
Algorithms for Covering Multiple Barriers�

Shimin Li and Haitao Wang

Department of Computer Science
Utah State University, Logan, UT 84322, USA

shiminli@aggiemail.usu.edu,haitao.wang@usu.edu

Abstract. In this paper, we consider the problems for covering multiple
intervals on a line. Given a set B of m line segments (called “barriers”)
on a horizontal line L and another set S of n horizontal line segments
of the same length in the plane, we want to move all segments of S to
L so that their union covers all barriers and the maximum movement
of all segments of S is minimized. Previously, an O(n3 log n)-time algo-
rithm was given for the problem but only for the special case m = 1.
In this paper, we propose an O(n2 log n log log n+ nm logm)-time algo-
rithm for any m, which improves the previous work even for m = 1. We
then consider a line-constrained version of the problem in which the seg-
ments of S are all initially on the line L. Previously, an O(n log n)-time
algorithm was known for the case m = 1. We present an algorithm of
O((n+m) log(n+m)) time for any m. These problems may have appli-
cations in mobile sensor barrier coverage in wireless sensor networks.

1 Introduction

In this paper, we study algorithms for coveringmultiple barriers. These are basic
geometric problems and have applications in barrier coverage of mobile sensors
in wireless sensor networks. For convenience, in the following we introduce and
discuss the problems from the mobile sensor barrier coverage point of view.

Let L be a line, say, the x-axis. Let B be a set ofm pairwise disjoint segments,
called barriers, sorted on L from left to right. Let S be a set of n sensors in the
plane, and each sensor si ∈ S is represented by a point (xi, yi). If a sensor is
moved on L, it has a sensing/covering range of length r, i.e., if a sensor s is
located at x on L, then all points of L in the interval [x− r, x+ r] are covered by
s and the interval is called the covering interval of s. The problem is to move all
sensors of S onto L such that each point of every barrier is covered by at least
one sensor and the maximum movement of all sensors of S is minimized, i.e.,
the value maxsi∈S

√
(xi − x′

i)
2 + y2i is minimized, where x′

i is the location of si
on L in the solution (its y-coordinate is 0 since L is the x-axis). We call it the
multiple-barrier coverage problem, denoted by MBC.

We assume that covering range of the sensors is long enough so that a cover-
age of all barriers is always possible. Note that we can check whether a coverage
is possible in O(m+ n) time by an easy greedy algorithm.

� This research was supported in part by NSF under Grant CCF-1317143.

© Springer International Publishing AG 2017
F. Ellen et al. (Eds.): WADS 2017, LNCS 10389, pp. 533–544, 2017.
DOI: 10.1007/978-3-319-62127-2_45

533

Previously, only the special case m = 1 was studied and the problem was
solved in O(n3 logn) time [10]. In this paper, we propose an O(n2 logn log logn+
nm logm)-time algorithm for any value m, which improves the algorithm in [10]
by almost a linear factor even for the case m = 1.

We further consider a line-constrained version of the problem where all sen-
sors of S are initially on L. Previously, only the special case m = 1 was stud-
ied and the problem was solved in O(n logn) time [3]. We present an O((n +
m) log(n +m)) time algorithm for any value m, and the running time matches
that of the algorithm in [3] when m = 1.

1.1 Related Work

Sensors are basic units in wireless sensor networks. The advantage of allowing
the sensors to be mobile increasesmonitoring capability compared to those static
ones. One of the most important applications in mobile wireless sensor networks
is tomonitor a barrier to detect intruders in an attempt to cross a specific region.
Barrier coverage [9, 10], which guarantees that everymovement crossing a barrier
of sensors will be detected, is known to be an appropriate model of coverage for
such applications. Mobile sensors have limited battery power and therefore their
movements should be as small as possible.

Dobrev et al. [7] studies several problems on covering multiple barriers in the
plane. They showed that these problems are generally NP-hard when sensors
have different ranges. They also proposed polygonal-time algorithms for some
special cases, e.g., barriers are parallel or perpendicular to each other, and sensors
have some constrained movements. In fact, if sensors have different ranges, by
an easy reduction from the Partition Problem as in [7], we can show that our
problem MBC is NP-hard even for the line-constrained version and m = 2.

Other previous work has been focused on the line-constrained problem with
m = 1. Czyzowicz et al. [5] first gave an O(n2) time algorithm, and later, Chen
et al. [3] solved the problem in O(n logn) time. If sensors have different ranges,
Chen et al. [3] presented an O(n2 logn) time algorithm. For the weighted case
where sensors have weights such that the moving cost of a sensor is its moving
distance times its weight, Wang and Zhang [15] gave an O(n2 logn log logn) time
algorithm for the case where sensors have the same range.

