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Abstract. Team effectiveness has been the focus of numerous studies
since teams play an increasingly decisive role in modern organizations.
In the present paper, our attention is centered on team viability, which
is one dimension of team effectiveness. Given the challenges that actual
teams face today, exploring the conditions and processes that enhance
the capacity of teams to adapt and continue to work together is a funda-
mental research path to pursue. In this study, team psychological capital
and team learning were considered as antecedents of team viability. The
relationships that team psychological capital and team learning estab-
lish with team viability were explored as accurately as possible. Typically,
these relationships are assumed to be linear as multivariate linear models
are often used. However, these linear models fail to explain possible non-
linear relations between variables, expected to exist in dynamic systems
as teams. Adopting computational modeling strategies in the context
of organizational psychology has become more common. In this paper,
radial basis function models and neural networks were used to study the
complex relationships between team psychological capital, team learning
and team viability.
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1 Introduction

Teams are, nowadays, a fundamental cornerstone of organizations. Since teams are
created with the aim of generating value, understanding the conditions that con-
tribute to team performance has been one of the major focus of research (e.g., [16]).
However, although performance is a fundamental team effectiveness dimension,
effectiveness is much more than performance. In fact, the literature is consensual
about the need to consider different criteria to assess effectiveness [17,21]. We will
focus our attention on team viability, which is in line with one of the dimensions
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of the Hackman’s three dimensional effectiveness approach [17,18]. Team viability
can be defined as the team’s capacity to adapt to internal and external changes as
well as the extent to which team members are able to continue to work together in
the future [39]. Given the challenges that actual teams face today, such as work-
ing with new technology or the need to constantly adapt to market fluctuations
and changes, exploring the conditions and processes that enhance the capacity of
the team to adapt and continue to work together is a fundamental path to pursue.
In this study, team psychological capital and team learning will be considered as
antecedents of team viability.

The term psychological capital can be defined as a positive, individual psy-
chological state, or, in other words, a personal characteristic that can be mea-
sured and developed [22,24]. Luthans and colleagues [22,24], using a number
of key criteria, identified four main psychological resources that formed the
higher-order concept of psychological capital: self-efficacy, hope, optimism, and
resilience. Self-efficacy, based on Bandura’s social cognitive theory [4], refers
to the individual belief in his or her ability to successfully execute a specific
task [38]. Hope is characterized by two dimensions: will power, i.e., the drive
and determination to attain a goal; way power thinking, i.e., the ability to plan
alternative ways for attaining a desired goal [23]. Optimism is defined as the
individual’s expectancy of positive outcomes and integrates both realism and
flexibility [41]. Finally, resilience is the ability to withstand and recover from
challenges, stressful events or any other threat to well-being [43].

The relationship between individual-level psychological capital and effective-
ness, namely, performance, has been investigated and established by a large
number of studies [2,41]. Results are, however, less consistent when we consider
some psychological resources separately, namely self-efficacy. For instance, con-
cerning the relationship between self-efficacy and performance, whereas some
studies, focusing on a socio-cognitive theory of self-regulation [4], found a posi-
tive relationship between self-efficacy and performance, others report that self-
efficacy might lead to overconfidence, increasing, in consequence, the chance of
committing errors during the tasks and affecting performance negatively [42].

The research developed until this moment almost never focused psychologi-
cal capital as a team level phenomenon [30]. Teams have a major influence on
the perceptions, decisions, beliefs and emotions of individuals and as a result of
the interaction of knowledge between team members, shared mental models are
created [26], which might lead to the development of a collective psychological
capital [20]. Studies that focused psychological capital as a collective phenom-
enon, although scarce, point to a positive influence of this collective psychological
state on team outcomes (e.g., [9,20,27]).

Concerning team learning, this construct can be conceptualized as both a
process and an outcome [12]: the former concerns the group member’ behaviors
through the interaction processes, and the latter is the manifested outcome or
result that emerges as a collective property of the team. In the present research
our focus will be on team learning behaviors.
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In line with Edmondson [14], team learning behaviors can be conceived as a
continuous process of reflection and action, characterized by five fundamental
behaviors: seeking feedback, both internally and externally, in order to mea-
sure group’s effectiveness and to investigate possible improvements; exploring
through the sharing of knowledge and perspectives, as well as through con-
structively managing different opinions; experimenting collectively new ways of
achieving goals; reflecting on past achievements and on future aims and goals;
and discussing errors and unexpected outcomes collectively and exploring ways
to prevent them.

