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Abstract. We investigate the maximum base pair stackings problem
from RNA Secondary Structures prediction in this paper. Previously,
Ieong et al. defined a basic version of this maximum base pair stackings
problem as: given an RNA sequence, finding a set of base pairs to con-
stitute a maximum number of stackings, and proved it to be NP-hard,
where the base pairs are default under some biology principle and are
given implicitly. Jiang proposed a generalized version of this problem,
where the candidate base pairs are given explicitly as input and pre-
sented an approximation algorithm with a factor 8/3. In this paper, we
present a new approximation algorithm for the generalized maximum
base pair stackings problem by a two-stage local search method, improv-
ing the approximation factor from 8/3+ε to 5/2. Since we adopt only
two basic local operations, 1-substitutions and 2-substitutions, during
the local improvement stage, the time complexity can be bounded by
O(n7), much faster than the previous approximation algorithms.

1 Introduction

According to the central dogma of biology, Ribonucleic acids (RNAs) play an
important role in regulating genetic and metabolic activities. Moreover, as new
RNA sequences are constantly being discovered, in order to understand the bio-
logical functions of RNAs elaborately, we need to first know their structures.

An RNA is single-stranded chain and can be viewed as a sequence of
nucleotides (also known as bases, denoted by A, C, G and U). The order of A, C,
G, U ’s on the sequence form the primary structure of an RNA strand. An RNA
folds into a three-dimensional structure by forming hydrogen bonds between
nonconsecutive bases that are complementary, such as the Watson-Crick pairs
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A-U and C-G and the wobble pair G-U . The three-dimensional arrangement of
the atoms in the folded RNA molecule forms the tertiary structure; the collec-
tion of base pairs in the tertiary structure forms the secondary structure. The
secondary structure can in fact tell us where there are additional connections
between the bases, and where the RNA molecule could be folded. In [13], the
authors claimed that “the folding of RNA is hierarchical, since secondary struc-
ture is much more stable than tertiary folding”, which implies that the tertiary
folding would mostly obey the secondary structure. Since the three-dimensional
structure determines the function of the RNA to some extent, predicting the
secondary structure of RNA becomes a key problem to study RNA in a larger
and deeper scope.

In 1978, Nussinov et al. [9] initiated the computational study of RNA sec-
ondary structures prediction, but this problem is still not well-solved yet. The
biggest impediment is the existing of pseudoknots, which is composed of two
interleaving base pairs provided that we arrange the RNA sequence in a linear
order.

In the case where there is no pseudoknot, there have been a lot of positive
results. Almost all of them use a dynamic programming method [7–9,11,15,
16]. As a consequence, the optimal RNA secondary structure can be computed
roughly in O(n3) time and O(n2) space.

When pseudoknots do exist in some RNAs, the secondary structures predic-
tion problem is harder. Lyngsø and Pedersen [6] proved that determining the
optimal secondary structure possibly with pseudoknots is NP-hard under some
special energy functions. Akutsu [1] showed that it remains NP-hard, even if
the secondary structure requires to be planar. For limited types of pseudoknots,
polynomial-time algorithms have been presented [1,10,14].

According to Tinoco’s energy model [12], an RNA structure can be decom-
posed recursively into loops with independent free energy, the stacking loops
formed by two adjacent base pairs have negative energy, which stabilizes the
RNA structure. Hence Ieong et al. [3] initiated the study for the maximum
base pair stackings problem with arbitrary pseudoknots. They proved that it is
NP-hard to compute the planar secondary structure with the largest number
of stackings, and proposed a 2-approximation for the planar version and a 3-
approximation for the general version of this problem. Later, Lyngsø [5] proved
that the maximum base pair stacking loops problem without the planar restric-
tion remains NP-hard, even for binary sequences with 0–1 base pairs. He also
devised a polynomial-time approximation scheme (PTAS) for this problem, with
bases over a fixed-size alphabet Σ and the base pairs being a subset of Σ × Σ,
which runs in O(n|Σ| 1ε ) time. Unfortunately, this PTAS is impractical even for
|Σ| = 4 (e.g., Σ = {A,C,G,U}), and ε = 1/2.

