
Chapter 1
Introduction to Programming in GAMS

The General Algebraic Modeling System (GAMS) is a modeling tool for mathemat-
ical programming and optimization purpose. This chapter provides the instruction
on different programming elements in GAMS. It can be used in solving different
types of optimization problems. Some basic optimization models used in power
system literature are described in this chapter.

1.1 Optimization Problems in Power System

The power system optimization problems are broadly categorized as operation and
planning problems. The operation problems are usually related to how to exploit
the existing devices/power plants. For example, optimal power flow is an operation
problem. The planning problems usually refer to those problems which investigate
whether to invest or not in some assets. For example, the decisions regarding
the transmission network expansion belong to planning category. Some of these
problems are shown in Fig. 1.1. Some power system planning problems are listed as
follows:

• Generation expansion planning (GEP) [1, 2]: In GEP, the decision maker is trying
to find out the investment decision regarding the generation technology, size, and
time of investment.

• Transmission expansion planning (TEP) [3, 4]. In TEP, the decision maker is
trying to find out the investment decision regarding the planning option and time
of investment. The planning options include but not limited to: building new
lines, reconductoring the existing lines, building, or reinforcing the substations.

• Distribution network planning [5]: this problem is trying to make smart invest-
ments in new feeders/substations to meet the technical constraints.

© Springer International Publishing AG 2017
A. Soroudi, Power System Optimization Modeling in GAMS,
DOI 10.1007/978-3-319-62350-4_1

1

2 1 Introduction to Programming in GAMS

Fig. 1.1 Some optimization problems in power system studies

• FACTS device allocation [6]: This problem is a subset of transmission planning
problem. The FACTS devices can control the power flowing through a line and
make the transmission network more flexible.

• Distributed generation (DG) allocation in distribution networks [7–9]: The
optimal location (or size) of DG unit in a distribution network.

• Capacitor allocation in distribution networks [10]: The capacitor allocation is
usually done at the distribution level. The purpose is usually improving the
voltage profile in the network.

• PMU allocation [11, 12]: The system observability is improved using optimal
placement of phasor measurement units in the network.

• Energy Storage System (ESS) allocation [13, 14]: The ESS can deliver value
to customers. This highly depends on how they are operated and located in
the system. This problem tries to maximize its benefits by finding the optimal
connection point of ESS to the grid.

• Risk and uncertainty modeling in planning studies: the decision-making process
highly relies on accuracy of input data. As a matter of fact, the input data for
any decision-making problem (especially in practical problems) are subject to
uncertainty. If these uncertainties are not treated and handled properly, then
costly consequences might occur. Based on the data availability some of the
following techniques are applicable:

– Information gap decision theory (IGDT): ESS allocation [15]
– Scenario-based uncertainty modeling: DG planning [16]

1.1 Optimization Problems in Power System 3

– Monte Carlo simulation: FACTS allocation [17]
– Robust optimization: Transmission expansion planning [18]
– Fuzzy modeling: distribution network planning [19]

Some power system operation problems are listed as follows:

• Distribution feeder reconfiguration [20]: the on/off statuses of switches are opti-
mally determined to change the network configuration. In distribution networks,
it can reduce the active losses by improving the voltage profile and reliability.

• Generation scheduling: UC [21, 22], Dynamic economic dispatch [23], Eco-
nomic dispatch [24]: the generation level of power plants are determined to
minimize the operating costs or maximizing the economic benefits.

• Maintenance scheduling [25]: The maintenance period of assets are determined
to keep the adequacy level of the remaining system sufficient while minimizing
the costs.

• Optimal power flow: DC OPF [26] and AC OPF [27] are two forms of OPF.
In an OPF problem, the decision variables are generation and voltage level of
generating units to minimize the operating costs. In DC OPF, it is assumed that
all voltage values are 1 pu.

• Active power Loss minimization: minimizing the active losses is a way of
improving the efficiency of power system [28].

• Voltage profile improvement [29]: keeping the voltage magnitudes within the
normal operating limits is done by changing different decision variables such as
reactive power management and demand response.

• Optimal transmission switching [30]: transmission network switching is a tech-
nique for changing network topology at the transmission level. It is demonstrated
that this can lead to operating cost reduction if it is optimally managed.

• Electric vehicle charging [31]: the charging and discharging of electric vehicles
are optimally determined to provide some flexibilities for distribution network
operator.

• Offering strategy [32, 33]: the generating units submit their offers to the market
operator. The purpose is to maximize the financial benefits.

• Scheduling of reserve [34, 35]: finding the optimal reserve quantity makes the
system robust against contingencies and disturbances.

• Loss payments minimization [36]: this approach tries to minimize the payments
toward the losses, not the losses by considering the market issues.

• Congestion management [37, 38]: network congestion would reduce the com-
petition level at electricity market. Reducing the congestion would improve the
market efficiency.

• Demand side management [39, 40]: the demand side management is harvesting
the flexibility from the demand side. The customers are encouraged to shift/re-
duce their demands to minimize the system requirements for providing services.

• Risk and uncertainty modeling in operation studies:

– Information gap decision theory (IGDT): Wind operation modeling in OPF
[41], unit commitment [42]

– Scenario-based uncertainty modeling [43]

4 1 Introduction to Programming in GAMS

Fig. 1.2 Optimization methods in power system studies

– Monte Carlo simulation: reliability and risk analysis [44]
– Robust optimization: Demand response [40], loss payments minimization [36]
– Fuzzy modeling: DG impact assessment [45]

The methods used for solving the aforementioned optimization problems are
categorized into classic and heuristic methods as shown in Fig. 1.2.

Some of the classic methods are listed as follows:

• Interior point: optimal reactive dispatch [46]
• Branch and bound: economic dispatch with disjoint prohibited zones considering

network losses [47]
• Benders decomposition: transmission network design problems [48]
• Semi-definite programming: large scale OPF [49, 50]
• Lagrange Multipliers: pricing energy and ancillary services [51]
• Karush-Kuhn-Tucker (KKT) optimality condition: formulation of the terrorist

threat problem [52]
• Newton method: Optimal power flow [53, 54]
• Sequential quadratic programming (SQP): UC [55], VAr compensation [56]

Most of the classic methods are gradient-based techniques (in nonlinear problems).
This makes them unsuitable for large scale optimization problems. Solving the

1.1 Optimization Problems in Power System 5

Fig. 1.3 The structure of heuristic optimization techniques

nonlinear problems with integer variables or non-convex constraints would be
another challenge for classic techniques.

The heuristic methods are inspired by nature. The basic concept of these
techniques is described in Fig. 1.3. In every heuristic method, an initial random
population is generated, and it is tried to improve it by using some operator that
modify the population (solution). The way each method modifies the population
distinguishes that method from the other techniques. For example, the genetic
algorithm uses the crossover and mutation operators to improve the solution regard-
ing optimizing the objective function while satisfying the constraints. The particle
swarm optimization uses the best solution found by the group and the individual
particle to find the optimal solutions. The heuristic methods are also called iterative
techniques. The number of iterations needed for optimizing the objective function
has an inverse relation with the population number. If the population number is
increased, then it can better explore the solution space; however, it takes more time
to run. There is always a tradeoff between these two quantities. There are some
challenges associated with heuristic techniques. Some of them are listed as follows:

• The parameter tuning is a challenge in these techniques which is usually problem
dependent and should be tuned by the decision maker.

