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Abstract. The input for the Geometric Coverage problem consists
of a pair Σ = (P,R), where P is a set of points in Rd and R is a set
of subsets of P defined by the intersection of P with some geometric
objects in Rd. These coverage problems form special instances of the
Set Cover problem which is notoriously hard in several paradigms
including approximation and parameterized complexity. Motivated by
what are called choice problems in geometry, we consider a variation of the
Geometric Coverage problem where there are conflicts on the covering
objects that precludes some objects from being part of the solution if
some others are in the solution.
As our first contribution, we propose two natural models in which the
conflict relations are given: (a) by a graph on the covering objects, and
(b) by a representable matroid on the covering objects. We consider the
parameterized complexity of the problem based on the structure of the
conflict relation. Our main result is that as long as the conflict graph has
bounded arboricity (that includes all the families of intersection graphs
of low density objects in low dimensional Euclidean space), there is a
parameterized reduction to the problem without conflicts on the covering
objects. This is achieved through a randomization-derandomization trick.
As a consequence, we have the following results when the conflict graph
has bounded arboricity.
– If the Geometric Coverage problem is fixed parameter tractable
(FPT), then so is the conflict free version.

– If theGeometric Coverage problem admits a factor α-approximation,
then the conflict free version admits a factor α-approximation algo-
rithm running in FPT time.

As a corollary to our main result we get a plethora of approximation
algorithms running in FPT time. Our other results include an FPT algo-
rithm and a W[1]-hardness proof for the conflict-free version of Covering
Points by Intervals. The FPT algorithm is for the case when the con-
flicts are given by a representable matroid, and the W[1]-hardness result

� Supported by Parameterized Approximation, ERC Starting Grant 306992, and
Rigorous Theory of Preprocessing, ERC Advanced Investigator Grant 267959.

© Springer International Publishing AG 2017
F. Ellen et al. (Eds.): WADS 2017, LNCS 10389, pp. 61–72, 2017.
DOI: 10.1007/978-3-319-62127-2_6

61



is for all the families of conflict graphs for which the Independent Set
problem is W[1]-hard.

1 Introduction, Motivation, Model and Our Results

There are many real life geometric covering problems, for which there exist
additional constrains that need to be enforced. In this paper, we attempt to
address these problems and hope that this will initiate a new line of research
directed at bridging the gap between theory and practice.

To define our model of covering with conflicts, we start by defining the classic
covering problem. The input to a covering problem consists of a universe U of size
n, a family F of size m of subsets of U and a positive integer k. Our objective is
to check whether there exists a subfamily F ′ ⊆ F of size at most k satisfying
some desired properties. If F ′ is required to contain all the elements of U , then
it corresponds to the classical Set Cover problem and F ′ is called a set cover.
The Set Cover problem is part of Karp’s 21 NP-complete problems [11].

We begin the development with a conflict free problem already studied,
Conflict Free Interval Covering, introduced in [1,2,3]. Let P be a set of
points on the x-axis, and let I = {I1, . . . , Im} be a set of intervals on the x-axis.
Furthermore, let C = {C1, C2, . . . , C�} denote a set of color classes, where each
color class Ci consists of a pair of intervals from I. Moreover, for any pair of
integers i, j (1 ≤ i < j ≤ �), Ci ∩ Cj = ∅. We term C a matching family. For a
set of intervals Q ⊆ I, Q is conflict free if Q contains at most one interval from
each color class, i.e. ∀1≤i≤�|Q ∩ Ci| ≤ 1. Finally, for an interval I = [a, b] and a
point c on x-axis, we say I covers p if and only if a ≤ c ≤ b. Now we are ready to
define the problem formally.

Rainbow Covering
Input: A set of points P on the x-axis, a set of intervals I = {I1, . . . , Im} on
the x-axis and a matching family C = {C1, C2, . . . , C�}.
Question: Does there exist a conflict free subset Q of intervals which covers
all the points in P?

Our first goal is to define a model in which we can express much more
generalized version of conflicts beyond the matching family of conflict graphs.

