
Chapter 34

A Framework forMeasuring the “Fit” Between
Product and Organizational Architectures
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Abstract This paper develops a framework for measuring the “fit” between prod-

uct and organizational architectures. The ability to measure “fit” in an objective and

systematic way is a necessary precursor to understanding the nature of the hidden

costs associated with design support tools that are becoming commonplace enablers

of complex system design. Specifically, these tools are enabled by significant

upfront decomposition – the problem is a priori broken up into a set of loosely

coupled tasks that can be worked in parallel, with interactions across tasks routin-

ized and often encoded in computational tools. When this imposed structure fits the

problem well, it can drastically speed up design cycles and enable

intraorganizational collaboration, by hiding extraneous information and freeing

up experts’ time to focus on the hardest parts. However, even minor mismatches

between the organizational decomposition (people and tasks) and product decom-

position (the problem being solved) can cause designers to miss important trades

and make poor choices. The proposed measurement framework builds on existing

measures from the organizational design literature and systems engineering litera-

ture. Our contribution lies in unifying the level of analysis of the two disciplines and

developing a novel strategy for tracking the interaction among the product and

organizational system. The utility of this approach for observing influences in real

systems is demonstrated with a “toy” case study example based on space system

development at the Jet Propulsion Laboratory.
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34.1 Introduction

As today’s engineered systems become increasingly complex, effective design

requires bringing diverse expertise and knowledge to bear on each design iteration,

in an expedient way. Faster design cycles and better cross-disciplinary integration

are enabled by the ever-increasing power of model-based approaches to concurrent

design (e.g., NASA’s Team X, EADS Astrium Satellite Design Office). However,

these advantages come at a cost, and that cost has not received enough attention.

Specifically, concurrent design and engineering is enabled by significant upfront

decomposition – the problem is a priori broken up into a set of loosely coupled tasks

that can be worked in parallel, with interactions across tasks routinized and often

encoded in computational tools. When this imposed structure fits the problem well,

it can drastically speed up design cycles by hiding extraneous information and

freeing up experts’ time to focus on the hardest parts. However, even minor mis-

matches between the organizational decomposition (people and tasks) and product

decomposition (the problem being solved) can cause designers to miss important

trades and make poor choices [1, 2]. As these design tools become more popular, it

is important to understand their scope of applicability and potential costs.

A critical precursor to understanding the impact of lack of “fit” on the design

process is an ability to empirically observe and measure the “fit” between the

imposed organizational architecture and the natural decomposition of the technical

system. In this paper, we take that first step, carefully defining what is meant by

“fit,” identifying its key dimensions, and proposing a framework for how it can be

measured. The concept of “fit” has previously been explored in the management

literature (as in the mirroring hypothesis; [3]) and in software engineering

(as Conway’s Law); however, we take the notion of matching much farther,

tracking the nature of organizational-product interactions that drive goodness of

fit. We illustrate (a) the need to adopt consistent levels in characterizing the

architectures of the organization and the product and (b) the challenges in observing

and tracking the interactions between them through application to an empirical

setting.

34.2 Related Literature

Decomposition of complex systems has been studied extensively from a variety of

perspectives. The most relevant streams are those that focus on the relationship

between the decomposition of a technical product and the decomposition of the

organization that designs or produces it.

Product Decomposition Technical products are decomposed because they are

complex. Complexity is often managed through task and product decomposition

[4, 5]. Specifically, since no individual can practically process the amount of

specialized knowledge required to design a complex integrated system,
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decomposition serves to break the problem into a set of (nearly) decoupled,

individually tractable modules [6–8]. Intelligently selected modules are tightly

coupled internally and loosely coupled to other modules in the system. This allows

work on individual modules to proceed independently and in parallel [8–10].

Organizational Decomposition. Organizations employ decomposition for similar

reasons: to manage complexity. If an individual is faced with more information than

(s)he can feasibly process, (s)he is no less able to make a decision than if (s)he had

too little. Tushman and Nadler [11] view an organization as an information

processing system. Hierarchical structures in organizations serve to compartmen-

talize where decisions need to be made. In these structures, information is “hidden”

inside business units, and only some information is flowed up the organization, to

limit the scope of information each unit must deal with.