• It is not easy to check if the obtained solution is globally optimal or not.

6 1 Introduction to Programming in GAMS

• These methods are usually computationally expensive. In other words, it takes a
long time for the decision maker to run. This makes these methods inconvenient
for real-time applications.

• Since these methods are iterative, at every iteration, a new solution might be
found (which is somehow better than the solution found in previous iterations).
Unfortunately, if the problem is solved again (even with the same tuning
parameters), it is not guaranteed to reach the similar results.

• Setting the stopping criteria is difficult. This is because the optimal solution of the
problem in unknown. When to stop? It is a challenging question to answer. The
decision maker usually ends the procedure when there is no significant change in
objective function to a maximum number of iterations so reached.

• These solutions are not generally well accepted by the industry.

Some of the heuristic methods applied to power system studies are given as
follows:

• Single objective genetic algorithm (GA): network reconfiguration [57]
• Multi-objective Non-dominated sorting genetic algorithm (NSGA): Transmis-

sion expansion planning [58]
• Particle swarm optimization (PSO): DG planning [16]
• Immune algorithm (IA): secondary voltage control [59]
• Simulated annealing (SA): maintenance scheduling [60]
• Quantum-inspired evolutionary algorithm: Real and Reactive Power Dispatch

[61]
• Seeker Optimization Algorithm: Reactive Power Dispatch [62], coordination of

directional over-current relays [63]
• Cuckoo search algorithm: Non-convex economic dispatch [64], capacitor alloca-

tion [65]
• Shuffled frog leaping algorithm: unit commitment [66]
• Imperialist competition algorithm: dynamic economic power dispatch [67]
• Tabu search: Economic dispatch [68]
• Ant colony algorithm: Reconfiguration and capacitor placement for loss reduc-

tion of distribution systems [69]

1.2 GAMS Installation

The first step is downloading the appropriate installation file from the following
address:

https://www.gams.com/download/

https://www.gams.com/download/

1.2 GAMS Installation 7

The GAMS installation package is available for the following platforms:

Platform Description
MS Windows 32 bit Windows Vista or newer on AMD- or Intel-based

(x86) architectures.
MS Windows 64 bit Windows Vista or newer on AMD- or Intel-based

(x64) architectures.
Linux 64 bit AMD- or Intel-based 64-bit (x64) Linux systems

with glibc 2.7 or higher.
MacOS X Intel-based 64-bit (x64) Macintosh system with

MacOS X 10.10 (Yosemite) or higher.
Solaris i86pc AMD- or Intel-based 64-bit (x64) Solaris system.

Built on Solaris 11.0.
Solaris SPARC 64bit Sparc-based 64-bit (sparc-64) Solaris system.

Built on Solaris 10.
IBM AIX PowerPC based 64-bit (ppc-64) AIX system. Built

on AIX 6.1

The GAMS interface is depicted in Fig. 1.4.

Fig. 1.4 The GAMS interface

8 1 Introduction to Programming in GAMS

1.3 GAMS Elements

Each GAMS model consists of the following main elements:

• Sets: sets are used to define the indices in the algebraic representations of models.
For example, set of generating units, set of network buses, set of slack buses, set
of time periods, etc.

• Data: The input data of each GAMS model are expressed in the form of
Parameters, Tables, or Scalars. The parameters and tables are defined over the
sets. The scalars are single value quantities.

• Variables: The variables are decision sets and are unknown before solving the
model.

• Equations: The equations describe the relations between the data and variables.
• Model and Solve Statements: The model is defined as a set of equations which

contain an objective function. The solve statement asks GAMS to solve the
model.

• Output: There are several ways to see the outputs of the solved model such as
saving them in XLS file and displaying them.

The General GAMS code structure and elements are shown in Fig. 1.5.
The GAMS elements are explained in a simple example as follows: Suppose a

factory produces tree types of products P1;2;3. Each product should be processed on
two different machines. The available machine hours per day and the time required

Fig. 1.5 General GAMS code structure and elements

1.3 GAMS Elements 9

Table 1.1 Data for
illustrative example

Required time for task completion (h)

Machine P1 P2 P3

M1 2 5 2

M2 3 4 1

Profit per kg ($/kg) Machine availability (h)

P1 10 M1 16

P2 12 M2 12

P3 13.5

for each product are considered as the input data. The profits/kg of each item is also
known. The input data of this example is described in Table 1.1.

• Sets: Two sets should be defined: machines (M) and products (P) Sets M=m1 �
m2=;P=p1 � p3=;

• Data: Looking at Table 1.1 shows that we have a table (required time for task
completion) and two parameters (Profit per item and Machine availability). The
task completion table is defined over two sets (machines and products), the profit
per item parameter is defined over products while the machine availability is
defined over product set. It is assumed that the minimum required amount of
each product is 1 kg.

Parameter profit(P)
/p1 10
p2 12
p3 13.5/;
Parameter availability(M)
/m1 16
m2 12/;
Table task(m,p)
p1 p2 p3
m1 2 5 2
m2 3 4 1;

• Variables: We are about to decide how many kg should be produced of each
product. This variable is defined over product set. Another variable should be
defined as the total profits which should be optimized. This variable (objective
function) should not have any set index. Variables are OF, X.p/.

• Equations: One equation should describe the objective function and another one
should enforce the constraint for availability of each machine.

10 1 Introduction to Programming in GAMS

Equations eq1, eq2;
eq1(m).. sum(p, task(m,p)*x(p))=l=availability(M);
eq2 .. of=e=sum(p, profit(p)*x(p));

As it can be seen in this example, there are two types of equations as
follows:

– Scalar equation: eq2 is an example of a scalar equation which is not defined
over any set.

– Indexed equation: eq1 is an example of the indexed equation. We have to
define the equation on index m since the index m exists in the formulation. In
other words, the equation is valid for any element in the set M.

Three different relations can be defined in equations as follows:

– =e= Equality: this means that both sides of the equations should be equal to
each other.

– =g= Greater than or equal: this means that the left-hand side of the equation
should be greater than or equal to the right-hand side of the equation

– =l= Less than or equal: this means that the left-hand side of the equation
should be less than or equal to the right-hand side of the equation

• Model: This example has two equations. Both should be included in the model
definition.

Model example /all/;

It can also be defined as follows:

Model example /eq1,eq2/;

• Solve statement: The solve statement tells GAMS that the model is linear and the
direction of the optimization should be toward maximizing the total benefits.

Solve example us LP Max OF;

The model type used in this code is linear programming (LP). There are
various models that can be coded in GAMS coding as follows:

1.3 GAMS Elements 11

LP: linear programming
QCP: Quadratic programming (the model can only contain linear and
quadratic terms)
NLP: Nonlinear problem with continuous constraints
DNLP: Nonlinear problem with discontinuous constraints
MIP: Mixed-integer linear programming
MIQCP: Mixed-integer quadratic constraint programming
MINLP: Mixed-integer nonlinear programming
RMIP: Mixed-integer problem where the integer variables are relaxed

• Output: The outputs of the GAMS model can be displayed and also saved in an
XSL file.

