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Algorithms for Energy-Efficient Cloud Resource
Management: A Review
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6.1 Introduction

As envisioned by Leonard Kleinrock [1], Cloud computing has transformed the
dream of “computing as a utility” into reality, so much so it has turned out as the
latest computing paradigm [2]. Cloud computing is called as Service-on-demand, as
Cloud Service Providers (CSPs) assure users about potentially unlimited amount of
resources that can be chartered on demand. It is also known as elastic computing,
since Cloud Service Users (CSUs) can dynamically scale, expand, or shrink their
rented resources anytime and expect to pay for the exact tenure of resource usage
under Service Level Agreements (SLA). Through such flexibilities and financial
benefits, CSPs have been attracting millions of clients who are simultaneously
sharing the underlying computing and storage resources that are collectively known
as Cloud data centers.

However, as the number of CSUs is increasingly growing over time, the necessity
of an automatic management system, referred to as Cloud Resource Management
System (CRMS), has become imminent to manage the multitude of service requests
of millions of CSUs in automatic fashion. Furthermore, several research unlock
the fact that Cloud Data Centers (CDCs) consume a lot of electricity which on
average is twenty-five thousand times more than a household’s energy consumption.
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Subsequently, more carbon dioxide (CO2) emission is driven by these data centers.
A study has revealed that energy consumption of Cloud causes more carbon
emission to that of two countries, Netherlands and Argentina [3]. In [4], author has
highlighted that worldwide energy usage of cloud data centers climbed up to 56%
between 2005 and 2010, and was projected to be between 1.1 and 1.5% of the total
electricity use in 2010 [5]. Moreover, approximate carbon emission by IT industry
is 2% of the global emissions which is equivalent to the emissions of the aviation
industry [6]. Consequently, many developed countries are getting more concerned
these days to reduce carbon emission [7]. Beyond that, Koomey [8] projected that
energy consumption of CDCs would remain to rise rapidly without energy-efficient
resource management solutions being applied. As such, development of energy-
efficient CRMS is extremely crucial.

VM Consolidation (VMC) is one such technique incorporated in CRMS to
increase the energy-efficiency of Cloud. Hardware failure of existing Physical
Machines (PMs) and addition of new PMs are continuous events in data center.
Furthermore, resource requirement to accomplish the remaining tasks of existing
service requests evolves with the course of time. Hence, as time progresses, remap-
ping of remaining workload to currently available resources become inevitable to
uphold the optimization of Cloud resource usage. The VM consolidation technique
is applied to remap the remaining workloads to currently available resources which
opts to migrate VMs into lesser number of active PMs, so that the PMs which would
have no VM can be kept into sleep state. Since, energy consumption by the PM
which is in sleep state is significantly lower than the energy consumption by the PM
which is in active state, therefore, VM consolidation minimizes energy consumption
of Cloud data center.

As portrayed in Fig. 6.1, before VMC is applied, VMs are scattered in multiple
PMs. VMC migrates the VMs from lower utilized PMs to higher utilized PMs and
thus consolidate VMs in lesser number of PMs than before. Meanwhile, the state of
those PMs having no VMs can be changed from active state (i.e., turned on state)
into a lower energy consuming state, such as sleep state and consequently, energy
consumption can be minimized. The more number of VMs are placed in one single
PM, the lesser becomes the overall energy consumption with the lesser number of
active servers. Moreover, on account of compacting more number of VMs into fewer
number of PMs, resource utilization ratio of the PM Pi, RPi (6.1) would become
higher which in turn would increase the mean resource utilization ratio of CDC,
RCDC (6.2) where N is the total number of active hosts in CDC.

RPi D Utilized Amount of Resource of Pi

Total Amount Resource of Pi
(6.1)

RCDC D 1

N

NX

iD1

RPi (6.2)
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Fig. 6.1 VM consolidation

Fig. 6.2 Multiple VMs are hosted in a single physical machine [9]

However, as delineated in Fig. 6.2, VMs hosted in a PM share the underlying
physical resources of that PM. Therefore, with the increased number of VMs sharing
underlying resources of a single PM, waiting time for a VM prior receiving its
required resources becomes higher. Thus, if more VMs are placed in a single PM,
resource contention may arise which would lead towards poor QoS. Consequently,
possibility of Service Level Agreement (SLA) violation arises.

To balance the tradeoff between QoS and energy-efficiency, it is extremely chal-
lenging to design such VMC algorithm which increases both resource utilization and
energy-efficiency without compromising the QoS of running applications as agreed
with respective CSUs during SLA. Recently, VMC has attracted interest of Cloud
researchers, while designing efficient VMC algorithms is extremely challenging as
it needs to be scalable, to the millions of VMs and PMs, as well as robust, such
that the performance does not degrade with the fluctuation in resource demand of
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VMs. In this paper, we have presented detail discussion on a wide range of VMC
algorithms which complements three extremely important challenging aspects of
Cloud: resource utilization maximization, energy consumption minimization, and
Cloud profit maximization. In brief, our contributions are as follows:

• A group of surveys on VMC algorithms [10–20] have greatly assisted our
research with VMC algorithms. However, VMC is an extremely popular research
area and none of the available survey papers have presented discussion on
VMC algorithms published in 2016 and onwards. Therefore, in this paper, we
have primarily focused on most recent VMC algorithms published in 2016 and
onwards which are not available in any other survey papers.

• We have presented critical review of different types of VMC algorithms which is
missing in the available literature.

• There are several existing VMC algorithms proposed before the year of 2016
which strongly influenced subsequent researchers through introducing unique
research directions. Those researches presented their own distinct techniques
which are strong enough to be used as classification criterions. Therefore, we
have also included elaborate discussion on such prominent VMC algorithms
proposed before the year of 2016 to clarify the important concepts based on
which we have reached our own classification of VMC algorithms.

• The authors of [16] have mentioned that presenting a survey and classification
of VMC algorithms with an equal justice to all viewpoints is hardly possible.
In the light of such admitted belief, we have proposed our own analysis and
classification of existing VMC algorithms with an emphasis towards incorpora-
tion of future resource demand of Cloud resources, since considering the future
resource demand is essential to prevent the SLA violation which is one of the
major drawbacks of VMC algorithms.

• Based on our literature review, we have pointed out potential important research
scopes which have not been explored so far.