Previous research presented team learning as a crucial process of adaptation
of teams to their environment and highlighted its importance to team effective-
ness (e.g., [8,14,15]). Nevertheless, some studies suggest that team learning may
act as a double-edge sword. Bunderson and Sutcliffe [6], for instance, found that
too much emphasis on learning can compromise efficiency because detract the
team from results, and this is particular salient for teams that have been per-
forming well. In line with these findings, we have found, previously, increasing
trends on team effectiveness up to a certain threshold of team learning, followed
by a deflation for the highest values of this variable [13]. Taken together, these
results highlight that more team learning is not always better and claim for more
studies that support the non-linear relationship between team learning and team
outcomes.

Recently, the importance of adopting computational modeling strategies in
the context of organizational psychology was stressed by Cortina et al. [11]. As
outlined by Hanges et al. [19], the adoption of more complex designs, such as
radial basis functions neural networks, are useful for modeling nonlinear behavior
as produced by dynamic systems, such as, teams. In this paper, radial basis func-
tions (RBF) regression and RBF neural networks are used to study the complex
relationships between team psychological capital, team learning and team viabil-
ity. RBF regression has been successfully applied in different contexts, including
aeronautics [32,33] or radiotherapy [35,36]. RBF models proved to mimic well
unknown responses providing reliable surrogates that can be used either for pre-
diction or to extract relationships between variables. On the other hand, neural
networks have been widely used for deep learning with large data sets [37].
Incorporating RBF in the neural network learning process might enhance the
extraction of nonlinear relationships between explanatory variables and response
variable(s).

2 Materials and Methods

2.1 Sample

A quantitative study with a cross-sectional design was conducted, between
November 2016 and January 2017, in which we surveyed teams from the Por-
tuguese organizational setting. In order to be selected for the present study,
teams must meet the following criteria: teams must consist of at least three
members (1), who are perceived by themselves and others as a team (2), and
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who interact regularly and interdependently to accomplish a common goal (3)
[10]. Different kind of measures were administered to team members and their
respective leaders. Team members were surveyed about team psychological capi-
tal. Team leaders were surveyed about team learning and team viability. The use
of different data sources contribute both to obtain a broader diagnose about the
team and to prevent the problems related with common method variance. Two
different strategies were used in data collection. In the majority of the organi-
zations, data collection occurred in the organization facilities, with the physical
presence of trained research assistants. When this strategy was not possible to
implement, the questionnaires were filled in online via an electronic platform,
with the link being provided to the participants. In both cases, the participa-
tion in the study was voluntary and was clarified on the front page of the survey
that only aggregated data would be reported and that all identifying information
would be removed. Besides, informed consent was obtained from all participants.

Surveys were administered to 452 members and to 104 leaders of 104 work-
groups from 66 Portuguese organizations. After eliminating from the sample the
teams where less than 50% of members answered the questionnaire and also the
questionnaires where more than 10% of the answers were missing [5], the sample
remained with 82 teams (353 members and 82 leaders) from 57 organizations,
the majority from services sector (73%). Team size ranged from three to 18
members, with an average of six members (SD = 3.55).

2.2 Measures

To measure team psychological capital we adapted to the Portuguese
language the scale Psychological Capital Questionnaire (PCQ) developed by
Luthans et al. [25]. All items were reworded to reflect the group, rather than
the individual, as the referent. This scale is composed of 24 items that assess
the four dimensions of psychological capital (six items per dimension) that are
measured on a 6-point Likert type scale from 1 (strongly disagree) to 6 (strongly
agree). Sample items for self-efficacy, hope, resilience and optimism are “We feel
confident analyzing a long-term problem to find a solution”, “At the present
time, we are energetically pursuing our work goals”, “We usually take stress-
ful things at work in stride” and “I always look on the bright side of things
regarding my job”, respectively. An Exploratory Factorial Analysis (EFA) was
conducted, returning a five-factor solution that explained 62.76% of the total
variance. Since the fifth factor had no theoretical support because it was only
composed of reverse items from different dimensions, these items were sequen-
tially eliminated. Besides, items with loadings below .50, were also sequentially
eliminated from the solution. The final solution retained 18 items organized in
four factors that jointly explained 65.83%. The Cronbach alpha for efficacy was
.90, for hope was .85, for resilience was .75 and for optimism was .80. Since
psychological capital has been consistently analyzed as a second-order factor
(e.g., [9]) and also because the four psychological capital dimensions were highly
correlated (bi-variate correlations varied from .54 to .73) we decided to conduct
a Confirmatory Factor Analysis (CFA) with the retained four-factor structure
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obtained from EFA and with psychological capital as a second order factor. The
fit indices obtained were acceptable [χ2(131) = 302.97, p< .001, χ2/gl. = 2.31,
CFI = .95, RMSEA = .06] and, in consequence, we will consider, in the following
analyses, the global score obtained from the average score of the four dimen-
sions. A sample item is “Team members go out and get all the information they
possibly can from others such as customers, or other parts of the organization”.

