
Efficient Enumeration of Maximal k-Degenerate
Subgraphs in a Chordal Graph

Alessio Conte1(B), Mamadou Moustapha Kanté2, Yota Otachi3, Takeaki Uno4,
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Abstract. In this paper, we consider the problem of listing the max-
imal k-degenerate induced subgraphs of a chordal graph, and propose
an output-sensitive algorithm using delay O(m · ω(G)) for any n-vertex
chordal graph with m edges, where ω(G) ≤ n is the maximum size of a
clique in G. The problem generalizes that of enumerating maximal inde-
pendent sets and maximal induced forests, which correspond to respec-
tively 0-degenerate and 1-degenerate subgraphs.

1 Introduction

One of the fundamental problems in network analysis is finding subgraphs with
some desired properties. A great body of literature has been devoted to develop
efficient algorithms for many different types of subgraphs, such as frequent sub-
graphs [12], dense subgraphs [13] or complete subgraphs [5,9]. A more compre-
hensive list can be found in [20].

Dense subgraphs are object of extensive research, especially due to their close
relationship to community detection; however, one may be interested in finding
sparse graphs as many networks are sparse even if locally dense. For instance,
[21] addresses the enumeration of induced trees in k-degenerate graphs.

The degeneracy of a graph is the smallest value k for which every subgraph of
the graph has a vertex of degree at most k. A graph is said to be k-degenerate if
its degeneracy is k or less. Degeneracy is also referred to as the coloring number
or k-core number, as a k-degenerate graph may contain a k-core but not a k+1-
core, and is a widely used sparsity measure [5,9,15,19,21]. Several studies tend
to take into account the degeneracy of graphs, as it tends to be very small
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in real-world networks [19], many important graph classes in structural graph
theory are degenerate [15]. Furthermore, it is straightforward to see that k-
degenrate subgraphs generalize well known structures, as 0-degenerate subgraphs
correspond to independent sets, while 1-degenerate subgraphs correspond to
induced forests.

Alon et al. [1] investigated the size of the largest k-degenerate induced sub-
graph in a graph, giving tight lower bounds in relation to the degree sequence
of the graph. Whilst Pilipczuk et al. [16] showed that a maximum k-degenerate
induced subgraph can be found in randomized time O((2 − εk)nnO(1)), for some
εk > 0 depending only on k, and moreover showed that there are at most (2−εk)n

such subgraphs. See [2,14] for other recent studies on degeneracy.
In this paper we address the enumeration of maximal k-degenerate induced

subgraphs, and provide an efficient polynomial delay algorithm for chordal input
graphs. An enumeration algorithm is of polynomial delay if the maximum com-
putation time between two outputs is bounded by a polynomial in the size of the
input. Enumeration algorithms are of high importance in several areas such as
data-mining, biology, artificial intelligence, or databases. (see for instance [7,20]).

Chordal graphs (also known as triangulated graphs) have been a topic of
intensive study in computer science due to the applications in phylogenetic net-
works and also many NP-complete problems become tractable when the inputs
are chordal graphs [3,8,11,17,18]. A graph is chordal if and only if every cycle
of length 4 or more has a chord, i.e. an edge joining two non-consecutive ver-
tices. Chordal graphs have been equivalently characterized in different ways:
they are the graphs that allow a perfect elimination ordering, that is an elimina-
tion ordering in which every eliminated vertex is simplicial (its neighbors form
a clique) [17,18]; the graphs that allow a clique tree [3] (see Sect. 2.1); the inter-
section graphs of subtree families in trees [11]. In our case, we will consider the
characterization by clique-trees. It is well-known that n-vertex chordal graphs
have at most n maximal cliques. A clique-tree of a chordal graph G is a tree T
whose nodes are in bijection with the set of maximal cliques, and such that for
each vertex x the set of maximal cliques containing x form a subtree of T .

