Chapter 10 Energy System Integration

This chapter provides a solution for energy system integration (ESI) problem in GAMS. The ESI analysis refers to a class of studies which investigate the potential in different energy sectors (water, gas, and electricity) for moving toward a more environmentally friendly and efficient energy supply. The main idea is how to harvest the flexibilities in each energy carrier in a larger framework. In this chapter, the coordination between water desalination systems and power system, gas network-power network, and finally the concept of energy hub is investigated.

10.1 Water-Power Nexus

The water-electricity interdependence is an undeniable issue. Water is used for cooling the power plants. On the other hand, the electricity is used for collecting, treatment, and disposal of water.

The water-energy nexus concept is shown in Fig. 10.1 [1]. The optimization is formulated as follows:

$$\min_{DV} OF = TC + CC + WC$$
(10.1a)

$$DV = \{P_{g,t}, P_{c,t}, W_{c,t}, W_{w,t}\}$$
(10.1b)

$$CT = \sum_{g,t} a_g P_{g,t}^2 + b_g P_{g,t} + c_g U_{g,t}$$
(10.1c)

$$CC = \sum_{c,t} \alpha_c P_{c,t}^2 + \beta_c P_{c,t} W_{c,t} + \gamma_c W_{c,t}^2 + \zeta_c P_{c,t} + \zeta_c W_{c,t} + \xi_c U_{c,t}$$
(10.1d)

$$CW = \sum_{w,t} a_w W_{w,t}^2 + b_w W_{w,t} + c_w U_{w,t}$$
(10.1e)

© Springer International Publishing AG 2017

A. Soroudi, *Power System Optimization Modeling in GAMS*, DOI 10.1007/978-3-319-62350-4_10

265

Water – Energy Nexus schematic

Fig. 10.1 Water-energy nexus concept

Та	ble	10	.1	Tecl	hnical	and	economical	c	haracteris	tics	of	thermal	units	3
----	-----	----	----	------	--------	-----	------------	---	------------	------	----	---------	-------	---

Unit	$a_g(\text{MW}^2)$	b_{g} (\$/MW)	c_{g} (\$)	P_g^{\max} (MW)	P_g^{\min} (MW)
<i>g</i> ₁	0.0002069	-0.1483	57.11	500	0
<i>8</i> ₂	0.0003232	-0.1854	57.11	400	0
<i>g</i> ₃	0.001065	-0.6026	126.8	400	0
<i>g</i> ₄	0.0004222	-0.2119	57.11	350	0

$$P_g^{\min}U_{g,t} \le P_{g,t} \le P_g^{\max}U_{g,t} \tag{10.1f}$$

$$P_c^{\min}U_{c,t} \le P_{c,t} \le P_c^{\max}U_{c,t} \tag{10.1g}$$

$$W_c^{\min}U_{c,t} \le W_{c,t} \le W_c^{\max}U_{c,t} \tag{10.1h}$$

$$W_w^{\min}U_{w,t} \le W_{w,t} \le W_w^{\max}U_{w,t}$$
(10.1i)

$$R_c^{\min} \le \frac{P_{c,t}}{W_{c,t}} \le R_c^{\max}$$
(10.1j)

$$\sum_{g} P_{g,t} + \sum_{c} P_{c,t} = PL_t \tag{10.1k}$$

$$\sum_{w} W_{w,t} + \sum_{c} W_{c,t} = WL_t$$
(10.11)

The simulation data are taken from [1] with slight modifications (Tables 10.1, 10.2, and 10.3).

Unit	P_c^{\max}	P_c^{\min}	W_c^{\max}	W_c^{\min}	R_c^{\min}	R_c^{\max}	α_c	β_c	γ_c	ζ_c	Sc	ξc
<i>c</i> ₁	800	160	200	30	4	9	0.0004433	0.003546	0.007093	-1.106	-4.426	737.4
<i>c</i> ₂	600	120	150	23	4	9	0.0007881	0.006305	0.01261	-1.475	-5.901	737.4
<i>c</i> ₃	400	80	100	15	4	9	0.001773	0.01419	0.02837	-2.213	-8.851	737.4
			-									

 Table 10.2
 Technical and economical characteristics of co-production units

Table 10.3 Technical and	Unit	a_w	b_w	C _W	W_w^{\max}	W_w^{\min}
economical characteristics of	W1	0.00182	-0.708	7.374	250	0
water desalination units	1					

GCode 10.1 Water-energy nexus optimization problem

Sets	t	/t1*	t24/,	i /p1:	*p4/,	c /c	1*c3/, w /	w1/;				
Table	e gen	data (i,*)	gener	ator	cost	characteri	stics and	limits			
a		b		с	Р	max	Pmin					
p1 0.	.00020)69 -	-0.148	3 57.	11 5	00	0					
p2 0.	.00032	232 -	-0.185	4 57.	11 4	00	0					
p3 0.	.00106	65 —	-0.602	6 126	.8 4	00	0					
p4 0.	.00042	222 -	-0.211	9 57.	11 3	50	0;					
Table	e Cop	roduc	t (c , *)								~
	Pmax	Pmin	Wmax	Wmin	rmin	rmax	AII	A12	A22	bl	b2	С
-2	800	100	200	30	4	9	0.0004433	0.003546	0.007093	-1.106	-4.426	737.4
c2	400	120	100	25	4	9	0.0007881	0.000303	0.01201	-1.4/3	-8.851	/3/.4
05	737	4.	100	15	4	2	0.001775	0.01419	0.02857	-2.213	-0.051	
Table	wat	erdata	1 (w *)								
1 4 0 1 4	a	eraari	b	,	с	Wma	x Wmin					
w1	1.821	E-02	-7.08	1e-1	- 7.374	250	0;					
Table	e PWd	lata (t	,*)									
	Pd	wate	r									
t 1	1250	150										
t 2	1125	130										
t3	875	100										
t4	750	150										
t5	950	200										
+7	1440	300										
t 8	1750	200										
t9	2000	300										
t10	2250	400										
t16	2500	550										
t 1 7	2125	550										
t 1 8	2375	500										
t19	2250	400										
t20	1975	350										
t21	1750	300										
t22	1625	250										
t23	1376	150.										
Varia	ables	150, Of	n(i	t) TC	CC P	c(c t	$W_{c}(c, t)$	Water(w.t.	WaterCo	st ·		
Bina	rv va	riable	es Un	(i t)	Uc(c	t) IN	v(w t)	water (w, t	,	st,		
p. up	(i,t)=	=gend	ata (i	, " Pma	x");	p.lo(i	i,t)=0; Pc	.up(c,t)=	Coproduct	(c, 'Pma	x');	
Pc.lo) (c , t)=0; 1	Wc.up	(c,t):	=Copr	oduct	(c, 'Wmax')	; Wc.lo(c	(t) = 0;			
Wate	r.up(v	w, t)=	water	data (w, 'Wn	nax');	Water.lo(w, t)=0;				
Equa	tions	costl	herm	al,ba	lancel	P, bala	nceW , cost	Coprodeale	, Objectiv	/e,		
costv	vatero	calc ,	ratio 1	, rati	o2,E	Q1, EQ	2, EQ3, EQ4, 1	EQ5, EQ6, EQ	Q7, EQ8;			
costl	herm	al T0	C=e=su	m ((t	, i) ,	genda	ta(i,'a')*	power(p(i	, t) ,2)+ge	ndata (i	,'b')*p	(i,t)

```
+gendata(i,'c')*Up(i,t));
balanceP(t) .. sum(i,p(i,t))+sum(c,Pc(c,t))=e=PWdata(t,'Pd');
balanceW(t) .. sum(w, Water(w, t))+sum(c, Wc(c, t))=e=PWdata(t, 'water');
costCoprodcalc.. CC=e=sum((c,t),Coproduct(c,'All')*power(Pc(c,t),2)
+2*Coproduct(c, 'A12')*Pc(c, t)*Wc(c, t) +Coproduct(c, 'A22')*power(Wc(c, t), 2)
+Coproduct (c, 'B1')*Pc(c, t)+Coproduct (c, 'B2')*Wc(c, t)+Coproduct (c, 'C')*Uc(c, t));
costwatercalc... WaterCost=e=sum((t,w), waterdata(w, 'a')*power(Water(w, t), 2)
+waterdata(w, 'b')*Water(w, t) +waterdata(w, 'c')*Uw(w, t));
Objective .. OF=e=TC+CC+WaterCost;
ratio1(c,t) .. Pc(c,t)=l=Wc(c,t)*Coproduct(c,'Rmax');
ratio2(c,t) ... Pc(c,t)=g=Wc(c,t)*Coproduct(c, 'Rmin');
eq1(w,t)
             .. Water(w, t) = l = Uw(w, t) * waterdata(w, 'Wmax');
eq2(w, t)... Water(w, t)=g=Uw(w, t)*waterdata(w, 'Wmin');
eq3(c,t).. wc(c,t)=l=Uc(c,t)*Coproduct(c, 'Wmax');
eq4(c,t).. wc(c,t)=g= Uc(c,t)*Coproduct(c, 'Wmin');
eq5(c, t).. Pc(c, t)=l = Uc(c, t)*Coproduct(c, 'Pmax');
eq6(c,t).. Pc(c,t)=g=Uc(c,t)*Coproduct(c, 'Pmin');
eq7(i, t).. p(i, t) = l = Up(i, t) * gendata(i, "Pmax");
eq8(i,t).. p(i,t) =g=Up(i,t)*gendata(i, "Pmin");
Model DEDcostbased / all /; Solve DEDcostbased us MInlp min OF;
```