To define our model we revisit Set Cover, as the model is best defined in
the most general setting. Recall that the input to a Set Cover consists of a
universe U of size n, a family F of subsets of U of size m. A natural way to
model conflict is by using graphs. Formally stated, we have a graph CGF , on the
vertex set F and there is an edge between two sets Fi, Fj ∈ F if Fi and Fj are in
conflict. We call CGF a conflict graph. Observe that in the Rainbow Covering
problem, the family C would corresponds to CGC with degree at most one. That
is, edges of CGC form a matching. And the question of finding a conflict free
subset Q of intervals covering all the points in P becomes a problem of finding a
set Q of intervals that covers all the points in P and CGC [Q] is an independent
set. The set cover F ′ such that CGF [F ′] is an independent set will be called
conflict free set cover.
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Our Contributions. In this paper we study the following problems in “geo-
metric settings” in the realm of Parameterized Complexity.

Graphical Conflict Free Set Cover (Graphical CF-SC)
Input: A universe U of size n, a family F of size m of subsets of U , a conflict
graph CGF and a positive integer k.
Parameter: k
Question: Does there exist a set cover F ′ ⊆ F of size at most k such that
CGF [F ′] is an independent set?

Let (A,B)-Set Cover denote a restriction of Set Cover, where every
instance (U,F , k) of Set Cover satisfies the property that U ⊆ A and F ⊆ B.
For example in this setting, Covering Points by Intervals corresponds to
(A,B)-Set Cover where A is the set of points on x-axis and B is the set of
intervals on x-axis. Given (A,B)-Set Cover, the corresponding Graphical
CF-SC corresponds to (A,B)-Graphical CF-SC

Observe that Graphical CF-SC becomes Set Cover if CGF is an indepen-
dent set. As the general Set Cover is hard in the parameterized framework, to
design an FPT algorithm for Graphical CF-SC, it is important that the base
Set Cover problem is FPT. This restricts us to (A,B)-Set Cover which are
either FPT or polynomial time solvable. If we are seeking FPT approximation
algorithms then we can also restrict ourselves to (A,B)-Set Cover which has
either polynomial time approximation scheme (PTAS), constant factor approxi-
mation algorithm or FPT approximation algorithms, even if the problem is not
in FPT. For example (A,B)-Set Cover, where A is set of points in R2 and B is
a set of unit discs in R2 is known to be W[1] hard [14] but admits a PTAS [10].
We will call (A,B)-Set Cover tractable if it admits one of the following: a
polynomial time algorithm, an FPT algorithm, an (E)PTAS, a constant factor
approximation algorithm, an FPT approximation algorithm.

The next natural question is if we restrict ourselves to tractable (A,B)-Set
Cover, can an arbitrary conflict graph CGF yield tractable algorithms for the
conflict-free versions of (A,B)-Set Cover? To formalize this question, let G
denote a family of graphs. Then, the question is for which family of graphs G, does
(A,B)-Graphical CF-SC admit an FPT algorithm or an FPT approximation
algorithm when CGF belongs to G. For example, if G is the family of cliques,
then even Graphical CF-SC trivially becomes polynomial time solvable when
CGF belongs to this family of cliques.

A problem that will be central to our study is the following. Let P and I
denote a set of points and a set of intervals on the x-axis, respectively.

(P,I )-Graphical CF-SC Parameter: k
Input: A set of points P ⊆ P, a set of intervals I = {I1, . . . , Im} ⊆ I , a
conflict graph CGI and a positive integer k.
Question: Does there exist a conflict free set cover of size at most k?

In (P,I )-Graphical CF-SC, when CGI belongs to the family of matchings
then the problem becomes Parameterized Rainbow Covering. This problem
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was studied in [1] and shown to be NP-complete. In fact, even if we do not care
about the size of the conflict free set cover we seek, just the decision version of a
conflict free set cover set is the same as Rainbow Covering, which is known to
be NP-complete. Thus, seeking a conflict free set cover can transform a problem
from being tractable to intractable.

In order to restrict the family of graphs to which a conflict graph belongs, we
need to define the notion of arboricity. The arboricity of an undirected graph is the
minimum number of forests into which its edges can be partitioned. A graph G is
said to have arboricity d if the edges of G can be partitioned into at most d forests.
Let Gd denote the family of graphs of arboricity d. This family includes the family
of intersection graphs of low density objects in low dimensional Euclidean space
as explained in [8,9]. Specifically, this includes planar graphs, graphs excluding a
fixed graph as a minor, graphs of bounded expansion, and graphs of bounded
degeneracy. Har-Peled and Quanrud [8,9] showed that low-density geometric
objects form a subclass of the class of graphs that have polynomial expansion,
which in turn, is contained in the class of graphs of bounded arboricity. Thus,
our restriction of the family of conflict graphs to a family of graphs of bounded
arboricity covers a large class of low-density geometric objects.