D i s p l a y X. l , Of . l ;
e x e c u t e u n l o a d ” Example . gdx ” X. l
e x e c u t e ’ gdxxrw . exe Example . gdx v a r =X rng = P r o d u c t ! a1 ’
e x e c u t e u n l o a d ” Example . gdx ” OF . l
e x e c u t e ’ gdxxrw . exe Example . gdx v a r =OF rng =OF! a1 ’

The overall GAMS code for solving the illustrative example is provided in
GCode 1.1.

GCode 1.1 Illustrative GAMS example

S e t s M / m1�m2 / , P / p1�p3 / ;
v a r i a b l e s OF ,X(p) ;
p a r a m e t e r p r o f i t (P)
/ p1 10

p2 12
p3 1 3 . 5 / ;

p a r a m e t e r a v a i l a b i l i t y (M)
/ m1 16
m2 1 2 / ;

Tab le t a s k (m, p)
p1 p2 p3

m1 2 5 2
m2 3 4 1 ;
e q u a t i o n s eq1 , eq2 ;
eq1 (m) . . sum (p , t a s k (m, p)�x (p)) = l = a v a i l a b i l i t y (M) ;
eq2 . . o f = l =sum (p , p r o f i t (p)�x (p)) ;
X. l o (p) = 1 ;
model example / a l l / ;
So lve example us LP max OF ;
d i s p l a y X. l , Of . l ;
e x e c u t e u n l o a d ” Example . gdx ” X. l
e x e c u t e ’ gdxxrw . exe Example . gdx v a r =X rng = P r o d u c t ! a1 ’
e x e c u t e u n l o a d ” Example . gdx ” OF . l
e x e c u t e ’ gdxxrw . exe Example . gdx v a r =OF rng =OF! a1 ’

12 1 Introduction to Programming in GAMS

Fig. 1.6 The structure of
GAMS listing file

Once the model is solved the solve summary is available by clicking on the file.lst.
The structure of GAMS listing file is shown in Fig. 1.6.

The listing file is explained as follows:

S O L V E S U M M A R Y
MODEL example OBJECTIVE OF
TYPE LP DIRECTION MAXIMIZE
SOLVER CPLEX FROM LINE 23
**** SOLVER STATUS 1 Normal Completion
**** MODEL STATUS 1 Optimal
**** OBJECTIVE VALUE 82.7500

The summary shows that the name of the model is example. The objective
function to be optimized is named OF. The type of the model is linear programming
(LP). The direction of the optimization is maximization. The solver used for solving
the LP model is CPLEX. The solver status is 1 which means that the model is
normally solved without error. The model status is 1 optimal. It means that the
global optimal solution is found. The value of the objective function (OF) is 82.75.
Different solver status might be reported once the model is solved.

1.3 GAMS Elements 13

SOLVER STATUS CODE DESCRIPTION
1 Normal Completion
2 Iteration Interrupt
3 Resource Interrupt
4 Terminated by Solver
5 Evaluation Error Limit
6 Capability Problems
7 Licensing Problems
8 User Interrupt
9 Error Setup Failure
10 Error Solver Failure
11 Error Internal Solver Error
12 Solve Processing Skipped
13 Error System Failure

Different model status might be reported once the model is solved.

MODEL STATUS CODE DESCRIPTION
1 Optimal
2 Locally Optimal
3 Unbounded
4 Infeasible
5 Locally Infeasible
6 Intermediate Infeasible
7 Intermediate Nonoptimal
8 Integer Solution
9 Intermediate Non-Integer
10 Integer Infeasible
11 Licensing Problems - No Solution
12 Error Unknown
13 Error No Solution
14 No Solution Returned
15 Solved Unique
16 Solved
17 Solved Singular
18 Unbounded - No Solution
19 Infeasible - No Solution

The model statistic can provide some useful information regarding the developed
model. It is indicating that there are two blocks of equations (eq1,eq2) in the
developed model. The single equations are three because eq1 has two single

14 1 Introduction to Programming in GAMS

equations (m1;m2) and the eq2 has only one equation. There are two blocks of
variables x, OF but since X has three variables (p1; p2; p3), then the number of total
variables is 4.

MODEL STATISTICS
BLOCKS OF EQUATIONS 2 SINGLE EQUATIONS 3
BLOCKS OF VARIABLES 2 SINGLE VARIABLES 4

By clicking on the SolVar tab, some useful information regarding the variables
will be obtained as follows:

LOWER LEVEL UPPER MARGINAL
—- VAR OF -INF 82.750 +INF .
—- VAR X
LOWER LEVEL UPPER MARGINAL
p1 1.000 1.000 +INF -3.500
p2 1.000 1.000 +INF -21.750
p3 1.000 4.500 +INF .

This means that the minimum limit of variable X is 1 and the upper limits
are C1. The marginal values are also revealed. Each variable in GAMS has five
attributes as follows:

• Variable.lo: indicates the minimum limit of a variable
• Variable.up: indicates the maximum limit of a variable
• Variable.l: indicates the level of the variable. In other words, this is the actual

value of the variable.
• Variable.fx: indicates the level of the variable is fixed and is not changing. It has

the same impact of defining the low and up attributes the same as each other.
• Variable.m: indicates the marginal value of a variable. It shows how much

sensitive is the objective function to the changes of this variable. For example,
X:m.p1/ D �3:5 this means that for 1 unit of increase in X.p1/ the objective
function will reduce by �3:5.

The variables used in this code are all real variables; however, different types of
variables can be defined in GAMS as follows:

1.4 Conditional Statements 15

Variable type Description Lower limit Upper limit

Free No bounds on variable. Both bounds can be
changed from the default values by the user

�1 C1

Positive The positive variable can only take positive
values

0 C1

Negative The negative variable can only take negative
values

�1 0

Binary Discrete variable that can only take values of
0 or 1

0 1

Integer Discrete variable that can only take integer val-
ues between the limits

0 100

It should be noted that the default values for variable limits can be modified by
the user.

1.4 Conditional Statements

The Dollar ($) condition is broadly used in GAMS coding. Various applications are
explained through some examples.

• Suppose we need to have a conditional statement like this if A D C then B D D.
This statement is modeled as follows:

(B=D)$(A=C)

If (A ¤ C) then no assignment to B will happen.

• If A D C then B D D otherwise B D 0. This statement is modeled as follows:

B=D$(A=C)

• Suppose that we need to filter some elements in eq1(m). In other words, this
equation should be valid for every m elements except some of them.

eq1(m)$(ord(m)=1) .. sum(p, task(m,p)*x(p))=l=availability(M);

This would force the equation only for m1.

16 1 Introduction to Programming in GAMS

eq1(m)$(ord(m) � 2) .. sum(p, task(m,p)*x(p))=l=availability(M);

This would force the equation only for m2 and m3. It should be noted that no
variable can exist in conditional statement.

• If A and B then C D D, this is coded as follows:

(C=D)$(A and B)

1.5 Loop Definition in GAMS

The looping is used for executing one or more statements repeatedly. There are
different forms of looping in GAMS as follows:

1.5.1 LOOP Statement

One of the techniques for defining the loop in GAMS is loop statement.