Our algorithm is based on the well-known Extension Problem (also known
as backtracking or flashlight or binary partition) and uses the clique-tree. The
enumeration can be reduced to the following question: Given two sets of vertices
S and X, decide whether there is a maximal k-degenerate graph which contains S
and does not intersect X. Indeed, if we can answer this question in polynomial
time, the algorithm can be summarized as follows: start from the empty set,
and in each iteration with given sets (S,X) pick a vertex v and partition the
problem into those containing v (a call to the iteration (S ∪ {v},X)) or those
not containing v (a call to the iteration (S,X ∪{v}), both calls depending on the
answer given by the Extension problem. The delay of such algorithms is usually
O(n · poly(n)) with poly(n) being the time to decide the Extension problem.
This problem, however, can be shown to be NP-Complete for generic graphs (the
proof is omitted for space reasons), and even on chordal graphs its complexity
is not clear. We thus need some additional techniques: for our algorithm we do
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not consider all possible sets (S,X) for the Extension problem, but only some
special cases driven by the clique-tree. Our special case of the Extension problem
is the following (we consider the clique-tree T to be rooted):

Input. A node C of T , a partition (S,X) of the set of vertices in all the cliques
preceding C in a pre-order traversal of T and a partition (S′,X ′) of C\(S∪X).

Output. Decide whether there is a maximal solution containing S ∪ S′ and
avoiding X ∪ X ′.

We propose a notion of greedy solution and show that this special case of the
Extension problem is a Yes-instance if and only if a greedy solution exists; we
also propose an O(m)-time algorithm to compute the greedy solution.

2 Preliminaries

An algorithm is said to be output-polynomial if the running time is bounded
by a polynomial in the input and the output sizes. The delay is the maximum
computation time between two outputs, pre-processing, and post-processing. If
the delay is polynomial in the input size, the algorithm is called polynomial delay.

For two sets A and B we denote by A\B the set {x ∈ A | x /∈ B}. Our graph
terminology is standard, we refer to the book [6]. In this paper, we assume that
graphs are simple, finite, loopless, and each graph is given with a linear ordering
of its vertices. We can further assume graphs to be connected as the solutions
of a non-connected graph are obtained by combining those of its connected
components. We use n and m to denote respectively the numbers of vertices
and edges in any graph. The vertex set of a graph G is denoted by V (G) and its
edge set by E(G). The subgraph of G induced by X ⊆ V (G), denoted by G[X],
is the graph (X, (X × X) ∩ E(G)); and we write G \ X to denote G[V (G) \ X].
For a vertex x of G we denote by NG(x) the set of neighbors of x, i.e., the set
{y ∈ V (G) | xy ∈ E(G)}, and we let NG[x], the closed neighborhood of x, be
NG(x) ∪ {x}; the degree of a vertex x, dG(x), is defined as the size of NG(x).

A tree is an acyclic connected graph. A clique of a graph G is a subset C of
G that induces a complete graph, and a maximal clique is a clique C of G such
that C ∪ {x} is not a clique for all x ∈ V (G) \ C. Depending on the context, C
may refer to its set of vertices, the subgraph induced by C or the corresponding
node in the clique tree. We denote by Q(G) the set of maximal cliques of G, and
by ω(G) the maximum number of vertices in a clique in Q(G). For a vertex x,
we denote by Q(G, v) the set of maximal cliques containing x.

For a rooted tree T and two nodes u and v of T , we call v an ancestor of u,
and u a descendant of v, if v is on the unique path from the root to u; u and v
are incomparable if v is neither an ancestor or descendant of u. In what follows,
we omit the subscript G and fix a graph G = (V (G), E(G)) if it is clear from
the context.
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2.1 Chordal Graphs and Clique Trees

A graph G is a chordal graph if it does not contain an induced cycle of length
more than three. It is well-known that a chordal graph G has at most n maximal
cliques, and they can be enumerated in linear time [4]. With every chordal graph
G, one can associate a tree that we denote by QT (G), called clique tree, whose
nodes are the maximal cliques of G and such that for every vertex x ∈ V (G) the
set Q(G, x) is a subtree of QT (G) [11]. Moreover, for every chordal graph G,
one can compute a clique tree in linear time (see for instance [10]). In the rest
of the paper all clique trees are considered rooted.

