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Abstract. For each integer m ≥ 2, every Boolean function f can be
expressed as a unique multilinear polynomial modulo m, and the degree
of this multilinear polynomial is called its modulo m degree. In this paper
we investigate the modulo degree complexity of total Boolean functions
initiated by Parikshit Gopalan et al. [8], in which they asked the fol-
lowing question: whether the degree complexity of a Boolean function
is polynomially related with its modulo m degree. For m be a power of
primes, it is already known that the module m degree can be arbitrarily
smaller compare to the degree complexity (see Sect. 2 for details). When
m has at least two distinct prime factors, the question remains open.
Towards this question, our results include: (1) we obtain some nontrivial
equivalent forms of this question; (2) we affirm this question for some
special classes of functions; (3) we prove a no-go theorem, explaining
why this problem is difficult to attack from the computational complex-
ity point of view; (4) we show a super-linear separation between the
degree complexity and the modulo m degree.

1 Introduction

The polynomial representation of Boolean functions in different characteristics is
a powerful tool in extensive areas of computer science, such as machine learning
[12,13,16,18], computational complexity [1–3,19–21,23,25], explicit combinato-
rial constructions [5,7,9,10]. In this paper, we investigate the polynomial degree
of a function.

The modulo m degree of a Boolean function f , denoted by degm(f), is the
degree of the unique multilinear polynomial representing f over Z/mZ. In addi-
tion, we denote deg0(f) (where the underlie ring is Z) simply by deg(f). A central
topic here is to investigate the relationship between module m degrees for dif-
ferent m. From the definition it is clear that for any f , degm(f) ≥ degm′(f)
if m′ is a factor of m, particularly, deg(f) ≥ degm(f). This is because the
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polynomial representing f over Z/mZ can be obtained from the representa-
tion over Z by taking each coefficient modulo m. The gap between deg(f)
and degm(f) can be arbitrarily large when m is a prime: consider the func-
tion f(x) = (x1 + · · · + xn)m−1 mod m, it is easy to see f is Boolean due to
Fermat’s little theorem, degm(f) ≤ m − 1, and deg(f) = Ω(n). Actually, the
gap can be arbitrarily large even when m is a prime power [6].

In the seminal paper, Gopalan et al. [8] showed a general principle: low degree
polynomials modulo p are hard to compute by polynomials in other characteris-
tics. More precisely, let f be a Boolean function which depends on n variables,
p and q be distinct primes, then

degq(f) ≥ n

�log2 p� degp(f)p2 degp(f)
.

Moreover, they also showed that it’s still hard even to approximate, which implies
most known lower bounds for AC0[q] circuits.

In this work, we focus on the relation between deg(f) and degm(f). As men-
tioned above, deg(f) ≥ degm(f), and the equality can be achieved by AND
function. For the other direction, the gap can be arbitrarily large for prime
powers [6]. The situation becomes different when m has at least two distinct
prime factors p and q: according to the result in [8] as mentioned above, we have
degm(f) ≥ max{degp(f),degq(f)} = Ω(log n) = Ω(log deg(f)). Gopalan et al.
[8] asked what is the largest possible separation between deg(f) and degm(f).
Here we conjecture these quantities are polynomially related:

Conjecture 1. Let f be a boolean function and m be an integer which has at
least two distinct prime factors, then

deg(f) ≤ poly(degm(f)).

Our Results. Towards Conjecture 1, we first give some equivalent conjectures
that might easier to solve. More precisely, we can replace the degree complexity
on the left side by some other complexity measures that could be exponentially
smaller than deg(f), such as the minimum certificate complexity etc.

We also confirm the conjecture for some special classes of functions, such as
k-uniform hypergraph properties and functions with small alternating numbers.

Theorem 1. For any non-trivial k-uniform hypergraph property f on n vertices
and any integer m with at least two distinct prime factors, we have

deg(f) = O(degm(f)k).

