
flow formulation. Consider the additional set of flow variables fk

ij ≥ 0, for all
(i, j) ∈ A and k ∈ V \{0, i}, indicating weather arc (i, j) ∈ A is used in the path
from the root node to node k. The following flow conservation constraints
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∑

i∈V \{k}
fk

ij −
∑

i∈V \{0}
fk

ji =

⎧
⎨

⎩

−1 j = 0
0 j �= 0, k
1 j = k

, j ∈ V, k ∈ V \{0},

and the connecting constraints fk
ij ≤ xij , for all (i, j) ∈ A, k ∈ V \{0, i} are

used to ensure the connectivity of the solution and to represent the set (2)
of constraints, together with the set of constraints

∑
i∈V xij = 1, for all j ∈

V , guarantying each non-root node receives an arc. Additionally, include the
variables integrality constraints xij ∈ {0, 1}, for all (i, j) ∈ A and the variables
non-negativity constraints fk

ij ≥ 0, for all (i, j) ∈ A and k ∈ V \{0, i}. Constraint
(3) is the weight constraint.

3 The Feasibility Pump Heuristic for the WMST
Problem

In this heuristic procedure the objective is to obtain a “good” feasible solution to
the WMST problem. This objective is achieved through a relax-and-fix approach.
We use the Feasibility Pump scheme, proposed by Fischetti, Glover and Lodi [6].

The first step of this procedure, the relax step, is to obtain the optimal solu-
tion of a linear relaxation formulation for the WMST problem, the LP solution.
Let x̄ be such solution. If x̄ is an integer solution, then it is the optimal solution
of the problem.

The second step is the rounding and fixing variables value step. Let the
rounding x̃ of vector x be obtained by setting x̃ij = round(xij), the usual scalar
rounding, for all (i, j) ∈ A. The obtained vector x̃ is integer and, in general, x̃
is not a feasible solution.

The third step is to obtain the closest feasible solution to vector x̃. For that
define a distance function Δ(x, x̃) between a generic vector x and the given
integer solution x̃. To define the distance function use the following L1-norm
function Δ(x, x̃) :=

∑
(i,j)∈A |xij − x̃ij |. Notice that this function is equivalent

to the linear function defined by
∑

(i,j)∈S(1 − xij) +
∑

(i,j)∈S xij , with set S =
{(i, j) ∈ A : x̃ij = 1} and its complement set S = {(i, j) ∈ A : x̃ij = 0}. Thus
consider the distance function

Δ(x, x̃) :=
∑

(i,j)∈S

(1 − xij) +
∑

(i,j)∈S

xij . (4)

Hence, given an integer x̃, the closest vector x satisfying constraints (2) and
(3) can be determined by minimizing the value of the distance function Δ(x, x̃)
as follows

(D-WMST): min Δ(x, x̃) (5)
s.t. (2), (3).

Let x̂ be the optimal solution of the LP relaxation of problem (5), the D-WMST
problem, and the value Δ(x̂, x̃) is its optimal value. The vector x̂ is the closest
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solution to the integer x̃ and two cases may occur. If Δ(x̂, x̃) = 0, then x̂ = x̃ is
an integer feasible solution for the WMST problem. If Δ(x̂, x̃) > 0, then a new
integer ˜̂x is going to be obtained by rounding x̂. By rounding x̂ two cases may
occur. Either ˜̂x �= x̃, a different vector was obtained, or ˜̂x = x̃. When ˜̂x �= x̃
occurs the iterative process continues by solving the D-WMST problem again
and a new solution closest to the new integer vector ˜̂x is going to be obtained.
When ˜̂x = x̃, the same solution was obtained and a cycle occurs. To avoid cycling
the following perturbation mechanism [6] is applied to an integer solution x̃. For
a given parameter δ > 0, modify x̃ such that |xij − x̃ij |+max{ρij , 0} > δ, for all
(i, j) ∈ A and ρij randomly selected in [−0.3, 0.7]. Notice that this perturbation
mechanism gives the possibility to modify the variables such that |xij − x̃ij | = 0.

