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Abstract. Let T be a tree space represented by a weighted tree with
t vertices, and S be a set of n stochastic points in T , each of which
has a fixed location with an independent existence probability. We in-
vestigate two fundamental problems under such a stochastic setting, the
closest-pair problem and the nearest-neighbor search. For the former, we
propose the first algorithm of computing the �-threshold probability and
the expectation of the closest-pair distance of a realization of S. For the
latter, we study the k most-likely nearest-neighbor search (k-LNN) via a
notion called the k most-likely Voronoi Diagram (k-LVD), where we show
the combinatorial complexity of k-LVD is O(nk) under two reasonable
assumptions, leading to a logarithmic query time for k-LNN.

1 Introduction

In many real-world applications, due to the existence of noise or limitations
of devices, the data obtained may be imprecise or not totally reliable. In this
situation, the dataset may fail to capture well the features of the data. Motivated
by this, the topic of uncertain data has received significant attention in the last
few decades. Many classical problems have been investigated under uncertainty,
including convex hull, minimum spanning tree, range search, linear separability,
etc. [1,2,3,4,5,7,8,10,13,15,16]. Among these, there are two common models of
uncertainty: existential uncertainty and locational uncertainty. In the former,
each (stochastic) data point has a fixed location with an uncertain existence
depicted by an independent existence probability, while in the latter the location
of each point is uncertain and described as a distribution.

The closest-pair problem and nearest-neighbor search are two interrelated
fundamental problems, which have numerous applications in various areas. The
uncertain versions of both the problems have also been studied recently in
[1,9,11,12,14]. Let S be a set of n stochastic points in some metric space X . Con-
cerning the closest pair problem, a basic question one may ask is how to compute
elementary statistics about the stochastic closest-pair of S, e.g., the probability
that the closest-pair distance of a realization of S is at least �, the expected
closest-pair distance, etc. Unfortunately, most problems of this kind have been
shown to be NP-hard or #P-hard for general metrics, and some of them remain
#P-hard even when X = Rd for d ≥ 2 [9,11]. Concerning the nearest-neighbor
search, an important problem is the most-likely nearest-neighbor (LNN) search
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[14], which looks for the data point in S with the greatest probability of being
the nearest-neighbor of a query point q. The LNN search introduces the concept
of most-likely Voronoi diagram (LVD), which decomposes X into connected cells
such that the query points in the same cell have the same LNN. However, as
in [12,14], the bound of LVD in Rd is still high even on average. Due to the
difficulties of both problems in general and Euclidean space, it is then natural
to ask whether these problems are relatively easier in other metric spaces such
as a tree space. Indeed, further exploring these problems in tree spaces will be
helpful and interesting since any finite metrics (say a road network in practice)
can be embedded on a tree space under some reasonable distortions [6].

With the above motivations, in this paper, we study the stochastic closest-
pair (SCP) problem and k most-likely nearest-neighbor (k-LNN) search in tree
spaces. A tree space T is represented by a positively-weighted tree T where the
weight of each edge depicts its “length”. Formally, T is the geometric realization
of T , in which each edge weighted by w is isometric to the interval [0, w]. There
is a natural metric over T which defines the distance dist(x, y) as the length
of the (unique) simple path between x and y in T . See Fig. 1 for an exam-
ple of tree space. Following [9,11,14], we study the problems under existential
uncertainty: each stochastic point has a fixed location (in T ) associated with
an (independent) existence probability. Due to limited space, the proofs of all
lemmas and some theorems are omitted and can be found in the full version [17].
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Fig. 1. A tree space and
the unique simple path (in
bold) between x and y

Our results. Let T be a tree space represented by a
t-vertex weighted tree T , and S be the given set of n
stochastic points in T each of which is associated with
an existence probability. A realization of S refers to
a random sample of S in which each point is sampled
with its existence probability.

