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Abstract. Several heuristics for bandwidth and profile reductions have
been proposed since the 1960s. In systematic reviews, 133 heuristics
applied to these problems have been found. The results of these heuristics
have been analyzed so that, among them, 13 were selected in a manner
that no simulation or comparison showed that these algorithms could be
outperformed by any other algorithm in the publications analyzed, in
terms of bandwidth or profile reductions and also considering the com-
putational costs of the heuristics. Therefore, these 13 heuristics were
selected as the most promising low-cost methods to solve these prob-
lems. Based on this experience, this article reports that in certain cases
no heuristic for bandwidth or profile reduction can reduce the compu-
tational cost of the Jacobi-preconditioned Conjugate Gradient Method
when using high-precision numerical computations.

Keywords: Bandwidth reduction · Profile reduction · Conjugate Gradi-
ent Method · Graph labeling · Reordering algorithms · Sparse matrices ·
Graph algorithm · High-precision arithmetic · Ordering · Sparse sym-
metric positive-definite linear systems · Combinatorial optimization ·
Heuristics

1 Introduction

In several scientific and engineering fields, such as finite element analysis, com-
putational fluid mechanics, and structural engineering, a fundamental task is the
resolution of large sparse linear systems with the form Ax = b, where A is an
n × n sparse, symmetric, and positive-definite matrix, b is a vector of length n,
and x is an unknown vector (which is sought) of length n. Generally, the high-
est computational cost of the simulation is required in the resolution of these
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linear systems. A substantial amount of memory and a high processing cost are
necessary to store and to solve these large-scale linear systems. For the low-cost
solution of large and sparse linear systems, a heuristic for bandwidth or profile
reduction is often used so that the corresponding coefficient matrix A will have
narrow bandwidth and small profile. Thus, heuristics for bandwidth and pro-
file reductions are used to achieve low processing and storage costs for solving
large sparse linear systems [14,17]. In particular, profile reduction is employed
to reduce storage costs of applications that employ the skyline data structure [9]
to represent large-scale matrices.

Let A = [aij ] be a symmetric sparse n × n matrix. The bandwidth of line
i is βi(A) = i − min(j : (1 ≤ j < i) aij �= 0). Bandwidth of A is defined
as β(A) = max[(1 ≤ i ≤ n) βi(A)] = max[(1 ≤ i ≤ n) (i − min[j : (1 ≤
j < i)] | aij �= 0)]. The profile of A is defined as profile(A) =

∑n
i=1 βi(A).

The bandwidth and profile minimization problems are NP-hard [28,31]. Since
these problems have associations with an extensive variety of other problems
in scientific and engineering disciplines, several heuristics for bandwidth and
profile reductions have been proposed for reordering the rows and columns of
sparse matrices to solve the bandwidth and profile reduction problems.

A prominent algorithm for solving large-scale sparse linear systems is the
Conjugate Gradient Method (CGM) [21,26]. Duff and Meurant [8] showed that
a local ordering of the vertices of the corresponding graph of A can improve
cache hit rates so that a computational cost reduction of the CGM is reached.
Moreover, Burgess and Giles [3] and Das et al. [6] showed that such local ordering
can be attained by using a heuristic for bandwidth reduction. Moreover, one
should employ an ordering which does not lead to an increase of the number of
iterations of the CGM when a preconditioner is applied [15].

In this work, we analyze cases where selected heuristics for bandwidth
or profile reduction may not reduce the computational times of the Jacobi-
preconditioned CGM (JPCGM). In previous publications [14,16], we showed
preceding results and based on this experience [2,5,15,17], 13 heuristics were
selected as the most promising methods in this field. Thus, the main objective
of this work is to analyze the results of 13 potential state-of-the-art low-cost
heuristics for bandwidth and profile reductions (that were selected from system-
atic reviews [2,5,15,17]) when executed to reduce the computational cost of the
JPCGM using high-precision floating-point arithmetic.

Section 2 describes the systematic reviews accomplished to identify the poten-
tial best low-cost heuristics for bandwidth and profile reductions. Section 3
describes how the numerical experiments were conducted in this study. Section 4
shows the results. Finally, Sect. 5 addresses the conclusions.

2 Systematic Reviews

As described, since the bandwidth and profile reduction problems have con-
nections with a wide range of other problems in scientific and engineering
disciplines, a large number of heuristics for bandwidth and profile reductions
has been proposed. In systematic reviews, 133 heuristics for bandwidth and/or
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profile reductions were identified [2,5,15,17], published between the 1960s and
the present day, including a recent proposed heuristic for bandwidth and pro-
file reductions [13]. From the analysis performed, respectively, seven and six
heuristics for bandwidth and profile reductions were selected to be evaluated
in this computational experiment as potentially being the best low-cost heuris-
tics for bandwidth (Burgess-Lai [4], FNCHC [27], GGPS [38], VNS-band [30],
hGPHH [24], CSS-band [23]) or profile (Snay [35], Sloan [34], Medeiros-Pimenta-
Goldenberg (MPG) [29], NSloan [25], Sloan-MGPS [32]) reduction. The Reverse
Cuthill-McKee method with starting pseudo-peripheral vertex given by the
George-Liu algorithm (RCM-GL) [10] was selected in both systematic reviews
of heuristics for bandwidth and profile reductions. In particular, the RCM-GL
method [10] is contained in the Matlab software [36]. Therefore, from the 133
identified heuristics for bandwidth and profile reduction, 12 were selected to
be evaluated in this computational experiment because no other simulation or
comparison showed that these 12 heuristics could be superseded by any other
heuristics in the analyzed papers, concerning bandwidth or profile reduction,
when the computation costs of the given heuristic were also considered. Thus,
these 12 heuristics could be deemed as the most promising low-cost heuristics to
solve the problems.

The GPS heuristic [12] was not selected in these systematic reviews. In spite
of this, it was also implemented and its results were compared with these 12
heuristics in this computational experiment because it is one of the most classic
low-cost heuristics evaluated in the field for both bandwidth and profile reduc-
tions. Thus, 13 heuristics were implemented and/or evaluated in this work.

