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Abstract The shipping industry is today increasingly concerned with challenges
related with sustainability. CO2 emissions from shipping, although they today con-
tribute to less than 3% of the total anthropogenic emissions, are expected to rise in the
future as a consequence of increased cargo volumes. On the other hand, for the 2 ◦C
climate goal to be achieved, emissions from shipping will be required to be reduced
by as much as 80% by 2050. The power required to propel the ship through the water
depends, among other parameters, on the trim of the vessel, i.e. on the difference
between the ship’s draft in the fore and the aft of the ship. The optimisation of the trim
can, therefore, lead to a reduction of the ship’s fuel consumption. Today, however,
the trim is generally set to a fixed value depending on whether the ship is sailed in
loaded or ballast conditions, based on results performed on model tests in basins.
Nevertheless, the on-board monitoring systems, which produce a huge amount of
historical data about the life of the vessels, lead to the application of state of the art
data analytics techniques. The latter can be used to reduce the vessel consumption
by means of optimising the vessel operational conditions. In this book chapter, we
present the potential of data-driven based techniques for accurately predicting the
influence of independent variables measured from the on board monitoring system
and the fuel consumption of a specific case study vessel. In particular, we show
that gray-box models (GBM) are able to combine the high prediction accuracy of
black-boxmodels (BBM)while reducing the amount of data required for training the
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model by adding a white-box model (WBM) component. The resulting GBMmodel
is then used for optimising the trim of the vessel, suggesting that between 0.5 and
2.3% fuel savings can be obtained by appropriately trimming the ship, depending on
the extent of the range for varying the trim.

1 Introduction

Shipping is a relatively efficient mean of transport when compared to other trans-
port modes [75]. Despite its efficiency, however, shipping contributes significantly
to air pollution [13], mainly in the form of sulphur oxides, nitrogen oxides, partic-
ulate matter, and carbon dioxide. For the latter, the contribution from shipping to
global emissions is required to decrease significantly in the coming years [6, 20].
Since greenhouse gas emissions from the combustion of oil-based fuels are directly
proportional to fuel consumption, improving ship energy efficiency is one of the pos-
sible solutions to this issue. Measures for the improvement of ship energy efficiency
are normally divided into design and operational measures. While the former have
been associated to larger saving potential, the latter can still provide a significant
reduction in fuel consumption, while requiring a much more limited capital invest-
ment [6]. However, the large amount of variables influencing ship energy efficiency
makes it hard to assess ship performance in relation to a standard baseline. Opera-
tional measures include, among others, improvement in voyage execution, reduction
of auxiliary power consumption, weather routing, optimised hull and propeller pol-
ishing schedule, slow steaming, and trim optimisation [2, 42, 64].

Among the above mentioned fuel saving measures, trim optimisation has been
extensively discussed in the past. It is well known, from hydrodynamics principles,
that the trim of the vessel can significantly influence its fuel consumption [60]. In
most cases principles of trim optimisation are applied roughly; the crew is provided
with an indicative value for the trim to usewhen sailing laden andwhen sailing ballast,
based onmodel tests. However, manymore factors can influence the optimal value of
the trim, such as draught, weather conditions, speed [38]. Taking these aspects into
account when selecting the appropriate trim can therefore lead to significant, cost-
free savings in terms of fuel required for ship propulsion. Previous work in scientific
literature related to trim optimisation have focused on twomain alternative strategies:
White-Box numerical Models (WBMs), and black-box numerical models (BBMs).
WBMs describe the behaviour of the ship resistance, propeller characteristics and
engine performances based on governing physical laws and taking into account their
mutual interactions [49]. The higher the detail in the modelling of the physical equa-
tionswhich describe the different phenomena, the higher the expected accuracy of the
results and the computational time required for the simulation. WBMs are generally
rather tolerant to extrapolation and do not require extensive amount of operational
measurements; on the other hand, when employing models that are computationally
fast enough to be used for online optimisation, the expected accuracy in the pre-
diction of operational variables is relatively low. In addition, the construction of the
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model is a process that requires competence in the field, and availability of technical
details which are often not easy to get access to. Examples of the use of WBMs
for the optimisation of ship trim are [46], who employed advanced Computational
Fluid Dynamics (CFD) methods, and [54] who employed simpler empirical models
(Holtrop-Mannen) for the estimation of possible gains from trim optimisation. Dif-
ferently from WBMs, BBMs (also known as data driven models [74]), make use of
statistical inference procedures based on historical data collection. Thesemethods do
not require any a-priory knowledge of the physical system and allow exploiting even
measurements whose role might be important for the calculation of the predicted
variables but might not be captured by simple physical models. On the other hand,
the model resulting from a black-box approach is not supported by any physical
interpretation [65], and a significant amount of data (both in terms of number of dif-
ferent measured variables and of length of the time series) are required for building
reliable models [12]. As an example, in [58] an application of BBMs is proposed (in
particular of artificial neural network) to the prediction of the fuel consumption of
a ferry and applied to the problem of trim optimisation. Gray-box models (GBMs)
have been proposed as a way to combine the advantage of WBMs and BBMs [11].
According to the GBMs principles, an existing WBM is improved using data-driven
techniques, either in order to calculate uncertain parameters or by adding a black-box
component to the model output [48]. GBMs allow exploiting both the mechanistic
knowledge of the underlying physical principles and available measurements. The
proposed models are more accurate than WBMs with similar computational time
requirements, and require a smaller amount of historical data when compared to a
pure BBMs.

The aim of this book chapter is to propose the application of a gray-boxmodelling
approach to the prediction of ship fuel consumption which can be used as a tool for
online trim optimisation. In this framework the authors exploit Machine Learning
techniques based on kernel methods and ensemble techniques [5, 65] so to improve
an effective but simplified physical model [8] of the propulsion plant. The proposed
model is tested on real data [3] collected from a vessel during two years of on
board sensors data acquisitions (e.g. sheep speed, axis rotational speed, torque, wind
intensity and direction, temperatures, pressure, etc.).

2 The Sustainability Challenge in Shipping

2.1 The Shipping Sector

International trade has been amajor factor in the development ofmankind all through-
out the history. This can be seen in particular today, as shipping contributes to approx-
imately 80–90% of global trade (in ton km, [52]) with an increase from 2.6 to 9.8
billion tons of cargo from 1970 to 2014. Today anything from coal, iron ore, oil
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and gas to grains, cars, and containerized cargo is transported by sea, thus making
shipping the heart of global economy [73].

If compared to other transportation modes, shipping is relatively efficient if mea-
sured in terms of fuel consumed per unit of cargo transported and of distance covered
[75]. Nevertheless, shipping is today under strong pressure for reducing its fuel con-
sumption, both from an environmental and economical perspective.

2.2 Shipping and Carbon Dioxide Emissions

Themain connection between energy efficiency and sustainability in shipping relates
to the emissions of greenhouse gas (GHG), that are considered today to be the main
contributor to global warming. Despite carbon dioxide (CO2) emissions from the
shipping sector were estimated to amount to less than 3% of the total in 2012, they
are expected to grow in the future by between 50 and 250% in relation to the expected
increase of transport volumes [67].

This pressure related to making shipping more sustainable will also have more
and more impact on the shipping industry from an economical perspective. Not only
environmental regulations are becoming stricter in many areas of the world (compli-
ance often requires higher fuel expenses). In the particular case of CO2 emissions,
market based measures are being discussed, particularly but not only in the European
Union, as a mean for incentivising the transition to low-carbon shipping.