2.2 K-degenerate Graphs

A graph G is a k-degenerate graph if for any induced subgraph H in G, H has
a vertex whose degree is at most k. The degeneracy of a graph is the mini-
mum value k for which the graph is k-degenerate, and is a well known sparsity
measure [5,9,15,19,21]. We consider the following question.

Problem 1. Given a chordal graph G and a positive integer k, enumerate all
maximal k-degenerate induced subgraphs in G, with polynomial delay.

Note that a complete graph Kn is an (n − 1)-degenerate graph, as all its
vertices have degree n − 1. Therefore, for any clique C of a graph G, any k-
degenerate induced subgraph of G may have no more than k+1 vertices belonging
to C. Chordal graphs have the following property.

Theorem 1. The degeneracy of a chordal graph is exactly ω(G) − 1.

Proof. Since the degeneracy is a hereditary property (i.e., any subgraph of a
k-degenrate graph is k-degenerate), and the complete graph Kn has degeneracy
n − 1, ω(G) − 1 is a lower bound for the degeneracy of any graph. The fact
that ω(G) − 1 is an upper bound on chordal graphs relies on the fact that every
chordal graph has at least a vertex whose neighbour is a clique [17]. Therefore,
in any chordal graph we can find a vertex of degree at most ω(G) − 1. ��

3 Enumeration Algorithm

This section describes our algorithm for enumerating all maximal k-degenerate
induced subgraphs of a given chordal graph G = (V,E). In the following, we
sometimes refer to maximal k-degenerate induced subgraphs as solutions, and
we denote them by their vertex set as for cliques, to ease the reading.

Our proposed algorithm is based on the binary partition method. The outline
of our algorithm is as follows: We start with an empty induced subgraph S.
Then we pick a vertex v from G and add v to S. If S + v is a maximal k-
degenerate subgraph, then we output S + v, otherwise we choose another vertex
and add it to S + v. After that we backtrack and add v to an excluded set X, to
generate all solutions that contain S and not v. By recursively applying the above
operation to G we can enumerate all solutions. However, certain pairs (S,X)
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may not generate a solution, as there may be no maximal k-degenerate induced
subgraph containing S but no vertex in X (e.g., if S = ∅,X = V ). If we test all
the possibilities that will not lead to a solution, the cost of this process is not
output sensitive, i.e. not bounded by a polynomial in the number of solutions. To
develop efficient enumeration algorithm, we have to limit such redundant testing
as much as possible. To achieve this we focus on the rooted clique tree QT (G)
and introduce the concepts of greedy filling and partial solution. In what follows
we let G be a fixed chordal graph.

3.1 Greedy Filling Strategy

Let R be a fixed maximal clique, called the root of QT (G), and let us root QT (G)
at R. For a maximal clique C of G, whose parent in QT (G) is the clique P , we
call private vertices of C be the set of vertices in C \ P . Because all cliques in
QT (G) are different and inclusion-maximal, and by the properties of the clique
tree, one can deduce the following.

Lemma 1. Given a clique tree QT (G), every clique in QT (G) contains at least
one private vertex, and every vertex v is private in exactly one clique in QT (G).

Let C be a maximal clique of G. For X ⊆ V (G), let A(C,X) = 1 if |C \
X| ≥ k + 1, and A(C,X) = 0 otherwise. For any vertex v ∈ X, A(v,X) =∑

C∈Q(G,v) A(C,X), i.e. the number of maximal cliques containing v for which
|C \ X| ≥ k + 1. As adding more than k + 1 vertices from the same clique to
any solution S would cause S to not be k-degenerate anymore, we say that C is
saturated in S if |C ∩ S| = k + 1.

The function A allows us to check the maximality of a k-degenerate subgraph,
thanks to the following lemma.

Lemma 2. Let G = (V,E) be a chordal graph and M ⊆ V be a k-degenerate
subgraph of G, with X = V \ M . M is maximal if and only if A(x,X) ≥ 1 for
each x ∈ X.