The hourly water output of different plants in water-energy nexus problem is depicted in Fig. 10.2. The hourly power output of different plants in water-energy nexus problem is shown in Fig. 10.3.

Fig. 10.2 Hourly water output of different plants in water-energy nexus problem

Fig. 10.3 Hourly power output of different plants in water-energy nexus problem

Fig. 10.4 Gas network linkage with electricity network

10.2 Gas-Power Nexus

The interaction of gas network and electricity network is modeled in this section. The electrical network is IEEE RTS 24-bus network which is shown in Fig. 10.4. It is a transmission network with the voltage levels of 138 kV, 230 kV and Sbase = 100 MVA. The branch data for IEEE RTS 24-bus network is given in Table 10.4 [2]. The from bus, to bus, reactance (*X*), resistance (*r*), total line charging susceptance (*b*), and MVA rating (MVA) are specified in this table. The parallel lines in MATPOWER are merged and the resultants are given in Table 10.4. The generation data for IEEE RTS 24-bus network is given in Table 10.5. The data of generating units in this network is inspired by Conejo et al. [3] and Bouffard et al. [4] with some modifications. The slack bus is bus 13 in this network. The wind turbines and the capacities are also shown in Fig. 10.4.

					Rating						Rating
From	То	<i>r</i> (pu)	<i>x</i> (pu)	b(pu)	(MVA)	From	То	<i>r</i> (pu)	<i>x</i> (pu)	b(pu)	(MVA)
1	2	0.0026	0.0139	0.4611	175	11	13	0.0061	0.0476	0.0999	500
1	3	0.0546	0.2112	0.0572	175	11	14	0.0054	0.0418	0.0879	500
1	5	0.0218	0.0845	0.0229	175	12	13	0.0061	0.0476	0.0999	500
2	4	0.0328	0.1267	0.0343	175	12	23	0.0124	0.0966	0.2030	500
2	6	0.0497	0.1920	0.0520	175	13	23	0.0111	0.0865	0.1818	500
3	9	0.0308	0.1190	0.0322	175	14	16	0.0050	0.0389	0.0818	500
3	24	0.0023	0.0839	0.0000	400	15	16	0.0022	0.0173	0.0364	500
4	9	0.0268	0.1037	0.0281	175	15	21	0.0032	0.0245	0.2060	1000
5	10	0.0228	0.0883	0.0239	175	15	24	0.0067	0.0519	0.1091	500
6	10	0.0139	0.0605	2.4590	175	16	17	0.0033	0.0259	0.0545	500
7	8	0.0159	0.0614	0.0166	175	16	19	0.0030	0.0231	0.0485	500
8	9	0.0427	0.1651	0.0447	175	17	18	0.0018	0.0144	0.0303	500
8	10	0.0427	0.1651	0.0447	175	17	22	0.0135	0.1053	0.2212	500
9	11	0.0023	0.0839	0.0000	400	18	21	0.0017	0.0130	0.1090	1000
9	12	0.0023	0.0839	0.0000	400	19	20	0.0026	0.0198	0.1666	1000
10	11	0.0023	0.0839	0.0000	400	20	23	0.0014	0.0108	0.0910	1000
10	12	0.0023	0.0839	0.0000	400	21	22	0.0087	0.0678	0.1424	500

 Table 10.4
 Branch data for IEEE RTS 24-bus network

The gas network is also shown in Fig. 10.4 which its data is taken from [5]. The technical and economical characteristics of gas nodes are given in Table 10.6. The technical characteristics of gas network are also provided in Table 10.7 [5]. The gas network equations are described in (10.2).

$$GC = \sum_{n,t} c_n Sg_{n,t}$$
(10.2a)

$$\sum_{m} f_{n,m,t} = \sum_{m} f_{m,n,t} + Sg_{n,t} - \zeta_{g,t}Sd_n - Se_{n,t}$$
(10.2b)

$$f_{m,n,t} = C_{m,n} \sqrt{\Pr_{m,t}^2 - \Pr_{n,t}^2} \text{ Passive arcs}$$
(10.2c)

$$f_{m,n,t} \ge C_{mn} \sqrt{\Pr_{m,t}^2 - \Pr_{n,t}^2}$$
 Active arcs (10.2d)

$$\operatorname{Sg}_{n}^{\min} \leq \operatorname{Sg}_{n,t} \leq \operatorname{Sg}_{n}^{\max}$$
 (10.2e)