In relation to the strive for sustainability, shipping is a very peculiar business,
where conditions are not optimal for incentivising energy efficiency. Split incentives
are often a hinder to implementing energy efficiency measures, as neither the owner
of the ship, nor its operator pay for the fuel [39]. In addition, differently from e.g.
planes and cars, ships are built on individual or small-series basis; this makes it
particularly expensive to invest into research and development on an individual ship
basis [18, 76]. Ships are very long-lasting products, whose operational life can range
from 15 to more than 30 years [69].

In these conditions, although technical improvements to ship energy systems
(both by retrofitting and in the design phase) are seen as the solutions with the
largest potential for reducing ship fuel consumption, operational measures are of
particular interest. In fact they do not require any initial investment and, therefore,
are particularly easy to implement [6].

2.3 Operational Efficiency in Shipping

Operational measures is a category that includes different measures for energy effi-
ciency on board that do not require the installation of new equipment. On most
vessels, the energy demand for propulsion represents the largest share of the total
energy demand [3]. For this reason, most of the measures that aim at reducing ship
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fuel consumption relate to the reduction of the fuel demand from the main engines.
This, in turn, can be achieved by either reducing the thrust required for moving the
ship’s hull through the water, or by improving the efficiency of the most relevant
conversion components, namely the propeller and the engine. An appropriate opti-
misation requires, however, an in-depth understanding of the influence of the speed
of the vessel on its fuel consumption in different environmental and operational
conditions.

As the power demand for propulsion roughly depends on the ship’s speed to the
third power (up to the fourth power for faster ships), reducing the speed of the vessel
is often regarded as a possible solution for improving energy efficiency. Although
the practice of slow-steaming has its inconveniences (e.g. demand for more ships to
be built, longer time at sea, higher inventory costs), it has been shown that fuel can
be saved by optimising the speed at each instant of the voyage, without changing the
total voyage time. This practice is normally referred to as weather routing. Its correct
application requires, however, not only the availability of reliable short-middle term
predictions of the weather conditions, but also of an accurate understanding of the
influence of given weather conditions on the ship’s power demand for propulsion.

For given conditions of ship speed and weather, there are other operational para-
meters that influence the power demand for propulsion. In particular, the trim (defined
as the difference between the draft at the ship’s fore and aft, thereby measuring how
much the position of the ship differentiates from that of being parallel to the sea
surface) can be optimised in order to adapt to conditions of minimal demand for
propulsive power. This is normally done on board starting from rules of thumb based
on tests performed on ship physical models at reduced scale, where the ship’s average
draft and speed are the parameters that most influence the choice of the optimal trim.
However, in real operating conditions, not only the influence of these variables can
be different from what predicted by model tests, but also other conditions (e.g. the
weather) can play a role in the determination of the optimal draft.

The added resistance coming from the growth of different types of organisms
on the surface of the hull also plays a major role on the total power demand for
ship propulsion, which can increase by up to 100% [63] as a consequence of the
increased hull roughness. As a solution to this issue, most ships use a thin layer
of poisonous paint (normally referred to as antifouling paint) which slowly releases
substanceswhich are poisonous for the organisms that grow on the surface of the hull.
In addition, the hull is cleaned and, if necessary, re-painted at specific intervals. The
choice of the hull cleaning intervals is, today, mostly based on rules of thumb (e.g.
once a year), generally as a consequence of the difficulty of predicting the relative
contribution of fouling on the total ship resistance. This practice could therefore be
substantially improved if the contribution of added resistance due to fouling to the
total ship resistance could be evaluated more accurately.

Finally, a significant share of ships are today equipped with a controllable pitch
propeller (CPP), i.e. a propeller where the inclination of the blades in relation to the
propeller axis can be changed according to the specific requirements as an opera-
tional variables. When this type of propeller is installed, the choice of the pitch is
normally pre-set as a function of the propeller speed for optimising the efficiency of
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the propeller. However, not only the optimal propeller efficiency is also influenced by
other factors (e.g. ship draft and weather conditions), but also the engine efficiency
is influenced by the choice of its operating conditions in terms of speed and torque
requirements. This shows potential for additional fuel savings if the propeller pitch
is continuously optimised for optimal efficiency of the entire propulsion train.

It appears clearly from the previous section that an appropriate ability of predicting
the influence of all the different environmental and operational variables on the
performance of the ship is of utmost importance for achieving themost out of different
operational measures for improving ship energy efficiency.

3 Problem Description

3.1 Ship Description

In this book chapter, the authors propose the utilisation of a predictive model of the
fuel consumption for the online optimisation of the trim of a vessel. The proposed
method has been tested on a Handymax chemical/product tanker in order to show its
potential. A conceptual representation of the ship propulsion plant is shown in Fig. 1,
while relevant ship features are presented in Table1. The ship systems consists of
twomain engines (MaK 8M32C four-stroke Diesel engines) rated 3840kW each and
designed for operation at 600 rpm. The two engines are connected to one common
gearbox; the gearbox has two outputs: a controllable pitch propeller designed for
operations at 105 rpm for ship propulsion; and a shaft generator (rated 3200kW)

Fig. 1 Conceptual
representation of the ship
propulsion system
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Table 1 Main features of the
case study ship

Ship feature Value Unit

Deadweight 47000 (t)

Installed power (Main Engines) 3840 (x2) [kW]

Installed power (Auxiliary Engines) 682 (x2) [kW]

Shaft generator design power 3200 [kW]

Exhaust boilers design steam gen. 1400 [kg/h]

Auxiliary boilers design steam gen. 28000 [kg/h]

Fig. 2 Description of the
ships routes

used for fulfilling on board auxiliary power demand. Auxiliary power can also be
generated by two auxiliary engines rated 682kW each. Auxiliary heat demand is
fulfilled by a combination of exhaust gas boilers and auxiliary oil-fired boilers.

The ship is mainly used in the spot market (i.e. based on short-term planning
of ship logistics, as opposed to long-term agreements with cargo owners on fixed
schedules and routes) and therefore operates according to a variable schedule, both
in terms of time spent at sea and of ports visited. The variety of different routes
is shown in Fig. 2. Figures3 and 4 represent the observed ship operations for the
selected time period. It can be seen that although the ship spends a significant part
of time in port, most of ship operations are related to open sea transport, either in
laden or ballast mode (see Fig. 3). The focus of this work lies in the optimisation
of ship trim; consequently, only data points related to sailing operations are consid-
ered in this study. Operations of manoeuvring, cargo loading, cargo unloading, and
port stays were therefore excluded from the original dataset. These transport phases
happen at a broad range of speeds, as shown in Fig. 4, which provides additional
evidence of the need for an efficient tool for the optimisation of ship operations in
different operational conditions. Because of their specific trading pattern, tankers
are normally used in two very distinct operational modes: laden (i.e. with full cargo
holds, delivering liquid bulk cargo to the destination port), and ballast (with empty
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Fig. 3 Time spent in each operational mode for the selected vessel in the chosen period

Fig. 4 Speed, draft and wind distributions during sailing time for the selected vessel in the chosen
period

cargo holds, sailing to the port where the next cargo is available for loading). In
reality, even when loaded, tankers vessels do not always sail with completely full
holds due to differences in order sizes. The ship’s draught can consequently vary,
depending on the operation, from 11m when the ship is fully loaded to 6m when
cargo holds are completely empty. The distribution of ship draught over the pro-
posed dataset is presented in Fig. 4. In addition to ship speed and draught, weather
conditions are also known to have an influence on the optimal trim to be used when
sailing, and can vary during ship operations. Figure4 represents wind speed which,
in turn, is strongly correlated to ship added resistance.
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3.2 Data Logging System

The ship under study is provided with a data logging system installed by an energy
management providerwhich is usedby the companyboth for onboardmonitoring and
for land-based performance control. Table2 summarises the available measurements
from the continuous monitoring system.