Among all the above results, the base pairs are given implicitly, that is,
under some fix biology principle, e.g., Watson-Crick base pairs: A-U and C-G,
where any two such bases can form a base pair. As an alternative, the set of
candidate base pairs may be given explicitly as input, because there could be
additional conditions from comparative analysis which prevents two bases from
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forming a pair. This generalizes the maximum base pair stacking problem with
implicit base pairs, hence the problem remains NP-hard. Jiang [4] improved
the approximation factor for the maximum base pair stackings problem with
explicit base pairs to 8/3+ε. Jiang’s algorithm combines the greedy strategy of
Ieong’s approximation algorithm and Berman’s [2] approximation algorithm for
computing a Maximum Weight Independent Set in (d + 1)-claw-free graphs; to
be more precise, its approximation factor is 8/3+ε, and the time complexity is
O(nlogd

1
ε ).

In this paper, we devise a new approximation algorithm for the maximum
base pair stacking problems with explicit base pairs. Our method is based on
local search. The new approximation factor is 5/2, and the time complexity is
O(n7).

2 Preliminaries

Let S = s1s2 · · · sn be an RNA sequence of n bases on {A,C,G,U}. We say
that two bases si and si+1 (1≤ i ≤ n − 1) are continuous on S. A secondary
structure of S is a set of base pairs (si1 , sj1), (si2 , sj2), . . . , (sir

, sjr
), where

ik + 2 ≤ jk for all k = 1, . . . , r and no two base pairs share a base. Two
base pairs, such as (si, sj) and (si+1, sj−1) with i + 4 ≤ j, are said to be
adjacent. A stacking is a loop formed by two adjacent base pairs (si, sj) and
(si+1, sj−1), denoted by (si, si+1; sj−1, sj). A helix H of length q is composed of
q + 1 consecutive base pairs (si, sj), (si+1, sj−1), . . . , (si+q, sj−q), denoted by
(si, si+1, . . . , si+q; sj−q, sj−q+1, . . . , sj). (si, sj) and (si+q, sj−q) are called end-
ing base pairs of the helix H. We refer the segment of bases si, si+1, . . . , si+q

as the α-side of the helix, and sj−q, sj−q+1, . . . , sj as the β-side of the helix,
denoted by Hα and Hβ respectively. Note that there are exactly q stackings in
a helix of length q. A helix contains at least two stackings is called a long helix,
and a stacking is also called a short helix.

Now we present the formal definition of the problem to be studied in this
paper. An example is shown in Fig. 1.

Problem Description: Maximum Base Pair Stackings
Input: An RNA sequence S, and a set of candidate base pairs BP .
Output: A set of chosen base pairs to constitute a maximum number of stack-
ings.

Fig. 1. The optimal base pairs found: (s1,s5), (s2,s4); and (s6,s12), (s7,s11), (s8,s10)
and the maximum base pair stackings is 3. We cannot choose the base pair (s5,s13), as
the base s5 has been chosen in (s1,s5).
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3 Our Algorithm

In this section, we depict our algorithm in detail, where the main idea of our
algorithm is a two-stage local search. We firstly search for long helices by 1-
substitutions and some special 2-substitutions, without considering the short
helices. Then, we search for the remaining short helices, with the long helices
previously found unchanged. A base is free if it is not involved in any stacking,
otherwise, it is occupied. The stackings in set T are the output of our algorithm,
where T is initialized as the empty set. In the algorithm, we will perform the
following 3 operations of local search to obtain more stackings.

– Operation 1© (1-substitution local improvement 〈 q 〉): For a helix H of length
q (q ≥ 2) in T , replace it by other long helices with a total length of q′(q′ > q);
for a short helix in T , replace it by other short helices with a total length of
q′(q′ > 1).

– Operation 2© (2-substitution local improvement 〈 2, p 〉 (p ≥ 3)): For a helix
H of length 2 and another helix H ′ of length p (p ≥ 3) in T , replace H and an
ending base pair of H ′ by other long helices with a total length of p′(p′ > 3).

– Operation 3© (2-substitution local improvement 〈 2, 2 〉): For two helices H
and H ′ both of length 2 in T , Replace H and H ′ by other long helices with a
total length of p′(p′ > 4).

