
Chapter 2
Simple Examples in GAMS

The main concept that is developed in this chapter is explaining some optimization
categories that can be modeled in GAMS. These models include linear programming
(LP), mixed integer programming (MIP), nonlinear programming (NLP), quadratic
programming (QCP), mixed integer non-linear programming (MINLP), and multi-
objective optimization problems.

Understanding the materials presented and discussed in this chapter does not
require any background in power system studies. This makes it suitable for anybody
who might be interested to start optimization modeling in GAMS.

2.1 Different Types of Optimization Models

The general form of an optimization problem is as follows:

min
X

f .X; I/ (2.1a)

G.X; I/ � 0 (2.1b)

H.X; I/ D 0 (2.1c)

where f is objective function, G and H are set of equality and inequality constraints,
respectively, I is the input data of the optimization problem, and X is the set of
decision variables that should not only satisfy G and H but also optimizes the
f value.

© Springer International Publishing AG 2017
A. Soroudi, Power System Optimization Modeling in GAMS,
DOI 10.1007/978-3-319-62350-4_2

33



34 2 Simple Examples in GAMS

2.1.1 Linear Programming (LP)

The linear programming problems are those that f , G, H are all linear in (2.1).

2.1.1.1 LP Example

A simple linear programming example is as follows:

min
X

OF Dx1 C 3x2 C 3x3 (2.2a)

x1 C 2x2 � 3 (2.2b)

x3 C x2 � 5 (2.2c)

x1 C x3 D 4 (2.2d)

GCode 2.1 LP Example (2.2)

v a r i a b l e s x1 , x2 , x3 , o f ;
E q u a t i o n s
eq1
eq2
eq3
eq4 ;
eq1 . . x1+2�x2 =g =3;
eq2 . . x3+x2 =g =5;
eq3 . . x1+x3 =e =4;
eq4 . . x1+3�x2 +3�x3=e=OF ;
model LP1 / a l l / ;
So lve LP1 US LP min of ;
d i s p l a y x1 . l , x2 . l , x3 . l , o f . l ;

The optimal solution is

2
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x1

x2

x3

OF

3
775 D

2
664

0:333

1:333

3:667

15:333

3
775. Clicking on the model statistic tap

shows that this model has four blocks of equations (four single equations). It has
also four variables (x1;2;3;OF). The solution report would be as follows:

S O L V E S U M M A R Y
MODEL LP1 OBJECTIVE of
TYPE LP DIRECTION MINIMIZE
SOLVER CPLEX FROM LINE 12
**** SOLVER STATUS 1 Normal Completion
**** MODEL STATUS 1 Optimal

(continued)
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**** OBJECTIVE VALUE 15.3333
RESOURCE USAGE, LIMIT 0.016 1000.000
ITERATION COUNT, LIMIT 2 2000000000

It means that the solver has successfully solved the model and the solution is
globally optimal. The solver used for solving the model is CPLEX [1]. It states that
the value of objective function is 15.333. It also gives the user some info regarding
the computational burden needed for solving the problem. RESOURCE USAGE is
indicating how much time was needed to solve the model in seconds (0.016 s) and
what was the maximum time allowed to do so (1000 s). The number of iterations
needed for finding the optimal solution is two in this case. The default value for this
limit is 2,000,000,000.

Clicking on the SolEQU tab would show the following info regarding the model:

LOWER LEVEL UPPER MARGINAL
—- EQU eq1 3 3 +INF 0.333
—- EQU eq2 5 5 +INF 2.333
—- EQU eq3 4 4 4 0.667
—- EQU eq4 0 0 0 -1

The lower limits of eq1,eq2 have some finite values (3,5) but their upper limits
are +1. This means that these two equations are of � type. Equations eq3,eq4
have equal values for lower and upper limits. This means that these equations are
of equality type. The interesting part of the analysis is given in marginal column
(the last column). As it can be seen, the level values of eq1,eq2,eq3 are equal to
their lower limits. This has a certain meaning that these constraints are binding
constraints. This means that if the lower limits are changed then the objective
function value would change. The marginal values actually show the sensitivity
coefficients of objective function to these equations. Let’s check them in more
detail. The marginal value of eq1 is 0.333. This means that �OF

�RHS eq1 D 0:333.
The right-hand side of eq1 is 3 so if it is increased to 3.2 then �RHS eq1 D
3:2 � 3 D 0:2. The marginal value indicates that the new objective function would
be 15:333 C 0:333 � 0:2 D 15:3996. If the GAMS model is solved using the new
RHS value of eq1 (3.2) then OF would be 15.4. The obtained value is close but not
exactly what we were expecting but why? This is because the marginal values are
accurate for very small change in RHS values of the equations. If the variations are
small enough then the approximation would be accurate enough.

The marginal values constitute the values of dual variables. The decision maker
can understand which constraint is binding (has nonzero marginal value) and also
shows the most influential constraint on objective function (the biggest marginal
value).
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Clicking on the SolVAR tab would show the following info regarding the model:

LOWER LEVEL UPPER MARGINAL
—- VAR x1 -INF 0.333 +INF 0
—- VAR x2 -INF 1.333 +INF 0
—- VAR x3 -INF 3.667 +INF 0
—- VAR OF -INF 15.333 +INF 0

The variable attributes are given in the table above. The lower and upper limits
of all variables are �1 and C1, respectively. The marginal values are zero (this
is because no bound is defined for variables). Suppose that we define a lower limit
for x2 which is 2 � x2. Let’s see the impact on marginal values of equations and
variables: The code would be as follows:

Variables x1,x2,x3,of;
Equations eq1,eq2,eq3,eq4;
eq1 .. x1+2*x2 =g=3;
eq2 .. x3+x2 =g=5;
eq3 .. x1+x3 =e=4;
eq4 .. x1+3*x2 +3*x3=e=OF;
Model LP1 /all/;
x2.lo=2;
Solve LP1 US LP min of;
display x1.l,x2.l,x3.l,of.l;