The original data frequency measured by the monitoring system is of 1 point
every 15 s. In order to provide easier data handling, the raw data are sent to the
provider server, where they are processed into 15 min averages. The data processing
is performed by the provider company and could not be influenced or modified by
the authors.

Measured values come from on board sensors, whose accuracy and reliability
cannot be ensured in the process. In particular, issues related to the measurement
of speed through water (LOG speed) are well known. Such measurements are often
partly unreliable since the flow through the measurement device can be easily dis-
turbed by its interaction with the hull or by other environmental conditions. On the
other handmeasurements of speed over ground (GPS speed), althoughmore reliable,
do not include the influence of currents, which can be as strong as 2÷3 knots depend-
ing on time and location and therefore influence ship power demand for propulsion.
Fuel consumption is measured using a mass flow meter, which is known to be more
accurate of the more common volume flow meters as it eliminates uncertainty on
fuel density. It should be noted, however, that measurements of fuel specific energy
content (LHV) were not available; variation of heavy fuel oil LHV is known to be in
the order of ±2MJ/kg, which corresponds to a variation of ±5%. Propeller speed,
torque measurement and fuel mass flow accuracy were provided by the shipyard at
respectively ±0.1, ±1 and ±3%.

4 From Inference to Data Analytics

Inference is the act or process of deriving logical conclusions from premises known
or assumed to be true [51]. There are two main families of inference processes:
deterministic, and statistical inference. The former studies the laws of valid infer-
ence, while the latter allows to draw conclusions in the presence of uncertainty, and
therefore represents a generalisation of the former. Several different types of infer-
ence are commonly used when dealing with the conceptual representation of reality
as shown in Fig. 5:

• Modelling/approximation refers to the process of building amodel of a real system
based on the knowledge of the underlying laws of physics that are known to
govern the behavior of the system. Depending on the expected use and needs of
the model, as well a on the available information, different levels of approximation
can be used. Modelling/approximation of a real system only based on mechanistic
knowledge can be categorised as deterministic inference [37];
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Table 2 Measured values
available from the continuous
monitoring system

Variable name Unit

Time stamp

Latitude (◦)
Longitude (◦)
Fuel consumption (Main engines) (kg/15 mins)

Auxiliary engines power output (kW)

Shaft generator power (kW)

Propeller shaft power (kW)

Propeller speed (kW)

Ship draft (fore) (m)

Ship draft (aft) (m)

Draft port (m)

Draft starboard (m)

Relative wind speed (m/s)

Relative wind direction (◦)
GPS heading (◦)
Speed over ground (GPS) (kn)

Speed through water (LOG) (kn)

Sea depth (m)

Sea water temperature (◦C)
CPP setpoint (◦)
CPP feedback (◦)
Fuel density (kg/m3)

Fuel temperature (◦)
Ambient pressure (mbar)

Humidity (%)

Dew point temperature (◦C)
Shaft torque (kNm)

Rudder angle (◦)
Acceleration X direction (-)

Acceleration Y direction (-)

Acceleration Z direction (-)

GyroX (-)

GyroY (-)

GyroZ (-)

Roll (-)

Pitch (-)

Yaw (-)
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Fig. 5 Type of inference exploited in this book chapter

• When the model is built by statistically elaborating observations of system inputs
and outputs, the process belongs to the category of statistical induction. As the
model is inferred based on measurements affected by different types of noise, this
process is intrinsically under the effect of uncertainty and therefore belongs to the
category of statistical inference [74];

• The process of using an existing model to make predictions about the output of the
system given a certain input is called deductive inference. This process can be both
deterministic or probabilistic depending on how the model is formulated [14];

• The process of actively modifying model inputs in order to obtain a desired output
is normally referred to as retroduction (or abduction) [41].

The subject of this book chapter can hence be seen as the application of a general
category of problems to a specific case. The physical laws governing ship propulsion
are known and widely used in the dedicated literature with the purpose of modelling
the ship behaviour [11]. Moreover a series of historical data about the ship’s propul-
sion system are available, and based on this it is possible to build a statistical model
of the process [21, 32, 45, 68] which again can be exploited to predict the behaviour
of the system. In particular data analytics tools allow performing different levels of
statistical modelling [21]:

• descriptive analytics tools allow understanding what happened to the system (e.g.
whatwas the temperature of the cylinders of the engine in the last days).Descriptive
analytics answers to the question ‘What happened?’

• diagnostic analytics tools allow understanding why something happened to the
system (e.g. the fuel consumption it too high and this is due to a the decay of the
hull). Diagnostic analytics answers to the question ‘Why did it happen?’

• predictive analytics tools allow making predictions about the system (e.g. when a
newpropeller is installed to reduce fuel consumption). Predictive analytics answers
to the question ‘What will happen?’
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• prescriptive analytics tools allow understanding why the system behave in a par-
ticular way and how to force the system to be in a particular state (e.g. what is
the best possible way to steer the ship in order to save fuel). Prescriptive analytics
answers to the question ‘How can we make it happen?’

Descriptive analytics is something very simple to implement, for example in Sect. 3
authors showed some compressed information coming from the historical data col-
lection which can be interpreted as a descriptive analytic process. These tools are
the least interesting ones since there is no additional knowledge extracted from the
data [21]. Diagnostic analytics is a step forward where the authors try to understand
what happened in the past, searching correlation in the data in order to get additional
information from the data itself. Examples of these approach in the context of naval
transportation system can be found in [12, 40, 57, 78]. Finally, predictive and pre-
scriptive analytics are the most complex approaches where a model of the system
is built and studied in order to understand the accuracy and the properties of the
model and make the system behave in a particular way. This is the most important
analysis in practical applications since, even if diagnostic analytics allows improving
the understanding of past and present conditions of the system, it is more important
to predict the future and take action in order to prevent the occurrence of some event
[12, 24] (substitute a component before it fails) or to make some event happen [58]
(reduce the fuel consumption of a ship).

For these reasons in the next sections a more rigorous framework is depicted
together with the description of the approaches adopted for building predictive mod-
els. An assessment of their accuracy and properties is performed and a complete
description about how to use these models to force the system in producing an out-
put is provided.

4.1 Supervised Learning

In the context of supervised machine learning, we are interested in a particular sub-
problem which is the regression one. Regression helps to understand how the value
of a dependent variable changes when any one of the independent variables is varied.
Using the conventional regression framework [65, 74] a set of data Dn = {(x1, y1),
· · · , (xn, yn)}, with xi ∈ X ⊆ R

d and yi ∈ Y ⊆ R, are available from the automa-
tion system. Each tuple (xi , yi ) is called sample and each element of the vector
x ∈ X is called feature.

When inferring a model starting from a real system, the goal is to provide an
approximation M : X → Y of the unknown true model S : X → Y . S and M
are graphically represented in Fig. 6. It should be noted that the unknown model
S can be also seen, from a probabilistic point of view, as a conditional probability
P(y|x) or, in other words, as the probability of the output y given the fact that we
observed x as an input to S.
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Fig. 6 The regression
problem

As previously described, in this book chapter three alternativemodelling strategies
are compared: white-, black-, and gray-box models:

• White BoxModel (WBM): in this case the modelMWBM is built based on a priori,
mechanistic knowledge of S (numerical description of the body hull, propulsion
plant configuration, design information of the ship). The implementation of a
WBM in this specific case is described in Sect. 5.1.