The rest of the paper is organized as follows. In Sect. 6.2, we discuss the
fundamental components of VMC. In Sect. 6.3, we present classification of VMC
algorithms, followed by the extended classification and critical review of Dynamic
VMC algorithms in Sect. 6.4. Next, in Sect. 6.5, we highlight the details of the
notable contemporary VMC algorithms. Finally, we summarize our findings along
with potential research directions in Sect. 6.6.

6.2 Fundamental Components of VMC

VMC algorithm is comprised of three core components [4, 21] which are as
follows:

• Source Host Selection: First, among all the PMs, a set of PMs are selected from
where VMs are migrated out. The Source Host Selection component takes all the
PMs and VMs as input and selects one or more PMs as source PM(s) from where
VMs would be migrated out.
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• VM Selection: Second, one or more VM(s) are selected for migration from a
source PM. The VM Selection component takes the PM as input which has been
selected by Source Host Selection component and selects one or more VMs from
that source PM for migration into a different PM.

• Destination Host Selection/VM Placement: Finally, the Destination Host Selec-
tion/VM Placement component selects a PM for each of the migrating VM which
was selected by VM Selection component.

However, after a VM is created for the first time (i.e., for new VMs), the
initial placement of that newly created VM can also be considered as VMC, if the
corresponding destination PM is selected with an aim to minimize the total number
of active PMs and increase the resource utilization, given that the hosting PM has
adequate resources to fulfill the resource demand of the new VM. Hence, for new
VMs, only Destination Host Selection Algorithm/VM Placement Algorithm does
the VMC, as no source host selection and VM selection are needed for new VMs.
A number of VM placement algorithms are available in the literature. In this paper,
we have covered both VMC algorithms and VM placement algorithms, considering
VM placement algorithms as VMC algorithms in case of new VMs. In the following
section, we have presented the classification of VMC algorithms.

6.3 Classification of VMC Algorithms

In Fig. 6.3, we have delineated the classification of VMC algorithms. VMC
algorithms can be broadly classified into two groups:

• Dynamic VMC (DVMC) Algorithm: In Cloud, received workloads are run in
VMs, while these VMs accomplish the assigned workload through consuming
the resources of the respective hosting PMs. With the advancement of time,
progression of previously accepted workloads continues, while at the same time,
new workloads keep being accepted by CSP. Furthermore, removal of some PMs
due to hardware failure and addition of new PM also takes place. Thus, the overall
workload with corresponding resource requirement and resource availability
in the CDC keeps evolving over time. In DVMC algorithm, current VM-to-
Server assignment is taken into consideration in the VMC process. Note that
the workload or resource requirement of any VM and its location (i.e., its hosting
PM) can be dynamic, as it changes with time. If the VMC algorithm consolidates
VMs considering the dynamic (i.e., changing) workload and location of the VM
(i.e., current VM-to-Server assignment), then it is called DVMC algorithm. In
simple words, DVMC algorithms provide the solution of reallocation of existing
VMs in lesser number of PMs such that the number of active PMs is minimized.

• Static VMC (SVMC) Algorithm: In contrast to DVMC algorithm, Static VMC
(SVMC) algorithms, also referred to as consolidated VM placement algorithms,
do not consider the current VM-to-Server assignment while choosing a new
destination PM for any VM. In [22], the authors have mentioned that static
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VMC algorithms work with a set of fully empty PMs and a set of VMs with
specific resource requirement. In simple words, static VMC algorithm provides
the solution of initial VM placement in minimum number of active PMs so that
energy-efficiency and resource utilization of CDC increase. However, it does
not provide the solution for reallocation of VMs in new PMs considering the
current VM-to-Server assignment. Since, the dynamic (i.e., changing) load and
placement of VMs are not considered, therefore, it is called as SVMC algorithm.
[23–26] are examples of SVMC algorithm which do not consider the current
VM-to-Server assignment while choosing a new destination PM for a VM.

Energy-efficiency of CDC would be hampered without the initial consolidated
VM placement, as provided by SVMC algorithms. Besides, the energy-efficient
initial placement keeps VMs consolidated in fewer PMs from the very beginning
and consequently, the intermediate period before the awakening of the necessity to
reallocate VMs can be prolonged. VMC has network overhead and it hampers QoS
due to inherent service downtime. The prolonged period between initial VM place-
ment and VMC or between two consecutive VMC reduces the overhead of VMC.
However, the dynamic VM-to-Server assignment is not taken into consideration in
SVMC algorithm. Therefore, the migration cost of a VM from its current hosting
PM to its new destination PM is ignored. Consequently, SVMC algorithms are only
applicable for initial placement of VMs or migrating VMs of one CDC into another
CDC. As the time progresses, both workload and resource availability change in
CDC. Therefore, apart from the initial consolidated VM placement, DVMC is one
of the key techniques that uphold the energy-efficiency, resource usage optimization,
and profit maximization of CSPs. As such, in this paper we have focused on DVMC
algorithms. In the following section the classification of the DVMC algorithms has
been presented.

6.4 Classification of DVMC Algorithms

DVMC problem focuses on run-time environments where VMs are active and
already hosted by servers in the data center. Consolidation of such VMs is achieved
by the VM live migration operations, where a running VM is relocated from its
current host to another server while it is still running and providing service to its
consumers [27]. DVMC algorithms can be classified into two groups:

• Centralized DVMC Algorithm: As proposed in [28–30], in centralized architec-
ture, there is a single controller which has the information about present resource
availability of all the PMs. The controller runs the centralized VMC algorithm
which selects a destination PM for a migrating VM considering the resource
availability of all the PMs.

• Distributed DVMC Algorithm: Instead of having a single controller which poses
the information of present available resource availability of all the PMs and
selects a destination PM for any migrating VM considering that information;
in distributed architecture, PMs exchange information of their present resource
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availability with their own neighbor PMs and thus, each PM has the resource
availability information of its neighborhood PMs. If a PM wants to migrate
out one of its VMs, it executes distributed VMC algorithm to select one of the
neighbor PMs as the destination PM where the migrating VM would be hosted.
Examples of distributed DVMC algorithms are [31, 32].