Clicking on the SolEQU tab would show the following info regarding the model:

LOWER LEVEL UPPER MARGINAL
—- EQU eq1 3 5 +INF 0
—- EQU eq2 5 5 +INF 2
—- EQU eq3 4 4 4 1
—- EQU eq4 0 0 0 -1

This table shows that eq1 is no longer the binding equation. This means that
small change of RHS (which is 3 here) won’t change the objective function. The
marginal value of this equation is zero. The eq2 and eq3 are binding equations (they
have nonzero marginal values and also their level is equal to their lower value).
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Clicking on the SolVAR tab would show the following info regarding the model:

LOWER LEVEL UPPER MARGINAL
—- VAR x1 -INF 1 +INF 0
—- VAR x2 2 2 +INF 1
—- VAR x3 -INF 3 +INF 0
—- VAR OF -INF 16 +INF 0

The marginal values of all variables are zero except x2 which is 1. This means
that setting a lower limit for x2 caused this situation. Originally, the optimal value of
x2 was 1.333 and now the lower limit (which is set to be 2) stops it from reaching its
optimal value. Any possible decrease in x2 can help reducing the overall objective
function.

GCode 2.2 Finding the boundaries of a variable example (2.3)

V a r i a b l e s x1 , x2 , x3 , o f ;
E q u a t i o n s
eq1 , eq2 , eq3 , eq4 ;
eq1 . . x1+2�x2 = l =3;
eq2 . . x3+x2 = l =2;
eq3 . . x1+x2+x3 =e =4;
eq4 . . x1+2�x2 �3�x3=e=OF ;
Model LP1 / a l l / ;
x1 . l o =0; x1 . up =5; x2 . l o =0; x2 . up =3; x3 . l o =0; x3 . up =2;
So lve LP1 US LP max of ;
d i s p l a y x1 . l , x2 . l , x3 . l , o f . l ;
So lve LP1 US LP min of ;
d i s p l a y x1 . l , x2 . l , x3 . l , o f . l ;

2.1.1.2 Boundary Determination Example

Sometimes it is needed to find the maximum and minimum of the objective function
for a given model. This means that the problem should be solved two times. The
example given in (2.3) is describing such a situation.

min = max
X

OF D x1 C 2x2 � 3x3 (2.3a)

x1 C 2x2 � 3 (2.3b)

x3 C x2 � 2 (2.3c)

x1 C x2 C x3 D 4 (2.3d)
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0 � x1 � 5 (2.3e)

0 � x2 � 3 (2.3f)

0 � x3 � 2 (2.3g)

Please pay special attention to (2.3e)–(2.3g). These three constraints can be easily
treated in GAMS using :lo and :up statements. In order to reduce the number of
equations in the model it should be avoided defining them as six extra equations.
The Gcode 2.2 for solving (2.3) is provided as follows:

The problem is solved and the solutions are obtained as
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. The application of this model is in interval optimization [2],

fuzzy optimization [3], and DC power flow (which will be discussed in Chap. 6)

2.1.2 Mixed Integer Programming (MIP)

In mixed integer programming (MIP) problems, the decision maker is faced with
constraints and objective function that are linear but there exist some integer/binary
variables.

2.1.2.1 MIP Example

A MIP example is given for clarification as follows:

GCode 2.3 MIP example (2.4)

V a r i a b l e s x , o f ;
B i n a r y v a r i a b l e y ;
E q u a t i o n s eq1 , eq2 , eq3 ;
eq1 . . �3�x+2�y =g =1;
eq2 . . �8�x+10�y = l =10;
eq3 . . x+y=e=OF ;
Model MIP1 / a l l / ;
x . up = 0 . 3 ;
So lve MIP1 US MIP max of ;
d i s p l a y y . l , x . l , o f . l ;
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max
x;y

OF D x C y (2.4a)

� 3x C 2y � 1 (2.4b)

� 8x C 10y � 10 (2.4c)

y 2 f0; 1g ; 0:3 � x (2.4d)

y is a binary variable and x is a real number. The GAMS code for solving (2.4) is
provided in GCode 2.3:

By running the GAMS code the optimal solution is found as follows:
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2.1.2.2 N-Queen Example

The N-queen problem is a classic MIP problem [4]. In this problem, it is tried to
maximize the number of queens that can sit on a chessboard without attacking
each other. The procedure is simple as follows: First of all, it is needed to define
a variable xij which is a binary variable (0/1) and states whether the queen should sit
(1) on block ij (row i, column j) or not (0). Additionally, if the queen is on block ij
then no other queen can sit on row i or column j or the diagonal that contains cell ij.
This is mathematically stated as follows:

max
xij

OF D
X

i;j

xij (2.5a)

X
i

xij � 1 8j (2.5b)

X
j

xij � 1 8i (2.5c)

X
c;r

xc;r � 1 8i; j 2
ˇ̌
ˇ̌ i � r

j � c

ˇ̌
ˇ̌ D 1 (2.5d)

If a queen is on a cell then no other queen can exist on the same column (2.5b) or the
same row (2.5c) or the same diagonal (2.5d). The GAMS code for solving N-queen
problem (2.5) is given in GCode 2.4:

The N-queen problem is solved two times in Gcode 2.4. Two models are defined
in this code namely MIP2a and MIP2b. The Queen placement is solved on a 4 � 4

board, Fig. 2.1a shows the wrong placement. This solution is obtained from MIP2a
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and considers eq1;2;3. This is because we are not considering diagonal movement of
queen. In order to overcome this shortcoming two additional constraints eq4;5 are
considered in Model MIP2b. The correct solution is depicted in Fig. 2.1b.