• Black Box Model (BBM): in this case the model MBBM is built based on a series
of historical observation ofS (or in other words Dn). In this book chapter, this is
done by exploiting state of the art Machine Learning techniques as described in
Sect. 5.2.

• Gray BoxModel (GBM): in this case theWBMandBBMare combined in order to
build amodelMGBM that takes into account both a priori information and historical
dataDn so to improve the performances of both the WBM and BBMmodels. The
implementation of the GBM principle to the specific case of this work is described
in Sect. 5.3.

4.2 Estimation of Model Accuracy

The accuracy of the model M as a representation of the unknown system S can be
evaluated using different measures of accuracy [26]. In particular, given a series
data Tm = {(x1, y1), · · · , (xm, ym)},1 the model will predict a series of outputs
{ŷ1, · · · , ŷm} given the inputs {x1, · · · , xm}. Based on these outputs it is possible to
compute these performance indicators:

• mean absolute error (MAE) MAE = 1
m

∑m
i=1 |yi − ŷi |

• mean absolute percentage error (MAPE) MAPE = 100 1
m

∑m
i=1

∣

∣

∣

yi−ŷi
yi

∣

∣

∣

• mean square error (MSE) MSE = 1
m

∑m
i=1 (yi − ŷi )

2

• normalised mean square error (NMSE) NMSE = 1
mΔ

∑m
i=1 (yi − ŷi )

2,
Δ = 1

m

∑m
i=1 (yi − ȳ)2, and ȳ = 1

m

∑m
i=1 yi

1The set Tm must be a different set respect to Dn which has been used to built the model M in the
case of BBMs and GBMs [1].
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• relative error percentage (REP) REP = 100

√

∑m
i=1(yi−ŷi )

2
∑m

i=1 y
2
i

• Pearson product-moment correlation coefficient (PPMCC) which allows to com-
pute the correlation between the output of the system and the output of the model

PPMCC =
∑m

i=1(yi−ȳ)(ŷi−¯̂y)√
∑m

i=1(yi−ȳ)2
√

∑m
i=1(ŷi−¯̂y)2

, and ¯̂y = 1
m

∑m
i=1 ŷi

Note that all these measures of accuracy are useful for giving an exhaustive descrip-
tion of the quality of the forecast [26].

4.3 Prescriptive Analytics

Once the model M of the system S is available, it is possible to control its inputs
in order to produce a desired output. In this particular application, the goal is to find
the minimum for the fuel consumption by acting on the ship’s trim while keeping all
other model inputs unchanged.

This approach, however, requires additional care and understanding of the under-
lying physics of the system:

• With reference to the previous work from the authors [11], not all variables avail-
able as measurements can be used as predictors. In this case, in particular, the
power and torque at the propeller shaft had to be excluded from the input list (see
Table3). Changing the trim would consequently change ship resistance and, there-
fore, the power required for its propulsion. Therefore modifying the trim while
keeping the propeller power constant would represent a conceptual error.

• Not all possible trim values are physically allowed, and therefore boundary values,
based on a priori knowledge of the system, should be provided.

• Although GBMs are more reliable in the extrapolation phase, their accuracy is
expected to be reduced if they are extrapolated too far for outside the boundaries
of the original range Dn . Extrapolation is therefore allowed (the use of GBMs
proposed in this book chapter is also based on their improved performance for
extrapolation compared to BBMs) but this operation should be performed with
care.

Based on these considerations, in this book chapter a method for trim optimi-
sation is proposed. WBM, BBM and GBM are presented and compared based on
the accuracy metrics proposed in Sect. 4.2. Based on this comparison, one model is
selected for further analysis, checked for physical plausibility (Sect. 6) and used for
application to the problem of trim optimisation (Sect. 7).
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Table 3 Variable of Table2 exploited to built the M

Id Name Type

1 Latitude Input

2 Longitude Input

3 Volume Input

4 State Input

5 Auxiliary consumed Input

6 Auxiliary electrical power
output

Input

8 Shaft rpm Input

9 Ship draft (fore) Input

10 Ship draft (aft) Input

11 Relative wind speed Input

12 Relative wind direction Input

13 GPS heading Input

14 GPS speed Input

15 Log speed Input

16 Shaft generator power Input

17 Sea depth Input

18 Draft Port Input

19 Draft Starboard Input

20 Sea water temperature Input

21 CPP setpoint Input

22 CPP feedback Input

23 Fuel density Input

24 Fuel temperature Input

25 Ambient pressure Input

26 Humidity Input

27 Dew point temperature Input

29 Rudder angle Input

30 Acceleration X direction Input

32 Acceleration Y direction Input

32 Acceleration Z direction Input

33 GyroX Input

34 GyroY Input

35 GyroZ Input

36 Roll Input

37 Pitch Input

38 Yaw Input

39 True direction Input

40 True speed Input

(continued)
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Table 3 (continued)

Id Name Type

41 Beaufort Input

Shaft power Output

Shaft torque Output

Main engine consumption Output

Shaft power predicted by the WBM Input GBMs

Shaft torque predicted by the WBM Input GBMs

Main engine consumption predicted by the WBM Input GBMs

5 White, Black and Gray Box Models

5.1 White Box Models

Anumerical model, the so calledWhite BoxModel (WBM), based on the knowledge
of the physical processes was developed by the authors. The WBM model is able
to evaluate the ship consumption, for different ship speed V and displacement Δ in
calm water scenario.

The model is based on the knowledge of the ship’s hull geometry, mass dis-
tribution, propeller characteristics and main Diesel engine consumption map. The
selected control variables (i.e. the system input which is under the user’s control)
taken into account are: the main engine revolution N and the pitch ratio P/D. The
control of these variables allow the ship to sail at the desired speed. The total ship’s
fuel consumption is used as model output.

The core of the procedure is the engine-propeller matching code utilised to evalu-
ate the total ship fuel consumption and already tested as an effective tool in a previous
work [9].

The prediction of ship resistance in calm water can be performed according to
different approaches, normally divided in parametric approaches [4, 29, 34, 35],
and approaches based on computational fluid dynamics (CFD), such as the Reynolds
averaged Navier-Stokes (RANS) or boundary element methods (BEM) [33]. In this
study only parametricmethodswere considered because of their lower computational
requirements. In particular, the Guldhammer Harvald method [29] was employed for
the prediction of calm water resistance and, in particular, of the coefficient of total
hull resistance in calm water CT in Eq. (1). The inputs related to ship geometry used
in the Guldhammer Harvald method are summarised in Table4.

Rtot = 1

2
CTρSV 2 (1)

where ρ is the sea water density.
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Table 4 Main input
quantities for ship resistance
prediction

Input Symbol Unit

Length on waterline LWL (m)

Breath on waterline BWL (m)

Draught T (m)

Volume V (m3)

Wetted surface S (m2)

Longitudinal position of center
of buoyancy

LCB (m)

Longitudinal position of center
of buoyancy

LCB (m)

Bow shape coefficient

Section shape coefficient

For each displacement the equilibrium draft on even keel has been calculated,
together with the necessary input variables [10] required by he Guldhammer Har-
vald method [29] to perform resistance prediction in calm waters. The propulsion
coefficients have been corrected in magnitude as reported in [50].