3 Description of the Tests, Implementation
of the Heuristics, Testing, and Calibration

A 64-bit executable program of the VNS-band heuristic (which was kindly pro-
vided by one of the heuristic’s authors) was used. This executable only runs with
instances up to 500,000 vertices.

The FNCHC-heuristic source code was also kindly provided by one of the
heuristic’s authors. With this, the source code was converted and implemented
in this present work using the C++ programming language.

The 11 other heuristics’ authors were requested for the sources and/or exe-
cutables of their algorithms. Some authors informed that they no longer had
the source code or executable, some authors did not answer, and other authors
explained that the programs could not be provided. Then, the 11 other heuristics
were also implemented using the C++ programming language so that the com-
putational costs of the heuristics could be properly compared [15]. Specifically,
the g++ version 4.8.2 compiler was used.

The IEEE 754 double-precision binary floating-point arithmetic is composed of
11 bits of exponent (ranging between 10−307 and 10307) and a matissa comprised of
53 bits, which describes approximately 16 decimal digits. Nowadays, this double-
precision floating-point arithmetic is adequately accurate for most scientific com-
puting applications. Nonetheless, for some scientific applications, the 64-bit IEEE
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arithmetic is no longer suitable for today’s large-scale numerical simulations. Thus,
some relevant scientific applications require high-precision floating-point compu-
tations. High-precision floating-point arithmetic is used in applications where the
execution time of arithmetic is not a limiting factor, or where accurate results with
many digits in the mantissa are needed. Some of these applications demand a sig-
nificand of 64 bits or more to reach numerically useful results. These applications
derive from numerous scientific applications, such as climate modeling, computa-
tional fluid dynamics (CFD) problems (e.g. vortex roll-up simulations), compu-
tational geometry, mesh generation, computational number theory, Coulomb N-
body atomic system simulations, experimental mathematics, large-scale physical
simulations performed on highly parallel supercomputers (e.g. studies of the fine
structure constant of physics), and quantum theory [1]. Particularly, mesh gen-
eration, contour mapping, and other computational geometry applications sub-
stantially trust on highly precise arithmetic, mostly when the domain is the unit
cube. The reason is that small numerical errors can induce geometrically ques-
tionable results. Such troubles are latent in the mathematics of the formulas com-
monly used in such computations and cannot be repaired without a considerable
effort [1]. Specifically, in the applications mentioned, portions of the code nor-
mally contain numerically sensitive computations. When using double-precision
floating-point arithmetic, these applications may return results with questionable
precision, depending on the stopping criteria used. These imprecise results may
in turn cause larger errors. On the other hand, it is normally cheaper and more
reliable to use high-precision floating-point arithmetic to overcome these troubles
[1]. Specifically, in this computational experiment, we used instances derived from
meshes generated in discretizations of partial differential equations (that govern
CFD problems) by finite volumes [19,20]. Hence, our numerical experiments will
focus onhigh-precision floating-point arithmetic.Weused theGNUMultiplePreci-
sion Floating-point Computations with Correct-Rounding (MFR) library with 256-
bit (when using instances originating from discretizations of the Laplace equation)
and 512-bit (when using instances contained in the University of Florida sparse
matrix collection) precisions.

Many heuristics evaluated here are highly dependent on the starting vertex.
Since Koohestani and Poli [24] did not explain which pseudo-peripheral vertex
finder was used, the George-Liu algorithm [11] for computing a pseudo-peripheral
vertex was used in this computational experiment. Hence, we will refer this
heuristic as hGPHH-GL.

It was not our objective that the results of the C++ programming language
versions of the heuristics supersede all the results of the original implementa-
tions. Our objective was to code reasonably efficient implementations of the
heuristics evaluated to make it possible an adequate comparison of the results
of the 13 heuristics. However, we tested and calibrated the C++ programming
language versions of the heuristics implemented to compare our implementa-
tions with the codes used by the original proposers of the heuristics to ensure
the codes we implemented were comparable to the algorithms that were orig-
inally proposed. We compared the results of the C++ programming language
versions of the heuristics with the results presented in the original publications.
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In particular, a previous publication [15] shows how the heuristics were imple-
mented, tested, and calibrated. The C++ programming language implementa-
tions of the heuristics obtained similar results in bandwidth or profile reductions
to the results presented in the original publications (see [15]).

Table 1 shows the characteristics of the five workstations used to perform the
simulations. Particularly, the Ubuntu 14.04 LTS 64-bit operating system was
used.

Table 1. Characteristics of the machines used to perform the simulations.

Machine Processor unit: IntelR© Cache memory Main memory (DDR3) Linux kernel

M1 CoreTM i3-2120 CPU 3.3GHz 3MB 8GB 1.333GHz 3.13.0-39-generic

M2 XeonTM E5620 CPU 2.4GHz 12MB 24GB 1.333GHz 3.13.0-44-generic

M3 CoreTM i5-3570 CPU 3.4GHz 6MB 8GB 1.333GHz 3.13.0-37-generic

M4 CoreTM i7-4510U CPU 2.0GHz 4MB 8GB 1.6GHz 3.16.0-23-generic

M5 CoreTM i7-4790K CPU 4.0GHz 8MB 12GB 1.6GHz 3.19.0-31-generic

Three sequential runs, with both a reordering algorithm and with the
JPCGM, were carried out with each instance. In addition, for this experimen-
tal analysis of 13 low-cost heuristics for bandwidth and profile reductions, we
followed the suggestions given by Johnson [22], aiming at reducing the compu-
tational cost of the JPCGM.

4 Numerical Experiments and Analysis

This section shows the results obtained in simulations using the JPCGM, exe-
cuted after applying heuristics for bandwidth and profile reductions. Section 4.1
shows the results of the resolutions of linear systems arising from the discretiza-
tion of the Laplace equation by finite volumes [19]. Section 4.2 shows the results
of the resolutions of linear systems contained in the University of Florida sparse
matrix collection [7].