“Fit” Between Product and Organizational Decompositions The literature also

addresses the relationship between product and organizational decompositions. The

core finding of this literature is the so-called mirroring hypothesis, which states

that: the structure of the organization that develops the technology (defined in terms

of, e.g., communication links, collocation, team, and firm co-membership) will

match the product architecture of the system under development [3, 6, 8]. Substan-

tial effort has gone into demonstrating the empirical validity of the hypothesis

[12]. An implication of the hypothesis is that successful design can occur when the

organization is less decomposed than the product, but not the other way around.

Level of Decomposition. All technical systems can be decomposed to some

degree at relatively low cost. For a given system, the precise level depends on the

inherent structure of the system [6, 13]. Beyond this point, systems can be actively

decomposed into progressively smaller subproblems by imposing design rules [8],

global explicit rules about how a system will operate. The idea is to define key

design parameters and guarantee that they will not change; this allows modules to

depend on design rules and not on each other. Design rules can take the form of

standards (e.g., 802.11b) or be embodied in interface control documents.

Impact of Decomposition on the Design Process While decomposition is neces-

sary, and ensures tractability of the design process, it also constrains the trajectory

of the design process in several ways. Because work happens within clearly defined

module boundaries, new insights are developed inside particular modules rather

than across them [14, 15]. In addition, the decomposition defines how coordination

happens across interdependent tasks [4, 11, 16]. Information is “hidden” within

modules and shared across them only when the need is clear, which may result in

missed opportunities for design trades. For all these reasons, the decomposition

influences the design process and the space of possible design solutions that can be

explored. When chosen well, decompositions can streamline the design process

substantially.

Costs of Over-Decomposing However, product and organizational decomposi-

tions are not always chosen well, and the costs of poor decomposition choices are
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not well understood. While volumes have been written about the value of modular

decomposition [8, 10, 17], its costs have only been discussed in a superficial way.

For example, costs of structural overhead associated with splitting were discussed

by Baldwin and Clark [8]. Ethiraj and Levinthal [1] find that under-decomposing

leads to limited search and suboptimal designs, while over-decomposing leads to

stalled improvement in design performance, but this is based on a simplified model

rather than empirical studies.

The cost of getting a decomposition “wrong,” in the sense that the product

decomposition does not “fit” the organizational decomposition, has not been exam-

ined explicitly, nor has this concept of “fit” been well articulated. Our survey of the

extant literature makes clear that the selection of a decomposition strongly influ-

ences the trajectory of the design process, so it is important to understand the

potential problems that could result: the costs of decomposition.

34.3 Approach

This paper describes an initial attempt to develop a framework for measuring the fit

between organizational and product architecture. We began by surveying the

literature to identify how each of the organizational design and product architec-

tures is represented in their respective literatures. We then assessed their mutual

consistency – could representations of organizational design be contrasted directly

with representations of product architectures? We built on concepts in both litera-

tures to develop a framework that enables clear description of the key elements of

both product and organizational architectures in the same “language,” so that the

representations could be directly compared.

We then applied these measures to an example from the domain of space system

design to both identify areas where additional resolution is required and also to

illustrate the kinds of insights that can be gained. This paper represents a first step

toward empirical investigation of the effects of mismatches between organizational

and product architectures. The framework will guide empirical data collection and

support the analysis of empirical results.

34.4 Diagnosing “Fit” Between Organizational
and Product Architecture

We next develop a screening tool to assess the quality of “fit” between an organi-

zation and its product architecture. While there are established frameworks for

characterizing and representing both the “design” of an organization and the

architecture of its product system, there is currently no common basis upon

which to measure “fit.” We build on existing approaches to develop an appropriate
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framework for (1) representing (i) the product architecture and (ii) the organiza-

tional decomposition, and (2) assessing the “fit” between them and screening for

potential issues. Each of these endeavors is described below. As a preliminary test

of the screening tool, we apply it to characterize a spacecraft development team.

34.4.1 Representing Architecture

A common way of representing the structure of a system is in a Design Structure

Matrix (DSM) [18, 19]. A DSM is an n� n matrix representation that lists variables

on both rows and columns; when an “X” appears in the matrix, it signifies that the

variable in its row requires an input from the variable in its column. A DSM is often

analyzed and rearranged in order to group together tightly coupled sets of variables

into modules. This is useful because these interconnected variables need to be

designed simultaneously, usually by an individual or team, while work on different

modules can proceed in parallel. The basic DSM structure has been used to

document interdependencies among product components or design tasks [19]. We

will use the basic DSM structure as a starting point to represent the architectures of

both the product being designed and the organization carrying out the design.