Propeller thrust and torque were computed offline for different pitch settings by
means of a viscousmethod and based on the knowledge of the geometrical features of
the propeller. The calculated values were implemented in the matching code through
the non dimensional thrust KT and torque KQ coefficients.

As reported in Fig. 1 a shaft generator is used for fulfilling on board auxiliary
power demand. In order to optimise this feature the ship propulsion system has
been set-up for working at fixed rpm using the pitch as control variable. Once the
displacement, shaft rate of revolutions and vessel speed are fixed, the advance coef-
ficient J is defined together with the non dimensional thrust coefficient according to
the following equations:

J = V (1 − w)

nD
, KT = T

ρn2D4
(2)

where w is the wake factor, n is the propeller rate of revolution, D is the propeller
diameter and T is the required thrust of the propeller. The engine-propeller matching
code used in this work allows calculating the pitch ratio that provides the required
thrust at the fixed shaft speed. Finally the delivered power Pd can be evaluated by
means of the following quantities:

KQ = Q

ρn2D5
, η0 = JkT

2πKQ
(3)

A validation of the WBM model was performed based on the available measure-
ments of delivered power at different displacement derived from model tests in calm



28 A. Coraddu et al.

Table 5 White box model
validation

Δ = 25000 t

Speed Pdh (KW) Pdn (KW) Error (%)

10 1452.0 1548.9 6.7

12 2589.0 2653.8 2.5

14 4478.0 4465.9 0.3

16 7761.9 7430.3 4.3

Δ = 30000 t

10 1528.0 1637.6 7.2

12 2763.0 2805.3 1.5

14 4768.0 4818.1 1.1

16 18139.7 8139.1 0.0

Δ = 40000 t

Speed Pdh (KW) Pdn (KW) Error (%)

10 1768.0 1804.9 2.1

12 3100.0 3091.1 0.3

14 5196.0 5403.4 4.0

16 8760.2 9359.5 6.8

Δ = 50800 t

Speed Pdh (KW) Pdn (KW) Error (%)

10 1994.0 1815.5 9.0

12 3432.0 3106.3 9.5

14 5662.0 5458.5 3.6

16 9494.8 9546.7 0.5

Δ = 57100 t

Speed Pdh (KW) Pdn (KW) Error (%)

10 2162.0 1908.6 11.7

12 3690.0 3265.1 11.5

14 6089.0 5786.9 5.0

16 10323.4 10283.7 0.4

water. The measured (Pdh) and predicted (Pdn) delivered power, together with the
absolute percentage error of the model, are reported in Table5. The results obtained
with the WBM model are in good agreement with measured values: thus, the model
tool is able to derive a general representation of the relationship between vessel
speed, displacement and delivered power in calm water scenarios.

For a generic couple of ship displacementΔi and speedVi values, theWBMmodel
evaluates the propeller rate of revolution n, which ensures the propulsion equilibrium
between delivered and required thrust, and finally the associated fuel consumption.
Starting from propeller torque, the engine brake power Pb is computed by the global
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efficiency of the drivetrain and it is then possible to evaluate the corresponding
specific fuel consumption.

5.2 Black Box Models

Machine Learning (ML) approaches play a central role in extracting information
from raw data collected from ship data logging systems. The learning process for
ML approaches usually consists of two phases: (i) during the training phase, a set of
data is used to induce a model that best fits them, according to some criteria; (ii) the
trained model is used for prediction and control of the real system (feed-forward
phase).

As the authors are targeting a regression problem [74], the purpose is to find the
best approximating function h(x), where h : Rd → R. During the training phase,
the quality of the regressor h(x) is measured according to a loss function �(h(x), y)
[47], which calculates the discrepancy between the true and the estimated output
(y and ŷ). The empirical error then computes the average discrepancy, reported by a
model over Dn:

̂Ln(h) = 1

n

n
∑

i=1

�(h(xi ), yi ). (4)

A simple criterium for selecting the final model during the training phase consists in
choosing the approximating function that minimises the empirical error ̂Ln(h): this
approach is known as Empirical Risk Minimisation (ERM) [74]. However, ERM is
usually avoided2 in ML as it leads to severely overfitting the model on the training
dataset [74]. A more effective approach consists in the minimisation of a cost func-
tion where the tradeoff between accuracy on the training data and a measure of the
complexity of the selected approximating function is implemented [72]:

h∗ : min
h

̂Ln(h) + λ C (h). (5)

where C (·) is a complexity measure which depends on the selected ML approach
and λ is a hyperparameter that must be set a priori and regulates the trade-off between
the overfitting tendency, related to the minimisation of the empirical error, and the
underfitting tendency, related to the minimisation of C (·). The optimal value for λ is
problem-dependent, and tuning this hyperparameter is a non-trivial task [1] and will
be faced later in this section.

The approaches exploited in this book chapter are: the Regularised Least Squares
(RLS) [31], the Lasso Regression (LAR) [71], and the Random Forrest (RF) [5].

2Note that some techniques use ERM and then, in order to improve the performance of the method,
a post processing approach is adopted (i.e. pruning for Decision Tree [59]).
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In RLS, approximation functions are defined as

h(x) = wTφ(x), (6)

where a non-linear mapping φ : Rd → R
D , D � d, is applied so that non-linearity

is pursued while still coping with linear models.
For RLS, Problem (5) is configured as follows. The complexity of the approxi-

mation function is measured as

C (h) = ‖w‖22 (7)

i.e. the Euclidean norm of the set of weights describing the regressor, which is a
quite standard complexity measure in ML [72]. Regarding the loss function, the
Mean Squared Error (MSE) loss is adopted:

̂Ln(h) = 1

n

n
∑

i=1

�(h(xi ), yi ) = 1

n

n
∑

i=1

[h(xi ) − yi ]
2 . (8)

Consequently, Problem (5) can be reformulated as:

w∗ : min
w

1

n

n
∑

i=1

[

wTφ(x) − yi
]2 + λ‖w‖22. (9)

By exploiting the Representer Theorem [62], the solution h∗ of the RLS Problem
(9) can be expressed as a linear combination of the samples projected in the space
defined by φ:

h∗(x) =
n

∑

i=1

αiφ(xi )Tφ(x). (10)

It is worth underlining that, according to the kernel trick [61], it is possible to refor-
mulate h∗(x) without an explicit knowledge of φ by using a proper kernel function
K (xi , x) = φ(xi )Tφ(x):

h∗(x) =
n

∑

i=1

αi K (xi , x). (11)

Of the several kernel functions which can be found in literature [15], the Gaussian
kernel is often used as it enables learning every possible function [56]:

K (xi , x j ) = e−γ ‖xi−x j‖22 , (12)
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where γ is an hyperparameter which regulates the non-linearity of the solution [56]
and must be set a priori, analogously to λ. Small values of γ lead the optimisation to
converge to simpler functions h(x) (note that for γ → 0 the optimisation converges
to a linear regressor), while high values of γ allow higher complexity of h(x).