The min-sum version of the line-constrained problem with m = 1 has also
been studied, which is to minimize the sum of the moving distances of all sensors.
If sensors have different ranges, the problem is NP-hard [6]. Otherwise, Czyzow-
icz et al. [6] gave an O(n2) time algorithm, and Andrews and Wang [1] solved
the problem in O(n log n) time. The min-num version of the problem was also
studied, where the goal is to move the minimum number of sensors to form a
barrier coverage. Mehrandish et al. [13, 14] proved that the problem is NP-hard
if sensors have different ranges and gave polynomial time algorithms otherwise.

Bhattacharya et al. [2] studied a circular barrier coverage problem in which
the barrier is a circle and the sensors are initially located inside the circle. The
goal is to move sensors to the circle to form a regular n-gon (so as to cover the

534 S. Li and H. Wang

circle) such that the maximum sensor movement is minimized. An O(n3.5 logn)-
time algorithm was given in [2] and later Chen et al. [4] improved the algorithm
to O(n log3 n) time. The min-sum version of the problem was also studied [2, 4].

1.2 Our Approach

To solve MBC, one major difficulty is that we do not know the order of the
sensors of S on L in an optimal solution. Therefore, ourmain effort is to find such
an order. To this end, we first develop a decision algorithm that can determine
whether λ ≥ λ∗ for any value λ, where λ∗ is the maximum sensor movement in
an optimal solution. Our decision algorithm runs in O(m+ n logn) time. Then,
we solve the problem MBC by “parameterizing” the decision algorithm in a way
similar in spirit to parametric search [12]. The high-level scheme of our algorithm
is very similar to those in [3, 15], but many low-level computations are different.

The line-constrained problem is easier due to an order preserving property:
there exists an optimal solution in which the order of the sensors is the same
as in the input. This leads to a linear-time decision algorithm using the greedy
strategy. Also based on this property, we can find a set Λ of O(n2m) “candidate
values” such that Λ contains λ∗. To avoid computing Λ explicitly, we implicitly
organize the elements of Λ into O(n) sorted arrays such that each array element
can be found in O(logm) time. Finally, by applying the matrix search technique
in [8], along with our linear-time decision algorithm, we compute λ∗ in O((n +
m) log(n+m)) time. We should point out that implicitly organizing the elements
of Λ into sorted arrays is the key and also the major difficulty for solving the
problem, and our technique may be interesting in its own right.

The remaining paper is organized as follows. In Section 2, we introduce some
notation. In Section 3, we present our algorithm for the line-constrained problem.
In Section 4, we present our decision algorithm for MBC. Section 5 solves the
problem MBC. Section 6 concludes the paper, with remarks that our techniques
can be used to reduce the space complexities of the algorithms in [3, 15]. Due to
the space limit, some proofs are omitted but can be found in the full paper [11].

2 Preliminaries

We denote the barriers of B by B1, B2, . . . , Bm sorted on L from left to right.
For each Bi, let ai and bi denote the left and right endpoints of Bi, respectively.
For ease of exposition, we make a general position assumption that ai �= bi for
each Bi. The degenerated case can also be handled by our techniques, but the
discussions would be more tedious.

For any point x on L (the x-axis), we also use x to denote its x-coordinate,
and vice versa. We assume that the left endpoint of B1 is at 0, i.e., a1 = 0. Let
β denote the right endpoint of Bm, i.e., β = bm.

We denote the sensors of S by s1, s2, . . . , sn sorted by their x-coordinates.
For each sensor si located on a point x of L, x − r and x + r are the left and

Algorithms for Covering Multiple Barriers 535

right endpoints of the covering interval of si, respectively, and we call them the
left and right extensions of si, respectively.

Again, let λ∗ be the maximum sensor movement in an optimal solution.
Given any value λ, the decision problem is to determine whether λ ≥ λ∗, or
equivalently, whether we can move each sensor with distance at most λ such
that all barriers can be covered. If yes, we say that λ is a feasible value. Thus,
we also call it a feasibility test on λ.

3 The Line-Constrained Version of MBC

In this section, we present our algorithm for the line-constrained MBC. As in the
special case m = 1 [5], a useful observation is that the following order preserving
property holds: There exists an optimal solution in which the order of the sensors
is the same as in the input. Due to this property, we have the following lemma.

Lemma 1. Given any λ > 0, we can determine whether λ is a feasible value in
O(n+m) time.

Let OPT be an optimal solution that preserves the order of the sensors. For
each i ∈ [1, n], let x′

i be the position of si in OPT . We say that a set of k sensors
are in attached positions if the union of their covering intervals is a single interval
of length equal to 2rk. The following lemma is self-evident and is an extension
of a similar observation for the case m = 1 in [5].

Lemma 2. There exists a sequence of sensors si, si+1, . . . , sj in attached posi-
tions in OPT such that one of the following three cases holds. (a) The sensor
sj is moved to the left by distance λ∗ and x′

i = ak + r for some barrier Bk (i.e.,
the sensors from si to sj together cover the interval [ak, ak + 2r(j − i+ 1)]). (b)
The sensor si is moved to the right by λ∗ and x′

j = bk − r for some barrier Bk.
(c) The sensor si is moved rightwards by λ∗ and sj is moved leftwards by λ∗.