Proof. Assume A(x,X) ≥ 1 for each x ∈ X and there exists a k-degenerate
subgraph M ′ ⊃ M , with v ∈ M ′ \M . As v ∈ X we have A(v,X) ≥ 1, thus there
exists a clique C containing v s.t. |C \ X| ≥ k + 1. As M = V \ X, we have
|C \ X| = |C ∩ M | ≥ k + 1. As M ∪ {v} ⊆ M ′ we have |C ∩ M ′| ≥ k + 2, thus
M ′ contains a complete subgraph with k + 2 vertices and is not k-degenerate,
which contradicts the hypothesis.

On the other hand, if for a vertex x ∈ X we have A(x,X) = 0, then for
any clique C containing x we have |(M ∪ {x}) ∩ C| ≤ k + 1, since |C \ X| =
|C ∩ M | < k + 1. Thus the largest clique in M ∪ {x} has size at most k + 1, and
as M ∪{x} is a chordal graph (it is an induced subgraph of G) it is k-degenerate
by Theorem 1. Thus M is not maximal, which contradicts the hypothesis. ��

We now define the notion of partial solution as a pair of disjoint vertex
subsets (S,X), where S contains vertices (to include) in the k-degenerate induced
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subgraph, and X is a set of vertices that must be excluded from the solution,
with some additional properties:

Definition 1 (partial solution). A pair (S,X) of subsets of V (G) with S ∩
X = ∅ is a partial solution if

1. |S ∩ C| ≤ k + 1 for any maximal clique C,
2. ∀x ∈ X,A(x,X) ≥ 1,
3. for each maximal clique C, if Pv(C) ∩ (S ∪ X) = ∅, then C ′ ⊆ S ∪ X for all

ancestors C ′ of C.

Given a pair (S,X) of disjoint subsets of V (G), it is not trivial to decide
whether there exists a solution M ⊇ S with M ∩X = ∅. However, as we will later
demonstrate, this is always true if (S,X) is a partial solution. Next, we introduce
the strategy that will be used by our algorithm to guarantee the existence of
solutions. Let π : {1, . . . , |Q(G)|} → Q(G) be a fixed linear ordering of Q(G)
obtained from a pre-order traversal of QT (G), and let us call π−1(C) the rank
of C ∈ Q(G). We use the rank of the cliques to define the order in which they
are considered by the following procedure.

Definition 2 (Greedy filling). The greedy filling of a partial solution (S,X)
consists in the following. Let C be the maximal clique with the smallest rank for
which C \ (S ∪X) = ∅. Add vertices one by one from C to S until C is saturated
for S or C \ (S ∪ X) = ∅. Then add the remaining vertices in C \ (S ∪ X) to X,
if any, and repeat the process until no such clique C exists.

Finally, we can now show that a partial solution can always be extended into
a maximal one by means of a greedy filling.

Lemma 3. For any partial solution (S,X), the greedy filling yields a maximal
k-degenerate subgraph M of G such that S ⊆ M and M ∩ X = ∅.

Proof. Let M be the greedy filling of (S,X). By definition, S ⊆ M and X∩M = ∅.
Let XM = V \ M .

We prove the statement by showing that at all times during the greedy filling
(S,X) maintains the property of being a partial solution (see Definition 1), so
in the end we have A(x,XM ) ≥ 1 for each x ∈ XM , making M a maximal k-
degenerate subgraph by Lemma 2. Let Q be the maximal clique of the smallest
rank for which Q \ (S ∪ X) = ∅. Let (S′,X ′) be the new pair constructed from
Q by the greedy filling, and let (SQ,XQ) be the partition of Q \ (S ∪ X) such
that S′ = S ∪ SQ and X ′ = X ∪ XQ. First notice that for all the ancestors Q′ of
Q we have Q′ \ (S ∪ X) = ∅ as their rank is smaller than the one of Q.