Iteratively another step is performed in order to further reduce the distance
Δ(x̂, x̃) between the vector x̃, the integer rounded vector, and the closer solution
x̂ of the LP problem (5). Therefore the pair (x̂, x̃) is iteratively updated by
performing this relax-and-fix procedure until a feasible solution to the WMST
problem is found.

In practice it may be much time consuming to achieve such feasible solution.
Therefore a time limit, denoted maxtime, and a maximum number of iterations,
denoted maxiter, are imposed. Hence we obtain a heuristic procedure, the feasi-
bility pump heuristic which is briefly described in Algorithm 1.

Algorithm 1. Feasibility Pump heuristic for the WMST problem (FP)
Require: problem data (graph G = (V, E); costs cij ; weights wij ; weight limit W );

parameters (maxtime; maxiter).
1: solve the LP relaxation of a formulation to the WMST problem
2: let x̂ be its optimal solution
3: if x̂ is integer then
4: stop, x̂ is the optimal solution of the WMST problem
5: end if
6: x̃0 ← round(x̂)
7: t ← 0
8: while ((time < maxtime) and (t < maxiter)) do
9: obtain x̂, the optimal solution of the LP relaxation of D-WMST problem with

Δ(x, x̃t) as objective function
10: let Δ(x̂, x̃t) be its optimal value
11: if Δ(x̂, x̃t) = 0 then
12: stop, x̂ is an integer feasible solution for the WMST problem
13: else
14: t ← t + 1
15: x̃t ← round(x̂)
16: if x̃t = x̃t−1 then
17: apply perturbation mechanisms
18: end if
19: end if
20: end while

return feasible solution x̂ and integer solution x̃t
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In the first line of Algorithm 1 a solver is used to obtain the LP solution x̂.
A solver is again used in line 9 to obtain a solution to the D-WMST problem.

In Algorithm 1 all the solutions, except the first LP solution that uses the
objective function of the WMST problem, are obtained by using as objective
function the distance function (4). This objective function does not take into
account the objective function of the WMST problem. As a consequence the
solution obtained at the end of the procedure may have a value far from the
best objective value of the WMST problem. To overcome this disadvantage,
Achterberg and Berthold [1] propose the use of a different objective function
that is a convex linear combination of the objective function (1) of the WMST
problem and the distance function (4) of the D-WMST problem. The proposed
objective function is

Δα(x, x̃) := (1 − α)Δ(x, x̃) + α

√|A|
||c||

∑

(i,j)∈A

cijxij , (6)

with α ∈ [0, 1] and where ||c|| is the Euclidean norm of the cost vector c and |A|
is the cardinality of set A. Thus

√|A| is the Euclidean norm of the objective
function vector in (4). In the objective function (6), the influence of the objective
function (1) of the WMST problem is controlled by the α parameter. For values
of α near to 1 the influence of the objective function is high.

In order to obtain an Improved Feasibility Pump heuristic for the WMST
problem (IFP) one has to obtain, in line 9 of the Algorithm 1, the optimal
solution x̂ of (5) with (6) as the objective function.

Both the FP and the IFP return an integer solution, which may not satisfy
constraints (2) and (3), and a solution satisfying constraints (2) and (3), but
not necessarily integer. Two trajectories of solutions, hopefully convergent, are
constructed. One is formed by a sequence of solutions satisfying constraints (2)
and (3), solutions x̂ that may not be integer. The other sequence is formed by
integer solutions x̃t that may not satisfy constraints (2) and (3).

4 The Local Branching for the WMST Problem

The improvement of a previously obtained feasible solution to the WMST prob-
lem is the objective of the second heuristic we describe. The improvement is
done through a local search scheme that uses a local branching method based
on the method proposed by Fischetti and Lodi [7].

