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Abstract. Let B = (X,Y,E) be a bipartite graph. A half-square of B
has one color class of B as vertex set, say X; two vertices are adjacent
whenever they have a common neighbor in Y . Every planar graph is
half-square of a planar bipartite graph, namely of its subdivision. Until
recently, only half-squares of planar bipartite graphs (the map graphs)
have been investigated, and the most discussed problem is whether it
is possible to recognize these graphs faster and simpler than Thorup’s
O(n120) time algorithm.

In this paper, we identify the first hardness case, namely that deciding
if a graph is a half-square of a balanced bisplit graph is NP-complete.
(Balanced bisplit graphs form a proper subclass of star convex bipar-
tite graphs.) For classical subclasses of tree convex bipartite graphs such
as biconvex, convex, and chordal bipartite graphs, we give good struc-
tural characterizations of their half-squares that imply efficient recog-
nition algorithms. As a by-product, we obtain new characterizations of
unit interval graphs, interval graphs, and of strongly chordal graphs in
terms of half-squares of biconvex bipartite, convex bipartite, and chordal
bipartite graphs, respectively.

1 Introduction

The square of a graph H, denoted H2, is obtained from H by adding new edges
between two distinct vertices whenever their distance is two. Then, H is called
a square root of G = H2. Given a graph G, it is NP-complete to decide if G is
the square of some graph H [23], even for a split graph H [16].

Given a bipartite graph B = (X,Y,EB), the subgraphs of the square B2

induced by the color classes X and Y , B2[X] and B2[Y ], are called the two
half-squares of B [4].

While not every graph is the square of a graph and deciding if a graph is the
square of a graph is hard, every graph G = (V,EG) is half-square of a bipartite
graph: if B = (V,EG, EB) is the bipartite graph with EB = {ve | v ∈ V, e ∈
EG, v ∈ e}, then clearly G = B2[V ]. So one is interested in half-squares of special
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bipartite graphs. Note that B is the subdivision of G, hence every planar graph
is half-square of a planar bipartite graph.

Let B be a class of bipartite graphs. A graph G = (V,EG) is called half-square
of B if there exists a bipartite graph B = (V,W,EB) in B such that G = B2[V ].
Then, B is called a B-half root of G. With this notion, the following decision
problem arises.

Half-Square Of B
Instance: A graph G = (V,EG)
Question: Is G half-square of a bipartite graph in B, i.e., does there exist

a bipartite graph B = (V,W,EB) in B such that G = B2[V ]?

In this paper, we discuss Half-Square Of B for several restricted bipartite
graph classes B.

Previous results and related work. Half-squares of bipartite graphs have
been introduced in [4] in order to give a graph-theoretical characterization of the
so-called map graphs. It turns out that map graphs are exactly half-squares of
planar bipartite graphs. As we have seen at the beginning, every planar graph
is a map graph. The main problem concerning map graphs is to recognize if
a given graph is a map graph. In [27], Thorup shows that Half-Square Of

Planar, that is, deciding if a graph is a half-square of a planar bipartite graph,
can be solved in polynomial time1. Very recently, in [22], it is shown that Half-

Squares Of Outerplanar and Half-Square Of Tree are solvable in linear
time. Other papers deal with solving hard problems in map graphs include [3,5,
6,8]. Some applications of map graphs have been addressed in [1].

Our results. We identify the first class B of bipartite graphs for which Half-

Square Of B is NP-hard. Our class B is a subclass of the class of the bisplit
bipartite graphs and of star convex bipartite graphs (all terms are given later).
For some other subclasses of bipartite graphs, such as biconvex, convex, and
chordal bipartite graphs, we give structural descriptions for their half-squares,
that imply polynomial-time recognition algorithms:

– Recognizing half-squares of balanced bisplit graphs (a proper subclass of star
convex bipartite graphs) is hard, even when restricted to co-bipartite graphs;

– Half-squares of biconvex bipartite graphs are precisely the unit interval
graphs;

– Half-squares of convex bipartite graphs are precisely the interval graphs;
– Half-squares of chordal bipartite graphs are precisely the strongly chordal

graphs.