34.4.1.1 Product DSM

One DSM will represent the design problem as a product DSM. Product DSMs are

fairly standard and aim to capture the interdependencies among modules of the

technical system. These DSMs must represent two components. (1-p) The elements

of the DSM represent the standard product subsystems (in a spacecraft, e.g., sub-

systems would include thermal, configuration, power, etc.). (2-p) Many of the

subsystems are interdependent (e.g., if the collecting area of the instrument is

enlarged, there will be more data to process and downlink and the electronics will

require additional thermal regulation). These interdependencies are abstracted as

“Xs” in the off-diagonal cells of the DSM.

In the product DSM, more advanced representations also seek to distinguish

between local and global dependencies among subsystems. Here we specify two

special cases and discuss how they can be represented in a DSM. Traditional

interface control documents (ICDs) capture the predefined dependency between

two subsystems. For example, the definition of a VGA port guarantees that any

monitor can be interfaced with any personal computer or laptop. It allows design

decisions internal to each subsystem (i.e., those not affecting the interface) to be

made completely independently. Design rules, as coined by Baldwin and Clark [8],

explicitly define global dependencies that can be assumed for all subsystems. For

example, North American power outlets provide power at 60 Hz. The key differ-

ence between these two types of interdependencies lies the ability to change them.

While ICDs are intended to be fixed for the life of a project, if there’s a compelling
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reason to modify the standard, a change only needs to be agreed on by the two

subsystems affected. If, on the other hand, a change needs to be made that affects a

design rule, the effects would ripple through the whole system (and any past

systems that relied on that design rule).

In the DSM, the ICD-type dependency (3-p) is represented by replacing the “X”

with a “d” to indicate that the dependency has been fixed. A design rule-type

dependency (4-p) shows up as a separate element at the top left corner of the

DSM. Since it affects most of the other elements of the system, one would expect to

see a “d” in nearly all rows of that column. Figure 34.1 illustrates a notional product

DSM.

34.4.1.2 Organizational DSM

The second (separate) DSM will represent the structure of the organization doing

the work. While product-level task-based DSMs are fairly common and have been

used extensively to analyze project attributes like efficient work distribution and

ordering (e.g., [18]), the DSM construct has not been used to analyze “standing

organizations” (i.e., those designed to work on multiple distinct products that aren’t
known a priori) in any detail. This is the view of the organization taken in this

research.

For our purposes, the organizational DSM needs to include four critical

components.

(1-o) Similar to the pDSM, the elements of the oDSM represent the business units

or task owners in the organization. These tend to map to subsystems in the

physical system, but that is not always the case. For example, you would likely

have a propulsion team that maps to the propulsion subsystem, but you might

also have a quality assurance team that does not map directly to a single

subsystem. Where in the pDSM, the important distinction is among implicit

(2-p), local (3-p) and global (4-p) dependencies, in the oDSM, the important

distinction is between passive (routinized) and actively managed (human)

interdependencies.

Fig. 34.1 Notional pDSM
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(2-o) In the oDSM, the routinized aspects of organizational interdependencies are

captured with “Rs.” They can show up as off-diagonal “Rs,” but more often they

mirror the global design rule construct, with one subsystem automatically

depending on another through a central (often artificial) layer. As an example

of this kind of dependency, many organizations implement an IT backbone that

automatically updates each business unit when decisions or commitments made

in one unit impact another. For example, in situations where multiple groups

draw from a common inventory, when one draws that inventory down, it affects

what’s available to the other unit. It is important to note a distinction between the

“R” in the oDSM and the “D” in the pDSM: whereas a design rule “D” indicates

a static value, so that all subsystems can proceed with their own designs without

worrying that the interface with “D” will change, a routinized interdependency

“R” indicates that the existence of the relationship is static, not necessarily the

value passed within that relationship. Continuing the inventory example above,

the “R” dependency does not mean that business unit A can rely on a static

inventory level of, say, 4. It means that they can check their current allocation

through the IT backbone without talking to business unit B, even if their level

depends on B’s use.
(3-o) In the oDSM, we also need to capture the common case where interdepen-

dencies are handled and negotiated in real time, i.e., actively managed by

humans. These are represented as off-diagonal “Hs.” For example, many orga-

nizations use cross-disciplinary high-performance teams to dynamically

reallocate resources across business units and tasks. It can also happen less

formally between two business units. For example, on a technical project,

detailed design may have revealed that an assumed process won’t be feasible

in practice. This may affect requirements allocated to multiple subsystems, and

necessitate a reallocation of that resource.