Cases (a) and (b) are symmetric in the above lemma. Let Λ1 be the set of
all possible distance values introduced by sj in Case (a). Specifically, for any
pair (i, j) with 1 ≤ i ≤ j ≤ n and any barrier Bk with 1 ≤ k ≤ m, define
λ(i, j, k) = xj − (ak + 2r(j − i) + r). Let Λ1 consists of λ(i, j, k) for all such
triples (i, j, k). We define Λ2 symmetrically be the set of all possible values
introduced by si in Case (b). We define Λ3 as the set consisting of the values
[xj−xi−2r(j− i)]/2 for all pairs (i, j) with 1 ≤ i < j ≤ n. Clearly, |Λ3| = O(n2)
and both |Λ1| and |Λ2| are O(mn2). Let Λ = Λ1 ∪ Λ2 ∪ Λ3.

By Lemma 2, λ∗ is in Λ and is actually the smallest feasible value of Λ.
Hence, we can first compute Λ and then find the smallest feasible value in Λ by
using the decision algorithm. However, that would take Ω(mn2) time. To reduce
the time, we will not compute Λ explicitly, but implicitly organize the elements
of Λ into certain sorted arrays and then apply the matrix search technique in [8].
Since we only need to deal with sorted arrays instead of more general matrices,
we review the technique with respect to arrays in the following lemma.

536 S. Li and H. Wang

Lemma 3. [8] Given a set of N sorted arrays of size at most M each, we
can compute the smallest feasible value of these arrays with O(logN + logM)
feasibility tests and the total time of the algorithm excluding the feasibility tests
is O(τ ·N · log 2M

N
), where τ is the time for evaluating each array element (i.e.,

the number of array elements that need to be evaluated is O(N · log 2M
N

)).

With Lemma 3, we can compute the smallest feasible values in the sets Λ1,
Λ2, and Λ3, respectively, and then return the smallest one as λ∗. For Λ3, Chen et
al. [3] (see Lemma 14) gave an approach to order in O(n logn) time the elements
of Λ3 into O(n) sorted arrays of O(n) elements each such that each array element
can be obtained in O(1) time. Consequently, by applying Lemma 3, the smallest
feasible value of Λ3 can be computed in O((n+m) logn) time.

For the other two sets Λ1 and Λ2, in the case m = 1, the elements of each set
can be easily ordered into O(n) sorted arrays of O(n) elements each [3]. However,
in our problem for general m, it becomes significantly more difficult to obtain a
subquadratic-time algorithm. Indeed, this is the main challenge of our method.
In what follows, our main effort is to prove Lemma 4.

Lemma 4. For the set Λ1, in O(m logm) time, we can implicitly form a set
A of O(n) sorted arrays of O(m2n) elements each such that each array element
can be computed in O(logm) time and every element of Λ1 is contained in one
of the arrays. The same applies to the set Λ2.

We note that our technique for Lemma 4 might be interesting in its own right
and may find other applications as well. Before proving Lemma 4, we first prove
the following theorem by using Lemma 4.

Theorem 1. The line-constrained version of MBC can be solved in O((n +
m) log(n+m)) time.

Proof. It is sufficient to compute λ∗, after which we can apply the decision
algorithm on λ∗ to obtain an optimal solution.

Let Λ′
1 denote the set of all elements in the arrays of A specified in Lemma 4.

Define Λ′
2 similarly with respect to Λ2. By Lemma 4, Λ1 ⊆ Λ′

1 and Λ2 ⊆ Λ′
2.

Since λ∗ ∈ Λ1 ∪ Λ2 ∪ Λ3, we also have λ∗ ∈ Λ′
1 ∪ Λ′

2 ∪ Λ3. Hence, λ
∗ is the

smallest feasible value in Λ′
1 ∪ Λ′

2 ∪ Λ3. Let λ1, λ2, and λ3 be the smallest
feasible values in the sets Λ′

1, Λ
′
2, and Λ3, respectively. As discussed before, λ3

can be computed in O((n+m) logn) time. By Lemma 4, applying the algorithm
in Lemma 3 can compute both λ1 and λ2 in O((n + m)(logm + logn)) time.
Note that (n+m)(logm+ logn) = Θ((n+m) log(n+m)). �	

3.1 Proving Lemma 4

In this section, we prove Lemma 4. We will only prove the case for the set Λ1,
since the other case for Λ2 is symmetric. Recall that Λ1 = {λ(i, j, k) | 1 ≤ i ≤
j ≤ n, 1 ≤ k ≤ m}, where λ(i, j, k) = xj − (ak + 2r(j − i) + r).