Majority of the DVMC algorithms found in the literature are centralized DVMC
and only a few Distributed DVMC [31, 32] has been proposed. In [31], the authors
have presented their distributed DVMC algorithm for a P2P network oriented CDC.
According to [31, 32], the growing number of PMs becomes a bottleneck for
centralized VMC at the time of selecting a destination for any migrating VM, since
the asymptotic time complexity of the centralized DVMC algorithm is proportional
to the number of PMs in the CDC, whereas the number of potential PMs to choose
from a migrating VM is relatively small in distributed DVMC. Thus, distributed
DVMC is more scalable for CDC with huge number of PMs. However, distributed
DVMC has message passing overhead, as every PM must update its present resource
availability to all of its neighbors. Every time a VM is migrated, both the sender PM
and the destination PM must update their present resource availability status to all
of their neighbors. Besides, a central monitoring system is indispensable in Cloud
which monitors the accepted workload progression status and allocate/deallocate
resources accordingly to accomplish the workload in time. Furthermore, at the
time of accepting new workload, the overall resource availability status of CDC
must be known, so that accurate decision can be made on whether the new
workload would be possible to serve within deadline. Therefore, centralized DVMC
can be implemented without adding any additional resources. Moreover, message
passing as required by distributed DVMC algorithms increases network overhead,
decreases network throughput, and increases network related energy consumption.
Hence, centralized DVMC is more energy-efficient compare to distributed DVMC
algorithms.

As discussed earlier in Sect. 6.2, first component of DVMC algorithm is to
select the source PM. A DVMC algorithm can either randomly select a source PM
from where one or more VM(s) are migrated out or VM(s) can be selected from
over-utilized and under-utilized PMs. In the following section, we have presented
our classification of DVMC algorithms based on different source PM selection
techniques.

6.4.1 Classification of DVMC Algorithms Based on Different
Source PM Selection Techniques

Based on the way source PMs are selected, DVMC algorithms can be classified into
two groups:

• Threshold-Based DVMC Algorithm: Threshold-based DVMC algorithms use
upper and lower threshold values to identify a PM as overloaded or underloaded,
respectively, from the perspective of resource utilization ratio of the PM Pi, RPi
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(6.1). The key point is that RPi is compared against the values of some thresholds
which can be either static or adaptive (explained in detail later in this section). As
presented in [33], if RPi goes past the upper utilization threshold value, then Pi

is identified as overloaded or over-utilized PM and VMs are migrated out from
Pi, until RPi becomes lower than the upper-threshold, since high RPi is a strong
indicator of potential QoS degradation or SLA violation which is arisen because
of the higher resource demand of the hosted VMs. Again, if RPi is smaller than the
lower utilization threshold value, then Pi is identified as underloaded or under-
utilized and potential destination PMs are looked for, where VMs of Pi can be
migrated out so that Pi can be put in sleep state.

• Threshold-Free DVMC Algorithm: Unlike threshold-based DVMC algorithms,
in threshold-free DVMC algorithms, resource utilization ratio of the PM Pi,
RPi (6.1) is not compared against any threshold value to identify the PM as
overloaded or underloaded. Instead, the source PMs are selected either randomly
[34] or some functions are applied to favor PMs having either higher or lower RPi

compare to those of other PMs. Examples of threshold-free DVMC algorithms
are [25, 34, 35].

In [35], the authors have proposed two functions, one of which is used to select a
source PM from where VMs would be migrated out and the other function is used to
select destination PMs for those migrating VMs. The destination selection function
favors PMs with neither higher nor lower RPi , while the source selection function
favors PMs with lower RPi . It is noteworthy that no threshold value is used against
which a PM’s utilization is compared to identify it as over-utilized or under-utilized.
Since, according to the proposed method, the PMs with higher RPi are not selected
as source PMs to migrate out VMs; therefore, the QoS degradation or SLA violation
due to increased resource demand of hosted VMs may take place.

The main difference between threshold-free and threshold-based DVMC algo-
rithm is that threshold-based approach identifies a PM as overloaded or underloaded
with respect to some thresholds, whereas threshold-free approaches select PMs
either randomly or based on the lower or higher resource utilization ratio in
comparison to those of rest of the PMs. As opposed to random source PM selection,
the heuristic approach to always select the source PM with highest or lowest
resource utilization ratio may not ensure the achieving of global best solution. Since,
there is no random source PM selection policy in threshold-based DVMC algorithm;
therefore, it may not provide the global best solution. Furthermore, compare to
threshold-free approach, the number of VM migrations may become higher in
threshold-based approach. To illustrate more, assume that overall workload in the
CDC has become high. PMs would then experience high utilization as per threshold-
based approach and would start migrating out their VMs, whereas threshold-free
approach would consider the global picture of increase of workload in all PMs
and may avoid VM migrations. However, VMC is a combinatorial optimization
problem. In other words, it is a rearranging problem of VMs into different PMs,
so that VMs can be placed in minimum number of PMs without violating the
resource capacity of any PM and the total number of possible combinations is NM ,
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where N and M denote the total number of VMs and PMs, respectively. Hence, the
solution search space would remain as humongous as NM , if random selection policy
is followed as per threshold-free approach. In contrast, although the solution may
not be globally optimal, but selecting source PM based on upper or lower resource
utilization threshold would confine the solution search space and would provide
sub-optimal solution in faster time, since minimization of lower resource utilization
certainly decreases the energy consumption.

From the literature review, threshold-based approaches are found as highly
popular among researchers. Based on the type of used thresholds to identify a PM
as overloaded or underloaded, threshold-based DVMC algorithms can be classified
into two groups:

• Static Threshold-Based DVMC Algorithm: In static threshold-based DVMC
algorithms, fixed values or predefined values are used as upper and lower
thresholds to identify the PM as overloaded or underloaded. As the values of
the thresholds do not change over time, therefore they are referred to as static
thresholds. Examples of static threshold-based DVMC algorithms are [31, 33,
36]. In [36], the authors have used 100% CPU utilization as upper utilization
threshold and 50% CPU utilization as lower utilization threshold. In other words,
if the CPU utilization of a PM is found as 50%, then that PM is considered
as lower utilized PM and VMs are migrated out from that PM into other PMs.
Similarly, if the total resource demand of all the VMs hosted in a particular PM
is found as higher than the CPU capacity of that PM, then that PM is considered
as overloaded PM and VMs are migrated out from that PM into other PMs.

• Adaptive Threshold-Based DVMC Algorithm: In this case, the values of the
thresholds based on which the PM is selected as overloaded or underloaded
change dynamically as the resource utilization ratio the PM Pi, RPi (6.1) changes
with time. In other words, the threshold value adapts with the change of resource
utilization. Examples of adaptive threshold-based DVMC algorithms are [21, 29,
37, 38].