It should be noted that the solution for the defined problem is optimal but not
unique. This means that other configurations might be obtained that can satisfy the
defined constraints. The developed GCode 2.4 is general and can be used for solving
the problem for various sizes of the board. The optimal solution for queen placement
on a (a) 8 � 8 chessboard and (b) 16 � 16 board is shown in Fig. 2.2.

GCode 2.4 N-queen example (2.5)

S e t s i / 1 � 4 / , j / 1 � 4 / ;
a l i a s ( i , row ) ;
a l i a s ( j , c o l ) ;
v a r i a b l e o f ;
b i n a r y v a r i a b l e x ( i , j ) ;
E q u a t i o n s eq1 , eq2 , eq3 , eq4 , eq5 ;
eq1 ( j ) . . sum ( i , x ( i , j ) ) = l =1 ;
eq2 ( i ) . . sum ( j , x ( i , j ) ) = l =1 ;
eq3 . . sum ( ( i , j ) , x ( i , j ) ) =e=OF ;
eq4 ( i , j ) . . sum ( ( row , c o l ) $ ( ( o rd ( row )�ord ( i ) ) =( ord ( c o l )�ord ( j ) ) ) ,

x ( row , c o l ) ) = l =1 ;
eq5 ( i , j ) . . sum ( ( row , c o l ) $ ( ( o rd ( row )�ord ( i ) ) =�( o rd ( c o l )�ord ( j ) ) )

, x ( row , c o l ) ) = l =1 ;
Model MIP2a / eq1 , eq2 , eq3 / ;
Model MIP2b / a l l / ;
So lve MIP2a US MIP max of ;
d i s p l a y x . l , o f . l ;
So lve MIP2b US MIP max of ;
d i s p l a y x . l , o f . l ;
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Fig. 2.1 Queen placement on a 4 � 4 board: (a) wrong placement, (b) optimal placement
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Fig. 2.2 Queen placement on a (a) 8 � 8 chessboard, (b) 16 � 16 board

2.1.2.3 Emergency Center Allocation

Consider six cities (1–6) which are located at different distances to each other. Each
city should have access to an emergency center within a short period of time. The
time required for moving from one city to another one is given in the following table
in minutes.

1 2 3 4 5 6
1 0 30 16 22 24 29
2 0 54 32 43 24
3 0 44 50 28
4 0 14 43
5 0 12
6 0

It should be noted that the values of this table are symmetrical. For example,
distance from city 1 to city 2 is 30 min. It means that the distance from city 2 to city
1 is also 30 min. The critical time for reaching to the emergency center is assumed
to be 20 min. The question is what is the minimum number of cities that should host
emergency center? Which cities should be chosen?

By observing the first row of distance matrix, it is understood that if city 1 or
city 6 have the emergency center then city 1 meets the access requirement. The
same concept applies for city 2. City 2 should definitely have an emergency center
because no other city is located within 20 min distance of this city. If the allocation
decision is defined as a binary variable xi then the following inequality should be
satisfied for city 1:

x1 C x6 � 1 (2.6)
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The following inequality should be satisfied for city 2:

x2 � 1 (2.7)

The overall constraints are as follows:

x1 C x6 � 1 (2.8)

x2 � 1 (2.9)

x3 C x5 � 1 (2.10)

x4 C x5 � 1 (2.11)

x3 C x4 C x5 C x6 � 1 (2.12)

x1 C x5 C x6 � 1 (2.13)

Two different approaches will be presented here for modeling this problem.
Scalar equations:

In this approach, we initially analyzed the distance data and understood what kind
of relations should be enforced for different variables. The GCode 2.5 is describing
how to do this.

GCode 2.5 Scalar equations for emergency centre allocation

b i n a r y v a r i a b l e x1 , x2 , x3 , x4 , x5 , x6 ;
v a r i a b l e OF ;
e q u a t i o n s
eq1 , eq2 , eq3 , eq4 , eq5 , eq6 , eq7 ;
eq1 . . x1+x6 =g =1;
eq2 . . x2 =g =1;
eq3 . . x3+x5 =g =1;
eq4 . . x4+x5 =g =1;
eq5 . . x3+x4+x5+x6 =g =1;
eq6 . . x1+x5+x6 =g =1;
eq7 . . x1+x2+x3+x4+x5+x6 =e=OF ;
Model emergency / a l l / ;
So lve emergency us mip min of ;

The optimal answer is OF = 3 (three cities should host emergency centers). The
candidate cities are x1; x2; x5. The problem with this kind of modeling is that it needs
pre-processing of the raw data and also in case, the number of cities are changed then
it is need to extensively modify the code. A much more efficient way of coding this
problem is using the extended equations.
Indexed equations:
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GCode 2.6 Indexed equations for emergency centre allocation

s e t c i t y / 1 � 6 / ;
a l i a s ( c i t y , town ) ;
b i n a r y v a r i a b l e x ( c i t y ) ;
v a r i a b l e OF ;
t a b l e d a t a ( c i t y , town )

1 2 3 4 5 6
1 0 30 46 22 24 19
2 0 54 32 43 24
3 0 44 16 28
4 0 14 43
5 0 12
6 0 ;
d a t a ( c i t y , town ) $ d a t a ( town , c i t y ) = d a t a ( town , c i t y ) ;
s c a l a r c r i t i c a l t i m e / 2 0 / ;
E q u a t i o n s
eq1 , eq2 ;
eq1 ( c i t y ) . . sum ( town$ ( d a t a ( c i t y , town )< c r i t i c a l t i m e ) , x ( town ) ) =g

=1;
eq2 . . OF=e=sum ( c i t y , x ( c i t y ) ) ;
Model emergency / a l l / ;
So lve emergency us mip min of ;

The developed code will provide the same answer as before but it has the following
features:

• It is not needed to manually write one equation for each constraint.
• It works for any number of cities.
• The distance data is fed to the model using a table. This will be useful for cases

that the input data might change.
• Debugging and tracing the code are much easier for the users.
• The code does not change if the critical access time is updated.