Algorithm 1. Long helices
1: for (q from 8 to 2) do
2: while ( there exists a helix of length q, with all its bases being free ) do
3: Put it into T ; mark its bases occupied.
4: end while
5: end for
6: Perform the operation 1© to the long helices in T until no other operation 1© can

not be performed.
7: Perform the operation 2©, 3© until no other operation 2© and 3© can not be per-

formed.

The following Algorithm 2 shows how to search short helices and locally
improve them by 1-substitutions.

Algorithm 2. Short helices
1: while ( there exists a short helix, with all its bases being free ) do
2: Put it into T ; mark its bases occupied.
3: end while
4: Perform the operation 1© to the short helices in T , until no other operation 1© can

not be performed.
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Theorem 1. The time complexity of Algorithms 1 and 2 is O(n7).

Proof. To generate an initial feasible solution, we search for long helices of length
at most 8, it takes O(n) time to find such a helix, and there are at most O(n)
such helices. In total, it takes O(n2) time to obtain an initial feasible solution.

During the 1-substitution local improvement process in Algorithm 1, each
long helix of length q (2 ≤ q ≤ 7) occupies 2q bases, while we possibly make use
of the 4 bases adjacent to them, so we search for long helices from these (at most)
2q + 4 bases, which means we can obtain at most 2q + 4 base pairs. These base
pairs can constitute at most (2q + 4)/3 long helices. To fix a helix, it suffices to
fix its starting base pair. Hence we have to search for at most (2q +4)/3 starting
base pairs, while fixing each starting base pair takes O(n) time. Consequently,
for each iteration of the 1-substitution local improvement process, it takes O(n6)
time.

During the 2-substitution local improvement process in Algorithm 1, we
choose a helix of length 2 and a single base pair from a helix of length greater
than 2, or two helices of length 2. In total they occupy 8 bases, while there are
at most 8 bases adjacent to them, hence we search for long helices from these (at
most) 16 bases. Similar to the above argument, it takes O(n5) time. By a similar
analysis, the time complexity of the 1-substitution local improvement process in
Algorithm 2 is O(n4).

Since the value of our solution is at most n, and the value of our solution
would increase by at least 1 during each local improvement step, the algorithm
executes at most n local improvements.

Finally, to check whether our solution cannot be further improved, we have
to check all the O(n2) pairs of long helices (at least one of which must be of
length 2), and check all the long helices of length less than 8 individually. In
summary, the time complexity of Algorithm 1 and Algorithm 2 is O(n7). ��

4 Approximation Factor Analysis

To analyze the performance of our algorithm, we should compare our solution
with the optimal solution. At the termination of our algorithm, there would not
be any stacking with its four bases being free, then, all the stacking in the optimal
solution would either be found by our algorithm or at least one of its bases be
occupied by stackings in our solution. For a stacking T ∗ = (si, si+1; sj−1, sj) in
the optimal solution, we say that it is destroyed by these helices in our solution
using si, si+1, sj−1 or sj (even if T ∗ is also in a stacking in our solution);
moreover, it can be destroyed by Hα (or Hβ), where H is helix and some bases
of si, si+1, sj−1 or sj belong to Hα (or Hβ). The following lemma shows an upper
bound of the number of stackings in the optimal solution which is destroyed by
some helices in our solution.

Lemma 1. A helix of length q in our solution can destroyed at most 2q + 4
stackings in the optimal solution.
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Proof. Let H = (si, si+1, . . . , si+q; sj−q, sj−q+1, . . . , sj) be a helix of length q.
It contains q + 1 base pairs, as well as 2(q + 1) bases. Each stacking in the
optimal solution is composed of two adjacent bases in one segment. The seg-
ment of bases si, si+1, . . . , si+q can constitute at most q + 2 adjacent bases
together with another two bases: si−1, si+q+1. Similarly, the segment of bases
sj−q, sj−q+1, . . . , sj can constitute at most q + 2 adjacent bases together with
another two bases: sj−q−1, sj+1. In total, at most 2q+4 stackings in the optimal
solution, using these bases, could be destroyed. ��
A stacking in the optimal solution is singly destroyed, if only one helix in our
solution using its bases, otherwise, it is multiply destroyed.