Loop(setname,
Statement 1 ;
Statement 2 ;
Statement 3 ;
);

The statements 1–3 are executed N times. N is equal to the cardinality of the
“setname.” These statements can assign values to the variable limits or describe the
relation between some parameters (not the variables). No variable can appear in the
loop statements.

set counter /c1*c4/;
Loop(counter,
X.lo(p)=0.1*ord(counter);
Solve example us LP max OF;
);

1.5 Loop Definition in GAMS 17

In the first counter, the minimum values of all X variables would be 0:1�1 and the
model is solved. The second counter sets the minimum values of X variable equal
to 0:1 � 2 D 0:2 and then the model is solved. The point that should be noted here
is that the set/parameter/variable/model definition should be outside the loop.

This kind of modeling would be useful in conducting sensitivity analysis. Some
parameters are varied and then the impacts on the objective function are investigated
as follows:

set counter /c1*c4/;
parameter report(counter,*);
Loop(counter,
X.lo(p)=0.1*ord(counter);
Solve example us LP max OF;
report(counter,’lowerlimit’)=0.1*ord(counter);
report(counter,’OF’)=OF.l;
);

1.5.2 WHILE Statement

One of the techniques for defining the loop in GAMS is while statement.

while (condition,
Statement 1 ;
Statement 2 ;
Statement 3 ;
);

The statements 1–3 are executed as far as the condition is true. The condition will
be changed inside the loop based on some logic otherwise the loop will continue
forever!

1.5.3 FOR Statement

One of the techniques for defining the loop in GAMS is FOR statement.

18 1 Introduction to Programming in GAMS

scalar Itermax /10/;
scalar iteration ;
for (iteration=1 to Itermax,
Statement 1 ;
Statement 2 ;
Statement 3 ;
);

The statements 1–3 are executed for Itermax times.

1.5.4 REPEAT-UNTIL Statement

One of the techniques for defining the loop in GAMS is Repeat-until statement.

repeat (Statement 1 ;
Statement 2 ;
Statement 3 ;
until condition);

The statements 1–3 are executed until the condition becomes logically true (it
should be initially false).

1.6 Linking GAMS and Excels

1.6.1 Reading from Excel

GAMS is able to read the data from xls files. It is also convenient to use xls as
an interface between GAMS and other platforms. Reading the data from xls file is
straightforward as follows:

P a r a m e t e r Leve l (m, p) ;
n$CALL GDXXRW. EXE Example . x l s p a r = Leve l rng = t a s k ! E5 : H7
n$GDXIN Example . gdx
n$LOAD Leve l

In this case, a parameter like Level (m; p) is defined. The xls file name
(Example.xls) is indicated and the range of data is specified (sheet=task, cells:

1.7 Error Debugging in GAMS 19

E5:H7). The data is read from xls file and is written on Example.gdx file. The
parameter level is loaded and can be used in the code.

1.6.2 Writing to Excel

It is usually desirable to save the output of a GAMS code in an excel file. The
procedure is quite straightforward.

For variables, the following commands should be executed. The user can indicate
which variable (X.l,OF.l) should be written in Excel file. The name of the excel
file (Example.xls) and what would be the sheet name (product, OF). The cell a1 is
chosen as the starting cell in the specified sheet for writing the data.

e x e c u t e u n l o a d ” Example . gdx ” X. l
e x e c u t e ’ gdxxrw . exe Example . gdx v a r =X rng = P r o d u c t ! a1 ’
e x e c u t e u n l o a d ” Example . gdx ” OF . l
e x e c u t e ’ gdxxrw . exe Example . gdx v a r =OF rng =OF! a1 ’

If the user wants to write the parameter X to an excel file then the command
would be as follows:

e x e c u t e u n l o a d ” Example . gdx ” X
e x e c u t e ’ gdxxrw . exe Example . gdx Par =X rng = P r o d u c t ! a1 ’

In this case, no ‘.l’ is needed since it is a parameter, not a variable.

1.7 Error Debugging in GAMS

Once the code is written the “Shift key + F9” should be pressed. The GAMS
compiler will check the developed code without executing it. The coding errors
are unavoidable in every programming language, and GAMS is not an exception.
Usually, a list of errors is generated which should be taken care of. The first thing to
keep in mind is to start from the first error and fix them one by one. In this section,
some common coding errors and best way of debugging them are explained.

• Error 140: Unknown symbol: GAMS compiler generates this error when there
are some undefined symbols in the model.

• Error 246: Objective variable is not a free variable
This error will usually happen when the objective function (which should be

minimized/maximized) is not set as a free variable. For example, it is defined as
a positive/negative variable. In case that the decision maker needs the objective
function be a positive variable, the lower limit of the variable should be specified
using :lo D 0 command.

20 1 Introduction to Programming in GAMS

• Error: Unbounded variable:
This means that the objective function is equal to �1 or C1. This usually

happens when the bounds of the objective function are not properly defined, or
optimization direction is not properly defined in solve statement. For example, if
the objective is to be minimized but it is maximized by mistake. The following
error will be generated by GAMS.

**** ERRORS/WARNINGS IN VARIABLE OF
1 error(s): Unbounded variable

• Error 149: Uncontrolled set entered as constant
This error usually happens when the statements are not properly written.

Consider the following line of code

eq1 .. sum(p, task(m,p)*x(p))=l=availability(M);

The equation should be valid for every m, but the equation label is not defined
over the set m. The correct format for defining this equation is as follows:

eq1(m) .. sum(p, task(m,p)*x(p))=l=availability(M);

• Error 143: A suffix is missing
This error will happen when a variable is used outside of the equation

environment. For example, the following line is trying to assign a value to
variable X.p/ but not in any equation:

x(p)=1;

This is not a valid way of doing this. If the variable X.p/ should be fixed to a
constant value it should be defined as follows:

x.fx(p)=1;

As a general rule, the variables cannot appear outside the equations. Only
the variable’s attributes can be modified outside the equation environment.

1.7 Error Debugging in GAMS 21

This means X:lo.p/, X:l.p/, X:up.p/ can be changed without using equation
environment.

Another situation that this error might happen is in display command.
Consider the following part of a GAMS code:

Solve example us LP max Z; Display X , Of.l;

This will generate the following error:

143 A suffix is missing
**** 1 ERROR(S) 0 WARNING(S)

This is because X is a variable and display command can only show the
attributes of the X variable. The correct form for showing the value of X variable
is as follows:

solve example us LP max Z;
Display X.l , Of.l;

• Error 245: Objective variable not referenced in model
This means that the solve statement is trying to minimize/maximize a variable

which does not exist in the defined model.
• Error 141: Symbol declared, but no values have been assigned

This error happens when the variable or parameter is defined, but it is not
implicitly assigned any value and also does not appear in any equation. In other
words, GAMS has no info about this symbol, but we are asking GAMS some
information about it. Consider the following GAMS code:

Sets M /m1*m2/, P /p1*p3/ ;
Variables OF,x(p),Z;
parameter profit(P)
/p1 10
p2 12
p3 13.5/;
Parameter availability (M)
/m1 16

(continued)

22 1 Introduction to Programming in GAMS

m2 12/;
Table task(m,p)
p1 p2 p3
m1 2 5 2
m2 3 4 1 ;
Equations eq1,eq2;
eq1(m) .. sum(p, task(m,p)*x(p))=l=availability(M);
eq2 .. of=l=sum(p, profit(p)*x(p));
X.lo(p)=1;
Model example /all/;
Solve example us LP max OF;
display X.l , Of.l , Z.l;

This code would generate Error 141 because although variable Z is defined but
since it has no initial assignment and does not appear in the model then GAMS
knows nothing about it.