Algorithms for Covering Multiple Barriers 537

For any j and k, let A[j, k] denote the list λ(i, j, k) for i = 1, 2, . . . , j, which
is sorted increasingly. Let A[j] denote the union of the elements in A[j, k] for
all k ∈ [1,m]. Clearly, Λ1 =

⋃n

j=1 A[j]. In the following, we will organize the

elements in each A[j] into a sorted array B[j] of size O(nm2) such that given any
index t, the t-th element of B[j] can be computed in O(logm) time, which will
prove Lemma 4. Our technique replies on the following property: the difference
of every two adjacent elements in each list A[j, k] is the same, i.e., 2r.

Notice that for any k ∈ [1,m− 1], the first (resp., last) element of A[j, k] is
larger than the first (resp., last) element of A[j, k + 1]. Hence, the first element
of A[j,m], i.e., λ(1, j,m), is the smallest element of A[j] and the last element of
A[j, 1], i.e., λ(j, j, 1), is the largest element of A[j]. Let λmin[j] = λ(1, j,m) and
λmax[j] = λ(j, j, 1).

For each k ∈ [1,m], we extend the list A[j, k] to a new sorted list B[j, k]
with the following property: (1) A[j, k] is a sublist of B[j, k]; (2) the differ-
ence every two adjacent elements of B[j, k] is 2r; (3) the first element of B[j, k]
is in [λmin[j], λmin[j] + 2r); (4) the last element of B[j, k] is in (λmax[j] −
2r, λmax[j]]. Specifically, B[j, k] is defined as follows. Note that λ(1, j, k) and
λ(j, j, k) are the first and last elements of A[j, k], respectively. We let λ(1, j, k)−

λ(1,j,k)−λmin[j]
2r � · 2r and λ(j, j, k) +
λmax[j]−λ(j,j,k)

2r � · 2r be the first and last
elements of B[j, k], respectively. Then, the h-th element of B[j, k] is equal to

λ(1, j, k)−
λ(1,j,k)−λmin[j]
2r � · 2r + 2r · (h− 1) for any h ∈ [1, α[j]], where α[j] =

1+�λmax[j]−λmin[j]
2r . Hence, B[j, k] has α[j] elements. One can verify that B[j, k]

has the above four properties. Note that we can implicitly create the lists B[j, k]
in O(1) time so that given any k ∈ [1,m] and h ∈ [1, α[j]], we can obtain the
h-th element of B[j, k] in O(1) time. Let B[j] be the sorted list of all elements
of B[j, k] for all 1 ≤ k ≤ m. Hence, B[j] has α[j] ·m elements.

Let σj be the permutation of 1, 2, . . . ,m following the sorted order of the
first elements of B[j, k]. For any k ∈ [1,m], let σj(k) be the k-th index in σj .

Lemma 5. For any t with 1 ≤ t ≤ α[j] ·m, the t-th smallest element of B[j] is
the ht-th element of the list B[j, σj(kt)], where ht = � t

m
 and kt = t mod m.

By Lemma 5, if σj is known, we can obtain the t-th smallest element of B[j]
in O(1) time for any t. Computing σj can be done in O(m logm) time by sorting.
If we do the sorting for every j ∈ [1, n], then we wound need O(nm logm) time.
Fortunately, Lemma 6 implies that we only need to do the sorting once.

Lemma 6. The permutation σj is unique for all j ∈ [1, n].

In summary, after O(m logm) time preprocessing to compute σj for any j,
we can form the arrays B[j] for all j ∈ [1, n] such that given any j ∈ [1, n]
and t ∈ [1, α[j] · m], we can compute t-th smallest element of B[j] in O(1)
time. However, we are not done yet, because we do not have a reasonable upper

bound for α[j], which is equal to 1 + �λmax[j]−λmin[j]
2r = 1+ �λ(j,j,1)−λ(1,j,m)

2r =
j + �am−a1

2r . To address the issue, in the sequel, we will partition the indices
k ∈ [1,m] into groups and then apply our above approach to each group so that
the corresponding α[j] values can be bounded, e.g., by O(mn).

538 S. Li and H. Wang

The Group Partition Technique We consider any index j ∈ [1,m].

We partition the indices 1, 2, . . . ,m into groups each consisting of a sequence
of consecutive indices, such that each group has an intra-group overlapping prop-
erty: For any index k that is not the largest index in the group, the first ele-
ment of A[j, k] is smaller than or equal to the last element of A[j, k + 1], i.e.,
λ(1, j, k) ≤ λ(j, j, k+1). Further, the groups have the following inter-group non-
overlapping property: For the largest index k in a group that is not the last
group, the first element of A[j, k] is larger than the last element of A[j, k + 1],
i.e., λ(1, j, k) > λ(j, j, k + 1).

We compute the groups in O(m) time as follows. Initially, add 1 into the first
group G1. Let k = 1. While the first element of A[j, k] is smaller than or equal
to the last element of A[j, k+1], we add k+1 into G1 and reset k = k+1. After
the while loop, G1 is computed. Then, starting from k + 1, we compute G2 and
so on until index m is included in the last group. Let G1, G2, . . . , Gl be the l
groups we compute. Note that l ≤ m.