2 Preliminaries

Let G = (V,EG) be a graph with vertex set V (G) = V and edge set E(G) = EG.
A stable set (a clique) in G is a set of pairwise non-adjacent (adjacent) vertices.
1 Thorup did not give the running time explicitly, but it is estimated to be roughly
O(n120) with n being the vertex number of the input graph.
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The complete graph on n vertices, the complete bipartite graph with s vertices in
one color class and t vertices in the other color class, the cycle with n vertices are
denoted Kn,Ks,t, and Cn, respectively. A K3 is also called a triangle, a complete
bipartite graph is also called a biclique, a complete bipartite graph K1,n is also
called a star.

The neighborhood of a vertex v in G, denoted by NG(v), is the set of all
vertices in G adjacent to v; if the context is clear, we simply write N(v). A
universal vertex v in G is one with N(v) = V \{v}, i.e., v is adjacent to all other
vertices in G.

For a subset W ⊆ V , G[W ] is the subgraph of G induced by W , and G − W
stands for G[V \ W ]. We write B = (X,Y,EB) for bipartite graphs with a
bipartition into stable sets X and Y . For subsets S ⊆ X, T ⊆ Y we denote
B[S, T ] for the bipartite subgraph of B induced by S ∪ T .

We will consider half-squares of the following well-known subclasses of bipar-
tite graphs: Let B = (X,Y,EB) be a bipartite graph.

– B is X-convex if there is a linear ordering on X such that, for each y ∈ Y ,
N(y) is an interval in X. Being Y -convex is defined similarly. B is convex if it
is X-convex or Y -convex. B is biconvex if it is both X-convex and Y -convex.
We write Convex and Biconvex to denote the class of convex bipartite
graphs, respectively, the class of biconvex bipartite graphs.

– B is chordal bipartite if B has no induced cycle of length at least six.
Chordal Bipartite stands for the class of chordal bipartite graphs.

– B is tree X-convex if there exists a tree T = (X,ET ) such that, for each
y ∈ Y , N(y) induces a subtree in T . Being tree Y -convex is defined similarly.
B is tree convex if it is tree X-convex or tree Y -convex. B is tree biconvex if
it is both tree X-convex and tree Y -convex. When T is a star, we also speak
of star convex and star biconvex bipartite graphs.
Tree Convex and Tree Biconvex are the class of all tree convex and all
tree biconvex bipartite graphs, respectively, and Star Convex and Star

Biconvex are the class of all star convex and all star biconvex bipartite,
respectively.

It is known that Biconvex ⊂ Convex ⊂ Chordal Bipartite ⊂ Tree

Biconvex ⊂ Tree Convex. All inclusions are proper; see [2,19,26] for more
information on these graph classes.

Given a graph G, we often use the following two kinds of bipartite graphs
associated to G:

Definition 1. Let G = (V,EG) be an arbitrary graph.

– The bipartite graph B = (V,EG, EB) with EB = {ve | v ∈ V, e ∈ EG, v ∈ e}
is the subdivision of G.

– Let C(G) denote the set of all maximal cliques of G. The bipartite graph
B = (V, C(G), EB) with EB = {vQ | v ∈ V,Q ∈ C(G), v ∈ Q} is the vertex-
clique incidence bipartite graph of G.
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Note that the subdivision of a planar graph is planar, and subdivisions and
vertex-clique incidence graphs of triangle-free graphs coincide.

Proposition 1. Every graph is half-square of its vertex-clique incidence bipar-
tite graph. More precisely, if B = (V, C(G), EB) is the vertex-clique incidence
bipartite graph of G = (V,EG), then G = B2[V ]. Similar statement holds for
subdivisions.

