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Abstract. This paper discusses the problem of covering and hitting a
set of line segments L in R

2 by a pair of axis-parallel squares such that
the side length of the larger of the two squares is minimized. We also
discuss the restricted version of covering, where each line segment in L is
to be covered completely by at least one square. The proposed algorithm
for the covering problem reports the optimum result by executing only
two passes of reading the input data sequentially. The algorithm proposed
for the hitting and restricted covering problems produces optimum result
in O(n log n) time. All the proposed algorithms are in-place, and they
use only O(1) extra space. The solution of these problems also give a√

2 approximation for covering and hitting those line segments L by two
congruent disks of minimum radius with same computational complexity.

Keywords: Two-center problem · Covering line segments by squares ·
Two pass algorithm · Computational geometry

1 Introduction

Covering a point set by squares/disks has drawn interest to the researchers due
to its applications in sensor network. Covering a given point set by k congruent
disks of minimum radius, known as k-center problem, is NP-Hard [12]. For k = 2,
this problem is referred to as the two center problem [3,5,6,8,9,13].

A line segment �i is said to be covered (resp. hit) by two squares if every
point (resp. at least one point) of �i lies inside one or both of the squares. For a
given set L of line segments, the objective is to find two axis-parallel congruent
squares such that each line segment in L is covered (resp. hit) by the union of
these two squares, and the size of the squares is as small as possible. There are
mainly two variations of the covering problem: standard version and discrete
version. In discrete version, the center of the squares must be on some specified
points, whereas there are no such restriction in standard version. In this paper,
we focus our study on the standard version of covering and hitting a set L of
line segments in R

2 by two axis-parallel congruent squares of minimum size.
As an application, consider a sensor network, where each mobile sensor is

moving to and fro along different line segment. The objective is to place two
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base stations of minimum transmission range so that each of mobile sensors are
always (resp. intermittently) connected to any of the base stations. This problem
is exactly same as to cover (resp. hit) the line segments by two congruent disks
(in our case axis-parallel congruent squares) of minimum radius.

Most of the works on the two center problem deal with covering a given point
set. Kim and Shin [11] provided an optimal solution for the two center problem of
a convex polygon where the covering objects are two disks. As mentioned in [11],
the major differences between the two-center problem for a convex polygon P and
the two-center problem for a point set S are (i) points covered by the two disks
in the former problem are in convex positions (instead of arbitrary positions),
and (ii) the union of two disks should also cover the edges of the polygon P . The
feature (i) indicates the problem may be easier than the standard two-center
problem for points, but feature (ii) says that it might be more difficult. To the
best of our knowledge, there are no works on covering or hitting a set of line
segments by two congruent squares of minimum size.

Related Work: Drenzer [4] covered a given point set S by two axis-parallel
squares of minimum size in O(n) time, where where n = |S|. Ahn and Bae [10]
proposed an O(n2 log n) time algorithm for covering a given point set S by two
disjoint rectangles where one of the rectangles is axis parallel and other one is
of arbitrary orientation, and the area of the larger rectangle is minimized. Two
congruent squares of minimum size covering all the points in S, where each one is
of arbitrary orientation, can be computed in O(n4 log n) time [1]. The best known
deterministic algorithm for the standard version of two-center problem for a point
set S is given by Sharir [13] that runs in O(n log9 n) time. Eppstein [5] proposed
a randomized algorithm for the same problem with expected time complexity
O(n log2 n). The standard and discrete versions of the two-center problem for a
convex polygon P was first solved by Kim and Shin [11] in O(n log3 n log log n)
and O(n log2 n) time respectively. Hoffmann [7] solved the rectilinear 3-center
problem for a point set in O(n) time. However none of the algorithms in [1,4,7]
can handle the line segments.

Our Work: We propose in-place algorithms for covering and hitting n line
segments in R

2 by two axis-parallel congruent squares of minimum size. We also
study the restricted version of the covering problem where each object needs to be
completely covered by at least one of the reported squares. The time complexities
of our proposed algorithms for these three problems are O(n), O(n log n) and
O(n log n) respectively, and these work using O(1) extra work-space. The same
algorithms work for covering/hitting a polygon, or a set of polygons by two
axis-parallel congruent squares of minimum size. We show that the result of
this algorithm can produce a solution for the problem of covering (resp. hitting)
these line segments by two congruent disks of minimum radius in O(n) (resp.
O(n log n)) time with an approximation factor

√
2.
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1.1 Notations and Terminologies Used

Throughout this paper, unless otherwise stated a square is used to imply an
axis-parallel square. We will use the following notations and definition.