(4-o) The last aspect of the organization that needs to be captured is the physical

layout of the organization or workspace, because it impacts the ease of coordi-

nating across interdependencies (Allen 1997). This involves considering the

collocation of particular aspects of work (e.g., in a multinational corporation,

which subunits share a facility in a particular location). These constraints can be

represented in the DSM as a fixed ordering of certain rows/columns, which

means that there are limited options for reordering the DSM (a core aspect of

traditional DSM analysis).

Figure 34.2 illustrates a notional oDSM. It takes the same general form as a

pDSM, but as noted above, some of the elements take on different meanings. For a

given product-organizational pair, the DSMs are often not the same size, since there

may be extra organizational units or single organizational units that are responsible

for more than one technical subsystem. Rows/columns may have a fixed ordering,

represented by the brackets to the right of the matrix.
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34.4.2 Assessing Fit

The next step is to measure the “fit” between the pDSM and the oDSM. As noted

above, previous attempts have been coarse and qualitative. For example,

MacCormack et al. [3] compare the software architectures of two similar products,

one developed by an open source team and the other by a traditional “closed”

organization. The study found that “fit” was important because the traditional

organization generated a product with a large interconnected core, while the open

team produced a product architecture with a comparatively small core and many

loosely coupled modules. Since our goal is to assess the impact of lack of fit, we

need a more granular and systematic representation.

34.4.2.1 Conceptual Basis: Problems to Be Identified

Before discussing the mechanics of how to measure “fit,” it is important to be clear

about the conceptual intent of the proposed framework. It needs to be able to

identify potential problems (which can then be further investigated) resulting

from a lack of “fit” between the pDSM and the oDSM. Extant theory on fit provides

some guidance on the types of problems we expect to find. In the following

paragraphs, we use this theory to develop a list of the types of problems the

framework must identify.

At the highest level, a good “fit” is defined as a perfect overlap between (a) the

elements in each DSM and (b) their respective feedback structure. Mismatches

occur when a technical element or feedback does not map to an organizational

counterpart or vice versa. While it is more problematic for a need for technical

feedback to exist where there is no organizational system to facilitate it, misplaced

institutional structures (e.g., a cross-functional team where no tradeoff needs to be

made) represent a wasteful overdesign. Therefore, the framework needs to be able

to directly compare the pDSM and oDSM in terms of their joint ability to handle

necessary feedback in the design process.

A structural mismatch does not necessarily indicate a problem. Evaluating the

potential impact of that mismatch requires some understanding of its potential

outcome. Prior research has highlighted several kinds of impacts that relate to

mismatches.

A
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D

E

B C D E

R

r H

r H

r H

r H

r r r r

Fig. 34.2 Notional oDSM
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First, it is known that routinizing information flow can have substantial advan-

tages in terms of process efficiency [2]. Since everything happens automatically,

the process tends to fade into the background and is unobservable except in terms of

the process artifact. This is great when the routinized structures fit the natural

communication flows of the product; however, even slight mismatches can cause

problems if the organization forgets that hidden processes were enabling smooth

operations, and fails to evolve [2]. An unaccounted-for divergence between the

product (which changes from, e.g., one project to the next) and the organization

(which stays the same) can lead to two types of problems in our framework:

• Problem type 1: Lack of institutional pathway where one is needed. Diagnosing

this issue requires two levels of analysis, elaborated upon below. First, in terms

of structural match between the pDSM and oDSM, this would involve an

off-diagonal X in the pDSM, matched by only an “r” in the oDSM or potentially

no structure at all. Second, the impact can be observed in terms of the “extra”

communication required to deal with the technical feedback in the unplanned

organizational location. This might be observed as pulling leads from several

subsystems into an emergency meeting to resolve an issue discovered late in the

process.

• Problem type 2: Overdesign (excess institutional pathways). Now instead of the

change in product leading to a lack of institutional pathway where one is needed,

an overdesign occurs where a legacy communication paths remains where it is

no longer needed. In the structural sense, this would show up as an oDSM “h”

with no counterpart in the pDSM. In terms of communication, one would

observe little or none in a location where a lot is expected (e.g., a standing

cross-functional team exists).