Theorem 1. Let (A,B)-Set Cover be tractable and let Gd be the family of
graphs of arboricity d. Then, the corresponding (A,B)-Graphical CF-SC is
also tractable if CGF belongs to Gd. In particular we obtain following results
when CGF belongs to Gd:

– If (A,B)-Set Cover admits an FPT algorithm with running time τ(k)·nO(1),
then (A,B)-Graphical CF-SC admits an FPT algorithm with running time
2O(dk) · τ(k) · nO(1).

– If (A,B)-Set Cover admits a factor α-approximation running in time
nO(1) then (A,B)-Graphical CF-SC admits a factor α-FPT-approximation
algorithm running in time 2O(dk) · nO(1).

The proof of Theorem 1 is essentially a black-box reduction to the non-conflict
version of the problem. Thus, Theorem 1 covers a number of conflict-free version of
many fundamental geometric coverage problems as illustrated in Table 1. In light
of Theorem 1, it is natural to ask whether or not, these problems admit polynomial
time approximation algorithms. Unfortunately, we cannot expect these problems
to admit even a factor o(n)-approximation algorithm. This is because for most
of these problems even deciding whether there exists a conflict free solution, with
no restriction on the size of the solution, is NP-complete (for example Rainbow
Covering is NP-complete [1]). Thus, having an o(n)-approximation algorithm
would imply a polynomial time algorithm for the decision version of the problem,
which we do not expect unless P=NP. Hence, the best we can expect for the
(A,B)-Graphical CF-SC problems is an FPT-approximation algorithm, as for
many of them we can neither have an FPT algorithm, nor a polynomial time
approximation algorithm.

We complement our algorithmic findings by a hardness reduction. Let G
denote a family of graphs. Let G -Independent Set be the problem where the
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(R2,A)-SC Complexity of Complexity of
(R2,A)-SC (R2,A)-Graphical CF-SC

Disks/pseudo-disks PTAS α-FPT approx., ∀α > 1

Fat triangles of same size O(1) O(1)-FPT approx.

Fat objects in R2 O(log∗ OPT) O(log∗ OPT)-FPT approx.

O(1) density objects in R2 PTAS α-FPT approx., ∀α > 1

Objects with polylog density QPTAS 2O(k)nO(log∗ n) time approx.,
∀α > 1

Objects with density O(1) in Rd PTAS α-FPT approx., ∀α > 1

(A,B)-Set Cover where every in-
stance (U,F) has VC dimension d

O(d log(dOPT)) O(d log(dOPT))-FPT ap-
prox.

Point Guard Art Gallery O(logOPT) O(logOPT)-FPT approx.

Terrain Guarding PTAS α-FPT approx., ∀α > 1

(P,I )-Set Cover Polynomial Time 2O(dk) ·nO(1)-FPT algorithm

Table 1. Corollaries of Theorem 1. Here (R2,A)-Set Cover ((R2,A)-SC) is a geometric
set cover problem where R2 is a set of points in the plane and the covering objects are
specified in the first column. The conflict graph for all the problems is Gd, family of
graphs of arboricity d, for some constant d. For the definitions of density and fatness
we refer to [8]. The entries in the second column give the approximation ratio of the
(R2,A)-SC problem based on Theorem 1.

input is a graph G ∈ G and a positive integer k, and the objective is to decide
whether there is a set S of size at least k such that G[S] is an independent set.

Theorem 2. Let G denote a family of graphs such that G -Independent Set
is W[1]-hard. If CGI belongs to G , then (P,I )-Graphical CF-SC does not
admit an FPT algorithm, unless FPT =W[1].

The proof of Theorem 2 is a Turing reduction based on (n, k)-perfect hash
families [16] that takes time 2O(k) · nO(1). In fact, for any fixed A and B, one
should be able to follow this proof and show W[1]-hardness for (A,B)-Graphical
CF-SC, where CGF belongs to a graph family G for which G -Independent
Set is W[1]-hard. Due to paucity of space the proof of Theorem 2 is deferred to
the full version of the paper.