To measure team learning we adapted to the Portuguese language the scale
developed by [14]. This scale is constituted by seven items that are measured
on a 5-point scale from 1 (almost never happens) to 5 (almost always happens).
An EFA was conducted that returned a two-factor solution. Since the original
scale is constituted only by one dimension, we decided to drop off, sequentially
the items from the second dimension (items 2, 4 and 6). After eliminating items
2 and 4, a one-factor solution was obtained. However, the communalities and
loadings of items 1 and 6 were low. As the referred items were both related to
obtaining feedback and were the reverse of each other, and since it was important
to have at least one item related to feedback, we decided to eliminate item 1 and
to maintain item 6. Besides, this solution presented a higher reliability. The final
solution was then composed of four items (3, 5, 6 and 7) that explained 53.3%
of variance and presented a Cronbach alpha of .69.

To measure team viability we used the scale developed by Aubé and
Rou- sseau [3], which was previously adapted to the Portuguese language by
Albuquerque [1]. The scale is constituted by four items that are measured on a
5-point scale from 1 (almost doesn’t apply) to 5 (almost totally applies). Since
the Cronbach alpha for this scale was .68, and since the exclusion of item 3,
which was the item with the content less related to the definition of the con-
struct, increased the alpha to .73, the referred item was dropped from the scale.
A sample item is “The members of this team could work a long time together”.

2.3 Radial Basis Functions Models

Radial basis functions can furnish response surfaces able to explore/explain the
nonlinear relationships between different input or explanatory variables and out-
put or response variable(s). Furthermore, RBFs are often used to predict the
response of a variable given the value of explanatory variables. For any given
set of data points, a RBF model (surface) can be calculated even for poorly
distributed data points in a high dimensional space. However, the RBF surface
landscape, i.e. the relationship between and beyond the data points, depends on
the choice of the basis function. Some RBFs can provide desirable trends while
other may exhibit undesirable trends. Numerical selection of the most appropri-
ate RBF for the given data set is advisable instead of an a priori choice based on
the literature [34]. A brief description of RBF model calculation is provided next.

RBF Interpolation Problems

Let y(x) denote the response for a given data point x (of n components) such
that the value of y is only known at a finite set of N input data points x1, . . . ,xN ,
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i.e., only y(xk) (k = 1, . . . , N) are known. A RBF interpolation model h(x) can
be generically represented as

h(x) =
N∑

j=1

αjϕ(‖x − xj‖), (1)

where ϕ(x) is the selected RBF, αj are the coefficients determined by the inter-
polation equations h(xk) = y(xk) (k = 1, . . . , N), ‖x − xj‖ corresponds to the

parameterized distance between x and xj , ||x − xj || =
√∑n

i=1 |θi|
(
xi − xj

i

)2
,

and θ1, . . . , θn are scalars [34]. Coefficients α1, . . . , αN in Eq. (1) are computed
for fixed parameters θi using the interpolation equations of the following linear
system:

N∑

j=1

αjϕ(||xk − xj ||) = y(xk), for k = 1, . . . , N. (2)

Multiquadric, ϕ(x) =
√

1 + x2, thin plate spline, ϕ(x) = x2 lnx, cubic spline,
ϕ(x) = x3, and Gaussian, ϕ(x) = exp(−x2), are examples of RBFs that are
commonly used to model linear, almost quadratic and cubic growth rates, as
well as exponential decay of the response, respectively [31].

Calculation of the RBF model h(x) in Eq. (1) requires the selection of a RBF
ϕ(x) and the choice of model parameters θ1, . . . , θn. While selection of the most
appropriate RBF for the given data set can be done iteratively by testing the
different possible choices of ϕ(x), there is an infinite number of possible choices
for θ1, . . . , θn. For different fixed sets of model parameters θ1, . . . , θn, distinct
models with different behaviors between data points are calculated for a given
selection of ϕ(x). Cross-validation (CV) can be used for model parameter tun-
ing leading to models with enhanced prediction capability [40]. Furthermore, the
most appropriate basis function ϕ(x) can be numerically computed using pre-
diction accuracy (CV error) as main criterion. The leave-one-out CV procedure
can be used in model parameter tuning for RBF interpolation [34]:

Algorithm 1 (Leave-one-out cross-validation for RBF interpolation)

1. Fix a set of model parameters θ1, . . . , θn.
2. For j = 1, . . . , N , construct the RBF model h−j(x) of the data points

(xk, y(xk)) for 1 ≤ k ≤ N, k �= j.
3. Set prediction error as the following CV root mean square error:

ECV (θ1, . . . , θn) =

√√√√ 1
N

N∑

j=1

(h−j(xj) − y(xj))2. (3)

The goal of model parameter tuning by CV is to find θ1, . . . , θn that minimize
the CV error, ECV (θ1, . . . , θn), so that the interpolation model has the highest
prediction accuracy when CV error is the measure. Using different θi allows the
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model parameter tuning to scale each variable xi based on its significance in
modeling the variance in the response, thus, has the benefit of implicit variable
screening built in the model parameter tuning.

2.4 RBF Neural Networks

Neural Networks (NN) is a class of bio-inspired computer algorithms that
attempt to mimic the human brain thinking process. This class of artificial
intelligence methods have been widely used in machine learning, data mining
or statistics. The main feature of NN is the ability to extract trends from large
amounts of data whose patterns are difficult to perceive by simple inspection
or to detect by other methods. Unlike computer algorithms that follow a set
of instructions, NN learn by mean of examples that will largely determine the
quality of the results obtained.

The human nervous system is composed by particular cells called neurons
that send signals rapidly through their myelinated projections (axons) with the
goal of inhibiting or exciting the neighbor neuron(s) or cell(s). The junctions
between neurons are called synapses and the network of connected neurons is
responsible for the human body perception of the world stimulus and its feed-
back. Similarly, NN algorithms consist of a large number of connected units
(neurons), typically organized in several layers, with the signal passing from the
input neuron layer to the output neuron layer in a feed-forward process. The
synapses between neurons are weighted connections and the learning process
can be simply described as finding the weights that enable the NN to best cap-
ture the trends buried in the data set. Typically, several computational stages
are required for an accurate learning process, where each stage updates the net-
work weights. There are many different forms of network architectures, signal
propagation or weights transformation. For a detailed description of different
types of NN, Schmidhuber provides an overview of deep learning using NN [37].
Here, RBF are used for a non-linear update of the weights of a multi-layer feed-
forward NN.

3 Results

Since the unit of analysis in the present study was the group, and team psycho-
logical capital was obtained from team members, it was necessary to aggregate
efficacy, hope, resilience and optimism to the team level (the remaining variables
were already at the group level). To justify aggregation, the Average Deviation
Index (ADM Index) developed by Burke, Finkelstein, and Dusig [7] was cal-
culated. The average ADM values obtained for efficacy, hope, resilience and
optimism were 0.43, 0.41, 0.45 and 0.42, respectively. Since all the values were
below the upper-limit criterion of 1.01, team members’ scores were aggregated,
with confidence, to the team level.

Table 1 displays the (Pearson) correlation analysis performed to assure that
team psychological capital and team learning are correlated with team viabil-
ity. Significant and positive correlations were found between the independent
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Table 1. Correlation analysis.

Viability Learning Psychological capital

Viability 1 .590∗∗ .499∗∗

Learning 1 .395∗∗

Psychological capital 1

Note: ∗∗p< .01.

variables, psychological capital and learning, and team viability. Significant and
positive correlation was also found between psychological capital and learning.
Despite that, the inclusion of both variables as predictors of team viability is
licit since in social sciences correlations of that magnitude are considered of
medium-size [5].

Table 2. Optimal CV errors for the data set.

Multiquadric CV error Thin plate CV error Cubic CV error Gaussian CV error

3.84 0.64 1.38 3.11

Fig. 1. Neural network architecture.

Optimal RBF model parameters θ1, . . . , θn of Eq. 3 were computed by mini-
mizing the CV error using a MATLAB implementation (fminsearch) of a derivati-
ve-free optimization algorithm called Nelder-Mead [29]. The optimal CV error
obtained for the different basis functions tested was used as proxy of their predic-
tion ability [34]. Optimal CV errors for the RBF interpolation models obtained
by using different basis functions are displayed in Table 2. Thin Plate RBF was
selected as basis function since the corresponding RBF model presented the
lowest CV error.