Proof. For distinct vertices u, v ∈ V , uv ∈ EG if and only if u, v ∈ Q for some
Q ∈ C(G), if and only if u and v are adjacent in B2[V ]. That is, G = B2[V ]. ��

3 Recognizing Half-Squares of Balanced Bisplit Graphs
Is Hard

Recall that a biclique is a complete bipartite graph. Following the concept of split
graphs, we call a bipartite graph bisplit if it can be partitioned into a biclique
and a stable set. In this section, we show that Half-Square Of Balanced

Bisplit is NP-hard. Balanced bisplit graphs form a proper subclass of bisplit
graphs, and are defined as follows.

Definition 2. A bipartite graph B = (X,Y,EB) is called balanced bisplit if it
satisfies the following properties:

(i) |X| = |Y |;
(ii) there is partition X = X1 ∪̇ X2 such that B[X1, Y ] is a biclique;
(iii) there is partition Y = Y1 ∪̇ Y2 such that the edge set of B[X2, Y2] is a perfect

matching.

Note that by (i) and (iii), |X1| = |Y1|, and by (ii) and (iii), every vertex in X1

is universal in B2[X].

In order to prove the NP-hardness of Half-Square Of Balanced Bisplit,
we will reduce the following well-known NP-complete problem Edge Clique

Cover to it.

Edge Clique Cover

Instance: A graph G = (V,EG) and a positive integer k.
Question: Do there exist k cliques in G such that each edge of G is

contained in some of these cliques?

Edge Clique Cover is NP-complete [12,14,24], even when restricted to co-
bipartite graphs [17]. (A co-bipartite graph is the complement of a bipartite
graph.)

Theorem 1. Half-Square Of Balanced Bisplit is NP-complete, even
when restricted to co-bipartite graphs.
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Proof. It is clear that Half-Square Of Balanced Bisplit is in NP, since
guessing a bipartite-half root B = (V,W,EB) with |W | = |V |, verifying that B
is balanced bisplit, and G = B2[V ] can obviously be done in polynomial time.
Thus, by reducing Edge Clique Cover to Half-Square Of Balanced

Bisplit, we will conclude that Half-Square Of Balanced Bisplit is NP-
complete.

Let (G = (V,EG), k) be an instance of Edge Clique Cover. Note that
we may assume that k ≤ |EG|, and that G is connected and has no universal
vertices. We construct an instance G′ = (V ′, EG′) as follows: G′ is obtained from
G by adding a set U of k new vertices, U = {u1, . . . , uk}, and all edges between
vertices in U and all edges uv with u ∈ U , v ∈ V . Thus, V ′ = V ∪ U , G′[V ] = G
and the k new vertices in U are exactly the universal vertices of G′. Clearly, G′

can be constructed in polynomial time O(k|V |) = O(|EG| · |V |), and in addition,
if G is co-bipartite, then G′ is co-bipartite, too. We now show that (G, k) ∈ Edge

Clique Cover if and only if G′ ∈ Half-Square Of Balanced Bisplit.
First, suppose that the edges of G = (V,EG) can be covered by k cliques

Q1, . . . , Qk in G. We are going to show that G′ is half-square of some balanced
bisplit bipartite graph. Consider the bipartite graph B = (V ′,W,EB) (see also
Fig. 1) with

W = W1 ∪ W2, where W1 = {w1, . . . , wk}, and W2 = {wv | v ∈ V }.

In particular, |V ′| = |W | = k + |V |. The edge set EB is as follows:

– B has all edges between U and W , i.e., B[U,W ] is a biclique,
– B has edges vwv, v ∈ V . Thus, the edge set of B[V,W2] forms a perfect

matching, and
– B has edges vwi, v ∈ V , 1 ≤ i ≤ k, whenever v ∈ V is contained in clique Qi,

1 ≤ i ≤ k.