Theorem 1 captures those families of conflict graphs that are “everywhere
sparse”. However, the (A,B)-Graphical CF-SC problem is also tractable if the
conflict graphs belong to the family of cliques. When the conflict graph belongs to
a “dense family” of graphs, we design a general theorem using matroid machinery.

Let (U,F , k) be an instance of Set Cover. In the matroidal model of
representing conflicts, we are given a matroid M = (E,J ), where the ground set
E = F , and J is a family of subsets of F satisfying all the three properties of a
matroid. In this paper we assume that M = (E,J ) is a linear or representable
matroid, and the corresponding linear representation is given as part of the input.
In the Rainbow Covering problem, let Q denote the family of conflict free
subsets of intervals in I. One can define a partition matroid on F such that
J = Q. Thus, the question of finding a conflict free subset of intervals covering all
the points in P becomes a problem of finding an independent set in J that covers
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all the points in P . The Matroidal Conflict Free Set Cover problem
(Matroidal CF-SC, in short) is defined similarly to Graphical CF-SC. In
particular, the input consists of a linear matroid M = (F ,J ) over the ground
set F such that the set cover F ′ ∈ J .

Theorem 3. (P,I )-Matroidal CF-SC is FPT for all representable matroids
M = (I,J ) defined over I. In fact, given a linear representation, the algorithm
runs in time 2ωk · (n+m)O(1). Here, ω is the exponent in the running time of
matrix multiplication.

A graph is called a cluster graph, if all its connected components are cliques.
Since cluster graphs can be captured by partition matroids, Theorem 3 implies
that (P,I )-Matroidal CF-SC is FPT if CGF is a cluster graph.

Notations. For t ∈ N, we use [t] as a shorthand for {1, 2, . . . , t}. A family of sets
A is called a p-family, if the cardinality of all the sets in A is p. Given two families
of sets A and B, we define A•B = {X ∪Y | X ∈ A and Y ∈ B and X ∩Y = ∅}.
Given a graph G, V (G) and E(G) denote its vertex-set and edge-set, respectively.
We borrow notations from the book of Diestel [5] for graph-related notations.

2 FPT Algorithms

In this section we prove Theorems 1 and Theorem 3. The Proof of Theorem 1 is
based on a randomization scheme while the proof of Theorem 3 uses the idea of
efficient computation of representative families [6].

2.1 FPT Algorithms for Graphical CF-SC

Our algorithm for Theorem 1 is essentially a randomized reduction from (A,B)-
Graphical CF-SC to (A,B)-Set Cover, when the conflict graph has bounded
arboricity. Towards this, we start with a forest decomposition of graphs of
bounded arboricity and then apply a randomized process to obtain an instance
of (A,B)-Set Cover. However, to design a deterministic algorithm we use the
construction of universal sets. For this, we will exploit the following definition
and theorem.

Definition 1 ([16]).An (n, t)-universal set F is a set of functions from {1, . . . , n}
to {0, 1}, such that for every subset S ⊆ {1, . . . , n}, |S| = t, the set F |S =
{f |S | f ∈ F} is equal to the set 2S of all the functions from S to {0, 1}.

Theorem 4 ([16]). There is a deterministic algorithm with O(2ttO(log t)n log n)
run time that constructs an (n, t)-universal set F such that |F | = 2ttO(log t) log n.

Now we are ready to give the proof of Theorem 14

Proof (Proof of Theorem 1). Let (U,F , CGF , k) be an instance of (A,B)-
Graphical CF-SC, where CGF belongs to Gd. Our algorithm has the following
phases.

4 The idea used in the proof of Theorem 1 is inspired by a proof used in [13].
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Decomposing CGF into Forests. We apply the known polynomial time
algorithm [7] to decompose the graph CGF into T1, . . . , Td where Ti is a forest

in CGF and
⋃d

i=1 E(Ti) = E(CGF ). Let vroot be a special vertex such that vroot
does not belong to V (CGF ) = F . Now for every Ti, and for every connected
component of Ti, we pick an arbitrary vertex and connect it to vroot. Now if
we look at the tree induced on V (Ti) ∪ {vroot} then it is connected and we will
denote this tree by T ′

i . Furthermore, we will treat each T ′
i as a tree rooted at

vroot. This automatically defines parent-child relationship among the vertices of
T ′
i . This completes the partitioning of the edge set of CGF into forests.