Tables in this section show the dimension n of the respective coefficients
matrix of the linear system (or the number of vertices of the graph associated
with the coefficient matrix on it or the name of the instance contained in the
University of Florida sparse matrix collection), the name of the reordering algo-
rithms applied, the results with respect to profile and bandwidth reductions, the
average results of the heuristics in relation to the computational cost, in sec-
onds (s), and the memory requirements, in mebibytes (MiB). In addition, these
tables show the number of iterations and the total computational cost, in sec-
onds, of the JPCGM. Furthermore, in spite of the small number of executions
for each heuristic in each instance, these tables show the standard deviation
(σ) and coefficient of variation (Cv), referring to the total computational cost
of the JPCGM. Additionally, these tables show “–” in the first row of a set of
simulations performed with each instance. This means that no reordering algo-
rithm was used. With this result, one can verify the speed-down of the JPCGM
attained when using a heuristic for bandwidth or profile reduction, shown in the
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last columns of these tables. In the tables below, numbers in bold face are the
best results (up to two occurrences) in the β, profile, t(s), and m.(MiB) columns.
Figures in this section are presented as line charts for clarity.

4.1 Instances Originating from the Discretization of the Laplace
Equation by Finite Volumes

This section shows the results of the resolutions of linear systems arising from the
discretization of the Laplace equation by finite volumes [19]. These linear systems
are divided into two datasets: seven and eight linear systems ranging from 7,322
to 277,118 and from 16,922 to 1,115,004 unknowns comprised of matrices with
random order [see Fig. 1 and Tables 2 and 3 (with executions performed on the
M1 machine)] and originally ordered using a sequence given by the Sierpiński-
like curve [18,37] [see Fig. 2 and Tables 4 and 5 (with executions performed on
the M2 machine)], respectively.

Fig. 1. Speed-downs of the JPCGM obtained using several heuristics for bandwidth
and profile reductions applied to linear systems originating from the discretization of
the Laplace equation by finite volumes and composed of matrices with random order
(see Tables 2 and 3).

Fig. 2. Speed-downs of the JPCGM obtained using several heuristics for bandwidth
and profile reductions applied to linear systems originating from the discretization of
the Laplace equation by finite volumes and composed of matrices with a sequence given
by the Sierpiński-like order (see Tables 4 and 5).

Tables 2, 3, 4 and 5 show that Sloan’s heuristic almost always obtained the
best profile results in these datasets. In addition, these tables show that the
FNCHC heuristic achieved in general the best bandwidth results, but closely fol-
lowed by the RCM-GL and hGPHH-GL heuristics, which presented much lower
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Table 2. Resolution of three linear systems (derived from the discretization of the
Laplace equation by finite volumes and composed of matrices with random order) using
the JPCGM and vertices labeled by heuristics for bandwidth and profile reductions.

n Heuristic β profile Heuristic JPCGM σ Cv (%) Speed-

down

t(s) m.(MiB) iter. t(s)

7322 – 7248 16083808 – – 498 10 0.02 0.16 –

RCM-GL 80 396652 0.005 0.0 498 11 0.04 0.37 0.93

hGPHH-GL 80 406461 0.006 0.0 498 11 0.03 0.29 0.93

VNS-band 1599 966638 1.061 75.9 498 11 0.31 2.73 0.83

FNCHC 75 444803 2.273 0.5 498 13 0.05 0.36 0.70

GPS 78 404414 0.362 0.2 498 12 0.40 3.26 0.85

GGPS 79 397534 0.415 1.3 498 13 0.04 0.30 0.81

Burgess-Lai 152 407458 0.189 0.0 498 13 0.03 0.20 0.80

CSS-band 7190 16103602 1.079 40.9 498 14 0.06 0.48 0.71

Snay 1859 447914 0.240 0.3 498 14 0.10 0.03 0.72

Sloan 391 375254 0.010 0.3 498 14 0.05 0.38 0.73

NSloan 197 424476 0.004 0.3 498 15 0.01 0.07 0.72

Sloan-MGPS 312 374571 0.030 0.2 498 14 0.02 0.14 0.73

MPG 800 608671 0.010 0.2 498 15 0.03 0.17 0.72

15944 – 15902 76482022 – – 745 34 0.21 0.63 –

RCM-GL 121 1149442 0.020 0.0 745 39 0.04 0.10 0.87

hGPHH-GL 124 1231692 0.020 0.0 745 39 0.29 0.76 0.88

VNS-band 3916 5108940 1.190 196.7 745 40 0.49 1.23 0.82

FNCHC 113 1321180 5.850 1.3 745 43 0.11 0.26 0.69

GPS 118 1154030 1.580 0.5 745 42 1.38 3.31 0.78

GGPS 118 1210195 3.550 2.8 745 43 0.07 0.17 0.73

Burgess-Lai 212 1144254 1.090 0.0 745 44 0.07 0.16 0.75

CSS-band 15749 77021429 8.560 192.7 745 51 0.33 0.65 0.57

Snay 5862 1586436 1.020 0.5 745 47 0.06 0.13 0.70

Sloan 484 982693 0.020 0.3 745 47 0.02 0.04 0.72

NSloan 218 1222337 0.010 0.3 745 49 0.05 0.11 0.69

Sloan-MGPS 481 1002661 0.100 0.3 745 47 0.14 0.30 0.71

MPG 1277 1612396 0.030 0.3 745 48 0.20 0.41 0.70

34238 – 34059 357518296 – – 1069 105 0.41 0.39 –

RCM-GL 194 3411077 0.040 0.0 1069 114 0.90 0.79 0.93

hGPHH-GL 192 3759478 0.040 0.0 1069 113 0.11 0.10 0.93

VNS-band 2726 6767128 2.660 490.6 1069 116 1.23 1.06 0.89

FNCHC 192 3913543 15.440 4.0 1069 122 0.38 0.31 0.77

GPS 191 3545656 9.720 1.2 1069 118 0.59 0.50 0.82

GGPS 170 3415253 19.690 5.2 1069 122 0.11 0.09 0.75

Burgess-Lai 334 3282297 4.310 0.0 1069 125 0.29 0.23 0.81

CSS-band 33923 359144453 67.280 910.7 1069 155 0.63 0.41 0.48

Snay 21625 5150148 4.830 1.0 1069 145 0.53 0.36 0.70

Sloan 917 2578022 0.060 0.8 1069 144 0.03 0.02 0.73

NSloan 357 3608666 0.030 0.9 1069 153 0.14 0.09 0.69

Sloan-MGPS 795 2671240 0.300 0.9 1069 146 0.07 0.05 0.72

MPG 2322 3986576 0.060 0.9 1069 146 0.04 0.03 0.72
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Table 3. Resolution of four linear systems (derived from the discretization of the
Laplace equation by finite volumes and composed of matrices with random order) using
the JPCGM and vertices labeled by heuristics for bandwidth and profile reductions.