Symbols used Meaning

pq and |pq| the line segment joining two points p and q, and its length

x(p) (resp. y(p)) x- (resp. y-) coordinates of the point p

|x(p) − x(q)| horizontal distance between a pair of points p and q

|y(p) − y(q)| vertical distance between a pair of points p and q

s ∈ pq the point s lies on the line segment pq

�efgh an axis-parallel rectangle with vertices at e, f , g and h

size(S) size of square S; it is the length of its one side

LS(S), RS(S) Left-side of square S and right-side of square S
TS(S), BS(S) Top-side of square S and bottom-side of square S

Definition 1. A square is said to be anchored with a vertex of a rectangle
R = �efgh, if one of the corners of the square coincides with that vertex of R.

2 Covering Line Segments by Two Congruent Squares

LCOVER problem: Given a set L = {�1, �2, . . . , �n} of n line segments (pos-
sibly intersecting) in R

2, the objective is to compute two congruent squares
S1 and S2 of minimum size whose union covers all the members in L.

In the first pass, a linear scan is performed among the objects in L, and four
points a, b, c and d are identified with minimum x-, maximum y-, maximum x-
and minimum y-coordinate respectively among the end-points of L. This defines
an axis-parallel rectangle R = �efgh of minimum size that covers L, where
a ∈ he, b ∈ ef , c ∈ fg and d ∈ gh. We use L = |x(c)−x(a)| and W = |y(b)−y(d)|
as the length and width respectively of the rectangle R = �efgh, and we assume
that L ≥ W . We assume that S1 lies to the left of S2. S1 and S2 may or may
not overlap (see Fig. 1). We use σ = size(S1) = size(S2).

Lemma 1

(a) There exists an optimal solution of the problem where LS(S1) and RS(S2)
pass through the points a and c respectively.

(b) The top side of at least one of S1 and S2 pass through the point b, and the
bottom side of at least one of S1 and S2 pass through the point d.
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Fig. 2. (a) Configuration 1 and
(b) Configuration 2 of squares S1

and S2

Thus in an optimal solution of the LCOVER problem, a ∈ LS(S1) and
c ∈ RS(S2). We need to consider two possible configurations of an optimum
solution (i) b ∈ TS(S2) and d ∈ BS(S1), and (ii) b ∈ TS(S1) and d ∈ BS(S2).
These are named as Configuration 1 and Configuration 2 respectively (see
Fig. 2).

Observation 1

(a) If the optimal solution of LCOVER problem satisfies Configuration 1, then
the bottom-left corner of S1 will be anchored at the point h, and the top-right
corner of S2 will be anchored at the point f .

(b) If the optimal solution of LCOVER problem satisfies Configuration 2, then
the top-left corner of S1 will be anchored at the point e, and the bottom-right
corner of S2 will be anchored at the point g.

We consider each of the configurations separately, and compute the two axis-
parallel congruent squares S1 and S2 of minimum size whose union covers the
given set of line segments L. If σ1 and σ2 are the sizes obtained for Configura-
tion 1 and Configuration 2 respectively, then we report min(σ1, σ2).

Consider the rectangle R = �efgh covering L, and take six points k1, k2, k3,
k4, v1 and v2 on the boundary of R satisfying |k1f | = |ek3| = |hk4| = |k2g| = W
and |ev1| = |hv2| = L

2 (see Fig. 3). Throughout the paper we assume h as the
origin in the co-ordinate system, i.e. h = (0, 0).

Observation 2

(i) The Voronoi partitioning line λ1 of the corners f and h of R = �efgh with
respect to the L∞ norm1 is the polyline k1z1z2k4, where the coordinates of its
defining points are k1 = (L − W,W ), z1 = (L/2, L/2), z2 = (L/2,W − L/2)
and k4 = (W, 0) (see Fig. 3(a)).

(ii) The Voronoi partitioning line λ2 of e and g of R = �efgh in L∞ norm is
the polyline k3z1z2k2 where k3 = (W,W ) and k2 = (L−W, 0) (see Fig. 3(b)).