Step 1: Randomized event and probability of success. Independently
color the vertices of CGF into blue and green uniformly at random. That is, we
color the vertices of CGF blue and green with probability 1

2 . Furthermore, we
color {vroot} to blue. Let F ′ be a conflict free set cover of size at most k. We
consider the following event to be good.

Every vertex in F ′ is colored green and every parent of every vertex in
F ′ in every tree T ′

i is colored blue.

Let Sparent denote the set of parents of every vertex in F ′ in every tree T ′
i . Since,

we have at most d trees and the size of F ′ is upper bounded by k we have that
|Sparent| ≤ kd. We say that F ′ (Sparent) is green (blue) to mean that every vertex
in F ′ (Sparent) is colored green (blue). Thus,

Pr[good event happens] = Pr[F ′ is green ∧ Sparent is blue]

= Pr[F ′ is green]× Pr[Sparent is blue] ≥
1

2k(d+1)
.

The second equality follows from the following fact. The set F ′ is an independent
set in CGF and Sparent ⊆ NCGF (F ′) ∪ {vroot}. Thus, these sets are pairwise
disjoint and hence the events F ′ is colored green and Sparent is colored blue are
independent.

Step 2: A cleaning process. Let p = 1
2kd . Now we apply a cleaning procedure

so that we get a set Z such that CGF [Z] is an independent set in CGF and it
contains F ′. Let B denote the set of vertices that have been colored blue. We start
by deleting every vertex in B. Now for every edge (f1, f2) in CGF [V (CGF ) \B],
we do as follows. We know that (f1, f2) belongs to some tree T ′

i and thus either
f1 is a child of f2 or vice-versa. If f1 is a child then we delete f1, otherwise
we delete f2. Let the resulting set of vertices be Z. By construction Z is an
independent set in CGF . Next we show that F ′ ⊆ Z with probability p/2k.
Clearly, with probability 1

2k
we know that no vertex of F ′ is colored blue and

thus with probability 1
2k

we know that F ′ ⊆ V (CGF ) \ B. Observe that with
probability p, we have that all the parents of F ′ in any tree T ′

i have been colored
blue. Thus, a vertex x ∈ V (CGF ) \ B, colored green, can not belong to F ′, if it
is a child of some vertex in some tree T ′

i after deleting the vertices of B. This
is the reason when we delete a vertex from an edge (f1, f2), we delete the one
which is a child in some tree T ′

i . Thus, by deleting a vertex that is a child in
an edge (f1, f2), we do not delete any vertex from F ′. This implies that with
probability 1

2k(d+1) , we have that F ′ ⊆ Z. This completes the proof.
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Solving the problem. Let Q be a parameterized algorithm for (A,B)-Set
Cover running in time τ(k) · nO(1). Recall that (U,F , CGF , k) is an instance of
(A,B)-Graphical CF-SC. Now to test whether there exists a conflict free set
cover F ′ of size at most k, we run Q on (U,Z, k). If the algorithm return Yes,
we return the same for (A,B)-Graphical CF-SC. Else, we repeat the process
by randomly finding another Z∗ by following Steps 1 and 2 and then running
the algorithm Q on the instance (U,Z∗, k) and returning the answer accordingly.
We repeat the process 2k(d+1) time. If we fail to detect whether (U,F , k, CGF )
is a Yes instance of (A,B)-Graphical CF-SC in 2k(d+1) rounds, then we return
that the given instance is a No instance. Thus, if (U,F , k, CGF ) is No instance of
(A,B)-Graphical CF-SC, then we always return No. However, if (U,F , k, CGF )
is a Yes instance of (A,B)-Graphical CF-SC then there exists a set F ′, that is
a conflict free set cover of size at most k. The probability that we will not find a

set Z containing F ′ in q = 2k(d+1) rounds is upper bounded by
(
1− 1

q

)q

≤ 1
e .