n Heuristic β profile Heuristic JPCGM σ Cv (%) Speed-
down

t(s) m.(MiB) iter. t(s)

75542 – 75490 1744941733 – – 1540 328 0.38 0.11 –

RCM-GL 274 12086129 0.1 0 1540 362 0.62 0.17 0.91

hGPHH-GL 277 13793938 0.1 0 1540 360 0.22 0.06 0.91

VNS-band 21310 42564399 3.7 1198 1540 365 1.35 0.37 0.89

FNCHC 269 13978910 40.8 7 1540 361 1.66 0.46 0.82

GPS 272 12086603 41.5 4 1540 371 1.52 0.41 0.80

GGPS 271 12405895 86.7 10 1540 391 0.44 0.11 0.69

Burgess-Lai 460 11175444 42.5 0 1540 396 0.64 0.16 0.75

CSS-band 74879 1747422045 692.6 3819 1540 497 1.33 0.27 0.28

Snay 47789 28972039 41.7 2 1540 468 0.61 0.13 0.64

Sloan 1521 8981209 0.2 1 1540 472 0.21 0.04 0.70

NSloan 534 12805249 0.1 1 1540 508 0.04 0.01 0.65

Sloan-MGPS 1236 9245713 1.0 1 1540 481 0.19 0.04 0.68

MPG 4020 14107424 0.2 1 1540 481 0.06 0.01 0.68

101780 – 101583 3169282786 – – 2173 631 0.36 0.06 –

RCM-GL 405 21399542 0.1 0 2173 683 1.81 0.26 0.92

hGPHH-GL 407 24041332 0.1 0 2173 684 0.30 0.04 0.92

VNS-band 5207 25033097 5.6 1638 2173 685 2.07 0.30 0.91

FNCHC 391 26974311 60.0 10 2173 699 1.41 0.20 0.83

GPS 405 21399542 73.1 5 2173 694 4.57 0.66 0.82

GGPS 400 21727818 153.2 16 2173 735 8.73 1.19 0.71

Burgess-Lai 745 19394495 4385.7 0 2173 741 0.50 0.07 0.12

CSS-band 101333 3160566736 1638.0 611 2173 944 2.03 0.22 0.24

Snay 64553 45830895 61.1 3 2173 886 0.12 0.01 0.67

Sloan 8845 14909417 0.3 2 2173 882 2.60 0.29 0.72

NSloan 7602 21266761 0.1 2 2173 951 2.53 0.27 0.66

Sloan-MGPS 8420 15400014 1.9 2 2173 902 2.78 0.31 0.70

MPG 10502 24115880 0.2 2 2173 906 2.50 0.28 0.70

192056 – 191738 11329772559 – – 2383 1305 0.72 0.06 –

RCM-GL 360 42578191 0.2 0 2382 1437 3.39 0.24 0.91

hGPHH-GL 364 48308977 0.3 0 2383 1429 0.12 0.01 0.91

VNS-band 11142 99018771 16.5 3195 2383 1443 6.79 0.47 0.89

FNCHC 348 48496246 114.8 21 2383 1469 1.65 0.11 0.82

GPS 371 41541059 256.0 10 2383 1475 3.57 0.24 0.75

GGPS 363 42925208 530.8 28 2383 1468 0.63 0.04 0.65

Burgess-Lai 621 40149530 349.6 0 2383 1580 0.19 0.01 0.68

CSS-band 191446 2737568773 793.5 1125 2383 1999 5.49 0.27 0.47

Snay 112715 158031137 262.2 6 2384 1835 6.77 0.37 0.62

Sloan 1963 30916653 0.7 4 2384 1815 0.49 0.03 0.72

NSloan 750 44537494 0.2 4 2384 1968 0.25 0.01 0.66

Sloan-MGPS 1759 31863871 4.2 4 2384 1858 1.06 0.06 0.70

MPG 5366 47979879 0.5 4 2384 1853 0.37 0.02 0.70

277118 – 277019 23512579029 – – 2771 2236 2.78 0.12 –

RCM-GL 421 74726891 0.4 0 2771 2383 5.18 0.22 0.94

hGPHH-GL 427 84714895 0.4 0 2771 2328 3.04 0.13 0.96

VNS-band 12132 97666318 32.1 4618 2771 2397 6.11 0.26 0.92

FNCHC 424 86076670 183.2 27 2771 2426 0.74 0.03 0.86

GPS 399 72378558 510.3 16 2771 2459 12.28 0.50 0.75

GGPS 420 75610158 1054.7 21 2771 2586 7.44 0.29 0.61

Burgess-Lai 793 66880423 401.9 0 2771 2614 0.85 0.03 0.74

CSS-band 276285 23509305627 1606.1 1680 2771 3314 26.97 0.81 0.45

Snay 107539 310401674 516.6 10 2771 3032 0.75 0.02 0.63

Sloan 2243 55586226 1.2 4 2771 3036 0.68 0.02 0.74

NSloan 909 77343800 0.3 4 2771 3294 0.01 0.01 0.68

Sloan-MGPS 2084 57032215 7.9 4 2771 3198 2.39 0.07 0.70

MPG 7281 89227523 0.8 4 2771 3200 1.26 0.04 0.70
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Table 4. Resolution of linear systems (ranging from 16,922 to 105,764 unknowns,
derived from the discretization of the Laplace equation by finite volumes and composed
of matrices ordered using a sequence determined by the Sierpiński-like curve) using the
JPCGM and vertices labeled by heuristics for bandwidth and profile reductions.