Consider, as a reference solution, a previously obtained feasible solution x̃
to the WMST problem. This integer solution corresponds to a spanning tree
Tx̃ with cost C(x̃) = C(Tx̃) and weight W (x̃) = W (Tx̃). Define two sets, set
S = {(i, j) ∈ A : x̃ij = 1} and its complement set S = {(i, j) ∈ A : x̃ij = 0}. For
a given positive integer parameter k′, define the neighborhood of x̃ as the set of
feasible solutions of the WMST problem satisfying the additional local branching
constraint :

Δ(x, x̃) =
∑

(i,j)∈S

(1 − xij) +
∑

(i,j)∈S

xij ≤ k′. (7)
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The linear constraint (7) limits to k′ the total number of binary variables flipping
their value with respect to the solution x̃, either from 1 to 0 or from 0 to 1,
respectively. Notice that the local branching constraint uses the same distance
function Δ(x, x̃) that is used in the FP heuristic as the objective function (4).

For every feasible solution to the WMST problem the cardinality of the set
S is constant and equal to the number of edges of the corresponding feasible tree
Tx̃. Further the number of variables exchanging from 1 to 0 must be equal to the
number of variables exchanging from 0 to 1. Thus the local branching constraint
may assume the asymmetric form:

Λ(x, x̃) =
∑

(i,j)∈S

(1 − xij) ≤ k (8)

with k = k′
2 . Constraint (8) can be used as a branching criterion within an

enumerative scheme and the solution space associated with the current branching
node can be partitioned by means of the disjunction

(i) Λ(x, x̃) ≤ k (left branch) or (ii) Λ(x, x̃) ≥ k + 1 (right branch).

With each one of those constraints the solution space is reduced. Define the
neighborhood N (x̃, k) of x̃ as the set of feasible solutions of the WMST problem
satisfying the additional local branching constraint Λ(x, x̃) ≤ k, and the neigh-
borhood N+(x̃, k) of x̃ as the set of feasible solutions of the WMST problem
satisfying the additional local branching constraint Λ(x, x̃) ≥ k + 1. The choice
of the size of the neighborhoods given by the parameter k is a problem which
may depend on the size and structure of the instances used. On one hand, the k
must be large enough so that the neighborhood N (x̃, k) contains better valued
solutions than x̃. On the other hand, the k should be small enough to ensure that
the neighborhood N (x̃, k) is quickly explored. Note that neighborhood N (x̃, k)
of x̃ has solutions similar to x̃ and neighborhood N+(x̃, k) contains solutions
that differ from x̃ in more than 2 × (k + 1) variables. The method explores both
neighborhoods, but the neighborhood N+(x̃, k) is only explored when a feasible
solution better valued than x̃ is not found in the neighborhood N (x̃, k). Algo-
rithm 2 displays a brief description of the local branching scheme applied to the
WMST problem.

In the first line of Algorithm 2 a solver is used to obtain the first feasible
integer solution x̃1 which is taken as a reference solution. A solver is again
used in lines 7 and 13 to obtain the solutions in the reduced solution space.
The sequence of solutions x̃t generated by the LB, corresponds to a decreasing
sequence of costs.

The Local Branching is a MIP technique planned to be an exact method,
but that acts as a heuristic method when a time limit is set and reached before
the optimal solution is found [8]. In case the time limit is exceeded, the obtained
solution x̃ is not the optimal solution and the exploration of the neighborhood
is not complete. In that case the size of the neighborhood that is to be explored
has to be modified in order to either reduce or enlarge the region where the
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Algorithm 2. Local branching scheme for the WMST problem (LB)
Require: problem data (graph G = (V, E); costs cij ; weights wij ; weight limit W );

parameters (k; maxtime; maxiter).
1: obtain a feasible solution x̃, the reference solution
2: t ← 1
3: x̃t ← x̃
4: while ((time < maxtime) and (t < maxiter)) do
5: define k
6: introduce the local branching constraint Λ(x, x̃t) ≤ k in the WMST problem
7: solve the problem and let x̃ be its optimal solution within the neighborhood

N (x̃t, k)
8: if C(x̃) < C(x̃t) then
9: t ← t + 1

10: x̃t ← x̃
11: else
12: introduce the local branching constraint Λ(x, x̃t) ≥ k + 1 in the WMST

problem
13: solve the problem and let x̃ be its optimal solution within the neighborhood

N+(x̃t, k)
14: if C(x̃) < C(x̃t) then
15: t ← t + 1
16: x̃t ← x̃
17: end if
18: end if
19: end while

return integer solution x̃t

solution is sought. The following mechanisms, see [13], modify the size of the
neighborhood.