Lemma 2. At the termination of Algorithm 1, the number of stackings, which
are singly destroyed by a long helix H of length q (2 ≤ q ≤ 7) in our solution
and all of which can constitute long helices without H, is at most q.

Proof. Since otherwise, by replacing H, we would obtain some long helices with
more stackings, which means the Algorithm 1 would not terminate. ��
To analyze the performance of our algorithm, we divide the stackings in the
optimal solution into two parts: (1) stackings that are singly destroyed by some
helices in our solution; (2) stackings that are multiply destroyed by at least two
long helices in our solution. Then we assign the stackings in the optimal solution
to destroyed-sets of helices by our solution. For a helix of length 8 or more in
our solution, its destroyed-set DSH contains the stackings in the optimal solution
that are destroyed by it, and these stackings could appear in any other destroyed-
sets. For a long helix H of length q (2 ≤ q ≤ 7) in our solution, its destroyed-set
DSH contains the stackings in the optimal solution that are destroyed by it. For
a short helix H ′ in our solution, its destroyed-set DSH′ contains the stackings
in the optimal solution that are destroyed by it but not by any long helix. As
each stacking contributes a weight of 1 to the value in the optimal solution, we
assign the weight for destroyed-sets as follows:

– a singly destroyed stacking contributes a weight of 1 to the destroyed-set
containing it;

– a multiply destroyed stacking contributes a weight of 1/2 to each destroyed-set
containing it (see Fig. 2 for an example).

Obviously, the total weight of all the destroyed-sets would be greater than
or equal to the optimal solution value, since all the stackings in the optimal
solution are destroyed. To guarantee a 2.5 approximation ratio, it is sufficient to
show that, given each helix H of length q, with the weight of its destroyed-set
being W (DSH), it satisfies W (DSH)/q ≤ 2.5. Henceforth, we say a helix is safe
if the above condition is fulfilled.

Let H = (si, si+1, . . . , si+q; sj−q, sj−q+1, . . . , sj) be a helix of length q in our
solution, two consecutive bases sk, sk+1 (i ≤ k ≤ i + q − 1 or j − q ≤ k ≤ j − 1)
form a gap, if they are not in a common stacking in the optimal solution. Define
l(Hα) and l(Hβ) to be the total length of long helices in the optimal solution,
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Fig. 2. The stackings in the Hα side are singly destroyed and the stackings in the other
side are multiply destroyed by H and H ′.

that are singly destroyed by H, and use the bases from the α-side and the β-side
of H respectively. Define s(Hα) and s(Hβ) to be the number of short helices in
the optimal solution, that are singly destroyed by H, and also use the bases from
the α-side and the β-side of H respectively. Define g(Hα) and g(Hβ) to be the
number of gaps, in the α-side and the β-side of H respectively.

Lemma 3. At the termination of Algorithm 1, let H be a helix of length q

in our solution, s(Hα) ≤ g(Hα) + 1 + 	 q+2−max{1,l(Hα)+g(Hα)}
5 
, and s(Hβ) ≤

g(Hβ) + 1 + 	 q+2−max{1,l(Hβ)+g(Hβ)}
5 
.

Proof. We just prove the former inequality, since the other is exactly the same.
From the definition of s(Hα), the short helices cannot share common base pairs,
otherwise, they would form long helices. Therefore, the short helices and long
helices must be spaced by gaps or multiply destroyed stackings. At the termina-
tion of Algorithm 1, our solution only contains long helices, and each long helix
of length p (p ≥ 2) can occupy p + 1 bases, and destroy p + 2 stackings of a
helix in the optimal solution. Hence, between two short helices which are singly
destroyed by Hα, if there is no gap, there should be at least four stackings which
are multiply destroyed. In other words, without gaps, every 5 consecutive stack-
ing can contain a singly destroyed short helix. In case there is no gap and no
long helix, the singly destroyed short helices are spaced by segments of multiply
destroyed stackings, there would be one more singly destroyed short helix. So
we have an extra one in the inequality, meanwhile this short helix occupies two
consecutive bases. ��
In fact, it always holds that l(Hα) + s(Hα) + g(Hα) ≤ q + 2. Hence, when q = 3
and l(Hα) = 3, we have s(Hα) ≤ g(Hα) ≤ 1.