Finally, the RLS Problem (9) can be reformulated by exploiting kernels:

α∗ : min
α

1

n

n
∑

i=1

⎡

⎣

n
∑

j=1

α j K (x j , xi ) − yi

⎤

⎦

2

+ λ

n
∑

i=1

n
∑

j=1

αiα j K (x j , xi ). (13)

Given y = [y1, · · · , yn]T , α = [α1, · · · , αn]T , the matrix K such that Ki, j = K ji =
K (x j , xi ), and the Identity matrix I ∈ R

n×n , a matrix-based formulation of Problem
(13) can be obtained:

α∗ : min
α

1

n
‖Kα − y‖22 + λαT Kα (14)

By setting the derivative with respect to α equal to zero, α can be found by solving
the following linear system:

(K + nλI )α∗ = y. (15)

Effective solvers have been developed throughout the years, allowing to efficiently
solve the problem of Eq. (15) even when very large sets of training data are available
[80].

In LAR, instead, approximation functions are defined as

h(x) = wT x + b, (16)

which are linear functions in the original space Rd .
For LAR, Problem (5) is configured as follows. The complexity of the approxi-

mation function is measured as

C (h) = ‖w‖1 (17)

i.e. the Manhattan norm of the set of weights describing the regressor [71].
Regarding the loss function, theMean Squared Error (MSE) loss is again adopted.

Consequently, Problem (5) can be reformulated as:

w∗ : min
w

1

n

n
∑

i=1

[

wTφ(x) − yi
]2 + λ‖w‖1. (18)

As depicted in Fig. 7 theManhattan norm is quite different from the Euclidean one
since it allows increasing the sparsity of the solution. In other words the solution will
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Fig. 7 Manhattan norm
Versus euclidean norm

tend to fall on the edge of the square, forcing some weights of w to be zero. Hence,
the Manhattan norm allows both regularising the function and discarding features
that are not sufficiently relevant to the model. This property is particularly useful in
the feature selection process [71].

Two main approaches can be used to compute the solutions of Problem (18): the
LARS algorithms [19] and the pathwise coordinate descent [23]. In this book chapter,
the LARS algorithm is exploited because of its straight-forward implementation [19].

The performance of RLS (or LAR) models depends on the quality of the hyperpa-
rameters tuning procedure. As highlighted while presenting this approach, the para-
meters α∗, α̂∗

, and α̌
∗ (or w) result from an optimisation procedure which requires

the a priori setting of the tuples of hyperparameters (λ, γ ) (or λ). The phase in which
the problem of selecting the best value of the hyperparameter is addressed is called
model selection phase [1]. The most effective model selection approaches consist in
performing an exhaustive hyperparameters grid search: the optimisation problem for
RLS (or LAR) is solved several times for different values of γ and λ, and the best
pair of hyperparameters is chosen according to some criteria.

For the optimal choice of the hyperparameters γ and λ, in this book chapter the
authors exploit the Bootstrap technique (BOO) [1]. This technique represents an
improvement of the well–known k–Fold Cross Validation (KCV) [44] where the
original dataset is split into k independent subsets (namely, the folds), each one
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consisting of n/k samples: (k − 1) parts are used, in turn, as a training set, and the
remaining fold is exploited as a validation set. The procedure is iterated k times.

The standard Bootstrap [1] method is a pure resampling technique: at each
j-th step, a training set D j

TR, with the same cardinality of the original one, is built
by sampling the patterns in Dn with replacement. The remaining data D j

VL, which
consists, on average, of approximately 36.8% of the original dataset, are used as
validation set. The procedure is then repeated several times NB ∈ [1, (2n−1

n

)] in order
to obtain statistically sound results [1].

According to the Bootstrap technique, at each j-th step the available dataset Dn

is split in two sets:

• A training Set: D j
TR

• A validation Set: D j
VL

In order to select the best pair of hyperparameters (λ∗, γ ∗) (or λ∗) among all the
available ones G = {(λ1, γ1), (λ2, γ2), · · · } (or G = {λ1, λ2, · · · }) for the algorithm
for RLS (or LAR) the following optimisation procedure is required:

• for eachD j
TR and for each tuple (λi , γi ) (or λi ) with i ∈ {1, 2, · · · } the optimisation

problem of Eq.15 (or Eq.18) is solved and the solution hij (x) is found

• using the validation set D j
VL for searching the (λ∗, γ ∗) (or λ∗) ∈ G

(λ∗, γ ∗)
or λ∗ = arg min

{(λ1, γ1), · · · , (λi , γi ), · · · }
or {λ1, · · · , λi , · · · }

1

NB

NB
∑

j=1

1

|D j
VL|

∑

(x,y)∈D j
VL

[h(x) − y]2 .

(19)

Once the best tuple is found, the final model is trained on the whole setDn by running
the learning procedure with the best values of the hyperparameters [1].

Another learning algorithm tested for building the BBM is the Random Forest
(RF) [5]. Random Forests grows many regression trees. To classify a new object
from an input vector each of the trees of the forest is applied to the vector. Each tree
gives an output and the forest chooses the mode of the votes (over all the trees in
the forest). Each single tree is grown by following this procedure: (I) n samples are
sampled (with replacement) from the original Dn , (II) d ′ � d features are chosen
randomly out of the d and the best split on these d ′ is used to split the node, (III) each
tree is grown to the largest possible extent, without any pruning. In the original paper
[5] it was shown that the forest error rate depends on two elements: the correlation
between any couples of trees in the forest (increasing the correlation increases the
forest error rate) and the strength of each individual tree in the forest (reducing
the error rate of each tree decreases the forest error rate). Reducing d ′ reduces both
the correlation and the strength. Increasing it increases both. Somewhere in between
is an optimal range of d ′ - usually quite wide so this is not usually considered as
an hyperparameter. Note that, since we used a bootstrap procedure by sampling n
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sampleswith replacement from the originalDn , we can use the error on the remaining
part of the data (this is called out-of-bag error) to chose the best d ′.

5.3 Gray Box Models

GBMs are a combination of a WBMs and BBMs. This requires to modify the BBMs
as defined in the previous section in a way to include the mechanistic knowledge of
the system. Two approaches are tested and compared in this book chapter:

• a Naive approach (N-GBM) where the output of theWBM is used as a new feature
that the BBM can use for training the model.

• an Advanced approach (A-GBM) where the regularisation process is changed in
order to include some a-priori information [1].

In the N-GBMcase, theWBMcan be seen as a function of the input x. TheWBM,
that we call here hWBM(x), allows the creation of a new dataset:

DWBM,X
n =

{([

x1
hWBM(x1)

]

, y1

)

, · · · ,

([

xn
hWBM(xn)

]

, yn

)}

Based on this new dataset a BBM can be generated hBBM
(

[

xT |hWBM(x)
]T

)

.

According to this approach, every run of the GBM requires an initial run of the
WBM in order to compute its output hWBM(x), which allows evaluating the model

hBBM
(

[

xT |hWBM(x)
]T

)

. This is the simplest approach for including new informa-

tion into the learning process. Note that with this approach any of the previously cited
BBMs (e.g. RLS, LAR or RM) can be used for building the corresponding N-GBM.

In the A-GBM case the WBM part of the model is assumed to be included in the
w vector:

hWBM(x) = wT
WBMφ(x), (20)

According to [1], the regularisation process of Eq. (9) is modified to:

w∗: min
w

1

n

n
∑

i=1

[

wTφ(x) − yi
]2 + λ‖w − wWBM‖22. (21)

It is possible to prove that by exploiting the kernel trick the solution to this problem
can be rewritten as:

h∗(x) = hWBM(x) +
n

∑

i=1

α∗
i K (xi , x). (22)
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where

α∗ : min
α

1

n

n
∑

i=1

⎡

⎣

n
∑

j=1

α j K (x j , xi ) + hWBM(xi ) − yi

⎤

⎦

2

+ λ

n
∑

i=1

n
∑

j=1

αiα j K (x j , xi ),

(23)

The solution to this problem can be computed by solving the following linear system:

(K + nλI )α∗ = y − hWBM, (24)

where hWBM = [hWBM(x1), · · · , hWBM(xn)]T .Note that the solutiondoes not depend
on the form of hWBM(x) so that any WBM can be used as hWBM(x).