Intensification mechanism. The intensification mechanism aims to reduce the
size of the neighborhood in an attempt to speed-up its exploration. The right
hand side of the constraint Λ(x, x̃) ≤ k is reduced to �k

2 �.
Diversification mechanism. The diversification mechanism aims to enlarge
the size of the neighborhood. However, and consequently the exploration time
is also increased. First apply a “weak” diversification mechanism, in which the
right hand side of the constraint Λ(x, x̃) ≤ k is increased by 	k

2 
, i.e., it is
introduced the constraint Λ(x, x̃) ≤ k + 	k

2 
. In case an improved solution is not
found, apply a “strong” diversification mechanism, in which the right hand side
of the constraint Λ(x, x̃) ≤ k is increased with 2 × 	k

2 
, i.e., it is introduced the
constraint Λ(x, x̃) ≤ k + 2	k

2 
.
When a time limit is exceeded and the obtained solution x̃ is not the optimal

solution the following cases may occur. (i) If the solution x̃ has an improved
value, then the reference solution is updated, but the value of parameter k is not
modified. (ii) If the solution x̃ does not have an improved value, C(x̃) > C(x̃t),
then apply the intensification mechanism in order to reduce the neighborhood.
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If again an improved solution is not found, apply a “weak” diversification mech-
anism. (iii) If the solution x̃ is infeasible, then apply the “strong” diversification
mechanism in order to enlarge the neighborhood.

5 Computational Experience

In this section we report computational tests of the FP and of the LB heuristics
applied to the WMST problem. We compare the performance of the heuristics
against an upper bound obtained by a branch-and-cut algorithm based on the
strengthened weighted Miller-Tucker-Zemlin formulation (Agra et al. [3] and
Requejo et al. [16]).

All the tests were performed using a computer with an Intel(R) Core(TM)2
Duo CPU (T7100) 2.00 GHz processor and 4 GB of RAM, and were conducted
using the Xpress-Optimizer 23.01.03 solver with the default options.

We present computational results for instances to the WMST problem defined
on complete graphs with a number of nodes varying between 10 and 1000, in a
total of 215 instances.

5.1 Instances Generation Description

To generate an instance of the WMST problem, the cost ce and the weight we

of each edge e have to be defined. Afterwards, a (feasible) value to the weight
limit W must also be defined. We built three sets of instances, constituting three
different ways of generating costs and weights.

In a first set of instances, costs ce and weights we are generated similarly
to a set of instances described in Pisinger [14] and named therein as Spanner
instances. A value for W is selected between 1000 and 3500 proportional to the
number n of nodes of the instance. The costs and the weights are multiples of a
small set (the spanner set in [14]) of costs and weights following one particular
distribution, we use the Uncorrelated distribution (which is in the Pisinger’s [14]
proposed list of distributions), and the following two parameters s = 2 and
m = 10. At the end, the weights of some edges are manipulated in such a way
that the optimal solution has a desired predefined structure. After testing a few
structures we obtained some challenging instances when the optimal structure
of the WMST problem instance solution has large diameter values, almost n−1,
but not equal to n−1, in such way that the tree is almost a path. Thus we name
this instance’s set as “Almost Path” (AP).

For the second set of instances, named Random (R) instances, the costs ce

and the weights we are uniformly generated in the interval [1, 1000].
For the third set of instances, named Euclidean (E) instances, costs ce and

weights we are obtained using Euclidean distances. After randomly generating
the coordinates of n points/nodes in a 100 × 100 grid, the cost ce of each edge
e = {i, j} is the integer part of the Euclidean distance between points/nodes i
and j. We proceed independently and similarly to obtain the weights.
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To define a (feasible) value to the weight limit W for each instance of these
two sets of instances (sets R and E), we start by obtaining the weight of the
minimum spanning tree W (Tc) and the weight of the minimum weight spanning
tree W (Tw) and we select W to be one of the values Wi = W (Tc)+W (Tw)

2i , for
i ∈ {1, . . . , 10}.