For the SCP problem, define κ(S) as a random
variable indicating the closest-pair distance of a real-
ization of S. We first show that the �-threshold proba-
bility of κ(S) (i.e., the probability that κ(S) is at least
�) can be computed in O(t + n log n +min{tn, n2}) time for any given positive
threshold �. Based on this, we immediately obtain an O(t+min{tn3, n4})-time al-
gorithm for computing the expected closest-pair distance, i.e., the expectation of
κ(S). We then further show that one can approximate the expected closest-pair
distance within a factor of (1+ε) in O(t+ε−1 min{tn2, n3}) time, by arguing that
the expected closest-pair distance can be approximated via O(ε−1n) threshold
probability queries.

For the LNN search, we first study the size of the the k-LVD ΨS
T of S on

T . A matching O(n2) upper bound for the worst-case size of ΨS
T is given. More

interestingly, we show that (1) the worst-case size of ΨS
T is O(kn), if the existence

probabilities of the points in S are constant-far from 0; (2) the average-case size of
ΨS
T is O(kn), if the existence probabilities are i.i.d. random variables drawn from

a fixed distribution. These results further imply the existence of an LVD data
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structure which answers k-LNN queries in O(log n+ k) time using average-case
O(t+k2n) space, and worst-case O(t+k2n) space if the existence probabilities of
the points are constant-far from 0. Finally, we give an O(t+n2 log n+n2k)-time
algorithm to construct such a data structure.

2 The stochastic closest-pair problem

Let T be a tree space represented by a t-vertex weighted tree T and S =
{a1, . . . , an} ⊂ T be a set of stochastic points where ai has an existence proba-
bility πai

. We use κ(S) to denote the random variable indicating the closest-pair
distance of a realization of S (if the realization is of size less than 2, we simply
set its closest-pair distance to be 0).

2.1 Computing the threshold probability

We study the problem of computing the probability that κ(S) is at least � for
a given threshold �. We call this quantity the �-threshold probability or simply
threshold probability of κ(S), and denote it by C≥�(S). We show that C≥�(S) can
be computed in O(t+n log n+min{tn, n2}) time. This result gives us an O(t+n2)
upper bound for t = Ω(n) and an O(n log n + tn) bound for t = O(n). In the
rest of this section, we first present an O(t+ n3)-time algorithm for computing
C≥�(S), and then show how to improve it to achieve the desired bound. For
simplicity of exposition, we assume a1, . . . , an have distinct locations in T .

An O(t+ n3)-time algorithm. In order to conveniently and efficiently handle
the stochastic points in a tree space, we begin with a preprocessing step, which
reduces the problem to a more regular setting.

Theorem 1. Given T and S, one can compute in O(t + n log n) time a new
tree space T ′ ⊆ T represented by an O(n)-vertex weighted tree T ′ s.t. S ⊂ T ′

and every point in S is located at some vertex of T ′. (See [17] for a proof.)

By the above theorem, we use O(t + n log n) time to compute such a new tree
space. Using this tree space as well as the O(n)-vertex tree representing it,
the problem becomes more regular: every stochastic point in S is located at a
vertex. We can further put the stochastic points in one-to-one correspondence
with the vertices by adding dummy points with existence probability 0 to the
“empty” vertices. In such a regular setting, we then consider how to compute
the �-threshold probability. For convenience, we still use T to denote the repre-
sentation of the (new) tree space and S = {a1, . . . , an} the stochastic dataset
(though the actual size of S may be larger than n due to the additional dummy
points, it is still bounded by O(n)). Since the vertices of T are now in one-to-one
correspondence with the points in S, we also use ai to denote the corresponding
vertex of T .

As we are working on a tree space, a natural idea for solving the problem
is to exploit the recursive structure of the tree and to compute C≥�(S) in a
recursive fashion. To this end, we need to define an important concept called
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witness. We make T rooted by setting a1 as its root. The subtree rooted at a
vertex x is denoted by Tx. Also, we use V (Tx) to denote the set of the stochastic
points lying in Tx, or equivalently, the set of the vertices of Tx. The notations
p̄(x) and ch(x) are used to denote the parent of x and the set of the children of
x, respectively (for convenience we set p̄(a1) = a1).