The following line of the code is to make the data matrix symmetrical.

data(city,town)$data(town,city)=data(town,city);

The following line describes the condition for accessing the emergency center
(for each city). The equation eq1 is defined over the set “city.”

eq1(city) .. sum(town$(data(city,town)<criticaltime), x(town)) =g=1;



44 2 Simple Examples in GAMS

The optimal solution is:

—- VAR x
LOWER LEVEL UPPER MARGINAL
1 . . 1.000 1.000
2 . 1.000 1.000 1.000
3 . . 1.000 1.000
4 . . 1.000 1.000
5 . 1.000 1.000 1.000
6 . 1.000 1.000 1.000

2.1.3 Nonlinear Programming (NLP)

In nonlinear programming problems, at least one of f ; G; H in (2.1) is nonlinear.

2.1.3.1 NLP Example (2.14)

max
xi

OF D x1x4.x1 C x2 C x3/ C x2 (2.14a)

x1x2x3x4 � 20 (2.14b)

x2
1 C x2

2 C x2
3 C x2

4 D 30 (2.14c)

1 � x1; x2; x3; x4 � 3 (2.14d)

The GAMS code for solving example (2.14) is given in GCode 2.7:

GCode 2.7 Example (2.14)

v a r i a b l e of , x1 , x2 , x3 , x4 ;
e q u a t i o n s
eq1 , eq2 , eq3 ;
eq1 . . x1�x4 �( x1+x2+x3 )+ x2=e=OF ;
eq2 . . x1�x2�x3�x4 =g =20;
eq3 . . x1�x1+x2�x2+x3�x3+x4�x4=e =30;
x1 . l o =1;
x1 . up =3;
x2 . l o =1;
x2 . up =3;
x3 . l o =1;
x3 . up =3;
x4 . l o =1;
x4 . up =3;
Model NLP1 / a l l / ;
So lve NLP1 US NLP max of ;



2.1 Different Types of Optimization Models 45

The solution for example (2.14) obtained by GCode 2.7 is as follows:

Variables Lower Level Upper Marginal

of �1 73.605 C1 0

x1 1.000 3.000 3.000 21.025

x2 1.000 2.575 3.000 0

x3 1.000 2.317 3.000 0

x4 1.000 3.000 3.000 12.025

It is worth noting that providing a starting point for the variables can help the
GAMS in finding a better solution. Generally speaking, finding the optimal solution
of the model is not guaranteed in NLP problems. The initial values for variables are
set by “X.l=initial value” command before solve statement.

2.1.3.2 Circle Placement Example (2.15)

Suppose there are n circles with known radius values (Ri). The question is: what
is the minimum surface of the table that these circles can be placed on it without
any overlapping. The concept of optimal circle placement on a given table is shown
in Fig. 2.3. The decision variables of this problem are table dimensions fw; hg and
center locations fxi; yig . The objective function is defined as the surface of the table
(OF D w � h). The constraints are described as:

• Each circle should be completely on the table. This requires: Ri � xi � w � Ri

and similarly Ri � yi � h � Ri.
• For every two circles, no overlap should happen. This means that: .xi � xj/

2 C
.yi � yj/

2 � .Ri C Rj/
2

The circle placement problem is formulated as:

min
xi;yi;w;h

OF D hw (2.15a)

Ri � xi � w � Ri (2.15b)

Ri � yi � h � Ri (2.15c)

.xi � xj/
2 C .yi � yj/

2 � .Ri C Rj/
2 (2.15d)

It is assumed that Ri are known in advance and they are treated as input data. It is
also assumed that there are six circles available. The GAMS code for solving circle
placement example (2.15) is as GCode 2.8:
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GCode 2.8 Circle placement example (2.15)

s e t i / 1 � 6 / ; a l i a s ( i , j ) ;
P o s i t i v e v a r i a b l e s x ( i ) , y ( i ) ,w, h ; v a r i a b l e o f ;
p a r a m e t e r r a d i u s ( i )
/ 1 2
2 1 . 2
3 1 . 8
4 0 . 9
5 3 . 2
6 0 . 7 / ;
E q u a t i o n s eq1 , eq2 , eq3 , eq4 ;
eq1 . . w�h=e=OF ;
eq2 ( i ) . . x ( i ) = l =w�r a d i u s ( i ) ;
eq3 ( i ) . . y ( i ) = l =h�r a d i u s ( i ) ;
eq4 ( i , j ) $ ( o rd ( i )<>ord ( j ) ) . . power ( y ( j )�y ( i ) , 2 ) +power ( x ( j )�x ( i ) , 2 ) =

g =( r a d i u s ( i ) + r a d i u s ( j ) , 2 ) ;
x . l o ( i ) = r a d i u s ( i ) ; y . l o ( i ) = r a d i u s ( i ) ;
Model NLP1 / a l l / ;
So lve NLP1 US NLP min of ;
p a r a m e t e r r e p o r t ( i , � ) ;
r e p o r t ( i , ’X’ ) =x . l ( i ) ; r e p o r t ( i , ’ y ’ ) =y . l ( i ) ;
r e p o r t ( i , ’R ’ ) = r a d i u s ( i ) ;
d i s p l a y r e p o r t , o f . l ,w . l , h . l ;

As it is observable in GCode 2.8, the radius of circles are given as parameters. The
constraint given in (2.15b) is actually two constraints Ri � xi and xi � w � Ri. The
first one should be treated using :lo statement and the second one should be modeled
using equations. This is because it involves two variables xi; w which should be valid
for every member of set i. This is why the equation eq2 is defined over set i.