Another possible way of achieving the same solution of the problem of Eq. (24)
is to create a new dataset:

DWBM,Y
n = {(x1, y1−hWBM(x1)), · · · , (xn, yn−hWBM(xn))}

where the target is no longer the true label y but the true label minus the hint given
by the a priori information included in hWBM(x). This means finding a BBM that
minimises the error of the WBM prediction.

It should be noted that the A-GBM is more theoretically justified in the regulari-
sation context while the N-GBM is more intuitive since all the available knowledge
is given as input to the BBM learning process. From a probabilistic point of view, the
A-GMB changes the P(y|x) while the N-GBM modifies the whole joint probability
P(y, x), hence deeply influencing the nature of the problem.

The (λ, γ ) for RLS, the λ for LAR and d ′ for RF of the N-GBM and A-GBM
are tuned with the BOO as described for the BBM, since both N-GBM and A-GBM
basically require to build a BBM over a modified training set.

5.4 Model Validation

The WBM was validated using the data described in Sect. 3 versus propeller shaft
power, shaft torque, and total fuel consumption. The results of the validation are
presented in Table6. The results show that the WBM does not show sufficient accu-
racy when compared with operational measurements. The inability of the model to
take into account the influence of the sea state (i.e. wind and waves) on the required
propulsion power is considered to be the largest source of error for this model.

The BBMs built according to the RLS, LAR and RF methods were validated
versus the same dataset as for the WBM validation procedure. However, in the case
of the BBMs the Dn was divided in two sets Lnl and Tnt respectively for learning
and test. The two sets were defined so that Dn = Lnl ∪ Tnt and Lnl ∩ Tnt = � in
order to maintain the independence of the two sets.
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Table 6 Indexes of performance of the WBM in predicting the shaft power, shaft torque, and fuel
consumption

Shaft power

MAE (KW) MAPE (%) MSE
(

KW2
)

NMSE REP (%) PPMCC

7.69e+02 17.85 1.00e+06 1.13 23.59 0.65

Shaft torque

MAE (Nm) MAPE (%) MSE
(

N2m2
)

NMSE REP (%) PPMCC

6.54e+01 18.13 6.92e+03 0.94 22.01 0.22

Fuel consumption

MAE
( g
KWh

)

MAPE (%) MSE
(

g2

KW2h2

)

NMSE REP (%) PPMCC

5.14e-02 20.95 3.94e-03 1.98 25.40 0.63
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Fig. 8 Shaft Power, Shaft Torque, and Fuel ConsumptionMAPEof theBBM,N-GBMandA-GBM
for RLS and different nl
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The process of splitting the full dataset in a learning set and test set is repeated
30 times in order to obtain statistical relevant results. We always underline in bold
the best results which are statistically significant [25]. The results are reported for
different sizes of Lnl with nl ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000}. The
optimisation procedure is repeated for different values of both hyperparameters (γ
andλ), where their values are taken based on a 60 points equally spaced in logarithmic
scale in the range [10−6, 103] and thebest set of hyperparameters is selected according
to the BOO (Sect. 5.2). The same has been done for d ′ in RF.

Also in the case of the GBM, analogously to the procedure adopted for the BBM,
the original datasetDn is divided in two setsLnl and Tnt and λ, γ and d ′ are chosen
according to the BOO procedure.

The entire set of results is not reported here because of space constraints but it
can be retrieved in the technical report available at http://www.smartlab.ws/TR.pdf

From the results it is possible to note that the WBM, as expected, has the lowest
performance in terms of prediction accuracy. On the other hand, the GBMs out-
perform the BBMs by a smaller percentage. The MAPE of the BBM, N-GBM and
A-GBM for different values of nl are reported in Figs. 8, 9, and 10.
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for LAR and different nl
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Fig. 10 Shaft Power, Shaft Torque, and Fuel Consumption MAPE of the BBM, N-GBM and
A-GBM for RF and different nl

From the results of Figs. 8, 9, and 10 it is possible to note how the WBM, even if
not so accurate, can help the GBM in obtaining higher accuracy, with respect to the
BBM, by using almost half of the data given a required accuracy. This is a critical
issue in real word applications where the collection of labeled data can be expensive
or at least requires a long period of in-service operational time of the vessel [11].

6 Feature Selection

Once a model is built and has been confirmed to be a sufficiently accurate represen-
tation of the real system of interest, it can be interesting to investigate how the model
M is affected by the different features that have been used in the model identification
phase.

In data analytics this procedure is called feature selection or feature ranking [7, 22,
30, 36, 79]. This process allows detecting if the importance of those features, that are
known to be relevant from a theoretical perspective, is appropriately described byM.
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The failure of the statistical model to properly account for the relevant features might
indicate poor quality in the measurements. Feature selection therefore represents an
important step of model verification, since the proposed model M should generate
results consistently with the available knowledge of the physical system under exam.
This is particularly important in the case of BBM (and, to a more limited extent, for
GBM), since they do not make use of any mechanistic knowledge of the system and
might therefore lead to non-physical results (e.g.mass or energy unbalances). Feature
selection also allows checking the statistical robustness of the employed methods.

In this book chapter, three different methods for feature ranking are applied:

• Brute Force Method (BFM), which searches for the optimal solution. This is the
most accurate method but also the most computationally expensive (see Sect. 6.1)
[22, 27].

• Regularisation Based Method (RBM) which works by building the BBM which
automatically discarding the features that do not significantly contribute to the
model output (for example by building an ad-hoc regularisers [16, 22, 53, 55, 66,
81, 82]). In this book chapter, the Lasso Regularisation technique was used (see
Sect. 6.2).

• RandomForest basedmethod (RFM)uses a combination ofDecisionTreemethods
together with the permutation test [28] in order to perform the selection and the
ranking of the features [22, 43, 70].

6.1 Brute Force Method

According to the Brute Force method (BFM) for feature selection, the k most impor-
tant features of the model can be identified as follows:

• a first version of the modelM including all the available features is built. The full
model is tested against a test set ̂LTest;

• for a given k, a set of new models is built for all possible configurations including
feature k. For every possible configuration, which are

(d
k

)

, a newmodelM j is built

where j ∈
{

1, · · · ,
(d
k

)

}

together with its error on the test set ̂L j
Test;

• the smaller is the difference between ̂L j
Test and ̂LTest, the greater is the importance

of that set of features.

Given its high computational demands, this approach is not feasible for d > 15 ÷
20. A solution for reducing the required computational time is to adopt a greedy
procedure:

• a first version of the modelM including all the available features is built. The full
model is tested against a test set ̂LTest;

• given a feature j1, the modelM is built which only includes that feature. The error
against the test set (̂L j1

Test) can now be calculated;
• the same procedure is performed for each feature j1 ∈ {1, · · · , d};
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• the smaller is the difference between ̂L j1
Test and ̂LTest the grater is the importance

of the features j1

j∗1 = arg min
j1∈∈{1,··· ,d}

̂LTest − ̂L j1
Test (25)

• this procedure is repeated by adding to j∗1 all the other features one at the time for
finding the second most important feature j∗2 ∈ {1, · · · , d} \ j∗1 . This operation is
repeated until the required size (k) of the ranking is achieved.