The authors of [21] are pioneers in proposing adaptive threshold-based DVMC
algorithm, as they proposed a number of adaptive thresholds based on which a PM
is detected as overloaded. One such adaptive threshold is referred to as Median
Absolute Deviation (MAD). To illustrate more, let, T D tj tj denotes time j and j 2N

where N is the set of positive integers and R
tj
Pi

is the resource utilization ratio the PM
Pi at time tj. For each PM Pi, RPi (6.1) across different time (i.e., Rt1

Pi
, Rt2

Pi
, Rt3

Pi , and so
forth) would be recorded and then MAD is calculated using (6.3), while the upper
utilization threshold Tu is calculated using (6.4), where s 2R

C a parameter which
defines how strongly the system tolerates host overloads.

MAD D Median
�ˇ̌
ˇRtj

Pi
–Median

�
R

tj
Pi

�ˇ̌
ˇ
�

(6.3)

Tu D 1 � s � MAD (6.4)
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The lower the value of s, the system is more tolerant to variation in resource
utilization. If the current R

tj
Pi

is found as greater than Tu, then Pi is considered as

overloaded [4]. Note that the value of MAD (6.3) is not fixed or static, as R
tj
Pi

changes
with time and hence, Tu (6.4) also changes with the change in resource utilization.

As mentioned before, VMC algorithms aim to increase the resource utilization
which helps to minimize the energy consumption. The high value of upper and lower
utilization thresholds increases resource utilization and energy-efficiency. However,
very high resource utilization or higher RPi (6.1) causes QoS degradation or potential
SLA violation. Therefore, the higher is the upper utilization threshold, the higher is
the SLA violation. Hence, there is a tradeoff between energy-efficiency and SLA
violation, while the values of upper and lower utilization thresholds have great
impact in controlling such tradeoff. Therefore, a balance is needed to be maintained
between energy-efficiency and SLA violation through controlling the threshold
values.

The key idea of using upper and lower static thresholds is to keep the resource
utilization restricted into a certain range (i.e., in between upper and lower utilization
threshold), so that a balance exists between energy-efficiency and SLA violation.
However, the workload pattern as experienced by an application running inside of a
VM changes over time. Besides, multiple VMs which are all hosted in a single PM
may exhibit different workload pattern. Since, the threshold is static and it cannot
be changed with the change of workload, therefore, SLA violation increases with
the increase of workload.

Adaptive threshold-based DVMC algorithms partially mitigate this problem
by changing the utilization threshold values with the variation in workload. For
instance, as the workload grows in VMs, MAD (6.3) increases and the upper
utilization threshold (6.4) becomes lower accordingly. Consequently, VMs are
migrated out from Pi before RPi (6.1) reaches to a very high level and as a result,
VMs of Pi do not suffer from degraded QoS due to high RPi (6.1). In general,
compared to static threshold-based approach, adaptive threshold-based approach
decreases SLA violation rate more. However, it provides less energy-efficiency than
static threshold-based approach, since the lower is the upper and lower utilization
threshold, the lower is the energy consumption minimization. Apart from that,
adaptive-based approach causes more number of VM migration than static-based
approach which increases both energy consumption and SLA violation.

Thus far, we have reviewed different types of threshold-based DVMC algorithms
and previously in Sect. 4.1, we have presented our comparison between threshold-
free DVMC algorithm and threshold-based DVMC algorithm. As highlighted in
Sect. 6.2, one of the core components of VMC algorithm is VM selection. In the
following section, we have presented our discussion on different DVMC algorithms
with different VM selection policies.
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6.4.2 Classification of DVMC Algorithms Based on VM
Selection Policy

Once source PMs are selected, the following step of VMC is to select one or more
VM(s) from source PM to migrate out. Based on the different VM selection policies
used in different DVMC algorithms, the DVMC algorithms can be broadly classified
into two groups:

• Clustered VM Selection (CVS): Multi-layered applications comprised with load
balancer(s), application server(s), and database server(s) are hosted in Cloud,
while individual VM is assigned with the functionalities of each layer. To explain
more, database server instance(s) are deployed in one or more VMs, while load
balancer(s) are run in separate VMs and application server(s) are run in different
VM(s). All these VMs which are under one application communicate with each
other and the performance of the application becomes immensely hampered if
these VMs are not hosted in nearby PMs. As such, instead of migrating a single
VM, such group of VMs of an application, also known as Clustered VMs, are
considered for migration. Prominent examples of such clustered VM selection
algorithms are [24, 39].

• Single VM Selection (SVS): Unlike CVS, SVS algorithms select a single VM to
migrate out. Different single VM selection strategies as found in the literature are
mentioned in the following:

• Random Choice (RC): Among all the VMs residing in the source PMs, a VM
is randomly selected [33, 40]. Random VM Selection can select a VM in O(1)
time which is faster than rest of the approaches.

• Minimization of VM Migration (MVM): Minimum number of VMs are
migrated to make the current resource utilization of a PM lower than the upper
utilization threshold. MVM algorithm as proposed by [33] first sorts the VMs
in descending order with respect to CPU demand and then selects the VM
that satisfies the two criterions: First, the VM’s CPU utilization should be
higher than the difference between the host’s present overall CPU utilization
and the upper utilization threshold; Second, that VM is selected for which
the difference between the upper-threshold and the new utilization is the
minimum compare to the values provided by all the VMs. If no such VM
is found, then the VM with the highest utilization is selected and the process
is repeated until the new utilization becomes lower than the upper utilization
threshold.

• High Potential Growth (HPG): The VM with lowest ratio of actual resource
usage to its initial claimed resource demand is selected [33]. Asymptotic
running time of the algorithm is O(n).

• Minimization of Migration Time (MMT): The VM which requires minimum
time to complete the migration is selected for migration, while the migration
time is estimated as the amount of RAM utilized by a VM divided by the spare
network bandwidth available for the hosting PM [21]. Asymptotic running
time of the algorithm is O(n).
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• Maximum Correlation (MC): VM that has the highest correlation of the
resource utilization with other VMs is selected [4]. Multiple Correlation
Coefficient as proposed by [41] is used to determine the correlation between
the resource utilization of VMs.