• Error 225: Floating entry ignored
This error is a very common error specially for beginners. This happens when

a table is not properly typed in GAMS. All data should be aligned under the
column label.

P1 P2 P3
M1 2 5 2
M2 3 4 1

The correct form of typing the above table is as follows:

P1 P2 P3
M1 2 5 2
M2 3 4 1

Handling the large tables in GAMS would be much easier if the tool named
“xls2gams.exe” is used. This tool is available in the same folder that GAMS
is installed. The function of this tool is copying data from xls file into GAMS
format. Using this tool to import xls data to GAMS is highly recommended.

• Error 56: Endogenous operands for * not allowed in linear models

1.7 Error Debugging in GAMS 23

Consider the following code:

Sets M /m1*m2/, P /p1*p3/ ;
Variables OF,x(p),Z;
parameter profit(P)
/p1 10
p2 12
p3 13.5/;
Parameter availability (M)
/m1 16
m2 12/;
Table task(m,p)
p1 p2 p3
m1 2 5 2
m2 3 4 1 ;
Equations eq1,eq2;
eq1(m) .. sum(p, task(m,p)*x(p))=l=availability(M);
eq2 .. of=l=sum(p, profit(p)*x(p)*x(p));
X.lo(p)=1;
Model example /all/;
Solve example us LP max OF;
display X.l , Of.l , Z.l;

The following error will be generated after compiling this code. In order to
find out why this error is happening we should double-check the model. The
solve statement is indicating that the model is LP but in eq2 we can see profit.p/�
x.p/ � x.p/. This means that the model is not LP and solve statement should be
modified as follows:

Solve example us NLP max OF;
or
Solve example us QCP max OF;

• Error 37:
Consider the following line in a GAMS code:

eq2 .. of=sum(p, profit(p)*x(p));

24 1 Introduction to Programming in GAMS

This line is not properly defined because the correct operator for stating the
equality is not used in equation environment. The only operators that can be used
are ‘=l=’ or ‘=e=’ or ‘=g=’. the correct format is as follows:

eq2 .. of=e=sum(p, profit(p)*x(p));

• Error 409:
Consider the following lines in a GAMS code:

eq1(m) .. sum(p, task(m,p)*x(p))=l=availability(M)
eq2 .. of=sum(p, profit(p)*x(p)*x(p));

This is because a semicolon (;) is missing at the end of eq1.

1.8 General Programming Remarks

Like other programming languages, there are different ways of modeling the
problem in GAMS. The so-called “best way” is yet to be discovered. Some
programming tips are given in this section as follows:

• GAMS compiler is not case sensitive. The lowercase letters and capital letters
are not distinguished. For example, P.t/ is the same as p.T/ or P.T/ or p.t/.

• Try to add explanations for your equations and symbols you define in your code.
Use * for commenting a line or $ontext $offtext for a block of comments.

• Choose the symbol names carefully and meaningfully. For example for the power
generated by power plants, P.g/ is a better choice than X.i/. You can define g as
the set of generating units and variable P as the generated power.

• Don’t get frightened by the errors once your code is compiled. The best thing to
see is the error flag. Sometimes although the model does not generate any error
flag (since you have obeyed the GAMS syntax) but it is not correctly modeling
the given problem.

• Keep in mind that the machine is always right so GAMS cannot go wrong.
Debugging is also a part of the coding process.

• Always check the GAMS output. The variables, model statistics, and solver
statistics should be checked to see if any flag is raised. If the output of GAMS
model is not what you expect then there should be something wrong with your
model (not the GAMS). Double-check the equations and see if the developed
model is actually what it is desired to be or not.

1.8 General Programming Remarks 25

• If you need to specify some limits for your variables then try to do it using .lo
or .up attributes. Although creating a new equation for modeling this constraint
is “legal”, however, it is totally “inappropriate”. For example, you need to state
that the minimum value of variable P.g/ is 1 then it can be easily done using
P.lo(g) = 1. Sometimes the variables should be limited using some tables of
parameters. For example, the minimum values of P.g/ are stored in a parameter
Pmin(g) then P.lo(g) = Pmin(g) will do the job. As far as no variable exists then
no equation is needed. If Pmin(g) is a variable, then the following line will be
appropriate for modeling this constraint.

eq(g) .. P(g)=g=Pmin(g);

It should be noted that eq is defined over the set g since the inequality should
be valid for every element belonging to the set g.

• Although GAMS is a robust programming language less number of variables and
equations are always welcome. Try to avoid unnecessary equations and variables.
Use filtering to omit unnecessary equations. For example, we need to define an
equation which calculates the power flow of a line connecting ‘bus’ to ‘node’
in DC power flow formulation. The following GAMS code might be the first
attempt to model it.

Eq(bus,node) .. Pij(bus,node)=e=(d(bus)-d(node))/data(bus,node,’x’);

Suppose the network has 186 lines and 118 buses. This kind of coding would
create two problems:

– The parameter data(bus, node,‘x’) is zero when bus and node are not
connected to each other. GAMS might generate a division by Zero error! It’s
not always easy to find and remove the cause of error.

– If you check the model you can see that this equation adds 13,924 single
equations to the model. You might ask yourself why? We were expecting to
have only 186 equations (or double that since flow in opposite direction should
also be calculated). It is almost 74 times bigger than what we were expecting
to have. This is because GAMS is considering every combination between
“bus” and “node” (118*118).

The better way to code this line is as follows:

Eq(bus,node)$branch(bus,node,’x’)..Pij(bus,node)=e=(d(bus)-
d(node))/data(bus,node,’x’);

26 1 Introduction to Programming in GAMS

In this way, the equation is filtered and is only valid for those lines which have
nonzero reactance values. It also reduces the computation time and the chance of
difficulties in finding a feasible/optimal solution.

• Don’t forget to put a semicolon (;) at the end of every line (sometimes it is not
necessary but if you have just started coding in GAMS, do it).

• Different solvers might use different approaches to solve the model. Try different
solver to find out which one is more successful/faster in finding a solution for
your problem.

• The default value for undefined elements of a table or parameter is zero. For
example, consider a parameter like Data(bus,node) representing the line reac-
tance; Suppose that we define Data(‘2’,‘4’)=0.5; If this parameter is displayed,
you can see that all elements are zero except Data(‘2’,‘4’). If you are a power
engineer, you know that the reactance between bus number 2 and bus number
4 should be the same as reactance between bus number 4 and bus number 2. In
other words, it should be symmetrical. Unfortunately (or fortunately) GAMS is
not a power system engineer and does not understand even a word from power
system or electrical engineering. GAMS only understands whatever it is told by
the user (code developer).