$$\Pr_n^{\min} \le \Pr_{n,t} \le \Pr_n^{\max} \tag{10.2f}$$

Table	10.5	Gen	eration c	data for IEEI	E RTS 24	-bus netv	work								
Gen	Bus	P_i^{\max}	P_i^{\min}	b_i (\$/MW)	Cs_{i} (\$)	Cd_i (\$)	$RU_i (MW h^{-1})$	$RD_i (MW h^{-1})$	$SU_i (MW h^{-1})$	$\mathrm{SD}_i (\mathrm{MW}\mathrm{h}^{-1})$	$\mathrm{UT}_i(\mathbf{h})$	$DT_i(h)$	$u_{i,t=0}$	U_i^0 (h)	S_i^0 (h)
g1	18	400	100	5.47	0	0	47	47	105	108	1	1	1	5	0
g2	21	400	100	5.47	0	0	47	47	106	112	1	1	1	9	0
g3		152	30.4	13.32	1430.4	1430.4	14	14	43	45	8	4	1	2	0
g4	5	152	30.4	13.32	1430.4	1430.4	14	14	44	57	8	4	1	2	0
ξĝ	15	155	54.25	16	0	0	21	21	65	77	8	8	0	0	2
g6	16	155	54.25	10.52	312	312	21	21	66	73	8	8	1	10	0
g7	23	310	108.5	10.52	624	624	21	21	112	125	8	8	1	10	0
gg	23	350	140	10.89	2298	2298	28	28	154	162	8	8	1	5	0
6g	7	350	75	20.7	1725	1725	49	49	77	80	8	8	0	0	2
g10	13	591	206.85	20.93	3056.7	3056.7	21	21	213	228	12	10	0	0	8
g11	15	60	12	26.11	437	437	7	7	19	31	4	2	0	0	-
g12	22	300	0	0	0	0	35	35	315	326	0	0	1	2	0

s network
24-bus
RTS
IEEE
for
data
Generation
10.5
ble

Gas node	Sg_n^{min} (10 ⁶ Scm)	Sg_n^{max} (10 ⁶ Scm)	Sd_n (10 ⁶ Scm)	Pr_n^{min} (bar)	Pr_n^{max} (bar)	c _n \$/MBtu
Anderlues	0	1.20	0.00	0.00	66.20	0.00
Antwerpen	0	0.00	4.03	1.25	80.00	0.00
Arlon	0	0.00	0.22	0.00	66.20	0.00
Berneau	0	0.00	0.00	0.00	66.20	0.00
Blaregnies	0	0.00	15.62	2.08	66.20	0.00
Brugge	0	0.00	3.92	1.25	80.00	0.00
Dudzele	0	8.40	0.00	0.00	77.00	2.28
Gent	0	0.00	5.26	1.25	80.00	0.00
Liege	0	0.00	6.39	1.25	66.20	0.00
Loenhout	0	4.80	0.00	0.00	77.00	2.28
Mons	0	0.00	6.85	0.00	66.20	0.00
Namur	0	0.00	2.12	0.00	66.20	0.00
Petange	0	0.00	1.92	1.04	66.20	0.00
Peronnes	0	0.96	0.00	0.00	66.20	1.68
Sinsin	0	0.00	0.00	0.00	63.00	0.00
Voeren	0	22.01	0.00	2.08	66.20	1.68
Wanze	0	0.00	0.00	0.00	66.20	0.00
Warnand	0	0.00	0.00	0.00	66.20	0.00
Zeebrugge	0	11.59	0.00	0.00	77.00	2.28
Zomergem	0	0.00	0.00	0.00	80.00	0.00

 Table 10.6
 Technical and economical characteristics of gas nodes

The electrical network equations are described in (10.3).

$$EC = \sum_{g,t} a_g (P_{g,t})^2 + b_g P_{g,t} + c_g + \sum_{i,t} VOLL \times LS_{i,t} + VWC \times P_{i,t}^{wc}$$
(10.3a)

$$\sum_{g \in \Omega_G^i} P_{g,t} + \mathrm{LS}_{i,t} + P_{i,t}^w - L_{i,t} = \sum_{j \in \Omega_\ell^i} P_{ij,t} : \lambda_{i,t}$$
(10.3b)

$$P_{ij,t} = \frac{\delta_{i,t} - \delta_{j,t}}{X_{ij}} \tag{10.3c}$$

$$-P_{ij}^{\max} \le P_{ij,t} \le P_{ij}^{\max} \tag{10.3d}$$

$$P_g^{\min} \le P_{g,t} \le P_g^{\max} \tag{10.3e}$$

$$P_{g,t} - P_{g,t-1} \le \mathrm{RU}_g \tag{10.3f}$$

$$P_{g,t-1} - P_{g,t} \le \mathrm{RD}_g \tag{10.3g}$$

$$0 \le \mathsf{LS}_{i,t} \le L_{i,t} \tag{10.3h}$$

Table	10.7	Technic	al
charac	teristi	cs of gas	network

Pipe	From	То	Active	$C_{m,n}^2$
L_1	Zeebrugge	Dudzele		9.07027
L_2	Zeebrugge	Dudzele		9.07027
L_3	Dudzele	Brugge		6.04685
L_4	Dudzele	Brugge		6.04685
L_5	Brugge	Zomergem		1.39543
L_6	Loenhout	Antwerpen		0.10025
L_7	Antwerpen	Gent		0.14865
L_8	Gent	Zomergem		0.22689
L_9	Zomergem	Peronnes		0.65965
L_{10}	Voeren	Berneau	1	7.25622
L_{11}	Voeren	Berneau	1	0.10803
L_{12}	Berneau	Liege		1.81405
L_{13}	Berneau	Liege		0.02701
L_{14}	Liege	Warnand		1.45124
L_{15}	Liege	Warnand		0.02161
L_{16}	Warnand	Namur		0.86384
L_{17}	Namur	Anderlues		0.90703
L_{18}	Anderlues	Peronnes		7.25622
L_{19}	Peronnes	Mons		3.62811
L_{20}	Mons	Blaregnies		1.45124
L_{21}	Warnand	Wanze		0.05144
L_{22}	Wanze	Sinsin	1	0.00642
L_{23}	Sinsin	Arlon		0.00170
L_{24}	Arlon	Petange		0.02782

$$P_{i,t}^{wc} = w_t \Lambda_i^w - P_{i,t}^w$$
(10.3i)

$$0 \le P_{i,t}^w \le w_t \Lambda_i^w \tag{10.3j}$$

The overall optimization problem, constraints, and the decision variables are as follows:

$$\min_{\text{DV}} \text{OF} = \text{EC} + \text{GC}$$
(10.4)
$$\text{DV} = \begin{cases} \delta_{i,t}, P_{g,t}, P_{c,t}, W_{c,t}, W_{w,t} \\ \text{Sg}_{n,t}, f_{n,m,t}, \text{Pr}_{n,t} \end{cases}$$
(10.2 and (10.3)

The hourly variation pattern of wind generation, electric and gas demand is shown in Fig. 10.5.

Fig. 10.5 Hourly variation pattern of wind generation, electric and gas demand (pu)

The integrated electricity-gas problem is solved using the GCode 10.2. The total electricity cost EC is 3.9760×10^5 . The total gas extraction costs are GC = 5.1755×10^5 and the total costs are 9.1515×10^5 . The hourly variation pattern of wind generation, electric and gas demand is shown in Fig. 10.5.