The RC may help to find the globally optimal solution, if source PM is
selected randomly using threshold-free approach as discussed earlier in Sect. 4.1.
Furthermore, RC shows the fastest run time among all the above-mentioned VM
selection algorithms. However, if the solution space is confided prior, such as source
PM is selected using the heuristic that the PM with highest or lowest resource
utilization would be the source PM and after then that, a VM is randomly chosen
from that PM, then RC cannot provide the global optimal solution. As oppose to
that, after confining the solution search space by selecting source PM based on
highest or lowest resource utilization ratio, rest of the heuristics such as MVM,
HPG, MMT, and MC are more likely to decrease the energy consumption and
SLA violations compare to RC; since, heuristics like MVM, HPG, MMT, and MC
certainly provide the local best solution, whereas RC probabilistically chooses a
solution which may not be locally optimal. To illustrate more, VMs experience
degraded QoS during the period of migration. Therefore, selecting the VM which
would take the least migration time (i.e., MMT) would certainly assist in keeping the
SLA violation lower [42]. In contrast, RC may choose a VM with higher migration
time. Consequently, SLA violation rate would be higher for RC.

MVM minimizes the number of VM migrations with minimal decreasing of
resource utilization ratio of the PM Pi, RPi , (6.1). As a result, mean resource
utilization ratio of CDC RCDC (6.2) would remain as higher compare to rest of
the above-mentioned algorithms and thus it turns out to be more energy-efficient.
However, higher RPi (6.1) may cause degraded QoS and more SLA violation. Hence,
MVM shows lower SLA violation than MTM.

Another critical issue with MVM is that VMs need to be sorted first with respect
to resource utilization, as otherwise the asymptotic running time is exponential.
However, it is not possible to sort the VMs with respect to resource demand, since
a VM has three different types of resource demand, such as CPU demand, memory
demand, and network bandwidth demand which are not related. For instance, a VM
may have high CPU demand and low network bandwidth demand, whereas another
VM may have low CPU demand and high network bandwidth demand. Therefore,
it is not possible to sort VMs based on VM resource demand, since one distinctive
feature of CDC is location transparency [43] which arises from the fact that a VM
can be placed in any of the PMs. Hence, a PM may have VMs with varied resource
demand with respect to different resource types [44].

Because of such diverse resource utilization value of a VM across various types
of resources, it is not possible to select a VM with highest potential growth ratio (i.e.,
ratio of actual resource usage to a VM’s initial claimed resource demand) among
all the VMs across all resource types. Consequently, HPG is only possible to be
implemented considering one resource type, such as CPU or memory or network
bandwidth and thus, it does not ensure the minimization of energy-efficiency or



148 Md.A. Khan et al.

SLA violation. Similar issue exists with MC algorithm. In contrast, since MTM
primarily selects VM based on memory size and hence, it is free from such issue.

Thus far, we have analyzed different DVMC algorithms with different VM
selection policies. Another critical distinguishing aspect among DVMC algorithms
is that whether estimated future resource demand has been considered in the VMC
process or not, as we have presented our discussion about it in the following section.

6.4.3 Classification of DVMC Algorithms based
on Consideration of Estimated Future Resource

From the literature, it can be viewed that consideration of estimated future workload
in a PM is commonplace in a wide range of DVMC algorithms. However, there
are still numerous DVMC algorithms which make the consolidation decision
based on the current resource utilization of PMs instead of the estimated future
resource utilization. Consideration of future can create a significant difference on
the performance of VMC algorithm, compare to those VMC algorithms which takes
the decision based on the current resource utilization. Hence, in this section, we have
reviewed both types of VMC algorithms from that perspective.

– Non-Predictive Dynamic VMC Algorithm (NPDVMC): Instead of considering the
estimated future resource utilization of the PM, NPDVMC algorithms consider
the current aggregated resource demand of VMs. Note that the aggregated
resource demand of hosted VMs in the PM is equal to the resource utilization of
that PM. VM migration decisions are taken when the current resource utilization
of the PM Pi, RPi (6.1) becomes very high or very low so that SLA violation can
be avoided or energy consumption can be minimized.

One such example of NPDVMC algorithm is [28], where source and desti-
nation PMs for consolidation of VMs are selected based on the current resource
utilization status of the PM. If the current RPi is found as equal or greater than
90%, then Pi is considered as overloaded or over-utilized and VMs are migrated
out from Pi. Again, if current RPi is found as equal or lower than 10%, then Pi is
considered as overloaded or over-utilized and VMs are migrated out from Pi to
place in new PMs. Other prominent non-predictive VMC algorithms are [24, 25,
28–30, 34, 45].

– Predictive Dynamic VMC Algorithm (PDVMC): On the contrary, PDVMC
algorithms take the decision to migrate VMs from one PM to another PM
considering the estimated future resource demand of VMs instead of current
resource demand. Examples of PDVMC algorithms are [36, 46].

– In [36], both current and future resource utilization of the PM are considered
while making the consolidation decision. Linear regression [38] is used to
generate an estimated future resource utilization of a PM from analyzing its
past resource utilization statistics. If the current resource utilization of the PM
is found as higher than the upper-utilization threshold (explained previously in
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Sect. 4.1), then that PM is identified as overloaded. Furthermore, although the
current resource utilization of the PM is found as lower than the upper-utilization
threshold, yet its estimated future resource utilization is found as higher than the
upper-utilization threshold, then that PM is identified as predicted overloaded.
Both overloaded and predicted overloaded PMs are elected as source PMs from
where one or more VM(s) are selected to migrate out into new PMs. Again, both
overloaded and predicted overloaded PMs are excluded from the list of potential
destination PMs where migrating VMs would be placed.

– Consolidation of VMs considering the estimated workload is a more proactive
approach than NPDVMC, as VMs are migrated out from those PMs which are
predicted to be overloaded in future. The aim of such proactive approach is
to move VMs out prior QoS degradation or SLA violation takes place. Con-
sequently, compare to NPDVMC algorithms, PDVMC algorithms will display
lower SLA violations due to less occurrences of resource contention. However,
because of migrating more VMs out of the higher utilized hosts than NPDVMC,
the mean resource utilization ratio of CDC RCDC (6.2) would become lower
and thus, total number of inactive PMs may become less for PDVMC. Hence,
PDVMC would display lower energy consumption minimization than that of
NPDVMC.

Another challenging aspect of PDVMC is that PDVMC relies on prediction
techniques to estimate the future resource utilization of PMs. Predictive techniques
are based on the correlation between the past history of the system behavior and its
near future [4]. The efficiency of prediction-based techniques greatly depends on
the actual correlation between past and future events and the quality of adjustment
with a specific workload type. In Cloud environment, different VMs are hosted in
a single PM, while these VMs are expected to exhibit different behavioral pattern
from each other in terms of resource demand. Consequently, no single prediction
technique would be a perfect fit for all PMs. A non-ideal prediction causes over- or
underprediction which lead towards either inefficient resource usage or more SLA
violation.