Now we show that most helices are safe, except a specific case, which we
would analyze separately.

Lemma 4. A helix H of length q, where q ≥ 8, is safe.

Proof. From Lemma 1, H can destroy at most 2q + 4 stackings in the optimal
solution, all of which are in the destroyed-set of H. Then, we have (2q + 4)/q ≤
2.5, provided that q ≥ 8. ��
Lemma 5. At the termination of Algorithm 1, a helix H of length q, where
3 ≤ q ≤ 7, is safe.
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Proof. From Lemma 1, H can destroy at most 2q + 4 stackings in the optimal
solution. At the termination of Algorithm 1, from Lemma 2, l(Hα) + l(Hβ) ≤ q.
Each singly destroyed stacking contributes a weight of 1 to the destroyed-set
of H, and each multiply destroyed stacking contributes a weight of 1/2 to the
destroyed-set of H, totally, we can show,

W (DSH)
q

≤ 3q + 4 + ρ

2q
(1)

From Lemma 3, we conclude that ρ ≤ 1, when q = 3; ρ ≤ 2, when q = 4; and
ρ ≤ 3, when 5 ≤ q ≤ 7. Therefore,

W (DSH)
q

≤ 5/2 (2)

In fact, even if we add a weight 1/2 to the numerator, the inequality still holds. ��
It remains to deal with the helices of length 2.

Lemma 6. Let H = (si, si+1, si+2; sj−2, sj−1, sj) be a helix of length 2 in our
solution, if l(Hα)=0, then the total weight of stackings in the optimal solution
assigned to H by Hα is at most 2.5.

Proof. From Lemma 3, we have, s(Hα) ≤ g(Hα)+1+ 	 2+2−max{1,g(Hα)}
5 
. That

means s(Hα) − g(Hα) ≤ 1. As there are at most 4 possible stackings in the
optimal solution using bases of Hα, besides the gaps and short helices, all the
other possible stackings can contribute a weight of 1/2 to the destroyed-set of H,
so we have s(Hα)+ 4−s(Hα)−g(Hα)

2 ≤ 2.5. (An example is shown in Fig. 3(a)). ��

Fig. 3. (a) Case 1: the Hα side is a singly destroyed stacking with a gap, and the Hβ

side is a singly destroyed stacking together with three multiply destroyed stackings,
and the total weight is at most be 5/2.(b) Case 2: the Hα and Hβ sides decide that H
gets a weight 3 when l(Hα) = 2 or l(Hβ) = 2.

Lemma 7. Let H = (si, si+1, si+2; sj−2, sj−1, sj) be a helix of length 2 in our
solution, if l(Hα) = 2, then the total weight of stackings in the optimal solution
assigned to H by Hα is at most 3.
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Proof. From Lemma 3, we have, s(Hα) ≤ g(Hα)+1+	 2+2−max{1,l(Hα)+g(Hα)}
5 
.

As there are at most 4 possible stackings in the optimal solution using bases of
Hα, if s(Hα) = 1, to split this short helix with the long helix, then g(Hα)=1, and
there would be no other possible stackings left. If s(Hα) = 0, besides the gaps
and short helices, all the other possible stackings can contribute a weight of 1/2
to the destroyed-set of H, so we have l(Hα)+ s(Hα)+ 4−l(Hα)−s(Hα)−g(Hα)

2 ≤ 3.
(An example is shown in Fig. 3(b).) ��

The following lemma can be obtained directly from Lemma 6.

Lemma 8. Let H = (si, si+1, si+2; sj−2, sj−1, sj) be a helix of length 2 in our
solution, if l(Hα) = l(Hβ) = 0, then H is safe.