Consider any group Gg with 1 ≤ g ≤ l. We process the lists A[j][k] for all
k ∈ Gg in the same way as discussed before. Specifically, for each k ∈ Gg, we
create a new list B[j][k] from A[j][k]. Based on the new lists in the group Gg,
we form the sorted array Bg[j] with a total of |Gg| · αg[j] elements, where |Gg|
is the number of indices of Gg and αg[j] is corresponding α[j] value as defined
before but only on the group Gg, i.e., if k1 and k2 are the smallest and largest

indices of Gg respectively, then αg[j] = 1 + �λ(j,j,k1)−λ(1,j,k2)
2r . Let B[j] be the

sorted list of all elements in the lists Bg[j] for all groups. Due to the intra-group
overlapping property of each group, it holds that αg ≤ |Gg| ·n. Thus, the size of

B[j] is at most
∑l

g=1 |Gg|2 · n, which is at most m2n since
∑l

g=1 |Gg| = m.

Suppose we want to find the t-th smallest element of B[j]. As preprocess-
ing, we compute a sequence of values βg[j] for g = 1, 2, . . . , l, where βg[j] =∑g

g′=1 αg′ [j] · |Gg′ |, in O(m) time. To compute the t-th smallest element of
B[j], we first do binary search on the sequence β1[j], β2[j], . . . , βl[j] to find in
O(log l) time the index g such that t ∈ (βg−1[j], βg[j]]. Due to the inter-group
non-overlapping property of the groups, the t-th smallest element of B[j] is the
(t−βg−1[j])-th element in the array Bg[j], which can be found in O(1) time. As
l ≤ m, the total time for computing the t-th smallest element of B[j] is O(logm).

The above discussion is on any single index j ∈ [1, n]. With O(m logm) time
preprocessing, given any t, we can find the t-th smallest value of B[j] in O(logm)
time. For all indices j ∈ [1, n], it appears that we have to do the group partition
for every j ∈ [1, n], which would take quadratic time. To resolve the issue, we
show that it suffices to only use the group partition based on j = n for all other
j ∈ [1, n− 1]. The details are given below.

Suppose from now on G1, G2, . . . , Gl are the groups computed as above with
respect to j = n. We know that the inter-group non-overlapping property holds
respect to the index n. The following lemma shows that the property also holds
with respect to any other index j ∈ [1, n− 1].

Lemma 7. The inter-group non-overlapping property holds for any j ∈ [1, n−1].

Algorithms for Covering Multiple Barriers 539

Consider any Gg with 1 ≤ g ≤ l and any j ∈ [1, n]. For each k ∈ Gg, we
create a new list B[j][k] based on A[j][k] in the same way as before. Based on
the new lists, we form the sorted array Bg[j] of |Gg| · αg[j] elements. We also
define the value βg[j] in the same way as before. Lemma 8 shows that αg[j] and
βg[j] can be computed from αg[n] and βg[n].

Lemma 8. For any j ∈ [1, n − 1] and g ∈ [1, l], αg[j] = αg[n] − n + j and
βg[j] = βg[n] + δg · g · (j − n), where δg =

∑g

g′=1 |Gg′ |.

For each group Gg, we compute the permutation for the lists B[n, k] for all k
in the group. Computing the permutations for all groups takes O(m logm) time.
Also as preprocessing, we first compute δg, αg(n) and βg(n) for all g ∈ [1, l] in
O(m) time. By Lemma 8, for any j ∈ [1, n] and any g ∈ [1, l], we can compute
αg[j] and βg[j] in O(1) time. Because the lists B[n, k] for all k in each group Gg

have the intra-group overlapping property, it holds that αg[n] ≤ |Gg| · n. Hence,∑l

g=1 αg[n] ≤ mn. For any j ∈ [1, n− 1], by Lemma 8, αg[j] < αg[n], and thus∑l

g=1 αg[j] ≤ mn. Note that B[j] has at most m2n elements.

For any j ∈ [1, n] and any t ∈ [1,
∑l

g=1 |Gg| · αg[j]], to compute the t-
th smallest element of B[j], due to the inter-group non-overlapping property in
Lemma 7, we can still use the previous binary search approach. As we can obtain
each βg[j] for any g ∈ [1, l] in O(1) time by Lemma 8, we can still compute the
t-th smallest element of B[j] in O(logm) time. This proves Lemma 4.

4 The Decision Problem of MBC

In this section, we present an O(m + n logn)-time algorithm for the decision
problem of MBC: given any value λ > 0, determine whether λ ≥ λ∗. Our al-
gorithm for MBC in Section 5 will make use of this decision algorithm. The
decision problem may have independent interest because in some applications
each sensor has a limited energy λ and we want to know whether their energy
is enough for them to move to cover all barriers.