A total of 215 instances were generated, 95 of the set AP and 60 of each set
R and E. For each set AP and each instance size between 10 and 150 we have 10
instances and for each instance size between 200 and 1000 we have 5 instances.
For each set R and E and each instance size we have 5 instances.

5.2 Computational Tests for the FP and IFP Heuristics

Computational tests performed in all groups of instances allow us to conclude
that the heuristics FP and IFP, described in Sect. 3, obtain similar quality solu-
tions. However the heuristic FP uses less computational time in all groups of
instances, see Fig. 1. Also the number of iterations used by the IFP heuristic is
approximately three times higher than the number of iterations used by the FP
heuristic. On average the number of iterations of the FP is 4 and the number of
iterations of the IFP is 14. Therefore, the remaining computational results will
be presented only for the FP heuristic.

Fig. 1. Comparing the mean execution times (in seconds) for FP and IFP heuristics.
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5.3 Computational Tests for the LB Heuristic

Computational experiments performed with the LB heuristic, described in
Sect. 4, showed that when the value k of the local branching constraints (8)
increases, the mean execution times also increases. To obtain the computational
results of the LB heuristic we used the value k = 5 and several strategies were
tested. First strategy (LB1): a time limit of 10000 s is imposed. Second strat-
egy (LB2): in addition to the time limit, the solver is stopped when the first
integer solution is obtained, and intensification and diversification mechanisms
are used. Third strategy (LB3): in addition to the second strategy conditions,
the reference solution is the first integer solution found by the solver and a time
limit is imposed for the exploration of the neighborhoods. Fourth strategy (LB4):
differs from the third strategy because the reference solution is obtained with
the FP heuristic. To evaluate these four strategies some preliminary computa-
tional tests were performed to instances with up to n = 100 nodes in a total
of 120 instances. Table 1 displays mean computational times and mean number
of iterations for the four LB strategies. The LB1 strategy obtained good valued
solutions, but it uses high computational times and 18.3% of the instances (13
AP instances and 9 E instances) exceed a computational time limit imposed.

Table 1. Mean execution time (in seconds) and mean number of iterations of the four
LB strategies.

n LB1 LB2 LB3 LB4

Time Iter Time Iter Time Iter Time Iter

Almost Path 10 0.42 3 0.58 5 0.40 3 0.40 3

20 3.75 3 4.66 6 3.49 3 2.37 3

40 64.06 4 29.27 8 24.32 5 20.00 4

60 2273.08 4 17.85 7 34.10 4 24.00 3

80 3443.43 3 41.93 7 61.95 3 51.05 3

100 9999.25 3 67.04 7 123.66 4 98.63 3

Random 10 0.41 3 0.55 4 0.61 3 0.37 3

20 2.68 3 4.73 6 2.82 3 2.35 3

40 17.26 4 26.27 7 13.67 3 10.06 3

60 18.89 4 20.32 8 20.04 4 13.47 3

80 64.02 5 48.81 9 49.26 4 30.50 3

100 1942.81 11 90.72 10 238.08 8 75.49 3

Euclidean 10 0.89 3 2.28 4 2.69 4 2.69 4

20 6.52 4 14.92 9 13.41 7 6.85 5

40 88.60 7 63.84 11 75.01 9 29.52 4

60 3802.02 11 62.20 11 241.64 12 28.98 4

80 8084.06 12 476.79 12 1927.29 14 44.58 4

100 9102.89 18 319.51 14 3471.08 19 132.12 5
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Table 2. Mean gap values (in percentage) of the HP procedure, the FP and the LB
heuristics.