GCode 10.2 Gas-electricity nexus optimization pro	blem
---	------

```
bus /1*24/ ,slack(bus) /13/,Gen /g1*g12/, t /t1*t24/
Sets
       genD(gen) /g1*g2,g5,g7*g11/, genN(gen) /g3,g4,g6,g12/ ;
scalars Sbase /100/ ,VOLL /10000/,VOLW /50/; alias(bus, node);
Sets gn NODES / Anderlues, Antwerpen, Arlon, Berneau, Blaregnies, Brugge, Dudzele,
               Gent, Liege, Loenhout, Mons, Namur, Petange, Peronnes, Sinsin,
                Voeren, Wanze, Warnand, Zeebrugge, Zomergem /
     a PIPES / L1*L24 /; Alias (gn,gm); set Pnm(a,gn,gm) arc description;
table Ndata(gn,*) Node Data
           slo
                  sup
                             Sd
                                     plo pup c
* Removed for saving space
set GElink (gn, gen)
/Loenhout
                       g12
Voeren
                       g6
Sinsin
                       g3
                       g4/:
Petange
table AData(a,gn,gm,*) Arc Data
                                      act C2mn:
table GD(Gen,*) Generating units characteristics;
set GB(bus, Gen) connectivity index of each generating unit to each bus ;
Table BusData(bus,*) Demands of each bus in MW;
Table branch (bus, node, *)
                              Network technical
               r
                        х
                                b
                                       z limit:
Table DataWDL(t,*)
     w
                        d
                                           g;
Parameters Wcap(bus), conex(bus, node), SD(gn);
branch(bus,node,'bij')$branch(bus,node,'Limit') =1/branch(bus,node,'x');
conex(bus, node)$(branch(bus, node, 'limit') and branch(node, bus, 'limit'))=1;
conex(bus,node)$(conex(node,bus))=1; Variables f(a,gn,gm,t),sg(gn,t),pressure(gn,t)
EC, Pij (bus, node, t), Pg (Gen, t), delta (bus, t), lsh (bus, t), Pw (bus, t), pc (bus, t), Gc, OF;
Pnm(a, gn, gm) $ adata(a, gn, gm, 'c2mn')=yes;
Equations const1, const2, const3, const4, const5, const6, CG1, CG2, CG3, CG4, Objective;
const1 (bus, node, t) $conex (bus, node) .. Pij (bus, node, t)=e=
```

```
branch(bus, node, 'bij')*(delta(bus, t)-delta(node, t));
const2(bus,t)..lsh(bus,t)$BusData(bus,'pd')+Pw(bus,t)$Wcap(bus)+sum(Gen$GB(bus,Gen)
Pg(Gen, t))-DataWDL(t, 'd')*BusData(bus, 'pd')/Sbase=e=
+sum(node$conex(node, bus), Pij(bus, node, t));
const3..EC=e=sum((bus,GenD,t)$GB(bus,GenD),Pg(GenD,t)*GD(GenD,'b')*Sbase)
+sum((bus,t),VOLL*1sh(bus,t)*Sbase$BusData(bus,'pd')+VOLW*Pc(bus,t)*sbase$Wcap(bus)
     );
const4(gen, t) ... pg(gen, t+1)-pg(gen, t)=1=GD(gen, 'RU')/Sbase;
const5(gen, t) ... pg(gen, t-1)-pg(gen, t)=1=GD(gen, 'RD')/Sbase;
const6(bus,t)$Wcap(bus) .. pc(bus,t)=e=DataWDL(t,'w')*Wcap(bus)/Sbase-pw(bus,t);
Pg.lo(Gen,t)=GD(Gen, 'Pmin')/Sbase; Pg.up(Gen,t)=GD(Gen, 'Pmax')/Sbase;
delta.up(bus,t)=\mathbf{pi}/2; delta.lo(bus,t)=-\mathbf{pi}/2; delta.fx(slack,t)=0;
Pij.up(bus,node,t)$((conex(bus,node)))=1* branch(bus,node,'Limit')/Sbase;
Pij.lo(bus,node,t)$((conex(bus,node)))=-1*branch(bus,node,'Limit')/Sbase;
lsh.up(bus,t)= DataWDL(t,'d')*BusData(bus,'pd')/Sbase; lsh.lo(bus,t)= 0;
Pw.up(bus, t) = DataWDL(t, 'w') * Wcap(bus) / Sbase; Pw.lo(bus, t) = 0;
Pc.up(bus,t) = DataWDL(t,'w') * Wcap(bus) / Sbase: Pc.lo(bus,t) = 0; SD(gn) = Ndata(gn, 'SD');
CG1(gn, t).. sum(Pnm(a, gn, gm), f(Pnm, t)) = e = sum(Pnm(a, gm, gn), f(Pnm, t))
+sg(gn,t) (Ndata(gn, 'Sup') >0)-DataWDL(t, 'G') *SD(gn)
-sum((GenN) $Gelink(gn,GenN),Pg(GenN,t)*GD(GenN,'b')*Sbase/35315);
CG2(Pnm(a,gn,gm),t)$(AData(a,gn,gm,'C2mn') AND AData(a,gn,gm,'ACT')=0)
 .. signpower(f(Pnm, t),2) == AData(Pnm, 'C2mn')*(pressure(gn, t)-pressure(gm, t));
CG3(Pnm(a, gn, gm), t)$(AData(a, gn, gm, 'C2mn') AND AData(a, gn, gm, 'ACT')=1)
  \dots -sqr(f(Pnm, t)) = g = AData(Pnm, 'C2mn') * (pressure(gn, t) - pressure(gm, t));
CG4.. Gc =e= sum((gn,t), 35315*ndata(gn,'c')*sg(gn,t)$Ndata(gn,'Sup'));
Objective .. OF=e=EC+Gc; sg . lo (gn, t)=0; sg . up (gn, t) = ndata (gn, 'sup');
pressure.lo(gn,t) = sqr(ndata(gn,'plo')); pressure.up(gn,t) = sqr(ndata(gn,'pup'));
f.lo(Pnm(a,gn,gm),t) (AData(a,gn,gm, 'C2mn')) =
-sqrt (AData (a, gn, gm, 'C2mn')*( pressure . up (gn, t)-pressure . lo (gn, t)));
f.up(Pnm(a,gn,gm),t) (AData(a,gn,gm, 'C2mn')) =
sqrt(AData(a,gn,gm, 'C2mn')*( pressure.up(gn,t)-pressure.lo(gn,t)));
f.lo(Pnm(a,gn,gm),t)$(AData(a,gn,gm,'C2mn') AND AData(a,gn,gm,'ACT')=1) =0;
Model overall / all /; Solve overall using nlp min OF;
```


Fig. 10.6 Hourly variation pattern of gas generation from gas sources

Hourly variation pattern of gas generation from gas sources are shown in Fig. 10.6.

The hourly variation pattern of electricity power generation is shown in Fig. 10.7.

Fig. 10.7 Hourly variation pattern of electricity power generation

The interaction of gas network and electricity sector has been investigated in several works. The impacts of the gas network on security constrained UC is analyzed in [6]. A unified gas and power flow analysis in natural gas and electricity coupled networks can be found in [7]. A robust scheduling model for wind-integrated energy systems with the considerations of both gas pipeline and power transmission contingencies is developed in [8]. The reliability of gas networks and their impacts on the reliability of electricity network is modeled in [9]. The impact of large penetration of wind generation on the UK gas network is analyzed in [10]. One of the recent efficient methods of electricity storage is storing the electricity as gas. This method is also called power to gas or P2G technique [11].