Theorem 2. Let f be a boolean function, then for any m ≥ 2,

deg(f) = O(alt(f) · degm(f)2),

where alt(f) is the alternating number of f .
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Note that deg6(f) = max{deg2(f),deg3(f)} according to the Chinese
Remainder Theorem, thus Conjecture 1 for the case m = 6 is equivalent to
conjecture that the module 3 degree of any polynomial P2 over F2 with low
degree must be large if the degree of the function represented by P2 is large. The
following no-go theorem somehow explains why this problem is hard to solve
even for this simplest case from the computational complexity point of view.

Theorem 3. Given a polynomial P2(x1, x2, . . . , xn) over F2 with poly(n) mono-
mials, it’s impossible to decide whether deg3(P2) = n or not in polynomial time,
unless NP = RP .

Finally, in the direction to disprove this conjecture, we provide a quadratic
separation. As we will see in Sect. 2, Conjecture 1 doesn’t lose generality only
focusing on the case m = p1p2, where p1 and p2 are two distinct primes.

Theorem 4. For any two distinct primes p1 and p2, there exists a sequence of
boolean functions f , s.t:

degp1p2
(f) = O(deg(f)1/2).

We wonder whether this is the largest separation between degp1p2
(f) and deg(f).

Organization. We present some preliminaries in Sect. 2, and give other equiva-
lent conjectures in Sect. 3. We confirm this conjecture for k-uniform hypergraph
properties and functions with small alternating number in Sect. 4 and present a
no-go theorem and a super-linear separation in Sect. 5. Finally, we conclude this
paper in Sect. 6.

2 Preliminaries

Let f : {0, 1}n → {0, 1} be a Boolean function, and R be a commutative
ring containing {0, 1} with characteristic m, we say a multilinear polynomial
P (x1, · · · , xn) ∈ R[x1, · · · , xn] represents f if P (x) = f(x) for any x ∈ {0, 1}n.
From the Mobius inversion formula, such a polynomial always exists and is
unique. Moreover, the degree of P only depends on the characteristic of R[6],
thus we can denote the degree of P by degm(f). In the paper we will only
consider the case where R = Z/mZ and denote such polynomials by Pm(x).

We list some basic facts in the following, proofs of which can be found in [6].

Fact 1. Suppose the polynomial representation of f is
∑

S⊆[n] CS

∏
i∈S xi, then

the representation over Z/mZ should be
∑

S⊆[n](CS mod m)
∏

i∈s xi.

For example, let f be the parity function, i.e., x1 ⊕ · · · ⊕ xn. The polynomial
representing f over Z is

∑
∅�=S⊆[n](−2)|S| ∏

i∈S xi with deg(f) = n from the
Mobius inverse formula, the representation over F2 is

∑
i xi with deg2(f) = 1

by taking each coefficient modulo 2, and similarly the representation over F3 is∑
∅�=S⊆[n]

∏
i∈S xi with deg3(f) = n. Indeed, it is not hard to see that degp(f) =

n for every prime p 	= 2.
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Fact 2. For any Boolean function f , we have deg(f) ≥ degm(f) for all m.
Similarly degm(f) ≥ degm′(f) if m′|m.

The above fact implies degm(f) ≤ degmk(f). The following fact shows that
they are always within a factor 2k − 1 of each other.

Fact 3. For any Boolean function f , and any integers m ≥ 2, k ≥ 1, we have

degm(f) ≤ degmk(f) ≤ (2k − 1) degm(f).

Now recall the function f(x) = (x1 + · · · + xn)m−1 mod m with degm(f) ≤
m−1 and deg(f) = Ω(n) for prime m, as mentioned in the introduction. Indeed,
such functions also exist for power of primes.

Fact 4. For any prime power m, there exists a sequence of functions f such
that degm(f) = O(1) and deg(f) = Ω(n).

The following fact is a consequence of the Chinese Remainder Theorem,

Fact 5. For any Boolean function f and any m and m′ with gcd(m,m′) = 1,
we have

degm′m(f) = max{degm′(f),degm(f)}.