n AP R E

HP FP LB HP FP LB HP FP LB

Mean gap 10 0.00 7.14 0.00 0.00 3.84 0.50 0.00 5.27 0.00

20 0.00 0.57 0.00 0.00 5.28 0.00 0.00 2.25 0.10

40 0.00 0.58 0.00 0.00 2.74 0.00 0.00 1.96 0.12

60 0.00 0.02 0.00 0.00 1.31 0.00 0.00 0.75 0.08

80 0.00 0.06 0.09 0.00 1.50 0.00 0.00 0.58 0.08

100 0.00 0.67 0.28 0.00 0.55 0.01 0.00 0.56 0.06

150 0.00 0.77 0.00 0.00 0.79 0.39 0.00 0.28 0.02

200 0.00 1.18 0.00 0.00 0.53 0.02 0.00 0.40 0.03

300 0.00 1.20 0.00 0.00 0.24 0.16 0.00 0.22 0.02

400 0.00 0.89 0.00 0.00 0.14 0.14 13.58 0.00 0.03

500 0.00 1.06 0.00 0.00 0.22 0.14 ∗ 0.00 0.00

1000 0.00 1.41 0.00 0.04 0.07 0.07 ∗ 0.00 0.00

σgap 10 0.00 8.08 0.00 0.00 3.43 1.12 0.00 3.49 0.00

20 0.00 0.61 0.00 0.00 5.01 0.00 0.00 2.68 0.23

40 0.00 0.61 0.00 0.00 1.68 0.00 0.00 0.39 0.00

60 0.00 0.03 0.00 0.00 1.07 0.00 0.00 0.71 0.13

80 0.00 0.05 0.11 0.00 1.32 0.00 0.00 0.43 0.15

100 0.00 1.40 0.63 0.00 0.26 0.02 0.00 0.66 0.07

150 0.00 1.27 0.00 0.00 0.68 0.86 0.00 0.19 0.02

200 0.00 1.42 0.00 0.00 0.38 0.03 0.00 0.20 0.03

300 0.00 0.88 0.00 0.00 0.62 0.21 0.00 0.16 0.02

400 0.00 0.73 0.00 0.00 0.10 0.10 4.50 0.00 0.06

500 0.00 1.32 0.00 0.00 0.14 0.19 ∗ 0.00 0.00

1000 0.00 0.43 0.00 0.08 0.08 0.08 ∗ 0.00 0.00

The symbol ∗ means we could not obtain an upper bound within the time
limit imposed.

The LB2 and LB3 strategies use less computational time than strategy LB1,
however the LB4 strategy uses less computational time, obtains the best valued
solutions and the optimal solution was obtained in 83.3% of the instances (in 100
of the 120 instances). Table 1 shows that the LB4 strategy presents the lowest
average execution times and also uses the smallest average number of iterations,
for all group of instances. Therefore we report results obtained with this LB4
strategy, denoted as LB in what follows. Notice that this strategy corresponds
to the FP heuristic followed by a LB heuristic.
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Table 3. Mean execution time (in seconds) for the HP procedure, the FP and the LB
heuristics.

n AP R E

HP FP LB HP FP LB HP FP LB

Mean time 10 0.11 0.01 0.40 0.19 0.01 0.37 0.11 0.01 2.69

20 1.32 0.03 2.37 1.13 0.03 2.35 0.89 0.03 6.85

40 41.67 0.12 20.00 4.13 0.12 10.06 5.60 0.12 29.52

60 517.22 0.29 24.00 5.96 0.27 13.47 12.36 0.29 28.98

80 2535.07 0.55 51.05 14.25 0.54 30.50 41.12 0.54 44.58

100 10596.60 0.97 98.63 20.68 1.21 75.49 116.40 1.10 132.12

150 10804.61 3.01 176.11 95.07 4.98 175.32 585.16 2.30 181.10

200 10813.50 7.89 355.65 310.59 12.52 299.32 1905.27 4.94 314.05

300 10866.94 40.86 688.63 1566.21 39.65 727.49 12368.56 18.87 1205.03

400 10929.46 90.46 1525.50 2628.47 92.53 1406.42 31103.45 39.50 2310.27

500 11057.40 268.78 3624.23 9225.34 311.44 2357.79 27611.01 98.89 4530.66

1000 11988.70 1014.11 9621.59 17636.70 1724.17 10808.70 31071.30 1171.19 10833.06