The optimal solution of circle placement on a table is given in Fig. 2.4.

Fig. 2.3 Optimal circle placement on a given surface
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PARAMETER report  

            X           y           R

1       2.204       5.571       2.000
2       1.200       2.533       1.200
3       4.600       2.622       1.800
4       2.520       0.900       0.900
5       3.200      10.675      3.200
6       0.700       0.700       0.700

VARIABLE of.L  =       88.801  
VARIABLE w.L  =        6.400
VARIABLE h.L   =       13.875  

h

w

Fig. 2.4 The optimal solution of circle placement on a surface

2.1.3.3 Maximizing the Area of a Right Triangle with Constant
Circumference

Suppose that we have some limited meters of wire fences (C) and are requested to
enclose an area (right triangle shape). Determine the dimensions of such a triangle.
Considering Fig. 2.5, the following optimization should be solved:

max
H;B

OF DH � B

2
(2.16a)

H C B C
p

H2 C B2 D C (2.16b)

where C is the length of the available wire fence. H and B are the height and base of
the triangle, respectively. The GCode 2.9 provides the solution for maximizing the
area of a triangle with constant circumference.

GCode 2.9 Maximizing the area of a triangle

P o s i t i v e v a r i a b l e s h , b ;
V a r i a b l e OF ;
S c a l a r C / 1 5 / ; h . up=C ; b . up=C ;
E q u a t i o n s eq1 , eq2 ;
eq1 . . h+b+ s q r t ( h�h+b�b )= e=C ;
eq2 . . OF=e =0.5� h�b ;
Model t r i a n g l e / a l l / ;
So lve t r i a n g l e us n l p min of ;
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Fig. 2.5 Maximizing the
area of a triangle with
constant circumference

B

H

2.1.4 Quadratic Constrained Programming (QCP)

The quadratic programming is a special case of NLP problems. In QCP problems,
at least one of f ; G; H in (2.1) is nonlinear but nonlinearity is of quadratic form.

2.1.4.1 QCP Example (2.17)

Consider the following QCP optimization problem:

max
xi

OF D � 3x2
1 � 10x1 C x2

2 � 3x2 (2.17a)

x1 C x2
2 � 2:5 (2.17b)

2x1 C x2 D 1 (2.17c)

The GAMS code for solving example (2.17) is as GCode 2.10:

GCode 2.10 QCP Example (2.17)

v a r i a b l e of , x1 , x2 ;
e q u a t i o n s
eq1 , eq2 , eq3 ;
eq1 . . �3�x1�x1 �10�x1 +x2�x2�3�x2=e=OF ;
eq2 . . x1+x2�x2 =g = 2 . 5 ;
eq3 . . 2�x1+x2=e =1;
Model QCP1 / a l l / ;
So lve QCP1 US QCP max of ;
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The solution for example (2.17) obtained by GCode 2.10 is as follows:

Variables Lower Level Upper Marginal

of �1 �9.550 C1 0

x1 �1 1.093 C1 0

x2 �1 �1.186 C1 0

2.1.4.2 QCP Example (2.18)

Another simple QCP problem is described as follows:

min
xi

OF Dx2
1 � 10x1 C x2

2 � 3x2 (2.18a)

x2
1 C x2 � 5 (2.18b)

2x1 � x2 � 1 (2.18c)

GCode 2.11 Example (2.18)

V a r i a b l e of , x1 , x2 ;
E q u a t i o n s eq1 , eq2 , eq3 ;
eq1 . . x1�x1 �10�x1 +x2�x2�3�x2=e=OF ;
eq2 . . x1�x1+x2 = l =5;
eq3 . . 2�x1�x2=g =1;
Model QCP1 / a l l / ;
So lve QCP1 US QCP min of ;

The solution for example (2.18) (obtained by GCode 2.11) is as follows:

Variables Lower Level Upper Marginal

of �1 �18.054 C1 0

x1 �1 2.054 C1 0

x2 �1 0.783 C1 0

2.1.5 Mixed Integer Nonlinear Programming (MINLP)

In MINLP problems, at least one of f ; G; H in (2.1) is nonlinear and integer variables
are involved.
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Fig. 2.6 Optimal transportation problem

2.1.5.1 Minimum Transportation Cost Example (2.19)

The transportation problem is a classic example which has been modified for this
example. There are some suppliers (node i) and some demands (node j) which
should be supplied. The problem is to determine how much each supplier should
produce and how to transfer them to the demand points. The transportation costs
should be minimized.

The cost of transportation is assumed to be related to the square of quantity
transported from node i to node j . The transportation costs are proportional to
the square of product transported from i to j and the length of the rout. The
object is minimizing the total transportation costs and supplying all demand in
different nodes. The optimal transportation problem is depicted in Fig. 2.6. The cost
coefficient and maximum flow of each rout (Cij), demand (Dj), and capacity of each
producer are known.

GCode 2.12 Example (2.19)

s e t s
i / s1�s3 /
j / D1�D4 / ;
t a b l e C( i , j )

d1 d2 d3 d4
s1 0 .0755 0 .0655 0 .0498 0 .0585
s2 0 .0276 0 .0163 0 .096 0 .0224
s3 0 .068 0 .0119 0 .034 0 . 0 7 5 1 ;
t a b l e d a t a ( i , � )