n Heuristic β profile Heuristic JPCGM σ Cv (%) Speed-
down

t(s) m.(MiB) iter. t(s)

16922 – 16921 1710910 – – 767 51 0.02 0.04 –

RCM-GL 115 1252527 0.02 0.0 767 53 0.73 1.40 0.974

hGPHH-GL 119 1321688 0.02 0.0 767 51 0.07 0.14 1.002

VNS-band 4756 2393029 1.29 144.7 767 52 0.19 0.37 0.969

FNCHC 114 1372628 8.21 2.0 767 51 0.04 0.09 0.865

GPS 115 1252527 3.25 0.5 767 53 0.24 0.47 0.915

GGPS 115 1321081 2.31 4.1 767 53 0.13 0.25 0.927

Burgess-Lai 224 1235707 0.70 0.0 767 54 0.30 0.56 0.941

CSS-band 16746 85797563 13.45 140.9 767 55 1.06 1.91 0.744

Snay 6212 1508415 1.56 0.5 767 74 0.11 0.15 0.682

Sloan 571 1074251 0.02 0.5 767 74 0.02 0.03 0.692

NSloan 229 1336588 0.01 0.3 767 75 0.01 0.02 0.684

Sloan-MGPS 462 1093326 0.12 0.3 767 75 0.05 0.06 0.685

MPG 1231 1750944 0.03 0.5 767 75 0.08 0.10 0.683

39716 – 39715 6309342 – – 1144 188 0.04 0.02 –

RCM-GL 195 4376986 0.05 0.0 1144 210 0.52 0.25 0.894

hGPHH-GL 192 4770829 0.05 0.0 1144 209 0.31 0.15 0.897

VNS-band 5863 9979067 2.32 327.2 1144 212 1.11 0.52 0.877

FNCHC 189 5021600 22.89 3.4 1144 211 1.00 0.47 0.803

GPS 180 4464634 9.05 0.8 1144 213 0.65 0.31 0.845

GGPS 194 4391324 19.90 3.1 1144 214 4.54 2.13 0.804

Burgess-Lai 335 4156848 6.63 0.0 1144 221 0.15 0.07 0.824

CSS-band 39346 480512986 341.56 537.9 1144 257 1.69 0.66 0.314

Snay 22597 6548607 8.67 1.2 1144 269 0.30 0.11 0.677

Sloan 830 3342149 0.08 1.0 1144 268 0.23 0.09 0.701

NSloan 372 4634523 0.03 1.0 1144 286 0.11 0.04 0.656

Sloan-MGPS 831 3461255 0.43 1.0 1144 275 0.24 0.09 0.682

MPG 2358 5222214 0.08 1.0 1144 274 0.17 0.06 0.685

68414 – 68413 14882117 – – 1514 430 0.03 0.01 –

RCM-GL 238 9598308 0.08 0.0 1514 481 1.09 0.23 0.894

hGPHH-GL 236 10705920 0.08 0.0 1514 481 0.39 0.08 0.894

VNS-band 516 17030717 4.59 557.4 1514 483 0.93 0.19 0.882

FNCHC 233 11325816 42.02 5.1 1514 485 1.66 0.34 0.817

GPS 225 9751463 28.90 1.5 1514 495 0.29 0.06 0.821

GGPS 233 9781546 68.94 6.2 1514 508 0.07 0.01 0.746

Burgess-Lai 440 8910920 30.69 0.0 1514 515 0.43 0.08 0.788

CSS-band 67862 1432183654 1962.01 2043.0 1514 591 3.97 0.67 0.168

Snay 43837 21823074 36.43 2.1 1514 609 0.11 0.02 0.666

Sloan 1284 7093207 0.17 1.0 1514 609 0.16 0.03 0.706

NSloan 442 10128234 0.06 1.0 1514 656 0.10 0.01 0.656

Sloan-MGPS 1082 7326579 0.96 1.0 1514 625 0.06 0.01 0.687

MPG 2811 11460778 0.16 1.0 1514 623 0.44 0.07 0.690

105764 – 105763 29560801 – – 1846 816 0.04 0.04 –

RCM-GL 311 18180951 0.13 0.0 1846 899 2.09 0.23 0.907

hGPHH-GL 309 20753083 0.14 0.0 1846 901 1.75 0.20 0.905

VNS-band 2809 33762228 9.38 857.2 1846 901 0.36 0.04 0.896

FNCHC 289 21067109 69.00 9.4 1846 905 2.95 0.33 0.837

GPS 299 18336159 60.95 2.1 1846 927 0.80 0.09 0.826

GGPS 306 18163269 136.02 7.5 1846 899 0.29 0.03 0.789

Burgess-Lai 483 16959146 112.25 0.0 1846 968 0.40 0.04 0.755

CSS-band 105406 3418070351 305.06 494.5 1846 1115 3.78 0.34 0.575

Sloan 1756 13247695 0.32 2.2 1846 1159 0.35 0.03 0.703

NSloan 602 19321158 0.10 1.2 1846 1255 0.76 0.06 0.650

Sloan-MGPS 1512 13685106 1.88 1.9 1846 1191 0.15 0.01 0.684

MPG 4447 20523176 0.27 1.2 1846 1167 2.19 0.19 0.699
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Table 5. Resolution of four linear systems (derived from the discretization of the
Laplace equation by finite volumes and composed of matrices originally ordered using
a sequence determined by the Sierpiński-like curve) using the JPCGM and vertices
labeled by heuristics for bandwidth and profile reductions.