Due to Facts 2 and 5, we get an equivalent form of Conjecture 1 straightfor-
wardly:

Conjecture 2. Let f be a boolean function, p and q be two distinct primes, then

deg(f) ≤ poly(degp(f),degq(f)).

Next, we give the definitions of some other complexity measures which will
be used in this paper. For an input x ∈ {0, 1}n and a subset B, xB denotes the
input obtained by flipping all the bit xj such that j ∈ B.

Definition 1. The sensitivity complexity of f on input x is defined as s(f, x) :=
|{i : f(x) 	= f(xi)}|. The sensitivity complexity of the function f is defined as
s(f) := maxxs(f, x).

It has been shown that s(f) = O(deg(f)2)[19], but whether deg(f) can be
polynomially bounded in terms of s(f) is still open today, actually it is what the
famous sensitivity conjecture asks [11].

Definition 2. The block sensitivity bs(f, x) of f on input x is the maximum
number of disjoint subsets B1, B2, · · · , Br of [n] such that for all j, f(x) 	=
f(xBj ). The block sensitivity of f is defined as bs(f) = maxxbs(f, x), and the
minimum block sensitivity of f is defined as bsmin(f) = minxbs(f).

Definition 3. Let C be an assignment C : S → {0, 1} of values to some subsets
S ⊆ [n]. We say C is consistent with x ∈ {0, 1}n if xi = C(i) for all i ∈ S.

For b ∈ {0, 1}, a b−certificate for f is an assignment C such that f(x) = b
whenever x is consistent with C. The size of C is |S|.

The certificate complexity C(f, x) of f on input x is the size of a small-
est f(x)-certificate that is consistent with x. The certificate complexity of f is
C(f) = maxx C(f, x). The minimum certificate complexity of f is Cmin(f) =
minx C(f, x).
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Definition 4. Let m ≥ 2 be an integer, the mod-m rank of a boolean function
f , denoted by rankm(f), is the minimum integer r s.t. f can be expressed as

f = xi1f1 + · · · + xirfr + f0 (mod m),

where degm(fi) < degm(f) for all 0 ≤ i ≤ r. Equivalently, rankm(f) is the
minimum number of variables to hit all largest monomials in Pm(x). Here we
say a monomial is largest if it has maximal degree.

Since we have to fix at least rankm(f) variables to make all the largest
monomials in Pm(x) vanish, thus rankm(f) ≤ Cmin(f) for any m. Cmin(f),
bsmin(f) and rankm(f) are all polynomially bounded by deg(f), since
{bsmin(f), rankm(f)} ≤ Cmin(f) ≤ C(f) = O(deg(f)3)[17], and sometimes they
can be very small: rankm(ANDn) = bsmin(ANDn) = Cmin(ANDn) = 1 � n =
deg(ANDn).

Definition 5. For a Boolean function f : {0, 1}n → {0, 1}, we define the
alternating number alt(f) of f to be the largest k such that there exist a list
{x(1), x(2), · · · , x(k+1)} with x(i) � x(i+1) and f(x(i)) 	= f(x(i+1)) for any i ∈ [k].
Here we say x � y if xi ≤ yi for all i.

Definition 6. A Boolean function f is symmetric if for every input x =
x1, · · · , xn and every permutation σ ∈ Sn,

f(x1, · · · , xn) = f(xσ(1), · · · , xσ(n)).

A Boolean string can represent a graph in the following manner: x(i,j) = 1
means there is an edge connecting vertex i and vertex j, and x(i,j) = 0 means
there is no such edge. Graph properties are functions which are independent
with the labeling of vertices, i.e. two isomorphic graphs have the same function
value.

Definition 7. A Boolean function f : {0, 1}(n2) → {0, 1} is called a graph prop-
erty if for every input x = (x(1,2), · · · , x(n−1,n)) and every permutation σ ∈ Sn,

f(x(1,2), · · · , x(n−1,n)) = f(x(σ(1),σ(2)), · · · , x(σ(n−1),σ(n))).