10.3 Energy Hub Concept

The concept of Energy Hub was introduced in [12]. Energy hub may be considered as a virtual box that can convert a set of input energy carriers into a set of energy demands. This box contains several technologies that can store, transfer, or convert different forms of energies to each other. A general example of Energy hub is shown in Fig. 10.8. Different aspects of energy hubs are investigated in the literature such as economic dispatch of energy hubs [13], demand response and energy hub [14], energy hub concept applied on car manufacturing plants [15], and wind power uncertainty modeling in energy hubs [16, 17].

The technologies shown in Fig. 10.8 are explained as follows:

• Combined heat and power (CHP): receives the natural gas (G_t) and converts it into heat (H_t) and electricity (E_t) The CHP economic dispatch problem can be modeled in (10.5) [18]:

$$H_t = \eta_{ge}^{chp} G_t \tag{10.5a}$$

Fig. 10.8 The energy hub concept

$$E_t = \eta_{\rm gh}^{\rm chp} G_t \tag{10.5b}$$

• Electric heat pump (EHP): It is fed by electricity and generates heat demand (H_t) or cool demand (C_t) based on the operating mode. The operation of EHP is mathematically formulated as follows:

$$C_t + H_t = E_t \times \text{COP} \tag{10.6a}$$

$$H_t^{\min} I_t^h \le H_t \le H_t^{\max} I_t^h \tag{10.6b}$$

$$C_t^{\min} I_t^c \le C_t \le C_t^{\max} I_t^c \tag{10.6c}$$

$$I_t^c + I_t^h \le 1 \tag{10.6d}$$

$$I_t^c, I_t^h \in \{0, 1\}$$

The EHP can be in heat or cool generation mode. COP is the coefficient of performance for EHP.

• Chiller boiler (CB): It receives heat and transforms it into cool demand The chiller boiler operation is mathematically formulated as follows:

$$C_t = \eta_{hc} H_t \tag{10.7}$$

The η_{hc} is the efficiency of heat to cooling conversion for chiller boiler.

• Electricity storage system (ESS): It can store (electricity) and then discharge electricity The ESS operation is mathematically formulated as follows:

$$SOC_t = SOC_{t-1} + (E_t^{ch}\eta_c - E_t^{dch}/\eta_d)\Delta_t$$
(10.8a)

$$E_{\min}^{\rm ch} \le E_t^{\rm ch} \le E_{\max}^{\rm dch} \tag{10.8b}$$

$$E_{\min}^{\rm dch} \le E_t^{\rm dch} \le E_{\max}^{\rm dch} \tag{10.8c}$$

$$SOC_{min} \le SOC_t \le SOC_{max}$$
 (10.8d)

$$I_t^{\rm dch} + I_t^{\rm ch} \le 1 \tag{10.8e}$$

$$I_t^{\text{ch}}, I_t^{\text{dch}} \in \{0, 1\}$$

SOC_t is the state of charge in ESS. $E_t^{ch/dch}$ is for demonstrating the charged and discharged electricity in ESS. The binary variables I_t^{ch} , I_t^{dch} show the charge or discharge mode of ESS at time t.

• Transformer (Tr): It receives electricity and the output is also electricity (with different voltage level)

$$E_t^{\text{out}} = \eta_{\text{ee}} E_t^{\text{in}} \tag{10.9}$$

• Furnace (F): receives the natural gas and generates the heat demand

$$H_t = \eta_{\rm gh} G_t \tag{10.10}$$

Three different energy hub configurations will be analyzed to investigate the level of achievable operational flexibility.

10.3.1 Data

The energy hubs which are analyzed in this chapter would have three types of energy demands namely electric, heat, and cooling demand. Different hourly demand and electricity price data for three energy hub configurations are given in Table 10.8.

- The charging and discharging efficiencies ($\eta_{ch/dch}$) of ESS are assumed to be 0.9. The ESS capacity is SOC_{max} = 600 MW h and SOC_{min} = 120 MW h. The initial stored energy in ESS is 120 MW h. The minimum charging and discharging limits are $E_{min}^{ch/dch} = 0$ and the maximum charging and discharging limits are $E_{max}^{ch/dch} = 120$ MW.
- The transformer efficiency is $\eta_{ee} = 0.98$.
- The CHP efficiencies for gas to electricity is $\eta_{ge} = 0.35$ and for gas to heat is $\eta_{gh} = 0.45$. The CHP capacity is 250 MW.

Table 10.8 Different hourly
demand and electricity price
data for energy hub
configurations

Time	D_t^h (MW)	D_t^e (MW)	D_t^c (MW)	λ_t^e \$/MW h
t_1	21.41	52.10	11.51	36.67
<i>t</i> ₂	23.21	66.70	13.68	40.41
<i>t</i> ₃	26.09	72.20	16.01	38.48
t_4	26.72	78.37	21.42	38.00
<i>t</i> ₅	25.59	120.20	21.97	40.24
<i>t</i> ₆	26.45	83.48	30.80	38.55
<i>t</i> ₇	39.54	110.40	38.94	52.26
<i>t</i> ₈	47.28	124.29	46.78	67.34
<i>t</i> 9	52.12	143.61	50.97	70.47
<i>t</i> ₁₀	49.13	149.28	48.86	66.20
<i>t</i> ₁₁	69.26	154.19	34.77	73.30
<i>t</i> ₁₂	61.97	147.30	32.68	60.82
<i>t</i> ₁₃	68.04	200.71	27.77	63.15
t_{14}	68.56	174.37	32.02	70.77
<i>t</i> ₁₅	56.40	176.54	33.22	63.09
t_{16}	41.32	136.11	34.13	52.53
t_{17}	37.43	108.71	40.78	57.00
t_{18}	25.44	96.90	43.56	49.15
t_{19}	25.66	89.08	51.48	47.47
t_{20}	21.94	82.49	43.15	49.46
<i>t</i> ₂₁	22.44	76.93	36.49	53.07
<i>t</i> ₂₂	24.63	66.85	27.68	51.60
t ₂₃	22.72	47.17	19.14	50.53
<i>t</i> ₂₄	22.59	64.67	11.04	36.38

- For EHP, C^{ehp}_{Max} = H^{ehp}_{Max} = 500 MW; The COP is assumed to be 2.5.
 The furnace efficiency η^f_{gh} is 0.9. The furnace capacity is 600 MW.
 The chiller boiler has a capacity equal to 500 MW and the efficiency is η_{hc} = 0.95
- The natural gas price is assumed to be constant for different hours and it is equal to $\lambda_t^g = 12$ \$/MW h

10.3.2 Configuration I

This configuration contains transformer, furnace, and chiller boiler as shown in Fig. 10.9.

$$\min OF = \sum_{t} \lambda_t^e E_t + \lambda_t^g G_t \tag{10.11a}$$

$$\eta_{\rm ee}E_t = D_t^e \tag{10.11b}$$

Fig. 10.9 The energy hub configuration I, considering transformer, furnace, and chiller boiler

$$\eta_{\rm gh}^f G_t = H_{1,t} + H_{2,t} \tag{10.11c}$$

$$\eta_{\rm hc}H_{2,t} = D_t^c \tag{10.11d}$$

$$H_{1,t} = D_t^h \tag{10.11e}$$

The GAMS code for solving the hub configuration I described in (10.11) is given in GCode 10.3.