By definition of greedy filling, |Q∩S′| = |(Q∩S)∪SQ| ≤ k+1. If XQ = ∅, then
X ′ = X and A(x,X ′) = A(x,X) ≥ 1 for each x ∈ X ′. Otherwise, by definition
of greedy filling, Q is saturated in S′ (|Q ∩ S′| = k + 1). Hence A(Q,X ′) = 1,
and for each x ∈ Q A(x,X ′) ≥ 1, while for each x ∈ X ′ \ Q = X \ Q A(x,X ′) =
A(x,X) ≥ 1. Thus, (S′,X ′) is a partial solution, which completes the proof. ��
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3.2 Binary Partition Method

We are now ready to describe our algorithm kMIG(G, k), whose pseudo-code is
given in Algorithm 1.

The principle is to start from the partial solution S = ∅,X = ∅, where S
represent the vertices that will be in the solution, and X the vertices that are
excluded from the solution, and proceed with binary partition: in each recursive
call we consider a vertex v ∈ Q, initially from the clique Q with the smallest
rank, i.e. the root of QT (G); we will first add v to S and find all the solutions
containing S ∪ {v} and nothing in X; then add v to X and find all the solutions
containing S and nothing in X ∪ {v}, if any exists. At any step, we keep the
invariant that (S,X) is a partial solution: If we add v to S (Line 12), this is
equivalent to performing a step of the greedy filling, thus we know that (S ∪
{v},X) is still a partial solution (see proof of Lemma 3). When, on the other
hand, we try to add v to X (Line 14), we only explore this road if there exists
a solution that contains all the vertices in S and no vertex in X ∪ {v}. Thanks
to (S,X) being a partial solution we will be able to discover this efficiently,
and we will demonstrate (Lemma 4 in Sect. 3.3) that this is true if and only if
(S,X ∪ {v}) is still a partial solution. Only once Q \ (S ∪ X) is empty, we then
proceed to the clique Q′ next in the ranking (Lines 16–17). This guarantees that
Q is always the clique of smallest rank such that Q\(S∪X) = ∅, thus condition 1
of Definition 1 still holds, and so (S,X) is still a partial solution. It is important

Algorithm 1. kMIG: Enumerating all maximal k-degenerate induced sub-
graphs in a chordal graph G = (V,E)

1 Procedure kMIG(G, k)
2 Compute QT (G) of G;
3 R ← the root clique of QT (G);
4 π : {1, . . . |Q(G)|} → Q(G) ← the pre-order traversal of QT (G);
5 Call SubkMIG(G,R, ∅, ∅, k);

6 Procedure SubkMIG(G,Q, S,X, k)
7 if V = S ∪ X then
8 Output S

9 if Q \ (S ∪ X) = ∅ then
10 v ← the smallest vertex in Q \ (S ∪ X);
11 if |Q ∩ S| < k + 1 then
12 SubkMIG(G,Q, S ∪ {v} ,X, k)

13 if there exists a solution S∗ s.t. S ⊆ S∗ ∧ S∗ ∩ (X ∪ {v}) = ∅ then
14 SubkMIG(G,Q, S,X ∪ {v} , k)

15 else
16 Q′ ← π(π−1(Q) + 1);
17 SubkMIG(G,Q′, S,X, k)
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to remark that, as all ancestors of Q are fully contained in S ∪X, and v ∈ S ∪X,
then v is always a private vertex of Q, not contained in the ancestors of Q.

Finally, if S ∪X = V we can output S as a solution: by keeping the invariant
that (S,X) is a partial solution, we know by Lemma 2 that S is a maximal
k-degenerate induced subgraph of G.

3.3 Correctness

In this section we show the following theorem, that is the correctness of our
algorithm.

Theorem 2. Let G be a chordal graph and k be a non-negative integer. Then
kMIG(G, k) outputs all and only maximal k-degenerate induced subgraphs of G
without duplicates.

As mentioned in the description, kMIG(G, k) uses binary partition, thus every
recursive call has either a single child (Line 17) which will simply extend the
current solution, or will produce two recursive calls (Lines 12 and 14) that will
lead to different solutions, as the first one considers only solutions for which
v ∈ S, and the second only solutions for which v ∈ S (if any). Thus the same
solution cannot be found more than once.

Furthermore, as we keep the invariant that (S,X) is a partial solution, by
Lemma 2 we know that when V = S ∪ X then S is a maximal k-degenerate
induced subgraph, thus kMIG(G, k) outputs only solutions.