Definition 1. Let dep(ai) be the depth of ai in T , i.e., dep(ai) = dist(a1, ai).
For any ai and aj, we define ai ≺ aj if dep(ai) < dep(aj), or dep(ai) = dep(aj)
and i < j. Clearly, the relation ≺ is a strict total order over S (also, over the
vertices of T ). For any subset S′ ⊆ S and any vertex ai of T , we define the
witness of ai with respect to S′, denoted by ω(ai, S

′), as the smallest vertex in
V (Tai)∩S′ under the ≺-order. If V (Tai)∩S′ = ∅, we say ω(ai, S

′) is not defined.
See Fig. 2 for an illustration of witness. We say a subset S′ ⊆ S is legal if the
closest-pair distance of S′ is at least �.
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Fig. 2. An illustration of witness

The following lemma allows us to verify
the legality of a subset by using the witnesses,
which will be used later.

Lemma 1. For any S′ ⊆ S, we have S′ is
legal if and only if every point ai ∈ S\{a1}
satisfies one of the following three conditions:
(1) ω(ai, S

′) is not defined;
(2) ω(ai, S

′) = ω(p̄(ai), S
′);

(3) dist(ω(ai, S
′), ω(p̄(ai), S′)) ≥ �.

We say that S′ is locally legal at ai whenever
ai satisfies one of the above conditions.

In order to compute C≥�(S), we define, for all
x ∈ S and y ∈ V (Tp̄(x)),

Py(x) =

⎧⎪⎨⎪⎩
Pr

S′⊆RV (Tx)
[S′ is legal and ω(x, S′) = y] if y ∈ V (Tx),

Pr
S′⊆RV (Tx)

[S′ ∪ {y} is legal and ω(p̄(x), S′ ∪ {y}) = y] if y ∈ V (Tp̄(x))\V (Tx).

Here the notation ⊆R means that the former is a realization of the latter, i.e., a
random sample obtained by sampling each point with its existence probability.
With the above, we immediately have that C≥�(S) =

∑n
i=1 Pai(a1)− P0, where

P0 is the probability that a realization of S contains exactly one point. We then
show how Py(x) can be computed in a recursive way.

Lemma 2. For x ∈ S and y ∈ V (Tx), we have that

Py(x) = Q ·
∏

c∈ch(x)

Py(c),

where Q = πx if x = y and Q = 1− πx if x 	= y.

Lemma 3. For x ∈ S and y ∈ V (Tp̄(x))\V (Tx), we have that

Py(x) =
∏

ai∈V (Tx)

(1− πai) +
∑
z∈Γ

Pz(x),

where Γ = {z ∈ V (Tx) : y ≺ z and dist(z, y) ≥ �}.
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By the above two lemmas, the values of all Py(x) can be computed as follows.
We enumerate x ∈ S from the greatest to the smallest under ≺-order. For each
x, we first compute all Py(x) for y ∈ V (Tx) by applying Lemma 2. After this, we
are able to compute all Py(x) for y ∈ V (Tp̄(x))\V (Tx) by applying Lemma 3. The
entire process takes O(n3) time. Once we have the values of all Py(x), C≥�(S)
can be computed straightforwardly. Including the time for preprocessing, this
gives us an O(t+ n3)-time algorithm for computing C≥�(S).

In fact, we can further improve the runtime above to O(t+n2) by speeding up
the computation of Py(x) for y ∈ V (Tp̄(x))\V (Tx) as they are the bottlenecks. In
addition, if t = O(n), we can even further reduce the runtime to O(t+ n log n+
min(tn, n2)). Both optimizations are nontrivial and need new insights. However,
due to the limited space, we leave these to [17] and conclude the following.

Theorem 2. Given a weighted tree T with t vertices and a set S of n stochastic
points in its tree space T , one can compute the �-threshold probability of the
closest-pair distance of S, C≥�(S), in O(t+ n log n+min{tn, n2}) time.