The developed model in GCode 10.3 is linear and can be solved using any lp solver. The problem is solved and the total operating costs are 1.1327×10^5 . The hourly purchased electricity and natural gas in energy hub configuration I are shown in Fig. 10.10.

The output of furnace system will be divided into two streams. The first one will supply the chiller and the second one will directly supply the heat demand. The hourly output of furnace unit in energy hub configuration-I is shown in Fig. 10.11.

Set	t		hours	8	/t1*t24/
Table	e data	u(t,*)			
	Dh	De	Dc	lambda	
t1	21.4	52.1	11.5	36.7	
t2	23.2	66.7	13.7	40.4	
t3	26.1	72.2	16	38.5	
t4	26.7	78.4	21.4	38	
t5	25.6	120.2	22	40.2	
t6	26.4	83.5	30.8	38.6	
t7	39.5	110.4	38.9	52.3	
t8	47.3	124.3	46.8	67.3	
t9	52.1	143.6	51	70.5	
t10	49.1	149.3	48.9	66.2	
t11	69.3	154.2	34.8	73.3	
t12	62	147.3	32.7	60.8	
t13	68	200.7	27.8	63.2	
t14	68.6	174.4	32	70.8	
t15	56.4	176.5	33.2	63.1	
t16	41.3	136.1	34.1	52.5	
t17	37.4	108.7	40.8	57	
t18	25.4	96.9	43.6	49.2	
t19	25.7	89.1	51.5	47.5	
t20	21.9	82.5	43.1	49.5	
t21	22.4	76.9	36.5	53.1	
t22	24.6	66.8	27.7	51.6	
t23	22.7	47.2	19.1	50.5	
t24	22.6	64.7	11	36.4	
*					
Vari	able (cost:			
Posi	tive	variab'	les	$E(t) \cdot G(t)$	$H_1(t) H_2(t)$:
Scal	ar			_('), (')	,(-),(-),
CBma	x /50	0/. eta	ee .	/0.98/.eta 9	phf /0.9/, eta hc /0.95/:
H2. 11	n(t) = 0	Bmax :			,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Faustions					
e_{a1} e_{a2} e_{a3} e_{a4} e_{a5}					
eq1 cost =e=sum(t data(t 'lambda')* $F(t)+12*G(t)$).					
$eq^2(t)$ eta $ee*F(t)=e=data(t 'F')$:					
$eq_3(t)$ $H1(t) = e = data(t, 'h')$.					
eq4(t) eta $ghf*G(t)=e=H1(t)+H2(t)$:					
eq5(t) $eta hc*H2(t)=e=data(t, 'c')$:					
Mode	1 Hub	/ all /	·	12(1)=0=000	,,,
Solv	a hub	1 a 1 n	, min	cost ·	
Solve hub us ip min cost,					

GCode 10.3 The optimal operation of energy hub configuration I

10.3.3 Configuration II

This configuration contains transformer, furnace, chiller boiler, CHP, and ESS as shown in Fig. 10.12.

Fig. 10.10 The hourly purchased electricity and natural gas in energy hub configuration I

Fig. 10.11 The hourly output of furnace unit in energy hub configuration I

ſ

Fig. 10.12 The energy hub configuration II, considering transformer, furnace, chiller boiler, CHP, and electric energy storage

$$\min OF = \sum_{t} \lambda_t^e E_t + \lambda_t^g G_t$$
(10.12a)

$$\eta_{\rm ee} E_{2,t} + E_t^{\rm dch} + \eta_{\rm ge} G_{1,t} = D_t^e \tag{10.12b}$$

$$E_t = E_{1,t} + E_{2,t} \tag{10.12c}$$

$$E_{1,t} = E_t^{\rm ch} \tag{10.12d}$$

$$SOC_t = SOC_{t-1} + (E_t^{ch}\eta_c - E_t^{dch}/\eta_d)\Delta_t$$
(10.12e)

$$E_{\min}^{\rm ch} \le E_t^{\rm ch} \le E_{\max}^{\rm dch} \tag{10.12f}$$

$$E_{\min}^{\rm dch} \le E_t^{\rm dch} \le E_{\max}^{\rm dch} \tag{10.12g}$$

$$SOC_{min} \le SOC_t \le SOC_{max}$$
 (10.12h)

$$I_t^{\rm dch} + I_t^{\rm ch} \le 1 \tag{10.12i}$$

$$I_t^{\rm ch}, I_t^{\rm dch} \in \{0, 1\}$$

$$G_t = G_{1,t} + G_{2,t} \tag{10.12j}$$

$$\eta'_{\rm gh}G_{1,t} + H_{1,t} = D_t^h \tag{10.12k}$$

$$\eta_{\rm gh}G_{2,t} = H_{1,t} + H_{2,t} \tag{10.12l}$$

$$\eta_{\rm hc}H_{2,t} = D_t^c \tag{10.12m}$$

The GAMS code for solving the hub configuration II described in (10.12) is given in GCode 10.4.

GCode 10.4 The optimal operation of energy hub configuration II

set	t	hour	s /t1*t24/		
tabl	e data(t s	k)			
labi	Dh De	Dc	lambda		
t1	21 4 52	1 11 5	36.7		
t2	23 2 66	7 13 7	40.4		
t3	26.1 72.2	2 16	38.5		
t4	26.7 78.4	4 21.4	38		
t5	25.6 120	.2 22	40.2		
t6	26.4 83.5	5 30.8	38.6		
t7	39.5 110	.4 38.9	52.3		
t8	47.3 124	.3 46.8	67.3		
t9	52.1 143	.6 51	70.5		
t10	49.1 149	.3 48.9	66.2		
t11	69.3 154	.2 34.8	73.3		
t12	62 147	.3 32.7	60.8		
t13	68 200	.7 27.8	63.2		
t14	68.6 174	.4 32	70.8		
t15	56.4 176	.5 33.2	63.1		
t16	41.3 136	.1 34.1	52.5		
11/	37.4 108	./ 40.8	57		
118	25.4 90.9	9 43.0 1 515	49.2		
t19	23.7 89.	5 43 1	47.5		
t21	21.7 02.	365	53.1		
t21	24.6 66.8	3 27.7	51.6		
t23	22.7 47.3	2 19.1	50.5		
t24	22.6 64.3	7 11	36.4		
Vari	able cost	;			
Posi	tive varia	ables			
E(t)	,E1(t),E2	(t),G(t	,G1(t),G2(t),H1(t),H2(t)		
SOC(t),Ec(t),	Ed(t);			
Bina	ry variab	les Idc	h(t), Ich(t);		
scalar SOC0 /20/,SOCmax /600/,eta_c /0.9/,eta_d /0.9/,eta_ee /0.98/,eta_ge /0.45/,					
eta_gh /0.35/, eta_hc /0.95/, Chpmax /250/, CBmax /500/, Fmax /600/, eta_ghf /0.9/;					
SOC0	= 0.2 * SOC	max;			
SOC. up (t)=SOCmax; SOC. lo (t)=0.2*SOCmax; SOC. fx ('t24')=SOC0;					
Ec. up (t) = $0.2 \times \text{SOCmax}$; Ec. 10 (t) = 0;					
Ed.u	p(t)=0.2*3	SOCmax ;	Ed. 10 $(t) = 0;$		
G1.u	p(t)=Cnpm n(t)=Emov	ax;			
H2 11	p(t) = CBma	, v ·			
Equa	tions eal	∧, Lea2e	a3 ea4 ea5 ea6 ea7 ea8 ea9 ea10 ea11 ea12:		
eq1		cost =	e=sum(t, data(t, 'lambda'))*E(t)+12*G(t));		
eq2(t)	eta ee	*E2(t)+Ed(t)+eta ge*G1(t)=e=data(t, 'E');		
eq3(t)	E(t)=e	=E1(t)+E2(t);		
eq4 (eq4(t) $E1(t)=e=Ec(t);$				
eq5 (t)	SOC(t)	$=e=SOC0(ord(t)=1)+SOC(t-1)(ord(t)>1)+Ec(t)*eta_c-Ed(t)/eta_d$		
	;				
eq6 (t)	Ed(t) =	1=0.2*SOCmax*Idch(t);		
eq7 (t)	Ec(t) =	1=0.2*SOCmax*1ch(t);		
eq8 (t)	ldch(t)+1ch(t)=1=1;		

```
\begin{array}{rcl} eq9(t) & .. & G(t) = e = G1(t) + G2(t); \\ eq10(t) & .. & eta_gh * G1(t) + H1(t) = e = 1 * data(t, 'h'); \\ eq11(t) & .. & eta_gh f * G2(t) = e = H1(t) + H2(t); \\ eq12(t) & .. & eta_h c * H2(t) = e = data(t, 'c'); \\ model Hub2 / all/; \\ Solve hub2 us mip min cost; \end{array}
```