U

ui

V

v
V ′ = U ∪ V

W1

wi

W2

wv

W = W1 ∪ W2

Fig. 1. The balanced bisplit graph B = (V ′,W,EB) proving G′ = B2[V ′]; v ∈ V is
adjacent to wi ∈ W1 if and only if v ∈ Qi.
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Thus, B is a balanced bisplit graph. Moreover, by the construction of B, we
have in B2[V ′]:

– U = {u1, . . . , uk} is a clique (as B[U,W ] is a biclique);
– every vertex u ∈ U is adjacent to all vertices v ∈ V (recall that G is connected,

so every v ∈ V is in some Qi, and wi ∈ W1 is a common neighbor of u and
v), and

– no two distinct vertices v, z ∈ V have common neighbor in W2. So u and z
are adjacent in B2[V ′] if and only if v and z have a common neighbor wi in
W1, if and only if v and z belong to clique Qi in G, if and only if u and z are
adjacent in G.

That is, G′ = B2[V ′].
Conversely, suppose G′ = H2[V ′] for some balanced bisplit graph H =

(V ′, Y, EH) with |V ′| = |Y | and partitions V ′ = X1 ∪̇ X2 and Y = Y1 ∪̇ Y2

as in Definition 2. We are going to show that the edges of G can be covered by k
cliques. As H[X1, Y ] is a biclique, all vertices in X1 are universal in H2[V ′] = G′.
Hence

X1 = U

because no vertex in V = V ′ \U is universal in G′ (recall that G has no universal
vertex). Therefore

X2 = V and G = H2[V ].

Note that, as H is a balanced bisplit graph, |Y1| = |U | = k. Write Y1 =
{q1, . . . , qk} and observe that no two vertices in V have a common neighbor
in Y2. Thus, for each edge vz in G = H2[V ], v and z have a common neighbor qi

in Y1. Therefore, the k cliques Qi in H2[V ], 1 ≤ i ≤ k, induced by the neighbors
of qi in V , cover the edges of G. ��

Theorem 1 indicates that recognizing half-squares of restricted bipartite
graphs is algorithmically much more complex than recognizing squares of bipar-
tite graphs; the latter can be done in polynomial time [15].

Observe that balanced bisplit graphs are star convex: Let B = (X,Y,EB) be
a bipartite graph with the properties in Definition 2. Fix a vertex u ∈ X1 and
consider the star T = (X, {uv | v ∈ X −u}). Since every vertex y ∈ Y is adjacent
to u, N(y) induces a substar in T . Note, however, that the hardness of Half-

Square Of Balanced Bisplit does not imply the hardness of Half-Square

Of Star Convex. This is because the proof of Theorem 1 strongly relies on
the properties of balanced bisplit graphs. Indeed, in the meantime, we are able
to show that half-squares of star-convex bipartite graphs can be recognized in
polynomial time. This result will be included in the full version of this conference
paper.

4 Half-Squares of Biconvex and Convex Bipartite Graphs

In this section, we show that half-squares of convex bipartite graphs are precisely
the interval graphs and half-squares of biconvex bipartite graphs are precisely
the unit interval graphs.
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Recall that G = (V,EG) is an interval graph if it admits an interval rep-
resentation I(v), v ∈ V , such that two vertices in G are adjacent if and only
if the corresponding intervals intersect. Let G be an interval graph. It is well-
known [9,10] that there is a linear ordering of the maximal cliques of G, say
C(G) = (Q1, . . . , Qq), such that every vertex of G belongs to maximal cliques
that are consecutive in that ordering, that is, for every vertex u of G, there are
indices �(u) and r(u) with

{i | 1 ≤ i ≤ q and u ∈ Qi} = {i | �(u) ≤ i ≤ r(u)}.

If C and D are distinct maximal cliques of G, then C \D and D \C are both
not empty, that is, for every j ∈ {1, . . . , q}, there are vertices u and v such that
r(u) = �(v) = j.