2.2 Computing the expected closest-pair distance

Based on our algorithm for computing the threshold probability, we further
study the problem of computing the expected closest-pair distance of S, i.e.,
the expectation of κ(S). It is easy to see that our algorithm in Section 2.1
immediately gives us an O(t+min{tn3, n4})-time algorithm to compute E[κ(S)].
This is because the random variable κ(S) has at most

(
n
2

)
distinct possible values

and hence we can compute E[κ(S)] via O(n2) threshold probability “queries”
with various thresholds � (note that after preprocessing our algorithm answers
each threshold probability query in O(min{tn, n2}) time).

If we want to compute the exact value of E[κ(S)] (via threshold probability
queries), Θ(n2) queries are necessary in worst case. So it is natural to ask whether
we can use less queries to approximate E[κ(S)]. In the rest of this section, we
show that one can use O(ε−1n) threshold probability queries to achieve a (1+ε)-
approximation for E[κ(S)], which in turn gives us an O(t + ε−1 min{tn2, n3})-
time approximation algorithm for computing E[κ(S)].

For simplicity of exposition, we assume that the stochastic points in S are
now one-to-one corresponding to the vertices of T (this is what we have after
preprocessing). We begin with a simple case, in which the spread of T , i.e.,
the ratio of the length of the longest edge to the length of the shortest edge is
bounded by some polynomial of n. In this case, to approximate E[κ(S)] is fairly
easy, and we only need O(ε−1 log n) threshold probability queries.

Definition 2. For β > α > 0 and τ > 1, the (α, β, τ)-jump is defined as

J = {α, τα, τ2α, . . . , τkα, β},

where τkα < β and τk+1α ≥ β.

Let dmin be the length of the shortest edge of T and dmax be the sum of the
lengths of all edges of T . Also, let J be the (dmin, dmax, 1+ε)-jump. Suppose J =
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{�1, . . . , �|J|}. Then we do |J | threshold probability queries using the thresholds
�1, . . . , �|J|, and compute

E =

|J|∑
i=1

C≥�i(S) · (�i − �i−1)

as an approximation of E[κ(S)] (where �0 = 0). Note that |J | = O(log1+ε
dmax

dmin
) =

O(log1+ε n) = O(ε−1 log n). It is easy to verify that E ≤ E[κ(S)] ≤ (1 + ε)E.
The problem becomes interesting when the spread of T is unbounded. In

this case, although the above method still correctly approximates E[κ(S)], the
number of the threshold probability queries is no longer well bounded. Imagine
that the O(n2) possible values of κ(S) are distributed as �, (1+ε)�, (1+ε)2�, etc.
Then the (dmin, dmax, 1+ ε)-jump J is of size Ω(n2). Moreover, for guaranteeing
the correctness, it seems that we cannot “skip” any element in J . However, as
one will realize later, such an extreme situation can never happen. Recall that
we are working on a weighted tree and the O(n2) possible values of κ(S) are
indeed the pairwise distances of the vertices of the tree. As such, these values
are not arbitrary, and our insight here is to exploit the underlying properties of
the distribution of these values.

Let e1, . . . , en−1 be the edges of T where ei has the length (weight) wi.

Assume w1 ≤ · · · ≤ wn−1. We define an index set I =
{
m :

∑m−1
i=1 wi < wm

}
.

Suppose I = {m1, . . . ,mk} where m1 < · · · < mk. Note that m1 = 1. For
convenience, we set mk+1 = n. We design our threshold probability queries
as follows. Let Ji be the (wmi

, si, 1 + ε)-jump where si =
∑

j<mi+1
wj , and

J = J1 ∪ · · · ∪ Jk. Suppose J = {�1, . . . , �|J|} and set �0 = 0. Similarly to
the previous case, we do |J | threshold probability queries using the thresholds
�1, . . . , �|J|, and compute

E =

|J|∑
i=1

C≥�i(S) · (�i − �i−1)

as an approximation ofE[κ(S)]. We first verify the correctness, i.e., E ≤ E[κ(S)] ≤
(1 + ε)E. The fact E ≤ E[κ(S)] can be easily verified. To see the inequality
E[κ(S)] ≤ (1+ε)E, we define a piecewise-constant function h : R+∪{0} → [0, 1]
as

h(�) =

⎧⎨⎩
C≥�i(S) if (1 + ε)�i < � ≤ (1 + ε)�i+1,
0 if � > (1 + ε)l|J|,
1 if � = 0.