Thus, the probability that we will find a set Z containing F ′ in q rounds is at
least 1− 1

e ≥ 1
2 . Thus, if the given instance is a Yes instance then the algorithm

succeeds with probability at least 1
2 . The running time of the algorithm is upper

bounded by τ(k) · 2k(d+1) · nO(1).

Derandomizing the algorithm. Now to design our deterministic algorithm
all we will need to do is to replace the randomized coloring function with
a deterministic coloring function that colors the vertices in F ′ green and all
the vertices in Sparent to blue. To design such a coloring function we set t =
k(d + 1), and use Theorem 4 to construct an (n, t)-universal set F such that
|F | = 2ttO(log(t)) log n. The algorithm to construct F takes O(2ttO(log(t))n log n).
Finally, to derandomize our algorithm, rather than randomly coloring vertices
with {blue, green}, we go through each function f in the family F and view the
vertices that have assigned 0 as blue and others as green. By the properties of
(n, t)-universal set we know that there exists a function f that correctly colors the
vertices in F ′ with 1 and every vertex in Sparent with 0. Thus, the set Zf we will
obtain by applying Step 2 will contain the set F ′. After this the correctness of the
algorithm follows from the correctness of the algorithm Q. Thus, the running time
of the algorithm is upper bounded by τ(k) · |F | ·nO(1) = τ(k) ·2k(d+1)+o(kd) ·nO(1).
This completes the proof of the first part.

Let S be a factor α-approximation algorithm for (A,B)-Set Cover running
in time nO(1). To obtain the desired FPT approximation algorithm with factor α,
we do as follows. We only give the deterministic version of the algorithm based on
the uses of universal sets. As before, let (U,F , CGF , k) be an instance of (A,B)-
Graphical CF-SC, where CGF , belongs to Gd. We again set t = k(d+1), and use
Theorem 4 to construct an (n, t)-universal set F such that |F | = 2ttO(log(t)) log n.
The algorithm to construct F takes O(2ttO(log(t))n log n). We go through each
function f in the family F and view the vertices that have been assigned 0 as
blue and others as green. If there exists a conflict free set cover F ′ of size at
most k, then by the properties of (n, t)-universal set we know that there exists
a function f that correctly color the vertices in F ′ with 1 and every vertex in
Sparent with 0. Thus, the set Zf we will obtain by applying Step 2, will contain
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the set F ′. Thus, to design the approximation algorithm, for every f ∈ F , we
first construct Zf . And for each such Zf we run S on (U,Zf , k). This could
either return that there is No solution, or returns a solution F ′ which is a factor
α-approximation to the instance (U,Zf , k). If for some f ∈ F , S returns F ′

of size at most αk when run on (U,Zf , k) then the algorithm returns F ′. In all
other cases the algorithm returns that the given instance is a No instance. The
correctness of the algorithm follows from the properties of universal sets and
the correctness of the algorithm S . The running time of the algorithm is upper
bounded by: |F | × Running time of S = 2k(d+1)+o(kd) · nO(1). This completes
the proof. ��

2.2 FPT Algorithm for (P,I )-Matroidal CF-SC

In this section we will design an FPT algorithm proving Theorem 3. Towards that
we need to define some basic notions related to representative families and results
regarding their fast and efficient computation. For definitions related to matroids
and a broad overview of representative families we refer to [4, Chapter 12].

Definition 2 (q-Representative Family [15,4]).Given a matroid M = (E,J )

and a family S of subsets of E, we say that a subfamily Ŝ ⊆ S is q-representative
for S if the following holds: for every set Y ⊆ E of size at most q, if there is a
set X ∈ S disjoint from Y with X ∪ Y ∈ J , then there is a set X̂ ∈ Ŝ disjoint
from Y with X̂ ∪ Y ∈ J . If Ŝ ⊆ S is q-representative for S we write Ŝ ⊆q

rep S.

Lemma 1 ([6]). Let M = (E,J ) be a matroid and S be a family of subsets of

E. If S ′ ⊆q
rep S and Ŝ ⊆q

rep S ′, then Ŝ ⊆q
rep S.

Lemma 2 ([12]). Let M = (E,J ) be a linear matroid of rank n and let S =
{S1, . . . , St} be a p-family of independent sets. Let A be a n×|E| matrix represent-
ing M over a field F, where F = Fp� or F is Q. Then there is a deterministic algo-

rithm computing Ŝ ⊆q
rep Sof size np

(
p+q
p

)
in O

((
p+q
p

)
tp3n2 + t

(
p+q
q

)ω−1
(pn)ω−1

)
+

(n+ |E|)O(1) operations over F.