MATLAB Neural Network Toolbox [28] was used to compute the RBF NN
model. The data set was randomly divided into three subsets: training data set –
used by the network to adjust its weights during learning/fitting, validation data
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Fig. 2. R-values obtained by the RBF NN model for the different subsets considered.

set – used to halt training when network’s generalization is not improving – and
testing data set – to provide an independent measure of the network’s prediction
ability. The training data set considered 65% of the entire data set (53 data
points – teams), the validation data set 10% (8) and the training data set 25%
(21). The network architecture considered two inputs (psychological capital and
learning), one output (team viability) and 10 neurons in the fitting network’s
hidden layer as illustrated in Fig. 1. The network was trained/fitted using RBF
regression. R-values obtained for the three data subsets and the entire data
set are displayed in Fig. 2. The predicting ability inherent to the R-value (and
consequently R2-value) obtained for the training set is quite good. Since RBF
regression is an interpolation method, the R2-value for the data set where the
model is fit will be exactly one. Thus, in order to compare the results with the
RBF NN model, a Thin Plate RFB model was fit using the data set composed
by the training set and the validation set of the RBF NN model. Then, that
Thin Plate RBF model was used to predict team viability for the remaining 21
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Fig. 3. Prediction of linear, Thin Plate RBF and RBF NN models.

data points corresponding to the testing set of the RBF NN model. Figure 3
display the prediction of team viability for 21 data points using the RBF NN
model and the Thin Plate RBF model. In order to benchmark these results, the
following multiple linear regression model, obtained using SPSS, was also fitted
and tested considering the exact same fitting and testing data sets:

Team viability = 0.01 + 0.315 × (psychological capital) + 0.465 × (learning).

R2-values obtained by the linear model, the Thin Plate RBF model and the
RBF NN model for the testing data set were .39, .31 and .47, respectively.

Figure 4 display the relationships between both explanatory variables and
team viability, captured by the different models. Data points of the training set
and the testing set were added to the plots for a better perception of the scatter
in the data.
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Fig. 4. Three-dimensional surface of linear, Thin Plate RBF and RBF neural networks
models.

4 Discussion and Conclusions

It is possible to find many different models that present similar responses for a
given data set. This is also valid for models whose response is 100% accurate
for all data points (interpolation models) as RBF models. However, model’s
behavior between data points, i.e. trends or relationships between variables,
may be completely different for distinct models. A simple way to find the model
that present the most reliable trends is to verify which model present the most
accurate predictions for new data points.

Prediction results obtained by RBF NN model clearly outperform linear and
Thin Plate RBF model’s results. That is clear by simple inspection of Fig. 3 or
by comparing the R2-values obtained for the testing data set. Thus, the trends
or relationships between team psychological capital, team learning and team
viability are more reliable for the RBF NN model. These trends can be easily
inspected in Fig. 4. These plots, obtained by MATLAB, are actually dynamic 3D
surfaces whose inspection from different angles enable a better understanding of
the nonlinear trends. For the RBF NN response surface, an increase in either
team psychological capital or team learning leads to an increase in team viability
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up to a certain threshold where team viability cease to increase. As expected,
the linear response is a plane that presents similar trends except that they are
linear and thus team viablity always increase for an increase of either team
psychological capital or team learning. Finally, although the Thin Plate RBF
response surface presents a nonlinear trend similar to the RBF NN response
surface, it also presents many peaks (sharp oscilations). This is related to the
fact of RBF models being interpolation models and this particular data set
clearly do no favor interpolation type of methods.

The results presented revealed nonlinear patterns between the predictor vari-
ables, team psychological capital and team learning, and the criterion variable,
team viability. An increasing trend up to a certain threshold is obtained, followed
by a deflation for the highest values of the predictors. Thus, our results, which
extend the conclusions of previous studies to different samples and variables [13],
clearly highlight that more is not always better. Concerning team learning, the
present findings are in line with those obtained by Bunderson and Sutcliffe [6] and
also Dimas et al. [13], and add to the growing body of knowledge that considers
the negative effect on effectiveness of an excessive focus on learning. Hence, the
involvement of the team in learning behaviors such as exploring new ways of per-
forming the tasks, experimenting alternatives or discussing errors, is positive for
team results but when all the resources and energy of the team is focused on that
behaviors, goals achievement might suffer threatening the viability of the team.
As for team psychological capital, our results extends the findings obtained, at
the individual level, by Vancouver et al. [42], and also the remarks made by
Veraharen regarding the construct of self-efficacy [44], to the team level and to
the broader concept of psychological capital. Our findings highlighted that when
the levels of team psychological capital are too high, team viability might suffer,
probably because the team became overconfident, neglecting some important
aspects of the task and committing more errors, undermining, in consequence,
the future of the team.
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