1 L∞ distance between two points a and b is given by max(|x(a)−x(b)|, |y(a)−y(b)|).
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Note that, if W ≤ L
2 , then the voronoi partitioning lines λ1 and λ2 for both the

pairs (f, h) and (e, g) will be same, i.e., λ1 = λ2 = v1v2, where v1 = (L
2 , 0)

and v2 = (L
2 ,W ).

Lemma 2

(a) For Configuration 1, All the points p inside the polygonal region
ek1z1z2k4h satisfy d∞(p, h) < d∞(p, f), and all points p inside the polyg-
onal region k1fgk4z2z1 satisfy d∞(p, f) < d∞(p, h) (see Fig. 3(a)).

(b) Similarly for Configuration 2, all points p inside polygonal region
ek3z1z2k2h, satisfy d∞(p, e) < d∞(p, g), and all points p that lie inside the
polygonal region k3fgk2z2z1, satisfy d∞(p, g) < d∞(p, e) (see Fig. 3(b)).

Lemma 3. If S1 and S2 intersect, then the points of intersection i1 and i2
will always lie on voronoi partitioning line λ1 = k1z1z2k4 (resp. λ2 = k3z1z2k2)
depending on whether S1 and S2 satisfy Configuration 1 or Configuration 2.

Our algorithm consists of two passes. In each pass we sequentially read each
element of the input array L exactly once. We consider W > L

2 only. The other
case i.e. W ≤ L

2 can be handled in the similar way.

Pass-1: We compute the rectangle R = �efgh, and the voronoi partitioning
lines λ1 and λ2 (see Fig. 3) for handling Configuration 1 and Configuration 2.
We now discuss Pass 2 for Configuration 1. The same method works for Con-
figuration 2, and for both the configurations, the execution run simultaneously
keeping a O(1) working storage.

Pass-2: λ1 splits R into two disjoint parts, namely R1 = region ek1z1z2k4h and
R2 = region fk1z1z2k4g. We initialize σ1 = 0. Next, we read elements in the
input array L in sequential manner. For each element �i = [pi, qi], we identify
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its portion lying in one/both the parts R1 and R2. Now, considering Lemma 2
and Observation 1, we execute the following:

�i lies inside R1: Compute δ = max(d∞(pi, h), d∞(qi, h)).
�i lies inside R2: Compute δ = max(d∞(pi, f), d∞(qi, f)).
�i is intersected by λ1: Let θ be the point of intersection of �i and λ1, pi ∈ R1

and qi ∈ R2. Here, we compute δ = max(d∞(pi, h), d∞(θ, h), d∞(qi, f)).

If δ > σ1, we update σ1 with δ. Similarly, σ2 is also computed in this pass
considering the pair(e, g) and their partitioning line λ2. Finally, min(σ1, σ2) is
returned as the optimal size along with the centers of the squares S1 and S2.

Theorem 1. Given a set of line segments L in R
2 in an array, one can compute

two axis-parallel congruent squares of minimum size whose union covers L by
reading the input array only twice in sequential manner, and maintaining O(1)
extra work-space.

3 Hitting Line Segments by Two Congruent Squares

Definition 2. A geometric object Q is said to be hit by a square S if at least
one point of Q lies inside (or on the boundary of) S.
Line segment hitting (LHIT) problem: Given a set L = {�1, �2, . . . , �n} of

n line segments in R
2, compute two axis-parallel congruent squares S1 and

S2 of minimum size whose union hits all the line segments in L.
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Fig. 4. Two axis-parallel congruent squares S1 and S2 hit line segments in L

The squares S1 and S2 may or may not be disjoint (see Fig. 4). We now
describe the algorithm for this LHIT problem.