Consider any value λ > 0. We assume λ ≥ max1≤i≤n |yi| since otherwise
some sensor cannot reach L by moving λ (and thus λ is not feasible). For any
sensor si ∈ S, define xr

i = xi +
√
λ2 − y2i and xl

i = xi −
√
λ2 − y2i . Note that xr

i

and xl
i are respectively the rightmost and leftmost points of L si can reach with

respect to λ. We call xr
i the rightmost (resp., leftmost) λ-reachable location of si

on L. For any point x on L, we use p+(x) to denote a point x′ such that x′ > x
and x′ is infinitesimally close to x. The high-level scheme of our algorithm is
similar to that in [15]. Below we describe the algorithm.

We use a configuration to refer to a specification on where each sensor si ∈ S
is located. For example, in the input configuration, each si is at (xi, yi). We first
move each sensor si to xr

i on L. Let C0 denote the resulting configuration. In
C0, each sensor si is not allowed to move rightwards but can move leftwards on
L by a maximum distance 2

√
λ2 − y2i .

540 S. Li and H. Wang

xRi−1

Fig. 1. Illustrating the set Si1.
The covering intervals of sensors
are shown with segments (the red
thick segments correspond to the
sensors in Si1). Every sensor in
Si1 can be sg(i).

x
Ri−1

sg(i)

Fig. 2. Illustrating the set Si2. The segments are
the covering intervals of sensors. The red thick
segments correspond to the sensors in Si2. The
four black points corresponding to the values xl

k−

r of the four sensors xk to the right of Ri−1. The
sensor sg(i) is labeled.

If λ ≥ λ∗, our algorithm will compute a subset of sensors with their new
locations to cover all barriers of B and the maximum movement of each sensor
of in the subset is at most λ.

For each step i with i ≥ 1, let Ci−1 be the configuration right before the i-th
step. Our algorithm maintains the following invariants. (1) We have a subset of
sensors Si−1 = {sg(1), sg(2), . . . , sg(i−1)}, where for each 1 ≤ j ≤ i − 1, g(j) is
the index of the sensor sg(j) in S. (2) In Ci−1, each sensor sk of Si−1 is at a

new location x′
k ∈ [xl

k, x
r
k], and all other sensors are still in their locations of C0.

(3) A value Ri−1 is maintained such that 0 ≤ Ri−1 < β, Ri−1 is on a barrier,
every barrier point x < Ri−1 is covered by a sensor of Si−1 in Ci−1. (4) If Ri−1

is not at the left endpoint of a barrier, then Ri−1 is covered by a sensor of Si−1

in Ci−1. (5) The point p+(Ri−1) is not covered by any sensor in Si−1.

Initially when i = 1, we let S0 = ∅ and R0 = 0, and thus all algorithm
invariants hold for C0. The i-th step of the algorithm finds a sensor sg(i) ∈ S\Si−1

and moves it to a new location x′
g(i) ∈ [xl

g(i), x
r
g(i)] and thus obtains a new

configuration Ci. The details are given below.

Define Si1 as the set of sensors that cover the point p+(Ri−1) in Ci−1, i.e.,
Si1 = {sk | xr

k − r ≤ Ri−1 < xr
k + r}. By the algorithm invariant (5), no sensor

in Si−1 covers p+(Ri−1). Thus, Si1 ⊆ S \ Si−1. If Si1 �= ∅, then we choose an
arbitrary sensor in Si1 as sg(i) (e.g., see Fig. 1) and let x′

g(i) = xr
g(i). We then set

Ri = x′
g(i) + r, i.e., Ri is at the right endpoint of the covering interval of sg(i).

Note that Ci is Ci−1 as sg(i) is not moved.

If Si1 = ∅, then we define Si2 = {sk | xl
k − r ≤ Ri−1 < xr

k − r} (i.e., Si2

consists of those sensors sk that does not cover Ri−1 when it is at xr
k but is

possible to do so when it is at some location in [xl
k, x

r
k]). If Si2 �= ∅, we choose

the leftmost sensor of Si2 as sg(i) (e.g., see Fig. 2), and let x′
g(i) = Ri−1 + r (i.e.,

we move sg(i) to x′
g(i) and thus obtain Ci). If Si2 = ∅, then we conclude that

λ < λ∗ and terminate the algorithm.

Hence, if Si1 = Si2 = ∅, the algorithmwill stop and report λ < λ∗. Otherwise,
a sensor sg(i) is found from either Si1 or Si2, and it is moved to x′

g(i). In either

case, Ri = x′
g(i) + r and Si = Si−1 ∪ {sg(i)}. If Ri ≥ β, then we terminate the

algorithm and report λ ≥ λ∗. Otherwise, we further perform the following jump-

Algorithms for Covering Multiple Barriers 541

over procedure: We check whether Ri is located at the interior of any barrier; if
not, then we set Ri to the left endpoint of the barrier right after Ri.