Recall that unit interval graphs are those interval graphs admitting an inter-
val representation in which all intervals have the same length. It is well known
[25] that a graph is a unit interval graphs if and only if it has an interval repre-
sentation in which no interval is properly contained in another interval (a proper
interval graph), if and only if it is a K1,3-free interval graph.

Lemma 1. The half-squares of a biconvex bipartite graph are K1,3-free.

Proof. Let B = (X,Y,EB) be a biconvex bipartite graph. By symmetry we
need only to show that B2[X] is K1,3-free. Suppose, by contradiction, that
x1, x2, x3, x4 induce a K1,3 in B2[X] with edges x1x2, x1x3 and x1x4. Let yi

be a common neighbor of x1 and x2, yj be a common neighbor of x1 and x3,
and yk be a common neighbor of x1 and x4. Then, yi, yj , yk are pairwise distinct
and induce, in B, a subdivision of K1,3. This is a contradiction because biconvex
bipartite graphs do not contain an induced subdivision of the K1,3. Thus, the
half-squares of a biconvex bipartite graph are K1,3-free. ��
Lemma 2

(i) Every interval graph is half-square of a convex bipartite graph. More precisely,
if G = (V,EG) is an interval graph and B = (V, C(G), EB) is the vertex-clique
incidence bipartite graph of G, then G = B2[V ] and B is C(G)-convex.

(ii) If B = (X,Y,EB) is X-convex, then B2[Y ] is an interval graph.

Proof. (i) Let G = (V,EG) be an interval graph, and let B = (V, C(G), EB) be
the vertex-clique incidence bipartite graph of G. Since each v ∈ V appears in
the interval {Qi | �(v) ≤ i ≤ r(v)} in C(G) = (Q1, . . . , Qq), B is C(G)-convex.
Moreover, by Proposition 1, G = B2[V ].
(ii) This is because X admits a linear ordering such that, for each y ∈ Y , N(y)
is an interval in X. This collection is an interval representation of B2[Y ] because
y and y′ are adjacent in B2[Y ] if and only if N(y) ∩ N(y′) 
= ∅. ��
Theorem 2. A graph is half-square of a biconvex bipartite graph if and only if
it is a unit interval graph.
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Proof. First, by Lemma 2 (ii), half-squares of biconvex bipartite graphs are inter-
val graphs, and then by Lemma 1, half-squares of biconvex bipartite graphs are
unit interval graphs.

Next we show that every unit interval graph is half-square of some biconvex
bipartite graph. Let G = (V,EG) be a unit interval graph. Let B = (V, C(G), EB)
be the vertex-clique incidence bipartite graph of G. By Lemma 2 (i), G = B2[V ]
and B is C(G)-convex. We now are going to show that B is V -convex, too.

Consider a linear order in C(G), C(G) = (Q1, . . . , Qq), such that each v ∈ V
is contained in exactly the cliques Qi, �(v) ≤ i ≤ r(v). Let v ∈ V be lexicograph-
ically sorted according (�(v), r(v)). We claim that B is V -convex with respect to
this ordering. Assume, by a contradiction, that some Qi has neighbors v, u and
non-neighbor x with v < x < u in the sorted list, say. In particular, v, u belong
to Qi, but x not; see also Fig. 2.

Q�(v)

. . .
Q�(x)−1 Q�(x)

. . .
Qr(x) Qr(x)+1

. . .
Qi

v

�

...

v

y

...

v

x

...

v

x

...

v

z

...

v

u

...

Fig. 2. Assuming v < x < u, and v, u ∈ Qi, but x  ∈ Qi.

Since x < u and �(u) ≤ i, we have �(x) < i. Since u is not in Qi, we therefore
have

�(x) ≤ r(x) < i.

In particular, r(x) + 1 ≤ i. Since v < x and r(v) ≥ i, we have

�(v) < �(x).