’ Pmin ’ ’Pmax ’
s1 100 450
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s2 50 350
s3 30 500 ;
p a r a m e t e r demand ( j )
/ d1 217
d2 150
d3 145
d4 2 4 4 / ;
v a r i a b l e of , x ( i , j ) , P ( i ) ;
b i n a r y v a r i a b l e U( i ) ;
e q u a t i o n s
eq1 , eq2 , eq3 , eq4 , eq5 ;
eq1 . . OF=e=sum ( ( i , j ) ,C( i , j )�x ( i , j )�x ( i , j ) ) ;
eq2 ( i ) . . P ( i )= l = d a t a ( i , ’Pmax ’ )�U( i ) ;
eq3 ( i ) . . P ( i )= g= d a t a ( i , ’ Pmin ’ )�U( i ) ;
eq4 ( j ) . . sum ( i , x ( i , j ) ) = g=demand ( j ) ;
eq5 ( i ) . . sum ( j , x ( i , j ) ) = e=P ( i ) ;
P . l o ( i ) = 0 ;
P . up ( i )= d a t a ( i , ’Pmax ’ ) ;
x . l o ( i , j ) = 0 ;
x . up ( i , j ) = 1 0 0 ;
Model minlp1 / a l l / ;
So lve minlp1 US minlp min of ;

The optimal transportation problem is formulated in (2.19).

min
xij

OF D
X

ij

Cijx
2
ij (2.19a)

(
Pmin

i � Pi � Pmax
i ; if unit i is on;

Pi D 0 if unit i is off
(2.19b)

X
i

xij � Dj (2.19c)

X
j

xij D Pi (2.19d)

0 � xij � xmax
ij (2.19e)

The road flow limit is assumed to be xmax
ij D 100.

Pmin
i Pmax

i j

i 100 450 0.0755 0.0655 0.0498 0.0585

50 350 0.0276 0.0163 0.096 0.0224

30 500 0.068 0.0119 0.034 0.0751

Dj 217 150 145 244
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The GAMS code for solving example (2.19) is as GCode 2.12:
The solution for example (2.19) obtained by GCode 2.12 is as follows:

Pi Xij

199.245 55.443 14.255 48.601 80.946

282.494 100 57.282 25.212 100

274.261 61.557 78.463 71.187 63.054

2.1.5.2 Benefit Maximization Transportation Example (2.20)

Reconsider the optimal transportation problem formulated in (2.19). This problem
is a minimum cost problem and the goal is service provision to the consumers. Now
suppose that the objective is benefit maximization. The machine (i) will produce
equal to Pi and sell it to different consumer j. The maximum value of purchase that
a consumer may procure is Dj. The revenue that is obtained from selling product is
k $/unit. Now the benefit maximization is modeled as follows:

max
xij

OF D
X

i

Pik �
X

ij

Cijx
2
ij (2.20a)

(
Pmin

i � Pi � Pmax
i ; if unit i is on ;

Pi D 0 if unit i is off
(2.20b)

X
i

xij � Dj (2.20c)

X
j

xij D Pi (2.20d)

0 � xij � xmax
ij (2.20e)

The GAMS code for solving the example (2.20) is given in GCode 2.13.
The solution for example (2.20) obtained by GCode 2.13 is as follows:

Pi Xij

i 0 0 0 0 0

137.377 32.609 55.215 9.375 40.179

0 0 0 0 0
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2.2 Random Numbers in GAMS

Random number generation in GAMS is a simple task. There are different built-in
probability density function that can be used for generating random numbers. Some
popular random number generators are listed as follows:

• Beta function

� .˛ C ˇ/

� .˛/� .ˇ/
.1 � x/ˇ�1.x/˛�1 (2.21)

The format of this function in GAMS is beta(˛,ˇ)

• Uniform function (continuous)

P.x/ D
(

1
.b�a/

; for a � x � b

0; otherwise
(2.22)

The format of this function in GAMS is uniform(a; b)
• Uniform function (discrete)

P.x/ D
(

1
N ; for a � x � b

0; otherwise
(2.23)

GCode 2.13 Example (2.20)

s e t s
i / s1�s3 /
j / D1�D4 / ;
s c a l a r k / 1 . 8 / ;
t a b l e C( i , j )

d1 d2 d3 d4
s1 0 .0755 0 .0655 0 .0498 0 .0585
s2 0 .0276 0 .0163 0 .096 0 .0224
s3 0 .068 0 .0119 0 .034 0 . 0 7 5 1 ;
t a b l e d a t a ( i , � )

’ Pmin ’ ’Pmax ’
s1 100 450
s2 50 350
s3 30 500 ;
p a r a m e t e r demand ( j )
/ d1 217
d2 150
d3 145
d4 2 4 4 / ;
v a r i a b l e of , x ( i , j ) , P ( i ) ;
b i n a r y v a r i a b l e U( i ) ;
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e q u a t i o n s
eq1 , eq2 , eq3 , eq4 , eq5 ;
eq1 . . OF=e=sum ( i , k�P ( i )) �sum ( ( i , j ) ,C( i , j )�x ( i , j )�x ( i , j ) ) ;
eq2 ( i ) . . P ( i )= l = d a t a ( i , ’Pmax ’ )�U( i ) ;
eq3 ( i ) . . P ( i )= g= d a t a ( i , ’ Pmin ’ )�U( i ) ;
eq4 ( j ) . . sum ( i , x ( i , j ) ) = l =demand ( j ) ;
eq5 ( i ) . . sum ( j , x ( i , j ) ) = e=P ( i ) ;
P . l o ( i ) = 0 ;
P . up ( i )= d a t a ( i , ’Pmax ’ ) ;
x . l o ( i , j ) = 0 ;
x . up ( i , j ) = 1 0 0 ;
Model minlp2 / a l l / ;
So lve minlp2 US minlp max of ;

where N is the total integer numbers in [a; b] interval. The format of this
function in GAMS is uniformint(a; b)

2.2.1 Estimating the � Number

Calculating the � number is investigated and coded in GAMS. Consider a circle
inscribed in a square as shown in Fig. 2.7. If a point is randomly dropped on this
square then the probability of sitting on the circle would be Circle area

Square area . In order to
calculate the � number a simple experience is done. The point is dropped on the
square area for N times. The number of events that the point is on circle area would
be n. The following equation would be valid if N is a big number. The GAMS code
for solving this problem is described in GCode 2.14.