Similarly, we define k-uniform hypergraph properties.

Definition 8. A Boolean function f : {0, 1}(nk) → {0, 1} is called a k-uniform
hypergraph property if for every input x = (x(1,2,...,k), · · · , x(n−k+1,...,n−1,n)) and
every permutation σ ∈ Sn,

f(x(1,2,...,k), · · · , x(n−k+1,...,n−1,n)) = f(x(σ(1),σ(2),...,σ(k)), · · · , x(σ(n−k+1),...,σ(n−1),σ(n))).

It is easy to see graph property is 2-uniform hypergraph property.
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3 Equivalent Conjectures

Observe that the deg(f) on the left side in Conjectures 1 and 2 can be replaced by
any other complexity measures which are polynomially related with deg(f), such
as D(f), bs(f) etc. [4], to get equivalent conjectures. Surprisingly, we find that
we can also replace it with some smaller complexity measures, such as rankp(f),
Cmin(f), bsmin(f) and s(f). In the following, we prove them one by one.

Conjecture 3. Let f be a boolean function, p and q be two distinct primes, then

rankp(f) ≤ poly(degp(f),degq(f)).

Theorem 5. Conjecture 3 ⇐⇒ Conjecture 2.

Proof. ⇐=: Trivial, since rankp(f) = O(deg(f)3), as mentioned above.
=⇒: We design an algorithm to query f , which contains at most degp(f)

rounds and each round reduces degp by at least one. Denote the function at
round t by f (t). Note that f (t) is a subfunction of f , hence degp(f (t)) ≤ degp(f)
and degq(f (t)) ≤ degq(f). For each round, we can query rankp(f (t)) variables
to make the largest monomials in Pp(x) vanish, which means degp(f (t)) is
reduced by at least one. Therefore assuming Conjecture 3, we have rankp(f (t)) ≤
poly(degp(f (t)),degq(f (t))) ≤ poly(degp(f),degq(f)), which implies deg(f) ≤
D(f) ≤ poly(degp(f),degq(f)).

Recall that rankp(f) ≤ Cmin(f) = O(deg(f)3), we get another equivalent
conjecture.

Conjecture 4. Let f be a boolean function, p and q be two distinct primes, then

Cmin(f) ≤ poly(degp(f),degq(f)).

Now, we show deg(f) in Conjecture 2 can be replaced with bsmin(f):

Conjecture 5. Let f be a boolean function, p and q be two distinct primes, then

bsmin(f) ≤ poly(degp(f),degq(f)).

Theorem 6. Conjecture 5 ⇐⇒ Conjecture 2.

Proof. ⇐=: Directly follows from bsmin(f) ≤ bs(f) = O(deg(f)2) [19].
=⇒: We call monomial M maximal in Pp(x) if no other monomials contains

it. Observe that for any input x and any maximal monomial M , there exist
a block B ⊆ supp(M) such that f(x) 	= f(xB), because for any restriction S:
[n]\M → {0, 1} monomial M can’t be cancelled, which implies f |S is a non-
constant function. In addition, according to the definition of rankp(f), there
exists at least rankp(f)/degp(f) disjoint largest monomials in Pp(x). There-
fore we get bsmin(f) ≥ rankp(f)/degp(f), which implies Conjecture 3 assuming
Conjecture 5.
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Finally, we show deg(f) in Conjecture 2 can be replaced with s(f). The key
technique is called ”replacing”: just replace the occurrences of xi with xj , i.e., the
new function is f(· · · , xi, · · · , xi, · · · ). Note that xi in the corresponding Pm(x)
are also replaced with xj , thus degm(f) cannot increase, and the new function
is still boolean.

For example, let P2(x) = x1x2 + x1x3 + x2x3 and the corresponding P3(x)
is x1x2 + x1x3 + x2x3 + x1x2x3. If we replace x2 with x1, the new P2(x) is
x1x1+x1x3+x1x3 = x1 and the new P3(x) is x1x1+x1x3+x1x3+x1x1x3 = x1.