For each line segment �i, we use LP (�i), RP (�i), TP (�i) and BP (�i) to denote
its left end-point, right end-point, top end-point and bottom end-point using the
relations x(LP (�i)) ≤ x(RP (�i)) and y(BP (�i)) ≤ y(TP (�i)). Now we compute
four line segments �a, �b, �c, and �d ∈ L such that one of their end-points a, b,
c and d, respectively satisfy the following

a = min
∀�i∈L

x(RP (�i)), b = max
∀�i∈L

y(BP (�i)), c = max
∀�i∈L

x(LP (�i)), d = min
∀�i∈L

y(TP (�i))
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We denote the other end point of �a, �b, �c and �d by a′, b′, c′ and d′,
respectively. The four points a, b, c, d define an axis-parallel rectangle R =
�efgh of minimum size that hits all the members of L (as per Definition 2),
where a ∈ he, b ∈ ef , c ∈ fg and d ∈ gh (see Fig. 4). We use L = |x(c) − x(a)|
and W = |y(b) − y(d)| as the length and width of the rectangle R, and assume
L ≥ W . Let S1 and S2 be the two axis-parallel congruent squares that hit the
given line segments L optimally, where S1 lies to the left of S2.

Observation 3. (a) The left side of S1 (resp. right side of S2) must not lie to
the right of (resp. left of) the point a (resp. c), and (b) the top side (resp. bottom
side) of both S1 and S2 cannot lie below (resp. above) the point b (resp. d).

For the LHIT problem, we say S1 and S2 are in Configuration 1, if S1 hits
both �a and �d, and S2 hits both �b and �c. Similarly, S1 and S2 are said to be
in Configuration 2, if S1 hits both �a and �b, and S2 hits both �c and �d.

Without loss of generality, we assume that S1 and S2 are in Configuration 1.
We compute the reference (poly) line D1 (resp. D2) on which the top-right corner
of S1 (resp. bottom-left corner of S2) will lie. Let T1 (resp. T2) be the line passing
through h (resp. f) with slope 1. Our algorithm consists of the following phases:

1. Computation of the reference lines D1 and D2.
2. Computation of event points for the top-right (resp. bottom-left) corner of

S.1 (resp. S2) on D1 (resp. D2).
3. Searching for pair (S1, S2) that hit all the line segments in L and

max(size(S1),
size(S2)) is minimized.

Computation of the reference lines D1 and D2: The reference line D1 is
computed based on the following four possible orientations of �a and �d

(i) y(LP(�a)) ≥ y(RP(�a)) and x(TP(�d )) < x(BP(�d )): Here D1 is the
segment pq on T1 where p is determined (i) by its x-coordinate i.e. x(p) =
x(d), if |ha| < |hd| (see Fig. 5(a)), (ii) by its y-coordinate i.e. y(p) = y(a),
if |ha| ≥ |hd| (see Fig. 5(b)). The point q on T1 satisfy x(q) = x(f).
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(ii) y(LP(�a)) ≥ y(RP(�a)) and x(TP(�d )) ≥ x(BP(�d )): Here,
if |ha| < |hd| (see Fig. 6(a)), then the reference line D1 is a polyline pqr,
where (i) y(p) = y(a) and x(p) satisfies |x(p) − x(a)| = vertical distance of
p from the line segment �d, (ii) the point q lies on T1 satisfying x(q) = x(d)
and (iii) the point r lies on T1 satisfying x(r) = x(f).
If |ha| ≥ |hd| (see Fig. 6(b)), then the reference line D1 is a line segment pq,
where p, q lies on T1, and p satisfies y(p) = y(a) and q satisfies x(q) = x(f).

(iii) y(LP(�a)) < y(RP(�a)) and x(TP(�d )) ≤ x(BP(�d )): This case is similar
to case (ii), and we can compute the respective reference lines.

(iv) y(LP(�a)) < y(RP(�a)) and x(TP(�d )) > x(BP(�d )): There are two
possible subcases:
(A) If �a and �d are parallel or intersect (after extension) at a point to the
right of he (Fig. 7(a,b)), then the reference line D1 is a polyline pqr, where
(a) if |ha| < |hd| (Fig. 7(a)), then (1) y(p) = y(a) and |x(p) − x(a)| = the
vertical distance of p from �d, (2) the points q and r lie on T1 satisfying
x(q) = x(d) and x(r) = x(f), (b) if |ha| > |hd| (Fig. 7(b)), then (1) x(p) =
x(d) and |y(p)− y(d)| = the horizontal distance of p from �a, (2) the points
q and r lie on T1 satisfying y(q) = y(a) and x(r) = x(f).