This finishes the i-th step of our algorithm. One can verify that all algorithm
invariants aremaintained. As S has n sensors, the algorithm will finish in atmost
n steps. This finishes the description of our algorithm. The algorithm correctness
and implementation are omitted.

Theorem 2. Given any value λ, we can determine whether λ ≥ λ∗ in O(m +
n logn) time.

Our algorithm in Section 5 will perform feasibility tests multiple times, for
which we have the following lemma.

Lemma 9. Suppose the values xr
i for all i = 1, 2, . . . , n are already sorted, we

can determine whether λ ≥ λ∗ in O(m+ n log logn) time for any λ.

5 Solving the Problem MBC

To solve MBC, it suffices to compute λ∗. The high-level scheme of our algorithm
is similar to that in [15], although some low-level computations are different.

We now use xr
i (λ) to refer to xr

i for any λ, so that we consider xr
i (λ) as a

function on λ ∈ [0,∞], which actually defines a half of the upper branch (on the
right side of the y-axis) of a hyperbola. Let σ be the order of the values xr

i (λ
∗)

for all i ∈ [1, n]. To use Lemma 9, we first run a preprocessing step in Lemma 10.

Lemma 10. With O(n log3 n+m log2 n) time preprocessing, we can compute σ
and an interval (λ∗

1, λ
∗
2] containing λ∗ such that σ is also the order of the values

xr
i (λ) for any λ ∈ (λ∗

1, λ
∗
2].

Proof. To compute σ, we apply Megiddo’s parametric search [12] to sort the
values xr

i (λ
∗) for i ∈ [1, n], using the decision algorithm in Theorem 2. Indeed,

recall that xr
i (λ) = xi +

√
λ2 − y2i . Hence, as λ increases, xr

i (λ) is a (strictly)
increasing function. For any two indices i and j, there is at most one root on
λ ∈ [0,∞) for the equation: xr

i (λ) = xr
j(λ). Therefore, we can apply Megiddo’s

parametric search [12] to do the sorting. The total time is O((τ + n) log2 n),
where τ is the running time of the decision algorithm. By Theorem 2, τ =
O(m+ n logn). Hence, the total time for computing σ is O(m log2 n+ n log3 n).

In addition, Megiddo’s parametric search [12] will return an interval (λ∗
1, λ

∗
2]

containing λ∗ and σ is also the order of the values xr
i (λ) for any λ ∈ (λ∗

1, λ
∗
2]. �	

As λ∗ ∈ (λ∗
1, λ

∗
2], our subsequent feasible tests will be only on values λ ∈

(λ∗
1, λ

∗
2) because if λ ≤ λ∗

1, then λ is not feasible and if λ ≥ λ∗
2, then λ is feasible.

Lemmas 9 and 10 together lead to the following result.

Lemma 11. Each feasibility test can be done in O(m+n log logn) time for any
λ ∈ (λ∗

1, λ
∗
2).

542 S. Li and H. Wang

To compute λ∗, we “parameterize” our decision algorithm with λ as a pa-
rameter. Although we do not know λ∗, we execute the decision algorithm in such
a way that it computes the same subset of sensors sg(1), sg(2), . . . as would be
obtained if we ran the decision algorithm on λ = λ∗.

Recall that for any λ, step i of our decision algorithm computes the sensor
sg(i), the set Si = {sg(1), sg(2), . . . , sg(i)}, and the value Ri, and obtains the
configuration Ci. In the following, we often consider λ as a variable rather than
a fixed value. Thus, we will use Si(λ) (resp., Ri(λ), sg(i)(λ), Ci(λ), x

r
i (λ)) to

refer to the corresponding Si (resp., Ri, sg(i), Ci, x
r
i). Our algorithm has at

most n steps. Consider a general i-th step for i ≥ 1. Right before the step, we
have an interval (λ1

i−1, λ
2
i−1] and a sensor set Si−1(λ), such that the following

algorithm invariants hold.

1. λ∗ ∈ (λ1
i−1, λ

2
i−1].

2. The set Si−1(λ) is the same (with the same order) for all λ ∈ (λ1
i−1, λ

2
i−1).

3. Ri−1(λ) on λ ∈ (λ1
i−1, λ

2
i−1) is either constant or equal to xj +

√
λ2 − y2j + c

for some constant c and some sensor sj with 1 ≤ j ≤ i − 1, and Ri−1(λ) is
maintained by the algorithm.

4. Ri−1(λ) < β for any λ ∈ (λ1
i−1, λ

2
i−1).

Initially when i = 1, we let λ1
0 = λ∗

1 and λ2
0 = λ∗

2. Since S0(λ) = ∅ and
R0(λ) = 0 for any λ, by Lemma 10, all invariants hold for i = 1. In general, the
i-th step will either compute λ∗, or obtain an interval (λ1

i , λ
2
i] ⊆ (λ1

i−1, λ
2
i−1] and

a sensor sg(i)(λ) with Si(λ) = Si−1(λ)∪{sg(i)(λ)}. The running time of the step
is O((m+ n log logn)(logn+ logm)). The details are omitted.