Until now we have reviewed diverse approaches to select source PMs and VMs,
as we have also analyzed both prediction-based and non-prediction-based DVMC
algorithms. One of the core components of DVMC algorithms is destination PM
selection where migrating VMs are placed. This is also referred as VM placement
problem. In the following section, we have presented our discussion on diverse
approaches to select destination PMs for migrating VMs as incorporated in different
DVMC algorithm.
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6.4.4 Classification of DVMC Algorithms based on Destination
PM Selection Strategies

Destination PM selection strategy plays a gigantic role in increasing the energy-
efficiency of CDC. The aim of destination PM selection is to select such new PMs
for migrating VMs so that the total number of active PMs becomes minimum
without violating the resource constraint of any PM. However, destination PM
selection component itself is a NP-hard problem and hence a number of heuristic
as well as meta-heuristic algorithms have been proposed in the literature. Based
on different destination PM selection strategies DVMC algorithms can be classified
into three groups:

• Random PM Selection (RPS): As proposed in [24], the destination PM is
randomly selected from the suitable PMs for a given VM. The asymptotic
running time of FF is O(n), where n is the total number of VMs.

• Greedy Heuristic: Greedy Heuristic algorithms are most widespread in the
literature to select the destination PM for migrating VMs. Several popular
heuristic-based algorithms are as follows:

– Random Choice (RC): As discussed in [47], RC algorithm randomly chooses
a destination PM for a migrating VM which is already turned on. If no suitable
PM can be found to host the migrating/target VM, then a new PM which was
in sleep state is turned on to accommodate the target VM.

– First Fit (FF): In FF [47], PMs are ordered in a sequence and for each VM,
the first available PM from the ordered list of PMs is selected. In other words,
for every single VM, the searching of destination PM always starts from the
first PM. If the first PM cannot accommodate a VM, then the second PM is
checked and if the second PM cannot accommodate it, then the third PM is
checked, as the searching continues to the next PM while always following
the initial order of PMs until a suitable destination PM with adequate resource
capacity is found. Since, a VM may have larger resource demand than the
available remaining resource of a PM, therefore, the asymptotic running time
of FF is O(nm), where n is the total number of VMs and m denotes the total
number of PMs.

– First Fit Decreasing (FFD): FFD is same as FF, except the VMs are first
sorted in the decreasing order of their resource demand. Then the destination
PM for the first VM with highest resource demand is first searched using FF
algorithm, as the searching continues for the VM with second highest resource
demand, and so on. The asymptotic running time of FF is O(nlogn C nm),
where n is the total number of VMs and m denotes the total number of PMs.
Note that O(nlogn) is running time of sorting algorithm.

– Next Fit (NF)/Round Robin (RR): Like FF, NF also performs a sequential
search, except it starts from the last server selected in the previous placement
[39]. To explain more, if the last VM was placed in the second PM, then
checking will start from the second PM for the following VM placement, and
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so on [47], whereas in FF and FFD the checking would have always started
from the first PM for any VM. NF is also referred to as Round Robin (RR).
The asymptotic running time of NF is same as FF.

– Best Fit (BF): In BF, the PM with the minimum residual resource is selected
as its destination PM [46]. The residual resource of the PM is the difference
between the total resource capacity of that PM and the aggregated resource
demand of the hosted VMs in it along with the resource demand of the target
VM for which destination PM is under search. If PMs are first sorted based
on resource utilization ratio (6.1), then running time of BF would be identical
to that of FFD. However, if no sorting is applied, then the running time of BF
would be O(nm2).

– Best Fit Decreasing (BFD): VMs are first sorted in the decreasing order based
on their resource demand. Then the destination PM for the first VM with
highest resource demand is first searched using BF algorithm, as the searching
continues for the VM with second highest resource demand, and so on. The
asymptotic running time of BFD is same as FFD.

– Power Aware Best Fit Decreasing (PABFD): PABFD proposed by [33] is a
modified version of BFD, as the VMs are first sorted in decreasing order based
on their CPU demand and then the destination PM is selected with the least
power increase compare to all the suitable PMs which could host the target
VM. The asymptotic running time of PABFD is same as FFD.

RPS is most time efficient, but least optimal compare to rest of the above-
mentioned VM selection strategies from the perspective of energy-efficiency, since
it does not ensure to first choose a suitable PM from the set of currently turned on
PMs, so that unnecessary waking up of PMs which are currently in sleep state can
be avoided.

Unlike RPS, the similarity among all the above-mentioned heuristic-based
destination PM selection algorithms is that all these algorithms first attempt to select
a PM from one of the PMs which are already in turned on state, so that energy
consumption can be minimized. However, the difference exists in their selection
strategy to select a PM for a VM among all the existing turned on PMs. Although
RC first tries to select a PM from the existing turned on PMs, yet, because of its
random PM selection nature, it may cause sparse VM placement or VMs may be
found as more scattered compare to those of FF, FFD, BF, and BFD. Hence, for
many VMs, suitable PMs would not be found which would result in turning those
PMs on which were in sleep state or in switched off state. Consequently, energy
consumption would be higher for RC compare to rest of the heuristics.

The rationale of BF heuristic is that placing VMs on the PM with the least
remaining available resource would provide other turned on PMs with large
remaining available resources which can be used to support future larger VMs,
while this strategy would concomitantly increase the mean resource utilization ratio
of CDC, RCDC (6.2). Experimental results of [47] suggest that energy consumption
is the highest for RC, while it is lowest for BF and BFD, as BF and BFD packs the
VMs more tightly compare to RC, FF, and FFD.
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Difference between BFD and PABFD is that BFD will select the smallest PM
among all the suitable PMs for the first VM in terms of total resource capacity of
PMs and then consolidating more VMs into it, whereas PABFD will initially select
the most power-efficient PM among all the suitable PMs for the first VM and then
consolidating more VMs into it. PABFD focuses on utilizing power-efficient PMs
more which certainly has an impact on increasing the energy-efficiency of CDC. On
the contrary, BFD leads towards utilizing the smallest PMs first and leaving larger
PMs for future, while ignoring to ensure the usage of power-efficient PMs. With
the increased number of VMs, larger PMs have to be turned on eventually. Hence,
as opposed to BFD, since, PABFD ensures the more usage of power-efficient PMs,
therefore PABFD is more energy-efficient compare to BFD.