In particular, �(x) − 1 ≥ 1. Now, by the maximality of the cliques, there exists
y ∈ Q�(x)−1 with r(y) = �(x)−1 (hence y is non-adjacent to x), and there exists
z ∈ Qr(x)+1 with �(z) = r(x) + 1 (hence z is non-adjacent to x and y; note that
r(x) + 1 = i and z = u are possible). But then v, x, y, and z induce a K1,3 in G,
a contradiction.

Thus, we have seen that every unit interval graph is half-square of a biconvex
bipartite graph. ��

We next characterize half-squares of convex bipartite graphs as interval
graphs. This is somehow surprising because the definition of being convex bipar-
tite is asymmetric with respect to the two half-squares.

Theorem 3. A graph is a half-square of a convex bipartite graph if and only if
it is an interval graph.
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Proof. By Lemma 2 (i), interval graphs are half-squares of convex bipartite
graphs. It remains to show that half-squares of convex bipartite graphs are inter-
val graphs. Let B = (X,Y,EB) be an X-convex bipartite graph. By Lemma 2
(ii), B2[Y ] is an interval graph. We now are going to show that B2[X] is an
interval graph, too.

Let B′ = (X,Y ′, EB′) be obtained from B by removing all vertices y ∈ Y such
that NB(y) is properly contained in NB(y′) for some y′ ∈ Y . Clearly, B2[X] =
B′2[X]. We show that B′ is Y ′-convex, hence, by Lemma 2 (ii), B2[X] = B′2[X]
is an interval graph, as claimed. To this end, let X = {x1, . . . , xn} such that, for
every y ∈ Y ′, NB′(y) is an interval in X. (Recall that B, hence B′ is X-convex.)
For y ∈ Y ′ let left(y) = min{i | xi ∈ NB′(y)}, and sort y ∈ Y ′ increasing
according left(y). Then, for each x ∈ X, NB′(x) is an interval in Y ′: Assume, by
contradiction, that there is some x ∈ X such that NB′(x) is not an interval in Y ′.
Let y be a leftmost and y′ be a rightmost vertex in NB′(x). By the assumption,
there is some y′′ ∈ Y ′ \ NB′(x) with left(y) < left(y′′) < left(y′). Then, as
NB′(y), NB′(y′′) and NB′(y′) are intervals in X, NB′(y′′) must be a subset of
NB′(y); see also Fig. 3. Since x ∈ NB′(y) but x 
∈ NB′(y′′), NB′(y′′) must be a
proper subset of NB′(y), contradicting to the fact that in B′, no such pair of
vertices exists in Y ′. Thus, B′ is Y ′-convex.

x

y y′′ y′

N(y)

N(y′′)
N(y′)

Fig. 3. Assuming left(y) < left(y′′) < left(y′), and x is adjacent to y and y′, but
non-adjacent to y′′.

Note that B′ is indeed biconvex, hence, by Theorem 2, B2[X] = B′2[X] is
even a unit interval graph. ��

Since (unit) interval graph with n vertices and m edges can be recognized in
linear time O(n + m) and all maximal cliques of an (unit) interval graph can be
listed in the same time complexity (cf. [11]), Theorems 3 and 2 imply:

Corollary 1. Half-Square Of Convex and Half-Square Of Biconvex

can be solved in linear time. A (bi)convex bipartite half-root, if any, can be con-
structed in linear time.
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5 Half-Squares of Chordal Bipartite Graphs

In this section, we show that half-squares of chordal bipartite graphs are precisely
the strongly chordal graphs. Recall that a graph is chordal if it has no induced
cycle of length at least four. It is well-known (see, e.g., [11,21,26]) that a graph
G = (V,EG) is chordal if and only if it admits a tree representation, that is,
there exists a tree T such that, for each vertex v ∈ V , Tv is a subtree of T and
two vertices in G are adjacent if and only if the corresponding subtrees in T
intersect. Moreover, the vertices of T can be taken as the maximal cliques of the
chordal graph (a clique tree). Recall also that a graph is strongly chordal if it is
chordal and has no induced k-sun, k ≥ 3. Here a k-sun consists of a stable set
{s1, . . . , sk} and a clique {t1, . . . , tk} and edges siti, siti+1, 1 ≤ i ≤ k. (Indices
are taken modulo k.)