Conjecture 6. Let f be a boolean function, p and q be two distinct primes, then

s(f) ≤ poly(degp(f),degq(f)).

Theorem 7. Conjecture 2 ⇐⇒ Conjecture 6.

The following simplified proof is observed by Shachar Lovett.

Proof. =⇒: Recall s(f) = O(deg(f)2) [19], thus Conjecture 3 ⇒ Conjecture 2
⇒ Conjecture 6.

⇐=: W.L.O.G, assume bs(f,0) = bs(f) = r, thus there exist r disjoint blocks
B1, · · · , Br ⊆ [n] such that for all i, f(0) 	= f(0Bi). Further, we assume that
i ∈ Bi. Now, we “replace” all variables in Bi with xi to get a new function f ′.
It is easy to see that f ′(0) = f(0) 	= f(0Bi) = f ′(0i), thus

bs(f) = s(f ′) ≤ poly(degp(f
′),degq(f

′)) ≤ poly(degp(f),degq(f)),

Now we get the conclusion immediately by noting that bs(f) and deg(f) are
polynomially related [4].

4 Special Classes of Functions

In this section, we confirm Conjecture 1 for some special classes of functions.

4.1 Symmetric Functions

Chia-Jung Lee et al. [14] already confirmed the case of symmetric functions by
showing that 2 degp1

(f) degp2
(f) > n. Here, we give another proof with better

parameters.

Theorem 8. Let f : {0, 1}n → {0, 1} be symmetric and nonconstant, and p1,
p2 are two distinct primes. Then

deg(f) ≤ n < p1 degp1
(f) + p2 degp2

(f).
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Proof. For the sake of the presentation, let di = degpi
(f) and Li = p

1+�logpi
di	

i .
Since f is symmetric, each Ppi

(x) can be written as
∑di

k=0 ci,k

(|x|
k

)
. Then accord-

ing to Lucas formula, for any nonnegative integers s, j and k ≤ di, we have
(

sLi + j

k

)

≡pi

(
j

k

)

.

Define g(|x|) = f(x), the above equality says g(k +Li) = g(k). Next, we want to
show n < L1 + L2, which implies n < p1d1 + p2d2. Note that L1 	= L2, w.l.o.g.,
assume L1 < L2.

Suppose n ≥ L1 + L2, we claim that ∀k ≤ L2, g(k) = g(k + L1 mod L2),
this is because if k + L1 ≤ L2, it’s trivial, otherwise, g(k) = g(k + L1) = g(k +
L1 −L2) = g(k +L1 mod L2). Moreover, gcd(L1, L2) = 1, hence ∀l ≤ L2, there
exists a integer t such that l − k ≡L2 tL1, i.e. g(k) = g(k + tL1 mod L2) = g(l),
which means f is constant, a contradiction.

Corollary 1. Let f : {0, 1}n → {0, 1} be symmetric and nonconstant, p1
< p2 < · · · pr be distinct primes, and r and ei’s be positive integers. Let
m = Πr

i=1p
ei
i . Then

deg(f) ≤ n < degm(f)(p1 + p2).

Proof. First we have degm(f) ≥ degp1p2
(f) = max{degp1

(f),degp2
(f)}. Then

according to the above theorem, (p1+p2) degp1p2
(f) ≥ p1degp1(f)+p2degp2(f) >

n, as expected.

4.2 Uniform Hypergraph Properties

Using Theorem 8, we can confirm Conjecture 2 for all k-uniform hypergraph
properties, where k is a constant. For the reader’s convenience, we restate The-
orem 1 here.

Theorem 1. For any non-trivial k-uniform hypergraph property f on n vertices
and any integer m with distinct prime factors p1 and p2, we have

1
p1 + p2 + k

n ≤ degm(f),

which implies

deg(f) ≤
(

n

k

)

= O(degm(f)k).