Finally, any solution, i.e. maximal k-degenerate induced subgraph M is found
by the algorithm, and we can prove this by induction: consider the set of cliques
Q1, Q2, . . . in QT (G), ordered by ranking. As base condition assume that (S,X)
is a partial solution such that S ⊆ M,X ∩ M = ∅; this is always true in the
beginning, when (S = ∅,X = ∅). Let Qi be the clique that we are considering,
i.e. the one of smallest rank such that Qi \ (S ∪ X) = ∅, and v be the smallest
vertex in Qi \ (S ∪X). If v ∈ M , then the recursive call in Line 12 will consider a
partial solution which has one more vertex in common with M , i.e. (S∪{v} ,X).
Otherwise, v ∈ M , that is, there exists a solution S∗ such that S ⊆ S∗ and
S∗ ∩ (X ∪ {v}) = ∅, thus the recursive call in Line 14 is executed; this recursive
call will consider a partial solution that has one more vertex in common with
V \ M , i.e. (S,X ∪ {v}). In both cases the base condition is still true, thus by
induction kMIG(G, k) will find M . In order to prove Theorem 2, it only remains
to show how to decide whether, given (S,X), there is a solution containing S but
nothing in X ∪ {v}, i.e., how to compute Line 13. This is shown in the following
lemma.

Lemma 4. Let (S,X) be any partial solution of G, Q be a clique such that its
ancestor cliques are fully contained in S ∪ X, and v ∈ S ∪ X be a private vertex
of Q. Then, there exists a solution S∗ such that S ⊆ S∗ and S∗ ∩ (X ∪{v}) = ∅,
if and only if A(x,X ∪ {v}) ≥ 1 for each vertex x ∈ N [v] ∩ (X ∪ {v}).
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Proof. Let X ′ = X ∪ {v}. If for each vertex x ∈ N [v] ∩ X ′, A(x,X ′) ≥ 1, then
(S,X ′) still satisfies all the properties in Definition 1, as A(w,X) is unchanged
for any vertex w ∈ X \ N(v). Thus (S,X ′) is a partial solution, and a solution
S∗ is given by Lemma 3.

Otherwise, there is a vertex x ∈ X ′ such that A(x,X ′) = 0, i.e., there is
no clique Q containing x such that |Q \ X ′| ≥ k + 1. As X ′ ⊆ V \ S∗ for
any solution S∗ disjoint from X ′, there is no clique Q containing x such that
|Q \ (V \ S∗)| ≥ k + 1, thus A(x, V \ S∗) = 0, and there is no maximal solution
S∗ by Lemma 2. ��

Thus Theorem 2 is true, and kMIG(G, k) finds all and only maximal k-
degenerate induced subgraphs of the chordal graph G exactly once.

4 Complexity Analysis

In this section we analyze the cost of our algorithm, and prove that it can
enumerate all maximal k-degenerate subgraphs of G in O(m · ω(G)) time per
solution. First, we recall some important properties of cliques in chordal graphs.

Remark 1 (From [3] and [10]). Let G be a connected chordal graph with n > 1
vertices and m edges. Then the number of maximal cliques in G is at most n−1,
and the sum of their sizes is

∑
C∈Q(G) |C| = O(m).

And regarding the cliques in G containing a specific node, we can state the
following.

Lemma 5. In a chordal graph G, the number of cliques containing a vertex v
is at most |N(v)|.

Proof. Consider G[N [v]], the subgraph of G induced by vertices of N [v]. G[N [v]]
is chordal as it is an induced subgraph of a chordal graph, it has |N [v]| vertices,
and at most |N [v]| − 1 = |N(v)| maximal cliques, which exactly correspond to
the maximal cliques in G containing v. ��

Now, consider the cost of executing Line 13, which dominates the cost of
each iteration of the algorithm. We show in the next lemma that it can be done
efficiently by exploiting Lemma 4. We recall that ω(G) denotes the maximum
size of a clique in G.

Lemma 6. Line 13 can be executed in time O(ω(G) · |N(v)|).