• Go to your GAMS model library and have a look at those developed codes. There
are loads of new things to learn even for experienced GAMS code developers.
The GAMS model library can be accessed through the interface as shown in
Fig. 1.7.

• Try to provide all of the variables appropriate upper and lower limits as well as
initial starting values. The initial values can be assigned to the variables using .l
expression (do it before solving statement). For example, voltage variables can
be assigned 1 per unit values as the initial starting values. This is a double-edged
sword. This is because providing a good starting value can highly improve the
solution procedure especially in nonlinear or mixed integer nonlinear models but
a poor starting value might slowdown the solver.

• It is very likely that you get an infeasible status for your model. Especially when
the model is large and includes a large number of variables. The following steps
might be helpful in resolving the problem:

Fig. 1.7 GAMS model library

1.9 Book Structure 27

Fig. 1.8 GAMS help menu

– Check to see if you can better express your model. It is always desired to stay
as close as possible to the linear form of expressing the equations.

– Provide better initial values for your variables.
– Relax the variable limits, rerun the model. If the problem is resolved, then

it means that the variable limits should be revised. If your model contains
integer/binary variables, then you can solve the model using relaxed option.
For example, the MIP model can be solved using RMIP. This would ask the
GAMS to neglect integer nature of the variables (the variable limits remain
unchanged). For relaxing the MINLP and MIQCP, you should use RMINLP
and RMIQCP, respectively.

– Remove some equations or add some slack variables to the model to see if you
can find the trouble making equations

– Ask support from those experienced GAMS code developers (if they have
time and are willing to contribute to your project). This option is intentionally
placed at the end of suggestion list.

There is a set of good resources that can be accessed through the GAMS interface as
it is shown in Fig. 1.8. Additionally, some other useful tutorials are listed as follows:

• A GAMS tutorial [70]
• GAMS language guide [71]
• GAMS—Modeling and Solving Optimization Problems [72]
• GAMS and MATLAB interface [73–75]
• Grid-enabled optimization with GAMS [76]
• Practical financial optimization in GAMS [77]

1.9 Book Structure

The objectives pursued in this book are the following:

• Familiarizing the readers with optimization concept through multiple examples
• Introducing different optimization problems that the decision makers might face

in power system studies

28 1 Introduction to Programming in GAMS

• Providing robust solutions for different operation/planning problems in power
system studies

• Exploring the capabilities of GAMS in conducting sensitivity analysis

This book consists of ten chapters. A brief description of each chapter is provided
here:

• Chapter 1 provides the instructions on how to start coding in GAMS. Different
programming elements and some coding tricks are introduced and explained.
Reading this chapter would be helpful to understand what to expect from GAMS
in dealing with optimization problems.

• Chapter 2 provides some insights to the reader on how to solve simple opti-
mization problems through some illustrative examples. These examples are pure
mathematics, and no power system or electrical engineering background is
required for the readers. This chapter can also be used for those who might be
only interested in learning GAMS for interdisciplinary applications.

• Chapter 3 discusses how to model the dispatching problem of different power
plants in a single snapshot (single period). Different power plant technologies are
explained such as thermal power, wind turbine, CHP, and hydro-power plants.

• Chapter 4 provides a solution for dynamic economic dispatch problem (multi-
period problems). The time-dependent optimal dispatch decisions are modeled
and solved.

• Chapter 5 explains how unit commitment problem can be modeled and solved
in GAMS. The developed codes in this chapter are linear and categorized as
mixed integer linear programming (MIP) models. The inputs are generator’s
characteristics, electricity prices, and demands. The outputs of these codes are
on/off status of units and their operating schedules.

• Chapter 6 provides a solution for optimal power flow (OPF) problem. The
active/reactive power output of generating units as well as the network variables
(voltage magnitudes and angles) are determined in OPF to minimize total
operating costs. Different OPF models are investigated such as single and multi-
period DC/AC optimal power flow. The appropriate linear/nonlinear models are
developed and solved in this chapter.

• Chapter 7 provides a solution for modeling the operation and planning problems
of energy storage systems (ESS). The inputs are generator’s characteristics,
electricity prices, demands, and network topology. The outputs of this code are
operating schedules/locations and sizes of ESS units.

• Chapter 8 provides a solution for allocation of Phasor Measurement Units (PMU)
problem in transmission networks to maximize the power system observability.
The PMU can measure the voltage phasor at the connection bus, and also it
measures the current phasor of any branch connected to the bus hosting the PMU.
Different cases are analyzed, and the problem is tested on some standard IEEE
cases.

• Chapter 9 provides a solution for some transmission network operation and
planning studies in GAMS. The transmission investment regarding building
new lines and power flow controllers (phase shifter), sensitivity factors, and

References 29

transmission switching have been discussed in this chapter. The GAMS code
for solving each optimization problem is developed and discussed.

• Chapter 10 provides a solution for Energy System Integration (ESI) problem in
GAMS. The question which is answered in this chapter is how to harvest the
flexibilities in different energy sectors by coordinated operation of these sectors.

References

1. J.L.C. Meza, M.B. Yildirim, A.S.M. Masud, A model for the multiperiod multiobjective power
generation expansion problem. IEEE Trans. Power Syst. 22(2), 871–878 (2007)

2. S. Kannan, S. Baskar, J.D. McCalley, P. Murugan, Application of NSGA-II algorithm to
generation expansion planning. IEEE Trans. Power Syst. 24(1), 454–461 (2009)

3. R. Fang, D.J. Hill, A new strategy for transmission expansion in competitive electricity
markets. IEEE Trans. Power Syst. 18(1), 374–380 (2003)

4. R. Romero, A. Monticelli, A. Garcia, S. Haffner, Test systems and mathematical models for
transmission network expansion planning. IEE Proc. Gener. Transm. Distrib. 149(1), 27–36
(2002)

5. V. Miranda, J.V. Ranito, L.M. Proenca, Genetic algorithms in optimal multistage distribution
network planning. IEEE Trans. Power Syst. 9(4), 1927–1933 (1994)

6. S. Gerbex, R. Cherkaoui, A.J. Germond, Optimal location of multi-type facts devices in a
power system by means of genetic algorithms. IEEE Trans. Power Syst. 16(3), 537–544 (2001)

7. C. Wang, M.H. Nehrir, Analytical approaches for optimal placement of distributed generation
sources in power systems. IEEE Trans. Power Syst. 19(4), 2068–2076 (2004)

8. W. El-Khattam, K. Bhattacharya, Y. Hegazy, M.M.A. Salama, Optimal investment planning
for distributed generation in a competitive electricity market. IEEE Trans. Power Syst. 19(3),
1674–1684 (2004)

9. A. Keane, M. O’Malley, Optimal allocation of embedded generation on distribution networks.
IEEE Trans. Power Syst. 20(3), 1640–1646 (2005)

10. S. Sundhararajan, A. Pahwa, Optimal selection of capacitors for radial distribution systems
using a genetic algorithm. IEEE Trans. Power Syst. 9(3), 1499–1507 (1994)

11. B. Milosevic, M. Begovic, Nondominated sorting genetic algorithm for optimal phasor
measurement placement. IEEE Trans. Power Syst. 18(1), 69–75 (2003)