n Heuristic β profile Heuristic JPCGM Cv (%) Speed-

down

t(s) m.(MiB) iter. t(s) σ

237086 – 237085 115804392 – – 2611 2629 8.69 0.33 –

RCM-GL 391 56621430 0.3 0 2612 2866 7.98 0.28 0.92

hGPHH-GL 393 64411087 0.3 0 2612 2852 3.88 0.14 0.92

VNS-band 1783 92303199 40.8 1912 2612 2858 5.97 0.21 0.91

FNCHC 388 64592246 177.0 20 2612 2859 1.31 0.05 0.87

GPS 392 56476790 392.3 13 2612 2965 5.43 0.18 0.78

GGPS 389 57030510 820.9 16 2612 2869 11.37 0.40 0.71

Burgess-Lai 718 52953332 698.3 0 2612 3100 0.90 0.03 0.69

CSS-band 236418 2682971255 1657.8 1107 2612 3637 25.22 0.69 0.50

Sloan 2044 41300807 1.0 7 2612 3661 3.25 0.09 0.72

NSloan 812 59082821 0.2 6 2612 3981 2.10 0.05 0.66

Sloan-MGPS 1898 42561396 6.2 6 2612 3777 1.33 0.04 0.70

MPG 5707 64716730 0.7 6 2612 3718 1.27 0.03 0.71

467504 – 467503 382386929 – – 3446 6972 2.65 0.04 –

RCM-GL 448 130166482 0.6 0 3446 7434 3.43 0.05 0.94

hGPHH-GL 445 149299971 0.6 0 3446 7423 6.17 0.08 0.94

VNS-band 5001 227019725 154.2 4904 3446 7409 2.46 0.03 0.92

FNCHC 449 156037685 371.9 40 3446 7416 6.92 0.09 0.90

GPS 455 129684974 1593.1 27 3446 7618 2.46 0.03 0.76

GGPS 438 132748941 3228.4 29 3446 8033 7.73 0.10 0.62

Burgess-Lai 862 119436630 895.2 0 3446 8071 3.74 0.04 0.78

CSS-band 466181 2526782462 9693.1 3644 3446 9490 6.99 0.07 0.36

Sloan 2498 95551358 2.4 10 3449 9676 13.96 0.14 0.72

NSloan 911 135054695 0.5 10 3449 10563 35.21 0.33 0.66

Sloan-MGPS 2251 98187318 14.2 10 3449 10053 49.93 0.50 0.69

MPG 7842 152632760 1.7 11 3449 9974 66.00 0.66 0.70

750446 – 750445 911516500 – – 4246 13660 5.64 0.07 –

RCM-GL 461 224589050 0.9 0 4245 14563 4.39 0.03 0.94

hGPHH-GL 471 257304543 1.0 0 4246 14629 7.03 0.05 0.93

FNCHC 715 304070803 615.5 60 4245 14676 0.23 0.01 0.89

Sloan 2441 164952184 4.0 21 4232 19223 36.40 0.19 0.71

NSloan 946 232760320 0.8 21 4232 20942 9.65 0.05 0.65

Sloan-MGPS 2264 169448464 24.4 21 4232 19857 38.68 0.19 0.69

MPG 7986 265072969 2.8 20 4232 19352 22.96 0.12 0.71

1015004* – 1015003 1580908606 – – 4557 20025 14.55 0.07 –

RCM-GL 462 316593383 1.0 0 4557 20726 84.12 0.41 0.97

hGPHH-GL 465 363030399 1.1 0 4557 20709 33.82 0.16 0.97

FNCHC 455 365943729 819.9 88 4569 21174 10.56 0.05 0.91

Sloan 2484 233117499 4.1 27 4557 20587 37.33 0.18 0.97

MPG 8107 375103029 2.4 27 4557 20682 38.37 0.19 0.97

*Executions performed on the M3 machine.

computational costs. Nevertheless, no gain was attained regarding the speed-up
of the JPCGM when using these heuristics. In particular, the FNCHC heuristic
presented a much higher computational cost than the RCM-GL, Sloan’s, MPG,
NSloan, Sloan-MGPS, and hGPHH-GL heuristics.
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A slight speed-up of the JPCGM applied to the linear system composed of
16,922 when using the hGPHH-GL heuristic (see Table 4) was reached, but this
gain is marginal. Moreover, a speed-down of the JPCGM was obtained when
using the other heuristics for bandwidth and profile reductions applied to the
other linear systems.

Tables 4 and 5 do not show results of Snay’s heuristic [35] applied to linear
systems larger than 68,414 unknowns. Snay’s heuristic obtained better results
(related to reduce the JPCGM computational cost) than the results of the CSS-
band [23] and NSloan [25] heuristics when applied to the linear systems composed
of 39,716 and 68,414 unknowns. However, Snay’s heuristic performed less favor-
ably than the other heuristics when applied to the linear system comprised of
16,922 unknowns (see Table 4).

The GPS [12], Burgess-Lai [4], GGPS [38], and CSS-band [23] presented
higher computational costs than the other heuristics [see t(s)(Heuristic) column
in Tables 3 and 5]. Consequently, Table 5 does not show the results of these
four heuristics applied to the linear systems composed of 750,446 and 1,015,004
unknowns, keeping in mind that the VNS-band execution program runs with
instances up to 500,000 unknowns. Furthermore, Table 5 does not show the
results of the NSloan [25] and Sloan-MGPS [32] heuristics applied to the linear
system composed of 1,015,004 unknowns because these two heuristics performed
less favorably than the five other heuristics when applied to linear systems con-
tained in this dataset.

4.2 Instances Contained in the University of Florida Sparse Matrix
Collection

Table 6 provides the characteristics of 11 linear systems (composed of symmet-
ric and positive-definite matrices) contained in the University of Florida sparse
matrix collection [7]. Tables 2, 3, 4 and 5 show that the RCM-GL [10], Sloan’s
[34], MPG [29], NSloan [25], Sloan-MGPS [32], and hGPHH-GL [24] heuristics
presented much lower computational costs than the other heuristics evaluated
in this computational experiment. Then, these six low-cost heuristics for band-
width or profile reduction evaluated in this study were applied to the dataset
presented in Table 6.

Table 6. Eleven linear systems (composed of symmetric and positive-definite matrices)
contained in the University of Florida sparse matrix collection.