Proof. (The proof is similar with Lemma 8 in [22].) W.l.o.g., we assume that for
the empty graph Kn, f(Kn) = 0. Since f is non-trivial, there must exist a graph
G such that f(G) = 1. Let’s consider graphs in f−1(1) = {G : f(G) = 1} with
the minimum number of edges. Define m = min{|E(G)| : f(G) = 1}.

We claim that if m ≥ 1
p1+p2+kn, then degm(f) ≥ 1

p1+p2+kn. Let G be a graph
in f−1(1) and |E(G)| = m. Consider the subfunction f ′ where ∀e /∈ E(G), xe
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is restricted to 0, since G has the the minimum number of edges, deleting any
edges from G will change the values of f(G), therefore, f ′ is a AND function.
Thus, degm(f) ≥ degm(f ′) = m ≥ 1

p1+p2+kn.
In the following we assume m < 1

p1+p2+kn. Again let G be a graph in f−1(1)
with |E(G)| = m. Let us consider the isolated vertices set I, as

∑

v∈V

deg(v) = k|E(G)| <
k

p1 + p2 + k
n.

We have
|I| ≥ n −

∑

v∈V

deg(v) >
p1 + p2

p1 + p2 + k
n.

Suppose degm(f) < 1
p1+p2+kn, we will deduce that there exists another graph

with fewer edges and the same value, against the assumption that G has the
minimum number of edges in f−1(1), which ends the whole proof.

Pick a vertex u with deg(u) = d > 0. Suppose in the graph G vertex u is
adjacent to (k − 1)-edges {e

(k−1)
1 , e

(k−1)
2 , · · · , e

(k−1)
d } and I = {u1, u2, · · · , ut},

where t = |I|.
Consider the t-variable Boolean function g1: {0, 1}t → {0, 1}, where

g1(x1, · · · , xt) = f(G + x1(e
(k−1)
1 , u1) + · · · + xt(e

(k−1)
1 , ut)).

It is easy to see that g1 is a symmetric function. We claim that g1 is a con-
stant function: if not, we have degm(g1) ≥ 1

p1+p2
t according to Corollary 1,

which implies degm(f) ≥ 1
p1+p2+kn since g1 is a restriction of f . In particular,

g1(1, · · · , 1) = g1(0, · · · , 0), i.e. f(G1) = f(G), where G1 = G+
∑t

i=1(e
(k−1)
1 , ui).

Define Gi = Gi−1 +
∑t

j=1(e
(k−1)
i , uj) (i = 2, · · · , d). Similarly, we can show

that
f(G) = f(G1) = · · · = f(Gd).

Next we will delete
all the edges between {u, u1, · · · , ut} and {e

(k−1)
1 , e

(k−1)
2 , · · · , e

(k−1)
d } from Gd

by reversing the adding edge procedure of G → G1 → · · · → Gd. More precisely,
define H1 = Gd; for i = 2, · · · , d, define

Hi = Hi−1 − (e(k−1)
i , u) − (e(k−1)

i , u1) − · · · − (e(k−1)
i , ut),

and

hi(y0, y1, · · · , yt) = f(Hi + y0(e
(k−1)
i , u) + y1(e

(k−1)
i , u1) + · · · + yt(e

(k−1)
i , ut)).

Similarly, by the fact degm(f) < 1
p1+p2+kn we can show that all the functions

h2, · · · , hd are constant, which implies f(H1) = f(H2) = · · · = f(Hd). So we
find another graph Hd with fewer edges than G and f(Hd) = 1.



On the Modulo Degree Complexity of Boolean Functions 393

4.3 Functions with Small Alternating Numbers

We can also confirm the functions with small alternating numbers.

Theorem 2. Let f be a boolean function, then for any m ≥ 2,

D(f) = O(alt(f) · degm(f)2),

which implies
deg(f) = O(alt(f) · degm(f)2).