• Meta-heuristic: Greedy Heuristic algorithms may become stuck with local
minima or local maxima. Therefore, several meta-heuristic-based destination PM
selection algorithms have been proposed in the literature which are discussed in
the following:

– Evolutionary Algorithm: The general steps of evolutionary algorithm are as
follows:

At each step (generation), the algorithm starts working with a population
comprised of a range of solutions (members), while different evolutionary-
based VMC algorithms use different heuristics to generate the initial
solution.

Next, a few members are first selected, also called parents from the generation
to produce new solutions (children). Different evolutionary algorithms pro-
pose different methods to select parents from the population. One common
method to select parents is to check value(s) of objective function(s) for
each of the member and then select the members with higher values. The
optimization functions are called as Pareto set and the values of the Pareto
set achieved by the members are called as Pareto front [39]. For VMC, one
prevalent object function is to maximize the number of physical servers with
no VMs running in it or minimize the number of active physical servers.

In order to produce a new solution (child), different parts collected from
different parents are combined together. This technique is called mutation
which takes place with a certain probability. The objective of mutation is the
faster production of more optimized solutions.

Furthermore, after mutation, swapping or interchanging (crossover) among
different parts of a child takes place with a certain probability. The goal
of crossover is to complement the faster creation of new children that are
more optimized. In the context of VM placement or VMC, one widespread
crossover technique is to interchange the hosts between two VMs [39].

Through mutation and crossover, children are generated from parents which
are added in the population.

The entire process is repeated or more generations are run, until no improve-
ments are found from consecutive repetitions of the algorithm.
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Finally, a solution is chosen from the Pareto front based on an objective
function.

– Ant Colony Optimization (ACO): In ACO, a virtual ant selects a PM for a VM
through considering two factors: Heuristic and Pheromone. Ants can either
work sequentially or in parallel while constructing their own solutions. Each
ant can either follow its own heuristic or all the ants can follow a common
heuristic. The heuristic � is the key which guides to construct an optimal
solution in aligned with the optimization function. Based on the diverse
objective functions as presented in different ACO-based VM placement or
VMC algorithms, the proposed � varies from one ACO-based VM placement
or VMC to another. We have discussed about different heuristics previously.
One common � found in a number of ACO-based VM placement or VMC is
BFD [36]. Apart from �, the Pheromone plays a critical role in constructing an
ant’s solution which guides ants to find diverse solutions through exploring the
search space. One key distinguishing aspect which makes ACO meta-heuristic
different from heuristic-based algorithms is that some probability exists for an
ant to choose the PM which is not optimal from the perspective of heuristic
and thus stagnation into local minima or local maxima is avoided.

– Simulated Annealing: The authors of [35] have proposed a simulated anneal-
ing meta-heuristic-based VMC algorithm. In perturbation phase, instead of
randomly choosing source or destination PMs, solutions are generated by
selecting source PMs with lower utilization ratio and destination PMs with
neither very high utilization ratio nor very low utilization ratio. Thus, VMs
are consolidated in lesser number of active PMs. However, in order to avoid
stagnation in local minima or local maxima, exploration is adopted through
accepting solution that is even less optimal than the optimal solution found so
far.

The aim of VMC is to minimize the energy-efficiency, as VMC minimizes energy
consumption by placing more VMs in a single PM. The higher number of VMs
is placed in a single PM, the higher is the minimization of energy consumption
considering the energy spent after PMs. However, the higher number of VMs
is placed in a single PM, the higher is the probability of QoS degradation or
SLA violation. Hence, minimization of energy consumption and minimization of
SLA violation are two confronting goals. While most researchers have focused to
maintain a balance between minimization of PMs’ energy consumption and SLA
violation, some researchers have considered other aspects too, such as security,
energy consumption by network, network throughput, and so forth. In the following
section, classification of VMC algorithms based on their objectives has been
presented.
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6.4.5 Classification of DVMC Algorithms based on Different
Objectives

The different DVMC algorithms with diverse objectives as observed in the literature
are as follows:

• SLA Violation Aware: Since VMs share the underlying physical resources of their
hosting PM such as CPU, RAM, and network bandwidth, therefore, the waiting
time to receive the required resources for each VM increases with the increase of
number of VMs in a single PM. Besides, the services which the VM is providing
to its users’ needs to be suspended temporarily at the time of migrating that VM
from one PM to another PM. Hence, VMC causes SLA violation. Many VMC
algorithms focus to minimize such SLA violation by limiting the number of VM
migrations as well as minimize resource oversubscription and thus decrease SLA
violation. [24] is an example of SLA violation aware VMC algorithms.

• Security Aware: Cloud is a multi-tenant environment, where VMs of different
clients are hosted in same PM, while these VMs also share the underlying
physical resources. Hence, security is one of the major challenging aspects in
Cloud. In [28], the authors have proposed a security-based DVMC algorithm.

• Network Efficiency Aware: Such algorithms, for instance, [45] aim to uphold
the network efficiency through considering different network related aspects,
such as minimization of network energy consumption, and reduction of network
congestion. [45, 48] are examples of network efficiency aware VMC algorithm.

• Data Center Energy Aware: CDC is the physical backbone of any Cloud-based
services. One big challenging aspect of any data center is that an appropriate
temperature must be always maintained, as the challenge escalates with the
increase of the volume of data center along with the growth of number of
PMs, network devices, and so forth. Cooling of CDC is extremely crucial to
ensure the smooth and continuous functioning of PMs, routers, switches, and
so forth. However, energy spending after cooling of CDC is very high and such
energy requirement rises with the increase of quantity of VMs as well as with
the increase of VMs’ resource demand. Therefore, researchers have presented
VMC algorithms which consolidate VMs in such a way that energy spending
after cooling the data center can be minimized. [34] is an example of such VMC
algorithm which minimizes the energy related to data center cooling.

• Cache Contention Aware: Cache contention refers to the situation that a VM may
experience extra cache misses, as other VMs co-located on the same CPU fetch
their own data into the Lowest Level Cache (LLC), which forces to evict the
VM’s data from the LLC and later fetching back that VM’s data into the LLC
again causes cache misses to other co-located VMs. In order to minimize cache
misses due to VMC, [26] has proposed a cache contention aware VMC algorithm
that considers the expected cache misses at the time of destination PM selection
for a migrating VM.
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Until now, we have reviewed different types of VMC algorithms, as we have
highlighted the comparison with strengths and weakness of each of those tech-
niques. We have delineated the classification of VMC algorithms in Sects. 6.3 and
6.4. In order to present further details of contemporary VMC algorithms, we have
discussed about different aspects of recent VMC algorithms in the following section.