Obviously, there could also be helices of length 2 which is not safe. Suppose
H = (si, si+1, si+2; sj−2, sj−1, sj) is such an unsafe helix, in this case, one of
l(Hα) and l(Hβ) could not be zero. Without loss of generality, we assume that
l(Hα) = 2 and l(Hβ) = 0. From Lemma 2, we have l(Hα) + l(Hβ) ≤ 2. Then
the total weight of stackings in the optimal solution assigned to H by Hα is at
most 3, and the total weight of stackings in the optimal solution assigned to H
by Hβ is at most 2.5. There are four possible stackings in the optimal solution
using the bases of Hβ , we define a weight-vector to record the weight of these
four stackings contributing to H,

V (Hβ) = 〈W (si−1si),W (sisi+1),W (si+1si+2),W (si+2si+3)〉,
where W (sk−1sk) ∈ {1, 0.5, 0}, i ≤ k ≤ i + 3. To make W (si−1si) + W (sisi+1) +
W (si+1si+2) + W (si+2si+3) ≤ 2.5, since there could not be two continuous 1’s,
V (Hβ) has two choices: either V (Hβ) contains exactly one 1 and three 0.5’s; or
V (Hβ) contains exactly two 1’s, one 0.5, and one zero. More specifically, V (Hβ)
has the following configurations: (a) 〈1, 0.5, 0.5, 0.5〉 or symmetrically 〈0.5, 0.5,
0.5, 1〉, (b) 〈0.5, 1, 0.5, 0.5〉 or symmetrically 〈0.5, 0.5, 1, 0.5〉, (c) 〈1, 0, 1, 0.5〉
or symmetrically 〈0.5, 1, 0, 1〉. (See Fig. 4 for examples.) We have the following
lemmas.

Fig. 4. (a),(b) and (c) are the examples of configuration (a),configuration (b) and
configuration (c). They are all unsafe.
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Lemma 9. At the termination of Algorithm 1, configuration (a) could not exist.

Proof. Omitted due to space constraint. ��
We can observe that either configuration (b) or configuration (c) contains two
continuous weight 〈1, 0.5〉 with the weight of 1/2 being from a stacking using
sj and sj+1, and the weight of 1 being from a stacking using sj−1 and sj .
Without loss of generality, let the stacking S1

H using sj−1 and sj be the stacking

singly destroyed by Hβ , and the stacking S
1
2
H = (sj , sj+1; sr, sr+1) be a multiply

destroyed stacking, which is destroyed by both Hβ and H ′ = (H ′
α,H ′

β) where
H ′

α = (sx−p, sx−p+1, . . . , sx) and H ′
β = (sy−p, sy−p+1, . . . , sy) and where x = r.

But sj+1 could be possible occupied by another long helix H ′′ in our solution,

which means the stacking S
1
2
H is commonly destroyed by H, H ′ and H ′′. Then

we reassign the weight of S
1
2
H as follows:

– If S
1
2
H is destroyed by only H and H ′, we assign the total weight 1 of S

1
2
H to

the destroyed-set of H ′.
– If S

1
2
H is destroyed by H, H ′ and H ′′, we assign a weight of 1/2 to each of the

destroyed-set of H ′ and H ′′.

It is obviously that, under this weight assignment, H is always safe, no matter
whether V (Hβ) is in configuration (b) or configuration (c). We still have to prove
that under this new weight assignment, H ′ and H ′′ are safe.

Lemma 10. At the termination of Algorithm 1, if S
1
2
H is destroyed by only Hβ

and H ′
α, then p = 2 and l(H ′

α) = l(H ′
β) = 0; moreover, there cannot be a stacking

in the optimal solution using sx and sx−1, which is singly destroyed by H ′
α.

Proof. We show that if any of the three consequences in the lemma does not hold,
there would exist feasible local improvement for our solution, which contradicts
the assumption that Algorithm 1 has terminated.

If p ≥ 3, by removing H and the base pair (sx, sy), we could obtain a helix
of length 2 which is singly destroyed by H, as well as a helix of length 2, which
is composed of the stacking singly destroyed by Hβ and an adjacent stacking
multiply destroyed by both Hβ and H ′

α.
If l(H ′

α) + l(H ′
β) = 2, by removing H and H ′, we could obtain a helix of

length 2 which is singly destroyed by H, a helix of length 2 which is singly
destroyed by H ′, as well as a helix of length 2, which is composed of the stacking
singly destroyed by Hβ and an adjacent stacking multiply destroyed by both Hβ

and H ′
α.