Circle area

Square area
D n

N
(2.24)

�R2

4R2
D n

N
(2.25)

GCode 2.14 � number estimation

s c a l a r low / 0 / , High / 1 / , p i s t i m a t e ;
s e t c o u n t e r / c1�c200 / ;
p a r a m e t e r r e p o r t ( c o u n t e r , � ) ;
r e p o r t ( c o u n t e r , ’ x ’ )= un i fo rm (LOW, HIGH ) ;
r e p o r t ( c o u n t e r , ’ y ’ )= un i fo rm (LOW, HIGH ) ;
p i s t i m a t e =4�sum ( c o u n t e r $ ( power ( r e p o r t ( c o u n t e r , ’ x ’ )
�0.5 ,2)+ power ( r e p o r t ( c o u n t e r , ’ y ’ ) � 0 . 5 , 2 ) <= 0 . 2 5 ) , 1 ) / c a r d ( c o u n t e r ) ;
d i s p l a y r e p o r t , p i s t i m a t e ;

As it can be seen in GCode 2.14, there is no solve statement needed. This is
because no variable is defined in the model and no optimization is going to take
place.
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Fig. 2.7 Estimating the � number

2.2.2 Integration Calculation

The random numbers can be used for calculating the integration problems. A simple
example is given as follows:

Z D
Z 1

0

1 � xsin.20x/dx (2.26)

In order to calculate the area under the graph as it is shown in Fig. 2.8, the following
steps are followed:

• Set Counter = 1; n = 1;
• Generate a pair of random numbers .x; y/ where 0 � X � 1 and 0 � Y � 2.
• Check if y � f .X/

• Set Counter = Counter + 1;

This procedure is repeated for max number of counter (N). For large values of N,
the Z can be calculated using the following relation:

Z

2 � 1
D n

N
(2.27)

The following command should be added to the code (before calling the uniform
function) in order to have a set of new random numbers every time the code is run:
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Fig. 2.8 Numerical integration using random numbers

GCode 2.15 Integration calculation using random numbers

S c a l a r Z s t i m a t e ;
S e t c o u n t e r / c1�c200000 / ;
p a r a m e t e r r e p o r t ( c o u n t e r , � ) ;
r e p o r t ( c o u n t e r , ’ x ’ )= un i fo rm ( 0 , 1 ) ;
r e p o r t ( c o u n t e r , ’ y ’ )= un i fo rm ( 0 , 2 ) ;
Z s t i m a t e =2�sum ( c o u n t e r $ ( r e p o r t ( c o u n t e r , ’ y ’ )<1+
r e p o r t ( c o u n t e r , ’ x ’ )� s i n ( r e p o r t ( c o u n t e r , ’ x ’ ) � 2 0 ) ) , 1 ) / c a r d ( c o u n t e r ) ;
S i s p l a y r e p o r t , Z s t i m a t e ;

execseed = 1+gmillisec(jnow);

Further info on how to use random numbers in GAMS can be found in [5].

2.2.3 LP Problems with Uncertain Coefficients

Consider the following LP problem:

Z D max
x1;x2

750x1 C 1000x2 (2.28)

x1 C x2 � a (2.29)
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Fig. 2.9 The probability density function for each uncertain parameter

Fig. 2.10 Uncertain coefficients in LP problems

x1 C 2x2 � b (2.30)

4x1 C 3x2 � c (2.31)

x1 � 0 (2.32)

x2 � 0 (2.33)

where a, b, and c are uncertain random parameters. The probability density function
for each parameter is given in Fig. 2.9. The question is how to describe the prob-
ability density of Z? If all uncertain parameters (a,b,c) are equal to their expected
values (10,15,25) then the objective function would be 7750. The following steps
are followed to find out the distribution of Z in case of uncertain (a,b,c):

• Set Counter = 1;
• Generate a sample of random parameters (a,b,c) using the specified probability

distribution functions
• Calculate the optimal Z and save the (a,b,c,x1,x2,Z).

The variation of Z along with the average value of Z are plotted in Fig. 2.10. The
graph shows how the average value of Z converges.
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2.3 Multi-Objective Optimization

In Multi-Objective Decision Making (MODM) methods, the decision alternatives
are found considering the constraints of the given problem. In most practical
optimization problems, particularly those applicable in power system, there exists
more than one objective function which should be optimized simultaneously. These
objectives functions might be in conflict, interdependent or independent of each
other, so it is impossible to satisfy them all at once. The main differences between
the multi-objective optimization and traditional single optimization techniques can
be categorized into two groups:

1. Several objective functions are to be optimized at the same time.
2. There exists a set of optimal solutions which are mathematically equally good

solutions (it means any of them cannot be preferred against others and a trade-off
should be made to select one) instead of a unique optimal solution

2.3.1 Weighted Sum Approach

Some methods try to convert the multi-objective optimization problems into single
objective one. However, this approach is not always applicable especially in the
following cases:

• The objectives are not of the same type. For example voltage deviation and cost,
weight and volume, surface and time.

• The weight coefficients in weighted sum approach cannot be easily determined.
Additionally, If decision maker’s preference is changed then the problem should
be solved again.

• The single objective approach provides just one solution to the decision maker.
It cannot show the tradeoff between two objective functions.

• The objective function is of the same type but there are multiple decision makers
with different preferences. Each decision maker is trying to optimize its own
objective function.

2.3.2 Pareto Optimality

The notion of optimality has been redefined in this context and instead of aiming to
find a single solution, it is tried to produce a set of acceptable compromises or trade-
offs from which the decision maker can choose one. The set of all optimal solutions
which are non-dominated by any other solution is known as Pareto-optimal set.
Suppose a minimizing problem with two objectives in conflict the Pareto optimal
fronts are plotted in Fig. 2.11.