σtime 10 0.04 0.01 0.14 0.14 0.01 0.17 0.06 0.01 1.78

20 0.87 0.00 0.69 0.62 0.00 0.27 0.56 0.01 3.26

40 29.75 0.02 5.84 1.15 0.01 2.60 1.21 0.01 7.64

60 338.83 0.01 5.32 1.19 0.01 3.96 4.65 0.01 6.31

80 2095.42 0.02 10.49 2.32 0.04 12.24 13.01 0.05 6.02

100 645.98 0.06 19.44 6.10 0.35 35.28 34.54 0.26 48.59

150 1.82 0.15 37.14 37.46 1.18 84.89 181.11 0.11 26.14

200 4.73 1.41 176.84 222.72 2.55 64.89 737.56 0.41 83.14

300 34.44 7.36 177.79 866.04 15.76 62.21 3070.60 3.47 234.47

400 79.30 4.31 173.93 519.69 45.28 92.43 21167.74 1.55 482.86

500 132.57 76.00 327.01 2740.35 31.91 617.46 7483.64 20.97 381.97

1000 488.97 88.88 1048.95 2945.74 264.51 421.43 86.23 136.92 13.18

5.4 Results Description and Analysis

We compare the performance of the FP and of the LB heuristics with the per-
formance of the HP procedure.

In [3,16] the best results to obtain the optimal value using the software
Xpress 7.3 (Xpress Release 2012 with Xpress-Optimizer 23.01.03 and Xpress-
Mosel 3.4.0), were obtained with the Branch and Cut algorithm based on a
weighted MTZ (Miller-Tucker-Zemlin) formulation with the inclusion of cuts
preventing cycles at the root node. This procedure will be denoted by HP (Hybrid
Procedure) and is used to access the quality of the solutions obtained with the
FP and LB heuristics.

Having an upper bound on the value of the cost, the upper bound gap is
gap = UB − OPT

OPT × 100, where UB is the upper bound obtained through the
considered method (HP procedure, FP heuristic, LB heuristic) and OPT is the
optimal value obtained with the HP procedure or the best obtained value with
this procedure within a time limit of 10000 s.

For each instance set AP, R, and E and each instance size set we display in the
upper part of the Table 2 the average upper bound gap (in percentage) and the
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corresponding standard deviation values, in the lower part of the Table 2. In the
upper part of the Table 3 are displayed the average execution times (in seconds)
and corresponding standard deviation values, in the lower part of the Table 3.

The LB heuristic improves the solutions obtained by the FP heuristic in
68.37% of the instances (147 from 215 instances). In 75.34% of the instances
(162 from 215 instances) the gap is null, i.e. the optimal solution was obtained,
when using the LB heuristic. The set of instances with the highest gap is the E
instance set, the Euclidean instances.

For every procedure the computational time increases as the size of the
instance (number of nodes) increases. In 61.86% of the instances (133 from 215
instances), the computational time of the LB heuristic is smaller than the com-
putational time of the HP procedure. The set of instances with the highest
computational time is, again, the instance set E. Using the HP procedure it was
not possible to obtain an upper bound within the time limit imposed for two E
instances.

6 Conclusions

We describe two heuristic procedures to the WMST problem, the FP (feasibility
pump) and the LB (local branching) heuristics. The FP heuristic is a construc-
tive heuristic and uses a relax-and-fix strategy to obtain a good feasible solution.
The LB heuristic uses a local branch strategy to improve a feasible solution. Our
computational results show that the FP heuristic is fast in obtaining feasible
solutions for the WMST problem, and the LB heuristic can be used to improve
the obtained feasible solution. Both heuristics can be used independently, how-
ever the best strategy is to use the heuristics together, the FP followed by the
LB. This process is faster than the HP procedure, a branch-and-cut procedure
used to access the quality of the described heuristics, and obtains good valued
solutions.

The FP and the LB heuristics are a good choice in obtaining feasible solutions
for the WMST problem and can be used together for better quality solutions
and with very competitive computational times.
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