Greedy methods are more time efficient compared to brute force methods, but do not
ensure the full correctness of the result.

In this book chapter, several different models were proposed and are here tested
for feature ranking. These models are: BBM, N-GBM and A-GBM with RLS, LAR
and RF for a total of nine possibilities. It should be noted that for the N-GBM there
is another feature which is the WBM (see Table3).

6.2 Regularisation Based Method

The brute force method is a quite powerful approach but it requires a significant
computational effort. The Lasso Regression can be used for ranking the importance
of the features with lower computational demand.

However, the results of the Lasso Regression method are strongly influenced by
the training dataset and by the choice of the hyperparameters used in the learning
phase [53, 81, 82]. For this reason given the best value λ∗ of the hyperparameter
selected with the BOO procedure another bootstrap procedure is applied in order to
improve the reliability of the feature selection method: n samples are extracted from
Dn , the model is built with LAR and λ∗ and the features are selected. The bootstrap
is repeated several times and features are ranked based on how many times each
feature is selected as important by the LAR method [53].

In this work, the LAR method for feature selection was used in three different
kind of models (BBM, N-GBM and A-GBM). Similarly to the case of Brute Force
Methods, in theN-GBMcase theWBMrepresents an additional feature (see Table3).

6.3 Random Forest Based Method

In addition to its use for regression models, the Random Forest (RF) method can also
be used to perform a very stable Feature Selection procedure. The procedure can be
described as follows: in every tree grown in the forest the error on the out-of-bagmust
be kept. Then a random permutation of the values of variable j must be performed
in the samples of the out-of-bag and the error on the out-of-bag must be kept again.
Subtract the error on the untouched out-of-bag data with the error over the permuted
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out-of-bag samples. The average of this value over all the trees in the forest is the
raw importance score for variable j . This approach is inspired by the permutation
test [28] which is quite used in literature, is computationally inexpensive in the case
of Random Forest, and has shown to be quite effective in real wold applications
[17, 77]. The results for the RF feature selection method are reported for all the
models (BBM, N-BBM and A-GBM).

6.4 Results

In Table7 all the results of the feature selectionmethod are reported. Authors decided
to provide just the seven most informative features not to compromise the readability
of the tables. From the tables it is possible to draw the following considerations:

• all methods identify the same variables as the most relevant for the model, thus
confirming the validity of the modelling procedure. This also allows to trust the
reliability of the information contained historical data.

• the BF methods are the most stable, closely followed by the RF methods.
• the WBM is always among the seven most important features for GBMs. This
suggests that the N-GBM is able to take into account the information generated by
the WBM and use it appropriately, confirming the results of the previous section
which underlined the improved performance of GBMs compared to BBMs.

From a physical point of view the results of the feature selection identify the propeller
pitch (both setpoint and feedback) and the ship speed (both GPS and LOG) as the
most important variables for the prediction, which is what to be expected from this
type of ship propulsion system. Propeller speed is not among the most important
features, as it is normally kept constant during ship operations and therefore has
very limited impact from a modelling perspective. The ship draft (fore and aft)
are normally selected as important variables (5th-6th), which also reflects physical
expectations from the system as the draft influences both ship resistance and, to a
minor extent, propeller performance. As expected the shaft generator power, for this
propulsion plants configuration, plays an important role for the prediction. In addition
to this, some variables that could be expected to contribute significantly to the overall
performance are missing. In particular, wind speed and direction are generally used
for estimating the impact of the sea state, but are not included among the five most
relevant features by any feature selection method. This suggests that either the sea
state has a less significant impact on the ship’s fuel consumption compared to what
originally expected, or thatwind speed and direction are not appropriate predictors for
modelling this type of effects, contrarily to what often assumed in relevant literature.
One possible additional explanation to the absence of wind speed and direction from
the important variables is that the influence of the sea state is already accounted for
by the propeller pitch ratio, which is expected to vary as a consequence of both ship
speed and ship added resistance. As matter of fact in order to keep constant speed
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profile, the on board automation system should be designed to change the pitch
settings and the fuel consumption rate to take into account time domain variation of
boundary conditions such aswind and sea state conditions. Under this assumption the
relevant information about added resistance and wind intensity are already included
in the propeller pitch ratio.

7 Using Machine Learning for Operational Energy
Savings: Trim Optimisation

Of all the models proposed in the previous part of this book chapter, the N-GBM
based on RF features the best accuracy properties and best physical plausibility and
is therefore used for the trim optimisation problem. In order to meet the requirements
expressed in Sect. 4.3 the following is considered:

• Variables that are influenced by the trim, such as propeller power and torque, were
excluded from the model (see Table3).

• For each pair of ship speed and displacement, the trim is only allowed to vary in
the range observed from the available dataset, extended by δ%. This allows, for
every pair, to limit the extrapolation and therefore to ensure additional reliability
of the optimisation results.

In Table8 the Fuel Consumption percentage reduction with the trim Optimisation
technique is reported for different values of δ. As expected, the optimisation proce-
dure always leads to a reduction in fuel consumption. The improvement that can be
achieved via trim optimisation increases when δ is increased, although this tendency
seems to stabilise for δ > 5%.

According to the results of this model, improvements exceeding 2% in fuel con-
sumption can be achieved by applying the model for trim optimisation to the selected
vessel. It should be noted that trim optimisation can be performed at near to zero
cost on board, since it does not require the installation of any additional equipment.
Future work in this area will include testing trim optimisation system here proposed
on a real vessel, in order to check the validity of the model and the performance of
the optimisation tool.

Table 8 Fuel consumption
percentage reduction with the
trim optimisation technique

δ(%) % reduction

0 0.52 ± 0.12

1 1.45 ± 0.32

2 1.72 ± 0.51

5 2.22 ± 0.67

10 2.30 ± 0.64
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8 Summary

This chapter focused on the utilisation of methods of Machine Learning for making
ship operations more sustainable. Shipping is today facing large challenges in terms
of its impact on the climate, and the reduction of CO2 emissions that are expected to
be achieved in the future will require a significant effort.

The achievement of such goals will require, among others, to improve today’s
ability to accuratelymodel and predict the influence of environmental and operational
variables on ship performance, and in particular on the fuel consumption of the ship.
In this chapter, alongside with the white-box models commonly used today in this
industry, black and gray box models were introduced as modelling approaches that
can improve the accuracy of the prediction bymaking use of extensive measured data
from ship operations. The regularised least squares, Lasso Regression and Random
forest methods for the construction of black box models were proposed. In addition,
two different types of gray, “hybrid” modelling approaches combining elements
of white and black box models were also presented: the naive, and the advanced
approach. Finally, feature selection methods were introduced, that can be used for
testing the physical consistency of black and gray box models.

The book chapter was concluded with the application of the proposed methods to
a case study, a chemical tanker, with the aim of testing their ability of predicting fuel
consumption and of optimising the trim of the vessel. The results of this application
case confirmed the superiority of statistical methods over mechanistic models in
their ability of accurately predict the performance of the vessel, and highlighted
that gray box models, although improving the performance of black box models
only marginally, show an increased predictive ability with small sizes of the training
dataset. The application of a naive-gray boxmodel to the problemof trimoptimisation
allowed identifying the possibility of decreasing fuel consumption by up to 2.3%
without the need of installing further equipment on board.
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