6.5 Detailed Analysis of Contemporary VMC Algorithms

Table 6.1 illustrates the most significant aspects of the notable recent research works
on VMC as found in the published materials. The description of the attributes which
are being considered to review the existing VMC algorithms is as follows:

• Research Project: Name of the reach project.
• Type of VMC: Whether the VMC is SVMC or DVMC.
• VMC Decision Process: If destination PM selection decision is taken centrally

(i.e., centralized) or a source PM itself chooses another destination PM where the
migrating VM will be placed (i.e., distributed).

• Resource Considered: Which resources (i.e., CPU, memory, network bandwidth,
and so forth) are considered in the VMC algorithm.

• Source PM Selection Strategy: What the source PM selection strategy is and
whether any threshold has been applied to select source PMs.

• VM Selection Criteria: What VM selection algorithm has been used.
• Application of Prediction Technique: Whether any prediction technique has been

incorporated in the proposed system to predict the future resource utilization of
PMs.

• Destination PM Selection Strategy: What algorithm has been used to select the
destination PM for the migrating VMs.

• Performance Evaluation Technique: What technique is used to evaluate the
performance of the proposed system.

• Objective: What are the aspects that the algorithm aims to optimize.

6.6 Conclusion and Future Directions

Although, CDC is the hardware backbone of Cloud-based services, all the under-
taken operations in CDC are originated and managed by the Cloud Orchestration
software [66], also known as CRMS. CRMS is the key enabler of all types of Cloud
centric services rendered towards CSUs. One major concern with CDC is that CDC
consumes humongous amount of energy. Energy consumption of CDC is impossible
to reduce, if this aspect is not carefully considered while designing the core modules
to fulfill the functionalities of CRMS. One of the core functionalities of CRMS
is dynamic load balancing. However, the authors of [67] proposed that energy-
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efficiency is rather possible through load unbalancing or workload concentration
while switching the idle nodes off, also known as VMC. Since then, researchers
have adopted VMC as a strategy to reduce energy consumption in their research
work and state-of-the-art VMC algorithms have been developed through following
the directions of past researches.

To the best of our knowledge, critical review on VMC algorithms is not available
in the existing literature. Hence, in this paper, we have critical reviewed multitude
of VMC algorithms with varied viewpoints, as we have also highlighted different
aspects of most contemporary VMC algorithms published in 2016 and onwards
which are not analyzed in any currently published surveys. Furthermore, we have
analyzed notable VMC algorithms published before 2016 which has provided
prominent research directions. The summary of our findings is as follows:

• Both SVMC and DVMC algorithms are crucial for energy-efficiency of CDC.
SVMC is the first step towards limiting the energy consumption, while DVMC
further minimizes the energy consumption while increasing the resource utiliza-
tion of CDC.

• Centralized DVMC algorithms have been found as more popular than distributed
DVMC algorithms. For P2P networks, distributed DVMC algorithms are useful.
Although, distributed DVMC algorithms are more robust and reliable in case
of hardware failure; however, it poses more network overhead compare to
centralized DVMC algorithms.

• In comparison with threshold-free approach, threshold-based approach is more
time efficient. However, since threshold-based approach limits the search space
by selecting PMs based on the threshold value, therefore stagnation in local
minima or local maxima may arise.

• One drawback of VMC is that SLA violation may arise because of aggressive
consolidation. Static threshold-based DVMC algorithms cannot control the SLA
violation. In contrast, adaptive threshold-based DVMC algorithms limits SLA
violation by prior migration VMs from potential overloaded PMs. However, in
terms of minimization of energy consumption, adaptive threshold-based DVMC
algorithm is less efficient and it causes more number of VM migrations.

• MMT is the most widely used VM selection strategy, as with the decrease of
migration time, service disruption time decreases which certainly lowers the SLA
violation.

• A wide range of prediction techniques have been proposed in the literature to
estimate the future resource demand of VMs as well as future resource utilization
of PMs, as predictive DVMC algorithms minimize SLA violation more than non-
predictive DVMC algorithms. However, predictive DVMC algorithms exert the
overhead of more VM migrations.

• Unlike meta-heuristic algorithms, greedy-based heuristic algorithms may
become stagnant in local minima or local maxima, yet these heuristic
algorithms provide acceptably sub-optimal solution in quick time. Among all
the meta-heuristics, evolutionary algorithms have appeared to be most popular.
Considering both heuristics and meta-heuristics, modified version of best fit
decreasing is found as most prevalent destination PM selection algorithm.
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From our extensive study, we have found the following potential research
openings which are yet to be explored:

• Adaptive threshold-based DVMC algorithms and predictive DVMC algorithms
minimize SLA violation by prior migration of VMs from those PMs which are
identified as potentially overloaded PMs. However, SLA violation is intrinsic
in VM migration, because of unavoidable temporary service halt at some point
of migration of a VM. Moreover, VM migration increases network traffic
and increases network energy consumption. Existing adaptive threshold-based
DVMC algorithms and predictive DVMC algorithms do not consider the over-
head of VM migration. To address this gap, incorporation of a balanced approach
is highly essential which limits VM migration and yet can manage an acceptable
SLA violation rate.

• The effectiveness of predictive DVMC algorithms hinges on the actual correla-
tion between past and future resource demand and the quality of adjustment with
a specific workload type. However, different VMs co-hosted in a single PM have
varied behavioral pattern in terms of resource demand. Thus, no single prediction
technique would fit for all PMs, whereas existing predictive DVMC algorithms
apply a common prediction techniques for all PMs. Furthermore, there is always
a possibility of inaccurate prediction because of potential mismatches between
past and present. Hence, there exists a research gap which is yet to be addressed.

• Apart from MMT, rest of the VM selection algorithms only consider CPU
demand of VMs and ignore the memory, network bandwidth, and disk I/O
requirement of VMs. However, as argued by the authors of [44], selecting a VM
only based on CPU will cause saturation in terms of CPU and can lead towards
no further improvement in utilization while leaving other types of resource
under-utilized. It is highly challenging to determine a single converging point
representing the equivalent total resource demand of multitude of resource types,
while different types of resources represent different dimensions.
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