The product analog to the organizational routinization of information flow is

embodied in the concept of a predefined design rule. An important intent of a

product decomposition is to enable subtasks to be executed independently and/or in

parallel [6, 8]. This can add substantial process efficiencies, as long as the decom-

position is clean. Ethiraj and Levinthal [1] have shown that a poor decomposition –

one where the divisions do not match the natural structure of the system – can do

more harm than good. Technical issues don’t surface until late in the design process
or inefficient designs are chosen so that everyone can fit in their poorly allocated

requirements.

• Problem type 3: Poor decomposition (not accounting for a technical

interdependency). In this case, no structural mismatch between the pDSM and

oDSM would surface. The issue is that a technical feedback was not represented

in the pDSM when it needs to be. To identify a problem type 3 requires

observation of the in-process communications. Here, one would observe high

incidence of communication where none is expected (i.e., the pDSM is empty

and the oDSM is likely empty too (though that is not required)).

In considering levels of communication, it is important to recognize that not all

incidences of high communication are indicative of a problem. An important
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systems engineering function involves brokering in a structured way across

predefined interfaces. This is particularly important early in the design process.

Therefore, if a high level of communication is observed – especially if it happens

early – in a location where there is both a product feedback and an organizational

feedback, it is simply evidence of the organization working as it should. Our

framework enables the identification of these problems.

34.4.2.2 Generating a Structural Matching Matrix (mDSM)

The first step in assessing fit involves a direct comparison of the structural similar-

ities of pDSM and oDSM. To do this first requires that the pDSM and the oDSM be

matched in terms of size – accounting for the fact that some organizational elements

don’t have technical counterparts and that some organizational elements deal with

more than one technical subsystem. For the notional example above, this might look

like Fig. 34.3. Business units B and C are responsible for three technical subsystems

each, and business unit D is responsible for two. The assignment of pDSM elements

to oDSM elements should follow the actual assignment of work in the organization.

If any pDSM element has no mapping to the oDSM, it can be added as a

row/column in the oDSM; this would be a serious oversight on the organization’s
part and therefore is likely a rare occurrence in real organizations.

In order to create a matrix like Fig. 34.3, a second transformation may also be

required. Recall that the order of the oDSM rows/columns is often fixed, to

represent the collocation of some teams or personnel. Therefore, the pDSM may

require reordering in order to map to the oDSM structure. In our example, we

assume that the pDSM has already been reordered so that pDSM elements 2, 3, and

4 are all assigned to business unit B, etc. The difference between an optimized

pDSM (e.g., one in which above-diagonal interfaces are minimized) and the pDSM

required to match the oDSM is one measure of the cost of a decomposition. This

will be explored in future work.
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Fig. 34.3 Transformed oDSM
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With this transposition, the reordered pDSM can be “subtracted” from the

modified oDSM. We will record the difference (oDSM-pDSM) as follows. Our

example mDSM is shown in Fig. 34.4.

• 0 ¼ an element or feedback was present in both structures.

• Blank cell ¼ no elements were present in either structure.

• 1 ¼ an element or feedback was present in the oDSM but not the pDSM.

• �1 ¼ an element or feedback was present in the pDSM but not the oDSM.

34.4.2.3 Screening for Issues Using Information Flow (iDSM)

A mismatch among the pDSM and oDSM becomes an issue when communication

that should have happened does not happen, and an inefficient design and/or design

process results. Alternatively, an organization can be “overdesigned” to accommo-

date information flows that never materialize. Section 34.4.2.1 identified specific

types of problems that might occur. In terms of the framework, these situations can

be operationalized as follows:

• Problem type 1: Lack of institutional pathway where one is needed ¼ �1 AND

high level of information flow

• Problem type 2: Overdesign (excess institutional pathways) ¼ 1 AND limited

information flow

• Problem type 3: Poor decomposition¼ blank cell AND high level of information

flow

• Normal process ¼ 0 AND information flow

Clearly, a measure of information flow is needed to assess whether the mDSM

indicates that there are problems. We propose the use of a parallel matrix, termed an

iDSM, to track the intensity of information flow actually required during the design

process. The iDSM distinguishes intense from limited information flow in the
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Fig. 34.4 mDSM
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interaction among the matrix elements. If we superimpose the iDSM over the

mDSM, we can distinguish the problematic interfaces from those that are appro-

priately managed. Figure 34.5 provides an example. The iDSM provides the color

for the cells, while the value of the cell is taken from the mDSM. Cells in light gray

exhibit limited information flow, and cells in dark gray exhibit intense information

flow.