Then it is clear that (1+ε)E =
∫∞
0

h(�)d�. We claim that
∫∞
0

h(�)d� ≥
∫∞
0

C≥�(S)d�,

hence we have E[κ(S)] ≤ (1 + ε)E. Note that the jumps J1, . . . , Jk are disjoint
and each of them contains a consecutive portion of the sequence �1, . . . , �|J|. Fur-
thermore, if �i and �i+1 belong to different jumps, then there is no possible value
of κ(S) within the range (�i, �i+1), i.e., C≥�(S) is constant when � ∈ [�i, �i+1).
With this observation, it is not difficult to verify that h(�) ≥ C≥�(S) for any
� ≥ 0. Consequently, we have E[κ(S)] ≤ (1 + ε)E, which implies the correctness
of our method. Now the only thing remaining is to bound the number of the
threshold probability queries, which we show in Lemma 4.
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Lemma 4. For each jump Ji, we have |Ji| = O(ε−1(mi+1 −mi)). As a result,
the total number of the threshold probability queries, |J |, is O(ε−1n).

Indeed, the above method can be extended to a much more general case, in
which the stochastic dataset S is given in any metric space X (not necessarily
a tree space). In this case, one can still define the threshold probability C≥�(S)
as well as the expected closest-pair distance E[κ(S)] in the same fashion. Our
conclusion is the following.

Theorem 3. Given a set S of n stochastic points in a metric space X , one can
(1+ε)-approximate the expected closest-pair distance of S, E[κ(S)], via O(ε−1n)
threshold probability queries. (See [17] for a proof.)

For the expected closest-pair distance in tree space, we can eventually conclude
the following by plugging in our algorithm in Section 2.1 for computing C≥�(S).

Corollary 1. Given a tree space T represented by a weighted tree T with t
vertices and a set S of n stochastic points in T , one can compute a (1 + ε)-
approximation for the expected closest-pair distance of S, E[κ(S)], in O(t +
ε−1 min{tn2, n3}) time.

3 The most-likely nearest-neighbor search problem

In this section, we study the k most-likely nearest-neighbor (k-LNN) search in a
tree space. Again, let T be a tree space represented by a t-vertex weighted tree
T and S = {a1, . . . , an} ⊂ T be the given stochastic dataset where the point
ai has an existence probability πai . The k-LNN search problem can be defined
as follows. Let q ∈ T be any point. For each ai ∈ S, define NNPq(ai) as the
probability that the nearest-neighbor of q in a realization of S is ai. Clearly, the
nearest-neighbor of q in a realization is ai iff ai is in the realization and any
point closer to q is not in the realization. Therefore, we have

NNPq(ai) = πai ·
∏
x∈Γ

(1− πx),

where Γ = {x ∈ S : dist(q, x) < dist(q, ai)}. Given a query point q ∈ T ,
the goal of the k-LNN search is to report the k-LNN of q, which is a k-sequence
(ai1 , . . . , aik) of points in S such that NNPq(ai1) ≥ · · · ≥ NNPq(aik) ≥ NNPq(aj)
for all j /∈ {i1, . . . , ik}. For convenience, we assume NNPq(ai) 	= NNPq(aj) for
any q ∈ T and ai 	= aj so that the k-LNN of any query point q ∈ T is uniquely
defined.

A standard tool for nearest-neighbor search is the Voronoi diagram. In stochas-
tic setting, we seek the most-likely Voronoi diagram (LVD), the concept of which
is for the first time introduced in [14]. The k-LVD partitions the query space
into connected cells such that points in the same cell have the same k-LNN. See
[17] for an example (in color) of 1-LVD in a tree space.