The algorithm will compute λ∗ after at most n steps. The total time is
O(n · (m + n log logn) · (logm + logn)), which is bounded by O(nm logm +
n2 logn log logn) as shown in Theorem 3. The space of the algorithm is O(n).

Theorem 3. The problem MBC can be solved in O(nm logm+n2 logn log logn)
time and O(n) space.

6 Concluding Remarks

As mentioned before, the high-level scheme of our algorithm for MBC is similar
to those in [3, 15]. However, a new technique we propose in this paper can help
reduce the space complexities of the algorithms in [3, 15]. Specifically, Chen et
al. [3] solved the line-constrained problem in O(n2 log n) time and O(n2) space
for the case where m = 1 and sensors have different ranges. Wang and Zhang [15]
solved the line-constrained problem in O(n2 log n log logn) time and O(n2) space
for the case where m = 1, sensors have the same range, and sensors have weights.
If we apply the similar preprocessing as in Lemma 10, then the space complexities
of both algorithms [3, 15] can be reduced to O(n) while the time complexities
do not change asymptotically.

In addition, by slightly changing our algorithm for MBC, we can also solve
the following problem variant: Find a subset S′ of sensors of S to move them to

Algorithms for Covering Multiple Barriers 543

L to cover all barriers such that the maximum movement of all sensors of S′ is
minimized (and sensors of S \ S′ do not move). We omit the details.

References

1. Andrews, A., Wang, H.: Minimizing the aggregate movements for interval coverage.
Algorithmica 78, 47–85 (2017)

2. Bhattacharya, B., Burmester, B., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal
movement of mobile sensors for barrier coverage of a planar region. Theoretical
Computer Science 410(52), 5515–5528 (2009)

3. Chen, D., Gu, Y., Li, J., Wang, H.: Algorithms on minimizing the maximum sensor
movement for barrier coverage of a linear domain. Discrete and Computational
Geometry 50, 374–408 (2013)

4. Chen, D., Tan, X., Wang, H., Wu, G.: Optimal pointmovement for covering circular
regions. Algorithmica 72, 379–399 (2013)

5. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opa-
trny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the maximum sensor
movement for barrier coverage of a line segment. In: Proc. of the 8th International
Conference on Ad-Hoc, Mobile and Wireless Networks. pp. 194–212 (2009)

6. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny,
J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the sum of sensor move-
ments for barrier coverage of a line segment. In: Proc. of the 9th International
Conference on Ad-Hoc, Mobile and Wireless Networks. pp. 29–42 (2010)

7. Dobrev, S., Durocher, S., Eftekhari, M., Georgiou, K., Kranakis, E., Krizanc, D.,
Narayanan, L., Opatrny, J., Shende, S., Urrutia, J.: Complexity of barrier coverage
with relocatable sensors in the plane. Theoretical Computer Science 579, 64–73
(2015)

8. Frederickson, G., Johnson, D.: Generalized selection and ranking: Sorted matrices.
SIAM Journal on Computing 13(1), 14–30 (1984)

9. Kumar, S., Lai, T., Arora, A.: Barrier coverage with wireless sensors. In: Proc. of
the 11th Annual International Conference on Mobile Computing and Networking
(MobiCom). pp. 284–298 (2005)

10. Li, S., Shen, H.: Minimizing the maximum sensor movement for barrier coverage in
the plane. In: Proc. of the 2015 IEEE Conference on Computer Communications
(INFOCOM). pp. 244–252 (2015)

11. Li, S., Wang, H.: Algorithms for covering multiple barriers. arXiv:1704.06870
(2017)

12. Megiddo, N.: Applying parallel computation algorithms in the design of serial
algorithms. Journal of the ACM 30(4), 852–865 (1983)

13. Mehrandish, M.: On Routing, Backbone Formation and Barrier Coverage in Wire-
less Ad Doc and Sensor Networks. Ph.D. thesis, Concordia University, Montreal,
Quebec, Canada (2011)

14. Mehrandish, M., Narayanan, L., Opatrny, J.: Minimizing the number of sensors
moved on line barriers. In: Proc. of IEEE Wireless Communications and Network-
ing Conference (WCNC). pp. 653–658 (2011)

15. Wang, H., Zhang, X.: Minimizing the maximum moving cost of interval coverage.
In: Proc. of the 26th International Symposium on Algorithms and Computation
(ISAAC). pp. 188–198 (2015), full version to appear in International Journal of
Computational Geometry and Application (IJCGA)

544 S. Li and H. Wang

	45 Algorithms for Covering Multiple Barriers
	1 Introduction
	1.1 Related Work
	1.2 Our Approach

	2 Preliminaries
	3 The Line-Constrained Version of MBC
	3.1 Proving Lemma 4

	4 The Decision Problem of MBC
	5 Solving the Problem MBC
	6 Concluding Remarks
	References