Problems can now be identified. Most of the dark gray cells are not problematic,

because they are appropriately managed by grouping tasks within business units or

by actively managed interfaces. However, there are several dark gray cells that

contain �1 entries. These indicate a lack of institutional pathways where one is

needed (problem type 1). There is also a dark gray cell that is blank, which indicates

a poor decomposition (problem type 3): the interdependency of these elements was

not recognized in the pDSM. Another set of problems is indicated by the white cells

that contain 1 entries: these may indicate overdesign (problem type 2), in which

institutional pathways exist where they are not needed. In most cases, these are the

result of organizational units managing more than one technical element, but not in

all cases; these latter are likely more problematic.

A second layer should be considered in assessing these results. Recall that the

ordering of the rows/columns indicates collocation, which eases communication. If

two teams are collocated, they may be able to create an actively managed interface

even if it was not planned for originally. The blue lines in Fig B outline a notional

border within which such “on the fly” active management is feasible: they include

entire business units (such as B1-B3) and rows/columns that are directly adjacent

(such as B3 and C1) on the assumption that these subteams are next to one another.

Under these conditions, a few additional problematic interfaces (C1-B3) may be

appropriately managed.

Fig. 34.5 iDSM overlaid

on mDSM
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34.5 Preliminary Validation of the Approach

For any screening tool to be useful, it must be implementable in a real-world

context. This generally means that (1) the constructs both have meaning in and

fully describe empirical settings and that (2) the required data is available or at least

collectable. Therefore, in this section, we first consider data needs for each of the

base DSMs (p, o, and i) and then apply the constructs in a very preliminary way to a

setting we hope to study further in the future.

34.5.1 Data Inputs

The information needed to produce the pDSM is generally well documented in most

organizations. It can therefore be constructed based on source documents such as

blueprints, architecture drawings, or more generally design documentation. For

example, Suh et al. did this for Xerox machines [20].

The same is generally true for oDSMs. The bulk of the information needed to

construct an oDSM will be stored in documents like organization charts that define

business unit leads or cognizant engineers (CogEs) or similar. Since the standing up

of high-performance teams or the use of liaisons between groups can be somewhat

ephemeral, it may be harder to find explicit documentation.

Where the pDSM and oDSM can be reconstructed from archival documents, the

iDSM is more difficult because information flow is not generally captured in such

documents. Instead, information flow is revealed by the meetings, emails, and other

communication that occurs over the course of the project. There is a lot of

communication that is internal to a business unit (e.g., unit B may lead subsystems

3–5 which strongly influence each other). To limit the scope of required data

collection, we will intentionally focus on across-unit communication, because

this is where mismatches tend to be most relevant.

Since this type of data is rarely documented, it must be gathered by observing the

progression of a project. The specific content of the information will be project

dependent – a large scale project will have a sequence of formal reviews and

associated structured technical interchanges, where a conceptual design effort

may be limited to a few team “huddles.” Level of information flow is therefore a

relative concept. For our present purposes, a simple categorization of information

flow as “high” or “low” is sufficient. In the future, it may be important to track

information flow over time. As noted above, high levels of flow late in the process

can be important. It will also be interesting to record when information flow

actually impacts the design. These issues will be recorded but not used at this

stage of the framework development.
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34.5.2 A Preliminary Test of the Tool

As an initial test of this framework, we have identified a suitable empirical setting to

exercise it. JPL’s Team X is widely considered an exemplary concurrent engineer-

ing team, and they have completed more than a thousand studies since 1994

[21]. Their success led to requests to use their services for a wider variety of design

problems, including orbiters, landers, and rovers. While the mission type varies, the

fundamental structure of Team X changes very little from study to study. As a

result, we can observe the design process across studies with varying fit between the

organizational and product architectures.