Stochastic Closest-pair Problem and Most-likely Nearest-neighbor Search in Tree Spaces 575



3 2

2

2.8
2.2

2.2 2.9

3.2

3.6
1.4

1

1.5

A center c

2.5

2.3

Fig. 3.A degree-3 center involving 5 points.

3.1 The size of the tree-space LVD

We use ΨS
T to denote the k-LVD of S on T , i.e., the collection of the cells.

Formally, ΨS
T can be defined as follows. For any k-sequence η = (ai1 , . . . , aik),

let Ψη be the set of the connected components of the subspace {q ∈ T :
η is the k-LNN of q}. Then ΨS

T is the union of Ψη over all possible η. Clearly,
the size of ΨS

T significantly influences the space efficiency of the LVD-based al-
gorithm for k-LNN search. Let mij ∈ T be the “midpoint” of ai and aj , i.e., the
midpoint of the path between ai and aj in T . It is easy to see that the k-LNN
only changes nearby these

(
n
2

)
midpoints. However, this does not immediately

imply that the size of ΨS
T is bounded by O(n2). The reason is that O(n2) points

do not necessarily decompose T into O(n2) pieces (cells), unless these points are
located only in the interiors of the edges. Note that throughout this section, we
do not make any spatial assumption about the midpoints. In other words, it is
allowed that different midpoints occupy the same location in T , and some mid-
points are located at the vertices of T . The reason why we allow this is explained
in [17]. It is not surprising that even in such a general setting, the size of ΨS

T is
still bounded by O(n2). We will see this later as a direct corollary of a technical
result (Lemma 5).

Definition 3. For any two midpoints mij and mi′j′ , we define mij ≡ mi′j′ iff
mij and mi′j′ have the same location in T and dist(ai,mij) = dist(aj ,mij) =
dist(ai′ ,mi′j′) = dist(aj′ ,mi′j′). Clearly, ≡ is an equivalence relation over the
midpoints. We call the equivalence classes (under ≡) centers of S and use [mij ]
to denote the center that contains mij. A stochastic point ai ∈ S is said to be
involved by a center c if c = [mij ] for some j. The degree of a center c,
denoted by deg(c), is defined as the number of the connected components of T \ĉ
that contain at least one point involved by c, where ĉ denotes the point in T
corresponding to c, and each such component is called a branch of c. A center
c is said to be critical if ĉ is not in the interior of any cell C ∈ ΨS

T and there
exists at least one point involved by c that is in the k-LNN of ĉ. (See Fig. 3 for
an intuitive illustration of a center.)

Lemma 5. Let Γ be the set of the critical centers and ξ =
∑

c∈Γ deg(c). Then
|ΨS

T | ≤ ξ + 1.

The above lemma immediately gives us the O(n2) upper bound for the size of
ΨS
T . Indeed, a center c of S contains at least Ω(deg(c) ·m) midpoints, where m is

the number of the points involved by c, so ξ+1 is at most O(n2). Unfortunately,
this upper bound is tight, following from the Ω(n2) worst-case lower bound for
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the size of the 1-dim 1-LVD given by [14] (note that the 1-dim LVD is a special
case of the tree-space LVD). Surprisingly, we show that, if we make reasonable
assumptions for the existence probabilities of the stochastic points or consider
the average case, the size of ΨS

T is significantly smaller. Our results are:

– If the existence probabilities of all points in S are constant-far from 0, i.e.,
there is a fixed constant ε > 0 such that πai

≥ ε for all ai ∈ S, then the size
of the k-LVD ΨS

T is O(kn). Note that this assumption about the existence
probabilities is natural and reasonable. In applications, an extremely small
existence probability means the data point is highly unreliable. Such a point
can be considered as a noise and removed from the dataset.

– The average-case size of the k-LVD ΨS
T is O(kn). For the average-case anal-

ysis we assume that the existence probabilities of the points in S are i.i.d.
random variables drawn from any fixed distribution (e.g., the uniform dis-
tribution among [0, 1]). In other words, we consider the expectation of |ΨS

T |
when πa1 , . . . , πan are such random variables. The interesting point is that
the O(kn) upper bound is totally independent of the structure of T and the
locations of the stochastic points. The randomness is only applied to the
existence probabilities in our average-case analysis.