Recall that degm(f) = Ω(log n) when m has two distinct prime factors [8],
thus the above theorem confirms Conjecture 1 for non-degenerate functions with
alt(f) = poly log(n).

Lin and Zhang [15] have shown the case m = 2, and their argument applies
to general m as well. We omit the proof here.

5 A No-Go Theorem and a Super-Linear Separation

The following theorem somehow explains why it’s hard to solve Conjecture 2,
even for the simplest case where p = 2 and q = 3.

Theorem 3. Given a polynomial P2(x1, x2, . . . , xn) over F2 with poly(n) mono-
mials, it’s impossible to decide whether deg3(P2) = n or not in polynomial time,
unless NP = RP .

Proof. It’s sufficient to give a reduction to Unique-3CNF, since Unique-3CNF
can’t be solved in polynomial time unless NP = RP [24].

Given a Unique-3CNF formula φ(x1, · · · , xn) with m clauses, we first remove
negated literals to make the formula monotone: for any variable xi replace the
occurrences of its negation by a new variable x�

i . Also introduce new variables x′
i

and x′′
i and conjoin φ with the clauses (xi ∨x�

i )∧ (xi ∨x′
i)∧ (x�

i ∨x′′
i )∧ (x′

i ∨x′′
i ).

Denote the new formula by φ′ with n′ variables and m′ clauses. It is easy to see
that �φ ≡ −�φ′ mod 3. Here �φ is the number of solutions of φ, i.e., �φ = �{x :
φ(x) = 1}.

Then we construct a polynomial P2 over F2 from φ′: There are m′ variables
y1, y2, · · · , ym′ and n′ monomials t1, t2, · · · , tn′ in P2, and ti contains yj if the
jth clause contains xi in φ′.

Note that the corresponding polynomial over F3 is

P3 =
1
2
[1 −

m′
∏

i=1

(1 − 2ti)] =
m′
∏

i=1

(1 + ti) − 1,

According to the fact that yl
i = yi for any integer l ≥ 1 and any yi ∈ {0, 1}, it is

not hard to see the coefficient of
∏m′

i=1 yi is �φ′ mod 3. Note that φ has at most
one solution, then φ is satisfiable if and only if �φ ≡ −�φ′ ≡ 1 mod 3, which
means deg3(P2) = n.
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In the direction to disprove Conjecture 1, we give a quadratic separation.

Theorem 4. For any two distinct prime p1 and p2, there exists a sequence of
boolean functions f , s.t:

degp1p2
(f) = O(deg(f)1/2).

Proof. Let f=Mod3(Mod2(x1, · · · , x√
n), · · · , Mod2(xn−√

n+1, · · · , xn)). Here,
Modpi

(·) = 0, if the sum of inputs can be divided by pi, otherwise Modpi
(·) = 1.

On one hand, since Modpi
(·) is symmetric, it is easy to see deg(f) = Ω(n). On the

other hand, it is also not hard to see that degpi
(f) = O(

√
n) for each i, which

implies degp1p2
(f) = O(

√
n).

6 Conclusion

In this work, we investigate the relationship between deg(f) and degm(f), more
specifically, we focus on an open problem proposed by Gopalan et al. in [8],
which asks whether deg(f) and degm(f) are polynomially related, when m has
at least two distinct prime factors. First we present some nontrivial equivalent
forms of this problem, then we affirm it for some special classes of functions.
Finally we show a no-go theorem by which try to explain why this problem is
hard, as well as a super-linear separation. Most of the problems remain open,
here we list some of them:

1. Can we prove Conjecture 1 for cyclically invariant functions first?
2. Given a polynomial P2 over F2 with poly(n) size, we have shown that there’s

no efficient algorithms to compute its modulo 3 degree exactly unless NP =
RP . Is it still hard to approximate that?

Acknowledgments. We thank the anonymous reviewer for pointing out the better
construction in Theorem 4, and Shachar Lovett for providing us the simple proof of
Theorem 7.
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