The developed model in GCode 10.4 is linear and can be solved using any lp solver. The problem is solved, and the total operating costs are 0.85504×10^5 . The hourly purchased electricity and its division between transformer and ESS in energy hub configuration-II are shown in Fig. 10.13. The output of furnace system will be divided into two streams. The first one will supply the chiller and the second one will supply the heat demand. The hourly output of furnace unit in energy hub configuration II is shown in Fig. 10.14. The hourly state of charge, charging, and discharging of ESS in energy hub configuration II is shown in Fig. 10.15.

10.3.4 Configuration III

This configuration contains transformer, furnace, chiller boiler, CHP, and ESS as shown in Fig. 10.16.

Fig. 10.13 The hourly purchased electricity and its division between transformer and ESS in energy hub configuration II

Fig. 10.14 The hourly output of furnace unit in energy hub configuration II

Fig. 10.15 The hourly state of charge (MW h), charging, and discharging of ESS (MW) in energy hub configuration $\rm II$

$$\min OF = \sum_{t} \lambda_t^e E_t + \lambda_t^g G_t$$
(10.13a)

$$\eta_{\rm ee} E_{2,t} + E_t^{\rm dch} + \eta_{\rm ge} G_{1,t} = D_t^e \tag{10.13b}$$

$$E_t = E_{1,t} + E_{2,t} + E_{3,t} \tag{10.13c}$$

$$E_{1,t} = E_t^{\rm ch} \tag{10.13d}$$

Fig. 10.16 The energy hub configuration III, considering transformer, furnace, chiller boiler, CHP, electric energy storage, and EHP

$$SOC_t = SOC_{t-1} + (E_t^{ch}\eta_c - E_t^{dch}/\eta_d)\Delta_t$$
(10.13e)

$$E_{\min}^{\rm ch} I_t^{\rm ch} \le E_t^{\rm ch} \le E_{\max}^{\rm ch} I_t^{\rm ch}$$
(10.13f)

$$E_{\min}^{\rm dch}I_t^{\rm dch} \le E_t^{\rm dch} \le E_{\max}^{\rm dch}I_t^{\rm dch}$$
(10.13g)

$$SOC_{min} \le SOC_t \le SOC_{max}$$
 (10.13h)

$$I_t^{\rm dch} + I_t^{\rm ch} \le 1 \tag{10.13i}$$

$$I_t^{\mathrm{ch}}, I_t^{\mathrm{dch}} \in \{0, 1\}$$

$$G_t = G_{1,t} + G_{2,t} \tag{10.13j}$$

$$\eta_{\rm gh}G_{1,t} + H_{1,t} + H_t^{\rm EHP} = D_t^h \tag{10.13k}$$

$$\eta_{\rm gh}^{t}G_{2,t} = H_{1,t} + H_{2,t} \tag{10.131}$$

$$\eta_{\rm hc}H_{2,t} + C_t^{\rm EHP} = D_t^c \tag{10.13m}$$

$$C_t^{\text{EHP}} + H_t^{\text{EHP}} = E_{3,t} \times \text{COP}$$
(10.13n)

$$H_t^{\min} I_t^h \le H_t^{\text{EHP}} \le H_t^{\max} I_t^h \tag{10.130}$$

$$C_t^{\min} I_t^c \le C_t^{\text{EHP}} \le C_t^{\max} I_t^c \tag{10.13p}$$

$$I_{t}^{c} + I_{t}^{h} \leq 1$$

$$I_{t}^{c}, I_{t}^{h} \in \{0, 1\}$$
(10.13q)

The developed model in GCode 10.5 is linear and can be solved using any lp solver.