12. B. Gou, Generalized integer linear programming formulation for optimal PMU placement.
IEEE Trans. Power Syst. 23(3), 1099–1104 (2008)

13. Y.M. Atwa, E.F. El-Saadany, Optimal allocation of ESS in distribution systems with a high
penetration of wind energy. IEEE Trans. Power Syst. 25(4), 1815–1822 (2010)

14. H. Oh, Optimal planning to include storage devices in power systems. IEEE Trans. Power Syst.
26(3), 1118–1128 (2011)

15. P. Maghouli, A. Soroudi, A. Keane, Robust computational framework for mid-term techno-
economical assessment of energy storage. IET Gener. Transm. Distrib. 10(3), 822–831 (2016)

16. A. Soroudi, M. Afrasiab, Binary PSO-based dynamic multi-objective model for distributed
generation planning under uncertainty. IET Renew. Power Gener. 6(2), 67–78 (2012)

17. G. Blanco, F. Olsina, F. Garces, C. Rehtanz, Real option valuation of facts investments based
on the least square monte carlo method. IEEE Trans. Power Syst. 26(3), 1389–1398 (2011)

18. B. Chen, J. Wang, L. Wang, Y. He, Z. Wang, Robust optimization for transmission expansion
planning: minimax cost vs. minimax regret. IEEE Trans. Power Syst. 29(6), 3069–3077 (2014)

19. V. Miranda, M.A.C.C. Matos, Distribution system planning with fuzzy models and techniques,
in 10th International Conference on Electricity Distribution, 1989 (CIRED 1989), vol. 6,
Brighton (1989), pp. 472–476

30 1 Introduction to Programming in GAMS

20. S. Civanlar, J.J. Grainger, H. Yin, S.S.H. Lee, Distribution feeder reconfiguration for loss
reduction. IEEE Trans. Power Delivery 3(3), 1217–1223 (1988)

21. M. Carrion, J.M. Arroyo, A computationally efficient mixed-integer linear formulation for the
thermal unit commitment problem. IEEE Trans. Power Syst. 21(3), 1371–1378 (2006)

22. J.M. Arroyo, A.J. Conejo, Optimal response of a thermal unit to an electricity spot market.
IEEE Trans. Power Syst. 15(3), 1098–1104 (2000)

23. D.W. Ross, S. Kim, Dynamic economic dispatch of generation. IEEE Trans. Power Apparatus
Syst. PAS-99(6), 2060–2068 (1980)

24. Z.-L. Gaing, Particle swarm optimization to solving the economic dispatch considering the
generator constraints. IEEE Trans. Power Syst. 18(3), 1187–1195 (2003)

25. J. Endrenyi, S. Aboresheid, R.N. Allan, G.J. Anders, S. Asgarpoor, R. Billinton, N. Chowdhury,
E.N. Dialynas, M. Fipper, R.H. Fletcher, C. Grigg, J. McCalley, S. Meliopoulos, T.C. Mielnik,
P. Nitu, N. Rau, N.D. Reppen, L. Salvaderi, A. Schneider, C. Singh, The present status of
maintenance strategies and the impact of maintenance on reliability. IEEE Trans. Power Syst.
16(4), 638–646 (2001)

26. A.G. Bakirtzis, P.N. Biskas, A decentralized solution to the DC-OPF of interconnected power
systems. IEEE Trans. Power Syst. 18(3), 1007–1013 (2003)

27. R.D. Zimmerman, C.E. Murillo-Sanchez, R.J. Thomas, Matpower: steady-state operations,
planning, and analysis tools for power systems research and education. IEEE Trans. Power
Syst. 26(1), 12–19 (2011)

28. Y.M. Atwa, E.F. El-Saadany, M.M.A. Salama, R. Seethapathy, Optimal renewable resources
mix for distribution system energy loss minimization. IEEE Trans. Power Syst. 25(1), 360–
370 (2010)

29. K.R.C. Mamandur, R.D. Chenoweth, Optimal control of reactive power flow for improvements
in voltage profiles and for real power loss minimization. IEEE Trans. Power Apparatus Syst.
PAS-100(7), 3185–3194 (1981)

30. Y. Bai, H. Zhong, Q. Xia, C. Kang, A two-level approach to ac optimal transmission switching
with an accelerating technique. IEEE Trans. Power Syst. 32(2), 1616–1625 (2017)

31. N. Rotering, M. Ilic, Optimal charge control of plug-in hybrid electric vehicles in deregulated
electricity markets. IEEE Trans. Power Syst. 26(3), 1021–1029 (2011)

32. F. Wen, A.K. David, Optimal bidding strategies and modeling of imperfect information among
competitive generators. IEEE Trans. Power Syst. 16(1), 15–21 (2001)

33. A. Baillo, M. Ventosa, M. Rivier, A. Ramos, Optimal offering strategies for generation
companies operating in electricity spot markets. IEEE Trans. Power Syst. 19(2), 745–753
(2004)

34. H.B. Gooi, D.P. Mendes, K.R.W. Bell, D.S. Kirschen, Optimal scheduling of spinning reserve.
IEEE Trans. Power Syst. 14(4), 1485–1492 (1999)

35. K.A. Papadogiannis, N.D. Hatziargyriou, Optimal allocation of primary reserve services in
energy markets. IEEE Trans. Power Syst. 19(1), 652–659 (2004)

36. A. Soroudi, P. Siano, A. Keane, Optimal DR and ESS scheduling for distribution losses
payments minimization under electricity price uncertainty. IEEE Trans. Smart Grid 7(1), 261–
272 (2016)

37. S. Dutta, S.P. Singh, Optimal rescheduling of generators for congestion management based on
particle swarm optimization. IEEE Trans. Power Syst. 23(4), 1560–1569 (2008)

38. C. Murphy, A. Soroudi, A. Keane, Information gap decision theory-based congestion and
voltage management in the presence of uncertain wind power. IEEE Trans. Sust. Energy 7(2),
841–849 (2016)

39. B. Hayes, I. Hernando-Gil, A. Collin, G. Harrison, S. Djoki, Optimal power flow for
maximizing network benefits from demand-side management. IEEE Trans. Power Syst. 29(4),
1739–1747 (2014)

40. A.J. Conejo, J.M. Morales, L. Baringo, Real-time demand response model. IEEE Trans. Smart
Grid 1(3), 236–242 (2010)

41. A. Rabiee, A. Soroudi, A. Keane, Information gap decision theory based OPF with HVDC
connected wind farms. IEEE Trans. Power Syst. 30(6), 3396–3406 (2015)

References 31

42. A. Soroudi, A. Rabiee, A. Keane, Information gap decision theory approach to deal with wind
power uncertainty in unit commitment. Electr. Power Syst. Res. 145, 137–148 (2017)

43. A.J. Conejo, M. Carrión, J.M. Morales, Decision Making Under Uncertainty in Electricity
Markets, vol. 1 (Springer, New York, 2010)

44. E. Zio, The Monte Carlo Simulation Method for System Reliability and Risk Analysis (Springer,
London, 2013)

45. A. Soroudi, Possibilistic-scenario model for DG impact assessment on distribution networks
in an uncertain environment. IEEE Trans. Power Syst. 27(3), 1283–1293 (2012)