Now we are ready to prove Theorem 3. Let (P, I, k,M = (I,J )) be an
instance of (P,I )-Matroidal CF-SC, where P is a set of points on the x-axis,
I = {I1, . . . , Im} is a set of intervals on the x-axis and M = (I,J ) is a matroid
over the ground set I. The objective is to find a set cover S ⊆ I of size at most
k such that S ∈ J .

To design our algorithm for (P,I )-Matroidal CF-SC, we will use effi-
cient computation of representative families applied on a dynamic programming
algorithm. Let P = {p1, . . . , pn} denote the set of points sorted from left to right.
Next we introduce the notion of family of partial solutions. Let

Pi =
{
X

∣∣∣ X ⊆ I, X ∈ J , |X| ≤ k, X covers p1, . . . , pi

}
denote the family of subsets of intervals of size at most k that covers first i points
and are independent in the matroid M = (I,J ). Furthermore, for every j ∈ [k],
by Pij , we denote the subset of Pi containing sets of size exactly j. Thus,
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Pi =

k⊎
j=1

Pij .

In this subsection whenever we talk about independent sets, these are independent
sets of the matroid M = (I,J ). Furthermore, we assume that we are given, AM ,
the linear representation of M . Without loss of generality we can assume that
AM is a n′ × |I| matrix, where n′ ≤ |I|.

Observe that (P, I, k,M = (I,J )) is a Yes instance of (P,I )-Matroidal
CF-SC if and only if Pn is non-empty. This implies that Pn is non-empty if and
only if P̂n ⊆0

rep Pn is non-empty. We capture this into the following lemma.

Lemma 3. Let (P, I, k,M = (I,J )) be an instance of (P,I )-Matroidal
CF-SC. Then, (P, I, k,M = (I,J )) is a Yes instance of (P,I )-Matroidal

CF-SC if and only if Pn is non-empty if and only if P̂n ⊆0
rep Pn is non-empty.

For an ease of presentation by P0, we denote the set {∅}. The next lemma

provides an efficient computation of the family P̂i ⊆1···k
rep Pi. In particular, for

every 1 ≤ i ≤ n, we compute

P̂i =
k⋃

j=1

(
P̂ij ⊆k−j

rep Pij
)
.

Lemma 4. Let (P, I, k,M = (I,J )) be an instance of (P,I )-Matroidal

CF-SC. Then for every 1 ≤ i ≤ n, a collection of families P̂i ⊆1···k
rep Pi, of size

at most 2k · |I| · k can be found in time 2ωk · (n+ |I|)O(1).

Proof. We describe a dynamic programming based algorithm. LetP = {p1, . . . , pn}
denote the set of points sorted from left to right and D be a n+ 1-sized array
indexed with {0, . . . , n}. The entry D[i] will store a family P̂i ⊆1···k

rep Pi. We fill
the entries in the matrix D in the increasing order of index. For i = 0, D[i] = {∅}.
Let i ∈ {0, 1, . . . , n} and assume that we have filled all the entries until the row

i (i.e, D[i] will contain a family P̂i ⊆1···k
rep Pi). For any interval I ∈ I, let �I be

the lowest index in [n] such that p�I is covered by I. Let Zi+1 denote the set of
intervals I ∈ I that covers the point pi+1. Now we compute

N i+1 =
⋃

I∈Zi+1

(D[�I − 1] • {I}) ∩ J (1)

Notice that in the Equation 1, the union is taken over I ∈ Zi+1. Since for any
I ∈ Zi+1, I covers pi+1, the value �I − 1 is strictly less than i + 1 and hence
Equation 1 is well defined. Let N (i+1)j denote the subset of N i+1 containing
subsets of size exactly j.

Claim. N i+1 ⊆1···k
rep Pi+1.
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Proof. Let S ∈ P(i+1)j and Y be a set of size k − j (which is essentially an
independent set of M) such that S ∩ Y = ∅ and S ∪ Y ∈ J . We will show that

there exists a set Ŝ ∈ N (i+1) such that Ŝ ∩ Y = ∅ and Ŝ ∪ Y ∈ J . This will
imply the desired result.