GCode 10.5 The optimal operation of energy hub configuration III

Set	t		hour	s	/t1*t24/		
Tabl	- date	. (+ .w.)					
Table	e uata	1(1,≁) Dh	De	Dc	lambda		
t1	21.4	52.1	11.5	36.7			
t2	23.2	66.7	13.7	40.4			
t3	26.1	72.2	16	38.5			
t4	26.7	78.4	21.4	38			
t5	25.6	120.2	22	40.2			
t6	26.4	83.5	30.8	38.6			
t7	39.5	110.4	38.9	52.3			
t8	47.3	124.3	46.8	67.3			
t9	52.1	143.6	51	70.5			
t10	49.1	149.3	48.9	66.2			
t11	69.3	154.2	34.8	73.3			
t12	62	147.3	32.7	60.8			
t13	68	200.7	27.8	63.2			
t14	68.6	174.4	32	70.8			
t15	56.4	176.5	33.2	63.1			
t16	41.3	136.1	34.1	52.5			
t1/	37.4	108.7	40.8	5/			
+10	25.4	90.9	43.0	49.2			
t19 t20	23.7	82.5	13 1	47.5			
t21	21.7	76.9	36.5	53 1			
t21	24.6	66.8	27.7	51.6			
t23	22.7	47.2	19.1	50.5			
t24	22.6	64.7	11	36.4	:		
data	(t,'la	mbda')=0.6	* data	t , 'lambda');		
varia	able	cost;					
posi	tive	variab	oles E	(t),E	(t), E2(t), E3(t), G(t), G1(t), G2(t), H1(t), H2(t)		
SOC($SOC(t), Ec(t), Ed(t), H_{ehp}(t), C_{ehp}(t);$						
Binary variables $ldch(t)$, $lch(t)$, $lc(t)$, $lh(t)$;							
scalar SOC0 /20/, SOCmax /600/, eta_c /0.9/, eta_d /0.9/, eta_ee /0.98/							
, eta_	$\frac{ge}{10}$	05/	COP /	2 1 7 0 2 5 /	J_{J} = J_{J} = J_{J}		
cia_iic /0.95/, COP /2.5/, H_enpMax /200/, C_enpMax /200/, Cnpmax /300/,							
SOCO	Contax (300) , rmax (300) , cta_gn1 (0.9) ; SOC0= 0.2*SOCmay: SOC up(t)=SOCmay: SOC 1c(t)=0.2*SOCmay: SOC fr(2+242) SOC0.						
Ec. III	= 0.24	0.2*50	in, 50 Cmax·	Ec li	f(t) = 0: Ed up(t) = 0.2*SOCmax: Ed lo(t) = 0:		
C eh	p(t)=	t = C e	hpMax,	: H e	(t) = 0, Ed. up $(t) = 0.2$ (solemax, Ed. 10 $(t) = 0$, up $(t) = H$ ehpMax:		
G1. u	p(t) = 0	Chomax	G2.	up(t)	Fmax; H2, up(t) = CBmax; E, up(t) = 1000;		
Equa	tions	1	·	1 . ,			
eq1 ,	eq2,ea	q3 , eq4	, eq5 ,	eq6 , e	7, eq8, eq9, eq10, eq11, eq12, eq13, eq14, eq15, eq16;		
agl			ost -	a-curr	t = data(t = 2 lambda = 2) + E(t) + 12 + C(t)		
eq1	t)	C	osi =	€= sull ∗F2(+	+ Fd(t) + eta ge *G1(t) = e = data(t 'F') + F3(t)		
eq2(t)	с Б	$l(t) = e^{-t}$	=E1(t)	$\pm E2(t)$.		
eq4(t)	F	El(t) =	e=Ec(·		
eq5(t)	s	OC(t)	=e=SO	CO\$(ord(t)=1)+ SOC(t-1)\$(ord(t)>1)+Ec(t)*eta c-Ed(t)/eta d		
1.1-(;						
eq6(t)	E	Ed(t) =	1=0.2>	SOCmax*Idch(t);		

```
eq7(t)
               Ec(t) = 1 = 0.2 * SOCmax * Ich(t);
               Idch(t)+Ich(t)=l=1;
eq8(t)
eq9(t)
               G(t)=e=G1(t)+G2(t);
               eta_gh*Gl(t)+Hl(t)+H_ehp(t)=e=1*data(t, 'h');
eq10(t)
eq11(t)
               eta_ghf *G2(t) = e = H1(t) + H2(t);
eq12(t)
               eta_hc *H2(t)+C_ehp(t)=e=data(t, 'c');
eq13(t)
               C ehp(t)+H ehp(t)=e=E3(t)*cop;
               H_{ehp}(t) = 1 = H_{ehp}Max * Ih(t);
eq14(t)
eq15(t)
               C_{ehp}(t)=l=C_{ehp}Max * Ic(t);
               Ic(t)+Ih(t)=l=1;
eq16(t)
Model Hub / all /;
Solve hub us mip min cost;
```


Fig. 10.17 The hourly purchased electricity and its division between transformer and ESS in energy hub configuration III

The problem is solved and the total operating costs are 0.84430×10^5 . The hourly purchased electricity and its division between transformer and ESS in energy hub configuration-III are shown in Figs. 10.17, 10.18. The output of furnace system will be divided into two streams. The first one will supply the chiller and the second one will supply the heat demand. The hourly output of furnace unit in energy hub configuration II is shown in Fig. 10.14. The hourly state of charge, charging, and discharging of ESS in energy hub configuration III is shown in Fig. 10.19. The hourly output of EHP in energy hub configuration III is shown in Fig. 10.20.

Fig. 10.18 The hourly output of furnace unit in energy hub configuration III

Fig. 10.19 The hourly state of charge (MW h), charging, and discharging of ESS (MW) in energy hub configuration III $\,$

Fig. 10.20 The hourly output of EHP in energy hub configuration III

References

- A. Santhosh, A.M. Farid, K. Youcef-Toumi, Real-time economic dispatch for the supply side of the energy-water nexus. Appl. Energy 122, 42–52 (2014)
- R.D. Zimmerman, C.E. Murillo-Sanchez, R.J. Thomas, Matpower: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)
- 3. A.J. Conejo, M. Carrión, J.M. Morales, *Decision Making Under Uncertainty in Electricity Markets*, vol. 1 (Springer, Berlin, 2010)
- F. Bouffard, F.D. Galiana, A.J. Conejo, Market-clearing with stochastic security-part II: case studies. IEEE Trans. Power Syst. 20(4), 1827–1835 (2005)
- 5. D. De Wolf, Y. Smeers, The gas transmission problem solved by an extension of the simplex algorithm. Manag. Sci. **46**(11), 1454–1465 (2000)
- T. Li, M. Eremia, M. Shahidehpour, Interdependency of natural gas network and power system security. IEEE Trans. Power Syst. 23(4), 1817–1824 (2008)
- A. Martinez-Mares, C.R. Fuerte-Esquivel, A unified gas and power flow analysis in natural gas and electricity coupled networks. IEEE Trans. Power Syst. 27(4), 2156–2166 (2012)
- L. Bai, F. Li, T. Jiang, H. Jia, Robust scheduling for wind integrated energy systems considering gas pipeline and power transmission n-1 contingencies. IEEE Trans. Power Syst. 32(2), 1582– 1584 (2017)
- J. Munoz, N. Jimenez-Redondo, J. Perez-Ruiz, J. Barquin, Natural gas network modeling for power systems reliability studies. in 2003 IEEE Bologna Power Tech Conference Proceedings, vol. 4, June 2003, p. 8
- M. Qadrdan, M. Chaudry, J. Wu, N. Jenkins, J. Ekanayake, Impact of a large penetration of wind generation on the GB gas network. Energy Policy 38(10), 5684–5695 (2010)

- H.S. de Boer, L. Grond, H. Moll, R. Benders, The application of power-to-gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels. Energy 72, 360–370 (2014)
- M. Geidl, G. Koeppel, P. Favre-Perrod, B. Klöckl, G. Andersson, K. Fröhlich, The energy huba powerful concept for future energy systems. in *Third Annual Carnegie Mellon Conference* on the Electricity Industry, Pittsburgh (2007), pp. 13–14
- 13. S.D. Beigvand, H. Abdi, M. La Scala, A general model for energy hub economic dispatch. Appl. Energy **190**, 1090–1111 (2017)
- 14. M. Batić, N. Tomašević, G. Beccuti, T. Demiray, S. Vraneš, Combined energy hub optimisation and demand side management for buildings. Energy Build. **127**, 229–241 (2016)
- K. Kampouropoulos, F. Andrade, Energy hub optimization applied on car manufacturing plants. in ANDESCON, 2016 IEEE (IEEE, Piscataway, 2016), pp. 1–4
- 16. A. Soroudi, B. Mohammadi-Ivatloo, A. Rabiee, Energy hub management with intermittent wind power. in *Large Scale Renewable Power Generation* (Springer, Singapore, 2014), pp. 413–438
- A. Dolatabadi, B. Mohammadi-Ivatloo, M. Abapour, S. Tohidi, Optimal stochastic design of wind integrated energy hub. IEEE Trans. Ind. Inf. 99, 1–1 (2017). doi:10.1109/TII.2017.2664101
- M. Geidl, Integrated modeling and optimization of multi-carrier energy systems. PhD thesis, TU Graz, 2007