Team X consists of a set of subject matter experts (SMEs) covering the main

subsystems required for spacecraft design, and a set of tools and facilities to support

their work. The main facility is a room with workstations for each subsystem; each

workstation has a set of Excel spreadsheets that capture the evolving design of the

subsystem, and each sheet includes links that push and pull parameters from other

subsystems. The spreadsheets function as models of the subsystem, and include

assumptions about the relationships among parameters. For example, a spreadsheet

might include an assumption that the mass of the spacecraft bus is proportional by

some factor to the mass of the payload. The spreadsheets are designed by the

subject matter experts based on best practices in subsystem design and data from

past missions. Team X typically conducts three-day design studies that end with a

feasible “point design” for a spacecraft. In other words, the team begins with a set of

customer requirements (such as a mass limit, cost cap, pointing requirements, etc.)

and a basic architecture (such as an orbiter or a lander), and designs a spacecraft that

meets these requirements.

Going forward we intend to use the screening tool to study the impact of

different levels of mismatches between Team X’s organizational and product

architectures. In this initial study, we have a more modest goal. Table below uses

the Team X context to verify that our tool’s constructs have meaning and describe

the setting in a useful way.

From the table we can already see how the tool will allow us to quickly hone in

on potential problem areas that merit additional follow-up. For example, the Team

X facilitator plays an explicit brokering role to resolve issues across subsystems.

Therefore, we need to be able to distinguish high communication led by a facilitator

from a similarly high level of communication led by a technical SME. In the first

case, the high communication is normal whereas the second case is indicative of a

problem wherein a technical SME might be forced to fill the same brokering

function due to a mismatch. Layering the iDSM constructs on the mDSM

(oDSM-pDSM) will let distinguish these cases as intended.

In future work, we intend to refine the framework through observation of a pilot

study, then use it to examine the issues discussed in this paper.
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DSM Construct Generic meaning

Examples from application to

team X

Information

source

pDSM Rows &

columns

Elements of product Technical spacecraft subsys-

tems (e.g., power, thermal,

data handling)

Design

documents

Off-diag-

onal “X”

Physical

interdependency, not

governed by

pre-established rule

Dependency between two sub-

systems (e.g., larger collecting

area drives larger downlink

needs)

Design docu-

ments and

spreadsheet

assumptions

Off-diag-

onal “d”

Defined interface

between two

subsystems

Parameter value fixed between

two subsystems (e.g., instru-

ment agrees to s/c connector)

Design

documents

“D” as a

module

Global design rule

fixed for relevant

subsystems

Parameter value fixed for

whole system (e.g., 5 V power)

Design

documents

oDSM Rows &

columns

Units within the

organization

Represented by a “chair”

where a technical SME sits

(e.g., systems engineer).

Room layout

and team

staffing

“R” as a

module

Routinized (static)

relationships

between units or

among all units

Technical spreadsheets govern

routinized interactions (e.g.,

when subsystem enters band-

width, it impacts mass roll-up)

Spreadsheet tool

Off-diag-

onal “H”

Actively managed

(by a human) depen-

dencies between

units

The study facilitator calls

scheduled check-ins where

system level trades are made.

Informal collaborations also

crop up.

Planned discus-

sions from

schedule. Infor-

mal huddles.

Brackets Defined geographi-

cal spacing of units

Instrument team often seques-

tered to separate room. Chairs

in fixed locations, intended to

bring closely collaborating

SMEs closer together.

Room layout

and team

staffing

iDSM Light

gray

shading

Low information

flow

The deputy systems engineer

periodically checks in with

SMEs slow to populate the

spreadsheet, to get a sense of

their progress

Observation of

design work

Dark

gray

shading

High information

flow

The facilitator called an

unscheduled meeting between

three subsystems when it

became clear that the design

might not close.

Observation of

design work
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34.6 Conclusion

In this paper, we set out to develop a framework to assess the “fit” between

organizational and product architectures. We built on existing constructs in the

literature to generate comparable organizational and product DSMs. Our modest

contribution in that context is a formal framework for capturing feedback (in the

pDSM) and feedback management (in the oDSM) at a constant level of analysis

suitable for cross-comparison. The main contribution is in moving beyond the

established notion of structural similarity to consider how structural mismatches

actually create problems. By layering observed information flows (iDSM) on the

matching matrix (oDSM-pDSM), we are able to quickly identify potential problem

areas – where, for example, the institutional feedback mechanism is insufficient to

handle necessary product feedback. As a preliminary validation of the utility of the

tool, we applied it JPL’s Team X. In future work, we intend to use that setting to

further probe the implications of the identified mismatches.
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