Since S covers {p1, . . . , pi+1}, there is an interval J in S which covers pi+1.
Since S covers {p1, . . . , pi+1} and J covers pi+1, the set of intervals S′ = S \ {J}
covers {p1, . . . , pi+1} \ {p�J , . . . , pi+1} and J covers {p�J , . . . pi+1}. Let Y ′ =
Y ∪ {J}. Notice that S′ ∪ Y ′ = S ∪ Y ∈ J , |S′| = j − 1, |Y ′| = k − j + 1 and S′

covers {p1, . . . , pi+1} \ {p�J , . . . , pi+1}. This implies that S′ ∈ P(�J−1)(j−1) and

by our assumption that D[�J − 1] contain P̂(�J−1)(j−1) ⊆k−j+1
rep P(�J−1)(j−1), we

have that there exists S∗ ∈ D[�J − 1] such that S∗ ∩Y ′ = ∅ and S∗ ∪Y ′ ∈ J . By

Equation 1, S∗ ∪ {J} in N i+1, because S∗ ∪ {J} ∈ J . Now we set Ŝ = S∗ ∪ {J}.
Observe that Ŝ∩Y = ∅ and Ŝ∪Y ∈ J . This completes the proof of the claim. ��

We fill the entry for D[i+ 1] as follows.

D[i+ 1] =
k⋃

j=1

(
N̂ (i+1)j ⊆k−j

rep N (i+1)j
)

(2)

In Equation 2, for every 1 ≤ j ≤ k,N (i+1)j denote the subset ofN (i+1) containing
sets of size exactly j and N̂ (i+1)j can be computed using Lemma 2. Lemma 1
and Claim 2.2 implies that D[i+ 1] ⊆1···k

rep Pi+1.
Now we analyse the running time of the algorithm. Consider the time to

compute D[i+1]. We already have computed the family corresponding to D[r] for
all r ∈ [i]. By Lemma 2, for any r ∈ [i] and j ∈ [k], the subset of D[r] containing
sets of size exactly j is upper bounded by |I| · k ·

(
k
j

)
. Hence, the cardinality

of N (i+1)j is upper bounded by |I|2 · n · k ·
(
k
j

)
. Thus, by Lemma 2, the time

to compute N̂ (i+1)j ⊆k−j
rep N (i+1)j is bounded by

((
k
j

)2
+
(
k
j

)ω)
(n+ |I|)O(1) =(

k
j

)ω · (n+ |I|)O(1) number of operation over the field in which AM is given and

|N̂ (i+1)j | ≤ |I| · k ·
(
k
j

)
. Hence the total running time to compute D[i+ 1] for any

i+ 1 ∈ [n] is
k∑

j=1

(
k

j

)ω

· (n+ |I|)O(1)) = 2ωk · (n+ |I|)O(1).

By Lemma 2, the cardinality of D[i+ 1] is bounded by,

|D[i+ 1]| =
k∑

j=1

|N̂ (i+1)j | ≤
k∑

j=1

|I| · k ·
(
k

j

)
= 2k|I| · k.

This completes the proof. ��

Theorem 3 follows from Lemmata 3 and 4. Now we explain an application of
Theorem 3. Consider the problem (P,I )-Graphical CF-SC, where CGI is a
cluster graph. Let (P, I, CGI , k) be an instance of (P,I )-Graphical CF-SC.
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Let C1, . . . Ct be the connected components of CGI , where each Ci is a clique for
all i ∈ [t]. In any solution we are allowed to pick at most one vertex (an interval)
from Ci for any i ∈ [t]. This information can be encoded using a partition matroid
M = (I = V (C1)� . . .�V (Ct),J ) where any subset I ′ ⊆ I is independent in M
if and only if |I ′ ∩ V (Ci)| ≤ 1 for any i ∈ [t]. Moreover, a linear representation of
a partition matroid can be found in polynomial time ([15, Proposition 3.5]). As
a result, by applying Theorem 3 and Proposition 3.5 of [15], we get the following
corollary.

Corollary 1. (P,I )-Graphical CF-SC, when CGI is a cluster graph, can
be solved in time 2ωk · (n+ |I|)O(1).
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