To prove these bounds requires new ideas. By Lemma 5, to bound the size of
ΨS
T , it suffices to bound the degree-sum of the critical centers. Intuitively, if a

center c is far from the points it involves (compared with other points in S),
then c is less likely to be critical, as the c-involved points are less likely to be in
the k-LNN of ĉ. Along with this intuition, we define the following.

Definition 4. For any center c, the diameter of c, denoted by diam(c), is
defined as the distance from ĉ to the c-involved points. Let A ⊂ T be a finite set.
We define the depth of c with respect to A as depA(c) = |{x ∈ A : dist(x, c) <
diam(c)}|, i.e., the number of the points in A which are closer to c than the
c-involved points.

Our idea here is to first bound the “contribution” (degree-sum) of the “shallow”
centers, and then further bound the degree-sum of the critical ones. Specifically,
we investigate in Lemma 6 the degree-sum of the d-shallow centers of S, i.e., the
centers of depth less than d with respect to S.

Lemma 6. For 1 ≤ d ≤ n − 1, the degree-sum of the d-shallow centers of S is
at most 8dn.

Now we are ready to prove the O(kn) bound for |ΨS
T | under the “constant-far

from 0” assumption about the existence probabilities.

Lemma 7. If the existence probabilities of the points in S are constant-far from
0, then a center of S is critical only if it is O(k)-shallow.

Theorem 4. If the existence probabilities of the points in S are constant-far
from 0, then the size of the k-LVD ΨS

T is O(kn).
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Proof. Suppose the existence probabilities πa1
, . . . , πan

are constant-far from 0.
Lemma 7 shows that all the critical centers of S are O(k)-shallow. By further
applying Lemma 6, the degree-sum of the critical centers is O(kn). Finally, by
Lemma 5, the size of ΨS

T is O(kn). �
To prove the bound for the average-case size requires more efforts. Let f be
a fixed probability distribution function whose support is in (0, 1] and μ be
the supremum of the support of f . Define two constants μ0 = μ/(1 + μ) and
λ = 1 −

∫ μ0

−∞ f(x)dx. Clearly, if X is a random variable drawn from f , then
λ = Pr[X > μ0]. Note that λ is always positive by definition. The following
lemma clarifies the meaning of μ0.

Lemma 8. Suppose πa1 , . . . , πan are i.i.d. random variables drawn from f . For
any center c of S, the event “c is critical” does not happen if there are k (dis-
tinct) points ai1 , . . . , aik in S closer to ĉ than the c-involved points such that
πai1

, . . . , πaik
are all greater than μ0.

Theorem 5. The average-case size of ΨS
T is O(kn), given that the existence

probabilities of the points in S are i.i.d. random variables drawn from a fixed
distribution.

Proof. Suppose the existence probabilities πa1 , . . . , πan are drawn independently
from f . Lemma 8 implies that, if c is a center of S with depS(c) = d ≥ k, then

Pr[c is critical] ≤ ud =

k−1∑
i=0

(
d

i

)
λi(1− λ)d−i.

Then by applying Lemma 5, we have

E[|ΨS
T |] ≤

∑
c

Pr[c is critical] · deg(c) ≤
∑
c∈Hk

deg(c) +

n−1∑
d=k+1

∑
c∈Hd

(ud−1 − ud)deg(c),

where Hd is the set of the d-shallow centers of S. Observe that

ud−1 − ud =

(
d− 1

k − 1

)
λk(1− λ)d−k.

Based on this and Lemma 6, we further have

E[|ΨS
T |] ≤ 8kn+ 8n

n−1∑
d=k+1

(
d− 1

k − 1

)
λk(1− λ)d−kd.

Note that
n−1∑

d=k+1

(
d− 1

k − 1

)
λk(1− λ)d−kd = k

(
λ

1− λ

)k n−1∑
d=k+1

(
d

k

)
(1− λ)d.