We first begin with the following fact.

Lemma 3. Let B = (V,W,EB) be bipartite graph without induced C6 and let
k ≥ 3. If B2[V ] contains an induced k-sun, then B contains an induced cycle of
length 2k.

The proof of Lemma 3 will be given in the full version of this paper.

Theorem 4. A graph is half-square of a chordal bipartite graph if and only if it
is a strongly chordal graph.

Proof. We first show that half-squares of chordal bipartite graphs are chordal.
Let B = (X,Y,EB) be a chordal bipartite graph. It is known that B is tree
convex [13,18]. Thus, there is a tree T = (X,ET ) such that, for each y ∈ Y ,
N(y) induces a subtree in T . Then, for distinct vertices y, y′ ∈ Y , y and y′ are
adjacent in B2[Y ] if and only if N(y) ∩ N(y′) 
= ∅, and thus, B2[Y ] has a tree
representation, hence chordal. Now, by Lemma 3, B2[Y ] cannot contain any sun
k-sun, k ≥ 3, showing that it is a strongly chordal graph. By symmetry, B2[X] is
also strongly chordal. We have seen that half-squares of chordal bipartite graphs
are strongly chordal graphs.

Next, let G = (V,EG) be a strongly chordal graph, and let B = (V, C(G), EB)
be the vertex-clique incidence bipartite graph of G. By Proposition 1, G = B2[V ].
Moreover, it is well-known [7] that B is chordal bipartite. Thus, every strongly
chordal graph is a half-square of some chordal bipartite graph, namely of its
vertex-clique incidence bipartite graph. ��

Testing if G is strongly chordal can be done in O(min{n2,m log n}) time
[7,20,26]. Assuming G is strongly chordal, all maximal cliques Q1, . . . , Qq of G
can be listed in linear time (cf. [11,26]); note that q ≤ n. So, Theorem 4 implies:

Corollary 2. Half-Square Of Chordal Bipartite can be solved in time
O(min{n2,m log n}), where n and m are the vertex and edge number of the input
graph, respectively. A chordal bipartite half-root, if any, can be constructed in the
same time complexity.
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Theorem 4 (and its proof) gives another proof for a characterization of half-
squares of trees found in [22]. A block graph is one in which every maximal
2-connected subgraph (a block) is a complete graph; equivalently, a block graph
is a chordal graph without induced K4 − e, a K4 minus an edge.

Theorem 5 ([22]). Half-squares of trees are exactly the block graphs.

6 Conclusions

Until recently, only half-squares of planar bipartite graphs (the map graphs)
have been investigated, and the most considered problem is if it is possible to
recognize these graphs faster and simpler than Thorup’s O(n120) time algorithm.

In this paper, we have shown the first NP-hardness result, namely that recog-
nizing if a graph is half-square of a balanced bisplit graph is NP-complete. For
classical subclasses of tree convex bipartite graphs such as biconvex, convex, and
chordal bipartite graphs, we have given good structure characterizations for their
half-squares. These structural results imply that half-squares of these restricted
classes of bipartite graphs can be recognized efficiently.

Recall that chordal bipartite graphs form a subclass of tree biconvex bipartite
graphs [13,18], and that half-squares of chordal bipartite graphs can be recog-
nized in polynomial time, while the complexity of recognizing half-squares of
tree (bi)convex bipartite graphs is unknown. So, an obvious question is: what is
the computational complexity of Half-Square Of Tree (Bi)convex?

Acknowledgment. We thank Hannes Steffenhagen for his careful reading and very
helpful remarks.
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