(B) If extended �a and �d intersect at a point to the left of he (Fig. 7(c,d)),
then D1 is a polyline pqrs, where
(i) the line segment pq is such that for every point θ ∈ pq, the horizontal
distance of θ from �a and the vertical distance of θ from �d are same.
(ii) the line segment qr is such that for every point θ ∈ qr, we have
if |ha| < |hd| then |x(θ)−x(a)| = vertical distance of θ from �d (Fig. 7(c)),
else |y(θ) − x(d)| = horizontal distance of θ from �a, (Fig. 7(d))
(iii) the point s lies on T1 satisfying x(s) = x(f).

In the same way, we can compute the reference line D2 based on the four
possible orientations of �b and �c. The break points/end points of D2 will be
referred to as p′, q′, r′, s′ depending on the appropriate cases. From now onwards,
we state the position of square S1 (resp. S2) in terms of the position of its top-
right corner (resp. bottom-left corner).
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Observation 4. The point p ∈ D1 (resp. p′ ∈ D2) gives the position of minimum
sized axis-parallel square S1 (resp. S2) that hit �a and �d (resp. �b and �c).

Computation of discrete event points on D1and D2: Observe that the line
segments in L that hits the vertical half-line below the point p ∈ D1 (resp. above
the point p′ ∈ D2), or the horizontal half-line to the left of the point p ∈ D1

(resp. to the right of the point p′ ∈ D2) will be hit by any square that hits �a

and �d (resp. �b and �c), and these line segments need not contribute any event
point on D1 (resp. D2). For each of the other segments �i ∈ L, we create an event
point e1i (resp. e2i ) on D1 (resp. D2) as follows:

(i) p is an event point on D1 and p′ is an event point on D2 (see Observation 4)
(ii) If �i lies completely above D1 (resp. D2), then we compute an event point

e1i = (xi1 , yi1) on D1 (resp. e2i = (xi2 , yi2) on D2) where yi1 = y(BP (�i))
(resp. xi2 = x(RP (�i))). (e.g. e11 for �1 and e24 for �4 in Fig. 8).

(iii) If �i lies completely below D1 (resp. D2), we compute an event point e1i =
(xi1 , yi1) on D1 (resp. e2i = (xi2 , yi2) on D2) where xi1 = x(LP (�i)) (resp.
yi2 = y(TP (�i))). (e.g. e13 for �3 and e26 for �6 in Fig. 8).

(iv) If �i intersects with D1 (resp. D2) at point p1 (resp. q1), then we create the
event point e1i on D1 (resp. e2i on D2) according to the following rule:

(a) If the x(BP (�i)) > x(p1) (resp. x(TP (�i)) < x(q1)), then we take p1
(resp. q1) as the event point ei

1 (resp. ei
2). (e.g. e14 for �4 in Fig. 8).

(b) If x(BP (�i)) < x(p1) then if BP (�i) lies below D1 then we consider the
point of intersection by D1 with the vertical line passing through the
BP (�i) as the event point e1i (see e12 for �2 in Fig. 8), and if BP (�i) lies
above D1 then we consider the point of intersection D1 with the horizontal
line passing through BP (�i) as the event point e1i (see e15 for �5 in Fig. 8).

(c) If x(TP (�i)) > x(q1) then if TP (�i) lies above D2 then we consider the
point of intersection by D2 with the vertical line passing through TP (�i)
as the event point e2i , and if TP (�i) lies below D2 then we consider the
point of intersection D2 with the horizontal line passing through TP (�i)
as the event point e2i .
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Observation 5

(i) An event e1i on D1 shows the position of the top-right corner of the minimum
sized square S1 that hits �a, �d and �i, and an event e2i on D2 shows the
position of the bottom-left corner of the minimum sized square S2 that hits
�b, �c and �i.

(ii) The square S1 whose top-right corner is at e1i on D1 hits all those line seg-
ments �j whose corresponding event points e1j on D1 satisfies x(h) ≤ x(e1j ) ≤
x(e1i ). Similarly, the square S2 whose bottom-left corner is at ei

2 on D2 hits
all those line segments �j whose corresponding event point e2j on D2 satisfies
x(e1i ) ≤ x(e1j ) ≤ x(f).