Now consider that case when there is a stacking in the optimal solution using
sx and sx−1, which is singly destroyed by H ′

α. By removing H and H ′, we could
obtain the helix of length 2 which is singly destroyed by H, as well as a helix of
length 3, which is composed of the stacking singly destroyed by Hβ , an adjacent
stacking multiply destroyed by both Hβ and H ′

α, and the stacking using sx and
sx−1 singly destroyed by H ′

α. In all these cases, a local improvement is possible. ��
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Lemma 11. The weight reassignment cannot generate two new continuous
stackings, both of which contributing a weight of one to the destroyed-set of H ′.

Proof. The weight assignment only involves the weight of S
1
2
H . If S

1
2
H is destroyed

by only H and H ′, from Lemma 10, S
1
2
H cannot be adjacent to a stacking which

contributes a weight of one to H ′. If S
1
2
H is destroyed by H, H ′ and H ′′, the

weight assignment cannot generate a new stacking which contributes a weight
of 1 to H ′ or H ′′. ��
Lemma 11 indicates that, if H ′ cannot be replaced by 1-substitution after the
termination of Algorithm 1, then it still cannot be replaced by any 1-substitution
local improvement, even if S

1
2
H is singly destroyed by H ′.

Now, we show that, after the weight reassignment, H ′ remains safe. It can be
shown similarly that H ′′ would be safe as well, since viewing from H, the role
of H ′ and H ′′ is equivalent.

Lemma 12. If p ≥ 3, then H ′ is safe.

Proof. From Lemma 11, no matter how much weight H ′ contributes from the
weight reassignment, there would not be two new continuous stackings, both
of which contributes a weight of one to the destroyed-set of H ′. Since H ′ can-
not be replaced by any 1-substitution local improvement, Lemma 1 still holds.
Lemma 3 holds since we only keep long helix in our solution at the termination
of Algorithm 1. By the same argument as in Lemma 5, we can conclude that the
lemma holds. ��
Lemma 13. If p = 2 and S

1
2
H is destroyed by only H and H ′, then H ′ is safe.

Proof. From Lemma 11, no matter how much weight H ′ contributes from the
weight reassignment, there would not be two continuous stackings, both of which
contributes a weight of one to the destroyed-set of H ′. Then, following Lemma 8,
H ′ is safe. ��
Lemma 14. If p = 2 and if S

1
2
H is destroyed by H, H ′ and H ′′, then H ′ is safe.

Proof. Omitted due to space constraint. ��
Lemma 15. At the termination of Algorithm 2, every short helix H is safe.

Proof. There would not be any long helix left after Algorithm 1, hence a short
helix can only destroy some other short helices. A short helix occupies four bases,
then it can destroy at most 4 short helices in the optimal solution. By the 1-
substitution local improvement process, among the destroyed short helices, at
most one of them could be singly destroyed. All the other short helices must be
multiply destroyed, each of which contributing a weight of 1/2 to the destroy set
of H. Hence, we have,

W (DSH) ≤ 1 + 3/2 = 2.5,

and we are done. ��
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Theorem 2. Our algorithm approximates the maximum base pair stackings
within a factor 5/2.

Proof. At the termination of Algorithm 2, all the stackings in the optimal solu-
tion would be destroyed. (Recall that if some stackings are also found by our
algorithm, we consider them to be destroyed by themselves.) If a stacking in the
optimal solution is singly destroyed by some helix H, it contributes a weight of
1 to W (DSH); if a stacking in the optimal solution is multiply destroyed, it con-
tributes a weight of 1/2 to two of the helices destroying it; if the weight of some
stacking in the optimal solution is reassigned, its total contribution remains 1.
Consequently, the total weight assigned to the destroyed-set of all the helices
in our solution is exactly the value of the optimal solution. From Lemmas 12,
13, 14, 15, the weight contributed by each helix is at most 2.5 times of its own
length. Since the total length of helices is exactly the value in our solution, then
we are done. ��

5 Concluding Remarks

In this paper, we investigate the maximum base pair stackings problem, which is
a well-defined combinatorial problem from RNA secondary structures prediction.
We obtain a 5/2-approximation by a two-stage local search method together with
an amortization analysis. A direction for future research is to further improve
the approximation factor. In our algorithm, we use only 1-substitutions and 2-
substitutions. In fact, as we discussed in this paper, using 1-substitutions alone
cannot reach this ratio.
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