Instance Size β profile Density (%) Description

nasa1824 1824 239 205547 1.18 Structure from NASA Langley

nasa2910 2910 859 525745 2.06 Structure from NASA Langley

sts4098 4098 3323 5217389 0.43 Finite element structural engineering matrix

nasa4707 4704 423 917562 0.47 Structure from NASA Langley

Pres Poisson 14822 12583 9789525 0.33 Computational fluid dynamics problem

olafu 16146 593 4951980 0.39 Structure from NASA Langley

raefsky4 19779 11786 19611188 0.34 Buckling problem for container model

nasasrb 54870 893 20311330 0.09 Structure from NASA Langley

thermal1 82654 80916 175625317 0.01 Unstructured finite element steady-state thermal problem

2cubes sphere 101492 100407 483241271 0.02 Finite element electromagnetics 2 cubes in a sphere

offshore 259789 237738 3588201815 0.01 3D finite element transient electric field diffusion
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Tables 7 and 8 and Fig. 3 show the results of the resolutions of 11 linear sys-
tems contained in the University of Florida sparse matrix collection using the
JPCGM and vertices labeled using heuristics for bandwidth and profile reduc-
tions. The hGPHH-GL heuristic obtained the best speed-up of the JPCGM when
applied to the Pres Poisson instance (see Table 7). On the other hand, speed-
downs of the JPCGM were obtained when using these six heuristics for band-
width and profile reductions when applied to the 10 other linear systems con-
tained in the University of Florida sparse matrix collection that were used here.

Among the heuristics evaluated, the Sloan-MGPS and Sloan’s (RCM-GL)
heuristics obtained (almost always) the best profile (bandwidth) results when
applied to the instances composed in this dataset. Nevertheless, speed-downs of
the JPCGM were obtained when using these heuristics (except the simulation
using the Pres Poisson instance).

5 Conclusions

The results of 13 heuristics for bandwidth and profile reductions applied to
reduce the computational cost of solving three datasets of linear systems
using the Jacobi-preconditioned Conjugate Gradient Method in high-precision
floating-point arithmetic are described in this paper. These heuristics were
selected from systematic reviews [2,5,15,17].

In experiments using three datasets composed of large-scale linear systems,
the hGPHH-GL heuristic performed best when applied to one linear system
aiming at reducing the computational cost of the JPCGM (see Table 7). On the
other hand, speed-downs of the JPCGM were obtained when applying these 13
heuristics for bandwidth and profile reductions to the other linear systems that
were used in this computational experiment. Thus, the attained results show that
in certain cases no heuristic for bandwidth or profile reduction can reduce the
computational cost of the Jacobi-preconditioned Conjugate Gradient Method
when using high-precision numerical computations.

Concerning the set of linear systems arising from the discretization of the
Laplace equation by finite volumes comprised of matrices with random order,
each vertex has exactly three adjacencies [19]. Probably because of this, relabel-
ing the vertices did not improve cache hit rates.

Regarding the set of linear systems originating from the discretization of
the Laplace equation by finite volumes and comprised of matrices originally
ordered using a sequence given by the Sierpiński-like curve [19], a large number of
cache misses may be occurred after applying heuristics for bandwidth and profile
reductions. Probably, the reason is that a space-filling curve already provides an
adequate memory-data locality so that a reordering algorithm is not useful in
such cases. We applied these 13 heuristics in large-scale linear systems and cache
memory is a relevant factor in the execution times of these simulations. Evidence
from the experiments described in this paper does allow the assertion that a
linear system should be studied carefully before using a heuristic for bandwidth
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Table 7. Resolution of seven linear systems contained in the University of Florida
sparse matrix collection using the JPCGM and vertices labeled using heuristics for
bandwidth and profile reductions

Instance Machine Heuristic β profile Heuristic JPCGM σ Cv (%) Speed-
up/down

t(s) m.(MiB) iter. t(s)