46. S. Granville, Optimal reactive dispatch through interior point methods. IEEE Trans. Power
Syst. 9(1), 136–146 (1994)

47. T. Ding, R. Bo, F. Li, H. Sun, A bi-level branch and bound method for economic dispatch with
disjoint prohibited zones considering network losses. IEEE Trans. Power Syst. 30(6), 2841–
2855 (2015)

48. S. Binato, M.V.F. Pereira, S. Granville, A new benders decomposition approach to solve power
transmission network design problems. IEEE Trans. Power Syst. 16(2), 235–240 (2001)

49. D.K. Molzahn, J.T. Holzer, B.C. Lesieutre, C.L. DeMarco, Implementation of a large-scale
optimal power flow solver based on semidefinite programming. IEEE Trans. Power Syst. 28(4),
3987–3998 (2013)

50. R.A. Jabr, Exploiting sparsity in SDP relaxations of the OPF problem. IEEE Trans. Power Syst.
27(2), 1138–1139 (2012)

51. T. Wu, M. Rothleder, Z. Alaywan, A.D. Papalexopoulos, Pricing energy and ancillary services
in integrated market systems by an optimal power flow. IEEE Trans. Power Syst. 19(1), 339–
347 (2004)

52. J.M. Arroyo, F.D. Galiana, On the solution of the bilevel programming formulation of the
terrorist threat problem. IEEE Trans. Power Syst. 20(2), 789–797 (2005)

53. D.I. Sun, B. Ashley, B. Brewer, A. Hughes, W.F. Tinney, Optimal power flow by Newton
approach. IEEE Trans. Power Apparatus Syst. PAS-103(10), 2864–2880 (1984)

54. F. Milano, Continuous Newton’s method for power flow analysis. IEEE Trans. Power Syst.
24(1), 50–57 (2009)

55. E.C. Finardi, E.L. da Silva, Solving the hydro unit commitment problem via dual decomposi-
tion and sequential quadratic programming. IEEE Trans. Power Syst. 21(2), 835–844 (2006)

56. I.P. Abril, J.A.G. Quintero, Var compensation by sequential quadratic programming. IEEE
Trans. Power Syst. 18(1), 36–41 (2003)

57. B. Enacheanu, B. Raison, R. Caire, O. Devaux, W. Bienia, N. HadjSaid, Radial network
reconfiguration using genetic algorithm based on the matroid theory. IEEE Trans. Power Syst.
23(1), 186–195 (2008)

58. P. Maghouli, S.H. Hosseini, M.O. Buygi, M. Shahidehpour, A scenario-based multi-objective
model for multi-stage transmission expansion planning. IEEE Trans. Power Syst. 26(1), 470–
478 (2011)

59. T. Amraee, A.M Ranjbar, R. Feuillet. Immune-based selection of pilot nodes for secondary
voltage control. Eur. Trans. Electr. Power 20(7), 938–951 (2010)

60. T. Satoh, K. Nara, Maintenance scheduling by using simulated annealing method [for power
plants]. IEEE Trans. Power Syst. 6(2), 850–857 (1991)

61. J.G. Vlachogiannis, K.Y. Lee. Quantum-inspired evolutionary algorithm for real and reactive
power dispatch. IEEE Trans. Power Syst. 23(4), 1627–1636 (2008)

62. C. Dai, W. Chen, Y. Zhu, X. Zhang, Seeker optimization algorithm for optimal reactive power
dispatch. IEEE Trans. Power Syst. 24(3), 1218–1231 (2009)

63. T. Amraee, Coordination of directional overcurrent relays using seeker algorithm. IEEE Trans.
Power Delivery 27(3), 1415–1422 (2012)

64. D.N. Vo, P. Schegner, W. Ongsakul, Cuckoo search algorithm for non-convex economic
dispatch. IET Gener. Transm. Distrib. 7(6), 645–654 (2013)

65. A.A. El-fergany, A.Y. Abdelaziz, Capacitor allocations in radial distribution networks using
cuckoo search algorithm. IET Gener. Transm. Distrib. 8(2), 223–232 (2014)

32 1 Introduction to Programming in GAMS

66. M. Barati, M.M. Farsangi, Solving unit commitment problem by a binary shuffled frog leaping
algorithm. IET Gener. Transm. Distrib. 8(6), 1050–1060 (2014)

67. R. Roche, L. Idoumghar, B. Blunier, A. Miraoui, Imperialist competitive algorithm for dynamic
optimization of economic dispatch in power systems, in International Conference on Artificial
Evolution (Evolution Artificielle) (Springer, Berlin, 2011), pp. 217–228

68. W.-M. Lin, F.-S. Cheng, M.-T. Tsay, An improved tabu search for economic dispatch with
multiple minima. IEEE Trans. Power Syst. 17(1), 108–112 (2002)

69. C.F. Chang, Reconfiguration and capacitor placement for loss reduction of distribution systems
by ant colony search algorithm. IEEE Trans. Power Syst. 23(4), 1747–1755 (2008)

70. R.E. Rosenthal, A GAMS tutorial. Technical note (1992)
71. A. Brooke, D. Kendrick, A. Meeraus, R. Raman, R.E. Rosenthal, Gams. A Users Guide (GAMS

Development Corporation, Washington, DC, 2005)
72. A. Geletu, Gams-Modeling and Solving Optimization Problems (TU-Ilmenau, Faculty of Math-

ematics and Natural Sciences, Department of Operation Research & Stochastrics, Ilmenau,
2008)

73. M.C. Ferris, Matlab and GAMS: interfacing optimization and visualization software. Mathe-
matical Programming Technical Report, 98:19 (1998)

74. L. Wong et al., Linking Matlab and Gams: A Supplement (University of Victoria, Department
of Economics, Victoria, BC, 2009)

75. M.C. Ferris, R. Jain, S. Dirkse, Gdxmrw: Interfacing GAMS and matlab (2011). http://www.
gams.com/dd/docs/tools/gdxmrw.pdf

76. M.R. Bussieck, M.C. Ferris, A. Meeraus, Grid-enabled optimization with GAMS. INFORMS
J. Comput. 21(3), 349–362 (2009)

77. S.S. Nielson, A. Consiglio, Practical Financial Optimization: A Library of GAMS Models
(Wiley, New York, 2010)

http://www.gams.com/dd/docs/tools/gdxmrw.pdf
http://www.gams.com/dd/docs/tools/gdxmrw.pdf

	1 Introduction to Programming in GAMS
	1.1 Optimization Problems in Power System
	1.2 GAMS Installation
	1.3 GAMS Elements
	1.4 Conditional Statements
	1.5 Loop Definition in GAMS
	1.5.1 LOOP Statement
	1.5.2 WHILE Statement
	1.5.3 FOR Statement
	1.5.4 REPEAT-UNTIL Statement

	1.6 Linking GAMS and Excels
	1.6.1 Reading from Excel
	1.6.2 Writing to Excel

	1.7 Error Debugging in GAMS
	1.8 General Programming Remarks
	1.9 Book Structure
	References