Let us consider an event point e1i , and the corresponding square S1. We can
identify the size and position of the other square S2 that hit the line segments �j

which were not hit by S1 in linear time. Observe that, as the size of S1 increases,
the size of S2 either decreases or remains same. Thus max(size(S1), size(S2))
is a convex function, and we can compute the minimum value of this function
in O(log n) iterations.

We initially set α = 1 and β = n. In each iteration of our in-place algo-
rithm, we compute μ = �α+β

2 �, and compute the μ-th smallest element e∗

among {e1i , i = 1, 2, . . . , n}, and define S1 in O(n) time [2]. Next, in a linear
pass, we compute S2 for hitting the line segments �j that are not hit by S1. If
size(S1) < size(S2) then we set α = μ, otherwise we set β = μ to execute the
next iteration. If in two consecutive iterations we get the same μ, the process
terminates.

Similarly, we can determine the optimal size of the congruent squares S1 and
S2 in Configuration 2. Finally we consider that configuration for which the
size of the congruent squares is minimized. Thus we get the following result:

Theorem 2. The LHIT problem can be solved optimally in O(n log n) time
using O(1) extra work-space.

4 Restricted Version of LCOVER Problem

In restricted version of the LCOVER problem, each line segment in L is to
be covered completely by atleast one of the two congruent axis-parallel squares
S1 and S2. We compute the axis-parallel rectangle R = �efgh passing through
the four points a, b, c and d as in our algorithm for LCOVER problem. As
in the LCOVER problem, here also we have two possible configurations for
optimal solution. Without loss of generality, we assume that S1 and S2 satisfy
Configuration 1. We consider two reference lines D1 and D2, each with unit
slope that passes through h and f , respectively. These reference lines D1 and
D2 are the locus of the top-right corner of S1 and bottom-left corner of S2,
respectively. For each line segment �i, we create an event point e1i = (xi1 , yi1)
on D1 (resp. e2i = (xi2 , yi2) on D2) as follows:
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(i) If �i lies completely above D1 (resp. D2), then the event point e1i on D1

(resp. e2i on D2) will satisfy yi1 = y(TP (�i)) (resp. xi2 = x(LP (�i))).
(ii) If �i lies completely below D1 (resp. D2) then the event point e1i on D1 (resp.

e2i on D2) will satisfy xi1 = x(RP (�i)) (resp. yi2 = y(BP (�i))).
(iii) If �i intersects with D1 then we create the event point e1i on D1 as follows:

Let the horizontal line through TP (�i) intersect with D1 at point p, and the
vertical line through BP (�i) intersect with D1 at point q. If x(p) > x(q),
then we take p (else q) as the event point on D1.

(iv) If �i intersects with D2, then we create the event point e2i on D2 as follows:
Let the vertical line through BP (�i) intersect with D2 at point p, and the
horizontal line through TP (�i) intersect with D2 at point q. If x(p) > x(q),
then we take q (else p) as the event point on D2.

Observation similar to Observation 5 in LHIT problem also holds for this
problem where S1 and S2 cover L with restriction. Thus, here we can follow the
same technique as in LHIT problem to obtain the following result:

Theorem 3. The restricted version of LCOVER problem can be solved opti-
mally in O(n log n) time using O(1) extra work-space.

5 Covering/Hitting Line Segments by Two Congruent
Disks

In this section, we consider problems related to LCOVER, LHIT and
restricted LCOVER problem, called two center problem, where the objective
is to cover, hit or restricted-cover the given line segments in L by two congruent
disks so that their (common) radius is minimized. Figure 9 demonstrates a cover-
ing instance of this two center problem. Here, we first compute two axis-parallel
squares S1 and S2 whose union covers/ hits all the members of L optimally as
described in the previous section. Then we report the circum-circles D1 and D2

of S1 and S2 respectively as an approximate solution of the two center problem.

Lemma 4. A lower bound for the optimal radius of two center problem for L
is the radius r′ of in-circle of the two congruent squares S1 and S2 of minimum
size that cover/ hit/ restricted-cover L; i.e. r′ ≤ r∗.

The radius r of the circum-circle D1 and D2 of the squares S1 and S2 is
√

2
times of the radius r′ of their in-circles. Lemma 4 says that r′ ≤ r∗. Thus, we
have

Theorem 4. Algorithm Two center generates a
√

2 approximation result for
LCOVER, LHIT and restricted LCOVER problems for the line segments in L.
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