By an induction argument on k, it is not difficult to see that

n−1∑
d=k+1

(
d

k

)
(1− λ)d <

∞∑
d=k

(
d

k

)
(1− λ)d =

(1− λ)k

λk+1
.

Finally, by combining the inequalities, E[|ΨS
T |] ≤ 8kn+ 8kn

λ = O(kn). �
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3.2 Constructing LVD and answering queries

In this section, we show how to construct the k-LVD ΨS
T and use it to answer

k-LNN queries. Let e1, . . . , et−1 be the edges of T . Assume each edge ei has a
specified “start point” si (which is one of its two endpoints) and the query point
q is specified via a pair (i, δ), meaning the point on ei with distance δ to si.

We first explain the data structure used for storing the k-LVD ΨS
T and an-

swering queries. The LVD data structure is simple. First, it contains |ΨS
T | arrays

(called answer arrays) each of which stores the k-LNN answer of one cell of
ΨS
T . This part takes O(k|ΨS

T |) space. In addition to that, we also need to record
the structure of ΨS

T . For each edge ei of T , we use a sorted list Li to store the
“cell-decomposition” of ei. Specifically, the intersection of each cell C ∈ ΨS

T and
ei is an “interval” (may be empty). These intervals are stored in Li in the order
they appear on ei. Note that this part takes O(t+ |ΨS

T |) space. Indeed, if an edge
is decomposed into p pieces (intervals) by ΨS

T , then it at least entirely contains
(p − 2) cells of ΨS

T (so we can charge these (p − 2) pieces to the corresponding
cells and the remaining two pieces to the edge). Therefore, the total space of the
LVD data structure is O(t + k|ΨS

T |). To answer a query q = (i, δ), we first do
a binary search in the list Li to know which cell q locates in, and then use the
answer array corresponding to the cell to output the k-LNN of q directly. The
query time is clearly O(log |ΨS

T |+ k).

Next, we consider the construction of the LVD data structure. The first
step of the construction is to compute all the centers of S and sort the cen-
ters in the interior of each edge e in the order they appear on e. We are able
to get this done in O(t + n2 log n) time (see [17]). After the centers are com-
puted and sorted, we begin to construct the LVD data structure. Choose a
vertex v of T . Starting at v, we do a walk in T along with the edges of T . The
walk visits each edge of T exactly twice and finally goes back to v; see Fig. 4.

v

Fig. 4. A walk in
tree visiting each
edge exactly twice.

During the walk, we maintain a (balanced) binary search
tree for NNPx(a1), . . . ,NNPx(an) w.r.t. the current loca-
tion x. By exploiting this BST, we can work out the cell-
decomposition of each edge ei (i.e., the sorted list Li) at the
first time we visit ei in the walk. Specifically, we track the
k-LNN when walking along with ei, which can be obtained
by retrieving the k largest elements from the BST. When-
ever the k-LNN changes, a new cell of ΨS

T is found, so we
need to create a new answer array to store the k-LNN infor-
mation. Also, we need to update the sorted list Li. In this
way, after we go through ei (for the first time), Li is cor-
rectly computed. At the second time we visit ei, we do nothing but maintain the
binary search tree. When we finish the walk and go back to v, the construction
of the LVD data structure is done. Clearly, in the process of the walk, we only
need to maintain the binary search tree and retrieve the k-LNN when we arrive
at (resp., leave from) a center of S from (resp., to) one of its branches. With a
careful implementation and analysis (see [17]), we can complete the entire walk
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and hence the entire LVD structure in O(t + n2 log n + n2k) time. Combined
with the bounds in Section 3.1, we then have the following results.

Theorem 6. Given a tree space T represented by a t-vertex weighted tree and
a set S of n stochastic points in T , one can construct in O(t + n2 log n + n2k)
time an LVD data structure to answer k-LNN queries in O(log n+ k) time. The
LVD data structure uses worst-case O(t+kn2) space and average-case O(t+k2n)
space. Furthermore, if the existence probabilities of the points in S are constant-
far from 0, then the LVD data structure uses worst-case O(t+ k2n) space.
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