Proof. By Lemma 4 it is sufficient to check, for every vertex in x ∈ N [v], whether
there must be a clique Q′ containing x such that |Q′ \ (X ∪ {v})| ≥ k + 1. As
(S,X) is a partial solution, if a vertex x is not contained in any clique such that
|Q′ \ (X ∪ {v})| ≥ k + 1, there exists a clique Q′ such that |Q′ \ X| ≥ k + 1 >
|Q′ \ (X ∪ {v})| = k, thus x is contained in one of the cliques containing v.
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Assume we have a table that keeps track of the value B(Q) = |Q\ (X ∪{v})|
for every clique Q, and one that keeps the value A(x) = |{Q | x ∈ Q and B(Q) ≥
k +1}|. When adding v to X, we can update the B table by decrementing B(Q)
by 1 for every clique containing v. The number of such cliques in a chordal graph
is at most |N(v)| by Lemma 5. Every time the value of B(Q) is decremented
to less than k + 1, we can update the A table by decrementing A(x) by 1 for
each vertex x in Q. During this process, the check fails if and only if A(x) is
decremented to 0 for any x. The time required is |Q| ≤ ω(G) for each considered
clique, for a total cost of O(ω(G) · |N(v)|). ��

Finally, we are ready to prove the complexity bound for kMIG(G, k).

Theorem 3. kMIG(G, k) runs with delay O(m · ω(G)).

Proof. First, we need to compute QT (G), which takes O(n+m) time [10]. Note
that O(m + n) = O(m) as G is connected. Computing a pre-order traversal of
QT (G) takes O(n) time as QT (G) has at most n nodes.

In each recursive call we add a vertex either in S or in X or consider a next
maximal clique. Hence, the depth of the tree of recursive calls is bounded by 2n.
To bound the delay between two solutions M and M ′, it is enough to bound the
sum of the cost of all recursive calls in the path from the recursive call outputting
M to the one that outputs M ′. For clarity, let us use the term recursive node to
refer a node in the tree of the recursive calls. Note that the recursive nodes that
output a solution are exactly the leaves of this tree, thus the path between M
and M ′ is bounded by the cost of a root-to-leaf and a leaf-to-root path.

As to execute Line 13 we use tables A and B (see Lemma 6), let us explain
how to initialise them (we already explain in Lemma 6 how to update them). For
each vertex x, we set A(x) = |{Q ∈ Q(G, x) | |Q| ≥ k + 1}|, and set B(Q) = |Q|
for each Q ∈ Q(G). In order to set these values we can simply iterate over all
maximal cliques in QT (G): initialising B(Q) takes O(1) time, and if |Q| ≥ k +1
we increment A(x) by 1 for each x ∈ Q, which takes O(|Q|) time. The total
running time for initialising the tables A and B take thus O(n + m) = O(m)
time (see Remark 1).

Let v1, . . . vt be the recursive nodes in the path from the root to the node that
outputs M ′. First, t ≤ 2n as in each step either we add v to S or to X or we take
another Q. The delay now is the sum of the cost of each vi. Lines 9–14 can be
done in time O(|N(x)| ·ω(G)) by Lemma 6. The cost for Lines 16–17 is O(1). By
summing, we have the upper bound

∑
Q∈Q(G) O(1)+

∑
x∈V (G) O(|N(x)|·ω(G)) =

O(m ·ω(G)). The O(m) preprocessing cost is negligible as there always exists at
least one solution. ��

Note that this holds for any value of k: indeed, by Theorem 1 we know that
chordal graphs are ω(G) − 1-degenerate, thus for any k ≥ ω(G), the problem is
trivial as the only maximal solution is G itself.
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5 Conclusion

We presented the first output-polynomial algorithm for enumerating maximal k-
degenerate induced subgraphs in a chordal graph. The algorithm runs in O(m ·
ω(G)) time per solution for any given k. It would be interesting for future work to
investigate the feasibility of an output-polynomial algorithm for general graphs.
It is worth noticing that the enumeration of maximal independent sets in graphs
is a special case as X is an independent set in G if and only if G[X] is 0-
degenerate.
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