nasa1824 M1 – 239 205547 – – 1350 24 0.14 0.58 –

RCM-GL 282 229770 0.004 0.0 1350 25 0.10 0.38 0.96

hGPHH-GL 293 291203 0.003 0.0 1350 25 0.14 0.56 0.98

Sloan 1303 186725 0.005 0.0 1350 25 0.17 0.67 0.96

NSloan 415 284963 0.002 0.0 1351 26 0.14 0.54 0.94

Sloan-MGPS 1102 190128 0.012 0.0 1347 25 0.18 0.71 0.97

MPG 1519 516936 0.010 0.0 1350 26 0.16 0.61 0.94

nasa2910 M1 – 859 525745 – – 1846 133 0.32 0.24 –

RCM-GL 875 522223 0.018 0.0 1846 143 1.02 0.72 0.93

hGPHH-GL 869 1288759 0.016 0.0 1846 140 1.08 0.77 0.95

Sloan 2015 456322 0.018 0.0 1839 138 0.15 0.11 0.97

NSloan 1327 955899 0.010 0.0 1844 145 0.49 0.34 0.92

Sloan-MGPS 2010 460149 0.016 0.0 1842 139 0.16 0.12 0.96

MPG 2708 2288760 0.038 0.0 1842 147 0.02 0.01 0.91

sts4098 M4 – 3323 5217389 – – 590 20 0.01 0.03 –

RCM-GL 1165 2084237 0.009 0.0 590 22 0.07 0.30 0.87

hGPHH-GL 1171 2981815 0.008 0.0 588 22 0.39 1.80 0.90

Sloan 3195 518163 0.023 0.2 589 21 0.01 0.01 0.95

NSloan 3020 2505064 0.007 0.2 589 22 0.01 0.05 0.90

Sloan-MGPS 3351 461998 0.073 0.2 590 21 0.01 0.03 0.95

MPG 3729 961548 0.017 0.2 588 21 0.08 0.38 0.93

nasa4704 M4 – 423 917562 – – 4248 190 0.08 0.04 –

RCM-GL 419 918658 0.009 0.0 4245 201 0.81 0.40 0.94

hGPHH-GL 450 1079926 0.009 0.0 4244 202 4.37 2.16 0.94

Sloan 3084 834354 0.024 0.0 4244 204 0.62 0.30 0.93

NSloan 678 1076453 0.005 0.0 4247 210 2.46 1.17 0.90

Sloan-MGPS 2753 808577 0.056 0.0 4246 203 1.20 0.59 0.93

MPG 3680 2716364 0.074 0.0 4244 212 0.04 0.02 0.90

Pres Poiss. M4 – 12583 9789525 – – 1009 309 1.27 0.41 –

RCM-GL 326 3009635 0.060 0.0 1012 297 0.99 0.33 1.04

hGPHH-GL 364 3130744 0.059 0.0 1009 293 0.46 0.16 1.06

Sloan 642 2827171 0.066 0.3 1012 295 0.39 0.13 1.05

NSloan 594 3951006 0.044 0.3 1012 328 0.38 0.12 0.94

Sloan-MGPS 582 2834035 0.156 0.3 1009 294 0.94 0.32 1.05

MPG 14168 26556694 3.845 0.3 1009 297 0.02 0.01 1.03

olafu M3 – 593 4951980 – – 16146 6833 5.10 0.07 –

RCM-GL 553 5029301 0.146 0.0 16146 7253 32.13 0.44 0.94

hGPHH-GL 573 5165776 0.132 0.0 16146 7189 10.30 0.14 0.95

Sloan 6173 4768547 0.146 0.3 16146 7154 2.24 0.03 0.96

NSloan 4760 7334811 0.105 0.3 16146 7290 0.58 0.01 0.94

Sloan-MGPS 7775 4489770 0.171 0.3 16146 7219 3.00 0.04 0.95

MPG 14467 29376748 4.268 0.3 16146 7491 9.28 0.12 0.91

raefsky4 M4 – 11786 19611188 – – 11245 5862 1.05 0.02 –

RCM-GL 991 12553981 0.130 0.0 11157 6293 3.03 0.05 0.93

hGPHH-GL 1141 13120923 0.110 0.0 11182 6313 397.88 6.30 0.93

Sloan 6550 8587731 0.180 0.3 11180 6200 29.26 0.47 0.95

NSloan 2242 15308534 0.070 0.3 11246 6786 21.77 0.32 0.86

Sloan-MGPS 8378 7841072 0.340 0.3 11245 6411 4.27 0.07 0.91

MPG 18201 74604715 6.790 0.3 11248 6803 1.01 0.01 0.86

or profile reduction aiming at reducing the computational cost of the JPCGM
(and probably when using a preconditioned CGM or other iterative linear system
solver).
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Table 8. Resolution of four linear systems contained in the University of Florida
sparse matrix collection using the JPCGM and vertices labeled using several heuristics
for bandwidth and profile reductions.

Instance Machine Heuristic β profile Heuristic JPCGM σ Cv (%) Speed-
down

t(s) m.(MiB) iter. t(s)

nasasrb M1 – 893 20311330 – – 25326 27902 2.28 0.01 –

RCM-GL 586 19448635 0.3 0 25327 30242 14.94 0.05 0.92

hGPHH-GL 806 20545002 0.2 0 25326 28461 54.27 0.19 0.98

Sloan 5063 19055047 0.3 1 25320 29893 147.67 0.49 0.93

NSloan 4865 23564619 0.1 1 25326 31307 24.46 0.08 0.89

Sloan-MGPS 4932 18682599 0.6 1 25320 29713 60.37 0.20 0.94

MPG 45896 346820836 13.7 1 25326 32795 61.17 0.19 0.85

thermal1 M5 – 80916 175625317 – – 1885 456 0.75 0.17 –

RCM-GL 220 12017373 0.1 0 1885 562 1.21 0.22 0.81

hGPHH-GL 240 12997244 0.1 0 1885 556 0.26 0.05 0.82

Sloan 889 10487409 0.2 3 1885 537 0.19 0.04 0.84

NSloan 429 13393908 0.1 3 1885 594 0.12 0.02 0.77

SloanMGPS 661 10677120 0.7 3 1885 559 0.09 0.02 0.81

MPG 16857 10958622 0.2 3 1885 529 0.65 0.12 0.86

2cubes sph. M5 – 100407 483241271 – – 33 14 0.05 0.38 –

RCM-GL 4709 268149672 0.3 0 33 18 0.05 0.29 0.78

hGPHH-GL 4693 345191689 0.3 0 33 18 0.07 0.37 0.78

Sloan 11186 186478091 14.7 2 33 17 0.04 0.23 0.43

NSloan 9203 346819754 0.2 2 33 18 0.12 0.68 0.75

SloanMGPS 13446 200449820 5.8 2 33 17 0.04 0.21 0.60

MPG 95371 460302437 21.5 2 33 18 0.02 0.13 0.35

offshore M5 – 237738 3588201815 – – 1226 1952 1.73 0.09 –

RCM-GL 21035 2634951939 0.7 0 1226 2494 0.30 0.01 0.78

hGPHH-GL 23859 3897866179 0.7 0 1228 2519 9.04 0.36 0.78

Sloan 121957 1837918281 72.1 5 1237 2417 10.46 0.43 0.78

NSloan 102633 3264868562 0.7 5 1226 2638 11.08 0.42 0.74

SloanMGPS 124658 1510670726 141.6 5 1226 2489 9.35 0.38 0.74

MPG 253828 4262147507 260.5 5 1230 2438 1.25 0.05 0.72

Fig. 3. Speed-downs of the JPCGM obtained using six heuristics for bandwidth and
profile reductions applied to 11 linear systems contained in the University of Florida
sparse matrix collection (see Tables 7 and 8).

As a continuation of this work, we intend to implement and evaluate the fol-
lowing preconditioners: Algebraic Multigrid, incomplete Cholesky factorization,
threshold-based incomplete LU (ILUT), Successive Over-Relaxation (SOR),
Symmetric SOR, and Gauss-Seidel. To provide more specific detail, we intend to
study the effectiveness of the strategies when using incomplete or approximate
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factorization based preconditioners as well approximate inverse preconditioners.
These techniques shall be used as preconditioners of the Conjugate Gradient
Method and the Generalized Minimal Residual (GMRES) method [33] to eval-
uate their computational performance in conjunction with heuristics for band-
width and profile reductions. Parallel strategies of the above algorithms will also
be studied.

Extended (256-bit and 512-bit) precision was employed in this work. This
reduces rounding errors. However, it increases the execution times by a large
factor and it may not be performed when solving certain real problems. We
intend to examine what occurs in double-precision arithmetic in future studies.
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