For every two solution in each Pareto front (like A, B) none of them is better
than the others considering all objective functions. Here, f1 is better minimized in
solution A compared to B and f2 is better minimized in solution B compared to A.



2.3 Multi-Objective Optimization 59

Fig. 2.11 Classification of a population to k non-dominated fronts

The same concept also applies for solutions in other fronts. For every solution in
Pareto front k (for example D in the second front) there exists at least one solution
in front k � 1 (here A in the first front) that dominates it (is better considering
all objective functions). Since solutions A and B belong to the first front, there is
no solution better than them in respect to all objectives. Consider the bi-objective
optimization described in (2.34):

minx f1; f2 (2.34)

Constraints

Each solution in Pareto optimal set has two basic characteristics:

1. For every two solutions belonging to the same Pareto front (2.35) holds:

8i9j; njfn.Nxi/ > fn.Nxj/ (2.35)

Nxj; Nxi 2 S

This means that for every solution Xi belonging to Pareto front S, at least one
solution exists as Xj which is better than Xi at least in one objective function
(named n here). In other words, there is no solution in Pareto optimal front which
is the best among all members of this set considering all objectives.

2. For every solution belonging to an upper Pareto front and the ones in the lower
fronts, (2.36) holds:

8k 2 f1 : : : NOg fk .Nx1/ � fk .Nx2/ (2.36)

9k0 2 f1 : : : NOg fk0 .Nx1/ < fk0 .Nx2/ (2.37)

Nx1 2 S; Nx2 2 S�

S < S�
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This means for every solution belonging to an upper Pareto front, there exists
at least one solution in a lower Pareto front which is not worse in any objective
function and is better in at least one objective function. NO is the number of
objective functions.

The classic approach for finding the Pareto optimal set is preference-based method
in which a relative preference vector is used to weight the objectives and change
them into a scalar value. By converting a multi-objective optimization problem into
a single objective one, only one optimum solution can be achieved which is very
sensitive to the given weights. The GAMS structure can solve only one objective
function at once. This means it is needed to solve the multi-objective problem
several times to obtain the Pareto optimal front. For this purpose, consider the bi-
objective problem described in (2.38):

max
x1;2

f1 D4x1 � 0:5x2
2 (2.38a)

max
x1;2

f2 D � x2
1 C 5x2 (2.38b)

2x1 C 3x2 � 10 (2.38c)

2x1 � x2 � 0 (2.38d)

1 � x1 � 2 (2.38e)

1 � x1 � 3 (2.38f)

GCode 2.16 Pareto optimal front example (2.38)

s e t c o u n t e r / c1�c21 / ;
s c a l a r E ;
p a r a m e t e r r e p o r t ( c o u n t e r , � ) ;
v a r i a b l e of1 , of2 , x1 , x2 ;
e q u a t i o n s
eq1 , eq2 , eq3 , eq4 ;
eq1 . . o f1 =e=4�x1 �0.5�x2�x2 ;
eq2 . . o f2 =e=�x1�x1+5�x2 ;
eq3 . . 2�x1+3�x2= l =10;
eq4 . . 2�x1�x2=g =0;
x1 . l o =1;
x1 . up =2;
x2 . l o =1;
x2 . up =3;
Model p a r e t o 1 / a l l / ;
p a r a m e t e r r a n g e s (� ) ;
So lve p a r e t o 1 US nLP max of1 ;
r a n g e s ( ’OF1max ’ ) = of1 . l ;
r a n g e s ( ’ OF2min ’ ) = of2 . l ;
So lve p a r e t o 1 US nLP max of2 ;
r a n g e s ( ’OF2max ’ ) = of2 . l ;
r a n g e s ( ’ OF1min ’ ) = of1 . l ;
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E= r a n g e s ( ’ OF1min ’ ) ;
l oop ( c o u n t e r ,
E=( r a n g e s ( ’OF2max ’ )�r a n g e s ( ’ OF2min ’ ) ) �( o rd ( c o u n t e r ) �1) / ( c a r d

( c o u n t e r ) �1)+ r a n g e s ( ’ OF2min ’ ) ;
o f2 . l o =E ;
So lve p a r e t o 1 US nLP max of1 ;
r e p o r t ( c o u n t e r , ’OF1 ’ ) =OF1 . l ;
r e p o r t ( c o u n t e r , ’OF2 ’ ) =OF2 . l ;
r e p o r t ( c o u n t e r , ’E ’ ) =E ;
) ;
D i s p l a y r e p o r t ;

In this problem, two objectives should be maximized simultaneously. The
procedure is as follows:

1. Find the maximum of each objective function and save them.
2. Add one of the objective functions to the constraints as follows:

f2 � � (2.39)

The � value will be varied from f min
2 to f max

2 and the f1 is maximized.
The solution for example (2.38) obtained by GCode 2.16 is shown in Fig. 2.12.
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Fig. 2.12 The Pareto optimal front for bi-objective problem
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2.4 Applications

Some optimization models used in power system studies are given in this section:

• LP programming: Transmission network estimation [6], short-term hydro
scheduling [7], relay coordination [8], security constrained economic
dispatch [9].

• MIP: Optimal PMU placement [10], unit commitment [11], Phase shifter place-
ment in large-scale systems [12], minimum-losses radial configuration of electri-
cal distribution networks [13].

• QCP: Topology identification in distribution network [14], optimum active and
reactive generation dispatch [15].

• NLP: Voltage stability security margin calculation [16], reactive power planning
[17], OPF [18].

• MINLP: Unit commitment with AC OPF constraints [19], flexible transmission
expansion planning with uncertainties in an electricity market [20], optimal DG
allocation [21].

• Multi-objective optimization: Transmission expansion planning [22], generation
expansion planning [23], distribution network planning [24].
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