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Abstract. A graph is distance-hereditary if for any pair of vertices,
their distance in every connected induced subgraph containing both ver-
tices is the same as their distance in the original graph. The Distance-
Hereditary Vertex Deletion problem asks, given a graph G on n
vertices and an integer k, whether there is a set S of at most k vertices
in G such that G − S is distance-hereditary. This problem is important
due to its connection to the graph parameter rank-width [19]; distance-
hereditary graphs are exactly the graphs of rank-width at most 1. Eiben,
Ganian, and Kwon (MFCS’ 16) proved thatDistance-Hereditary Ver-
tex Deletion can be solved in time 2O(k)nO(1), and asked whether it
admits a polynomial kernelization. We show that this problem admits a
polynomial kernel, answering this question positively. For this, we use a
similar idea for obtaining an approximate solution for Chordal Ver-
tex Deletion due to Jansen and Pilipczuk (SODA’ 17) to obtain an
approximate solution with O(k3 log n) vertices when the problem is a
Yes-instance, and we exploit the structure of split decompositions of
distance-hereditary graphs to reduce the total size.

1 Introduction

A graph is distance-hereditary if for every connected induced subgraph H and
two vertices u and v in H, the distance between u and v in H is the same as
their distance in G. A vertex subset X of a graph G is a distance-hereditary mod-
ulator, or a DH-modulator in short, if G−X is a distance-hereditary graph. We
study the problem Distance-Hereditary Vertex Deletion (DH Vertex
Deletion) which asks, given a graph G and an integer k, whether G contains
a DH-modulator of size at most k.

The graph modification problems, in which we want to transform a graph
to satisfy a certain property with as few graph modifications as possible, have
been extensively studied. For instance, the Vertex Cover and Feedback
Vertex Set problems are graph modification problems where the target graphs
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are edgeless graphs and forests, respectively. By the classic result of Lewis and
Yannakakis [18], it is known that for all non-trivial hereditary properties that
can be tested in polynomial time, the corresponding vertex deletion problems
are NP-complete. Hence, the research effort has been directed toward designing
algorithms such as approximation and parameterized algorithms.

When the target graph class C admits efficient recognition algorithms for
some NP-hard problems, the graph modification problem related to such a class
attracts more attention. Vertex deletion problems to classes of graphs of con-
stant tree-width or constant tree-depth have attracted much attention in this
context. Tree-width w Vertex Deletion is proved to admit an FPT algo-
rithm running in time 2O(k)nO(1) and a kernel with O(kg(w)) vertices for some
function g [11,17]. Also, it was shown that Tree-depth w Vertex Deletion
admits uniformly polynomial kernels with O(k6) vertices, for every fixed w [12].
All these problems are categorized as vertex deletion problems for F-minor free
graphs in a general setting, when the set F contains at least one planar graph.
However, F-minor free graphs capture only sparse graphs in a sense that the
number of edges of such a graph is bounded by a linear function on the number
of its vertices. Thus these problems are not useful when dealing with very dense
graphs.

Rank-width [19] and clique-width [5] are graph width parameters introduced
for extending graph classes of bounded tree-width. Graphs of bounded rank-
width represent graphs that can be recursively decomposed along vertex par-
titions (X,Y ) where the number of neighborhood types between X and Y are
small. Thus, graphs of constant rank-width may contain dense graphs; for in-
stance, all complete graphs have rank-width at most 1. Courcelle, Makowski,
and Rotics [4] proved that every MSO1-expressible problem can be solved in
polynomial time on graphs of bounded rank-width.

Motivated from Tree-width w Vertex Deletion, Eiben, Ganian, and
the second author [9] initiated study on vertex deletion problems to graphs of
constant rank-width. The class of graphs of rank-width at most 1 is exactly the
class of distance-hereditary graphs [19]. It was known that the vertex deletion
problem for graphs of rank-width w can be solved in FPT time [16] using a
meta-theorem [4]. Eiben et al. [9] devised the first elementary algorithm for
this problem when w = 1, or equivalently DH Vertex Deletion, that runs
in time 2O(k)nO(1). Furthermore, they discussed that a DH-modulator of the
size k can be used to obtain a 2O(k)nO(1)-time algorithm for problems such as
Independent Set, Vertex Cover, and 3-Coloring.

However, until now, it was not known whether DH Vertex Deletion ad-
mits a polynomial kernel or not. A kernelization of a parameterized graph prob-
lem Π is a polynomial-time algorithm which, given an instance (G, k) of Π,
outputs an equivalent instance (G′, k′) of Π with |V (G′)| + k′ ≤ h(k) for some
computable function h. The resulting instance (G′, k′) of a kernelization is called
a kernel, and in particular, when h is a polynomial function, Π is said to admit
a polynomial kernel.

Our Contribution and Approach. Our main result is the following.
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Theorem 1. DH Vertex Deletion admits a polynomial kernel.

We introduce in Section 3 an approximate DH-modulator with O(k3 log n)
vertices if the given instance is a Yes-instance. An important observation here
is that a distance-hereditary graph contains a complete bipartite subgraph (not
necessarily induced) which is a balanced separator. Thus, ifG admits a small DH-
modulator, then there is balanced vertex separatorX�K whereX is small andK
induces a complete bipartite subgraph. By recursively extracting such separators
using an approximation algorithm for finding a balanced vertex separator [10],
we will decompose the given graph into D � K1 � · · · � K� � X, where � =
O(k log n), D is distance-hereditary, each Ki is a complete bipartite subgraph,
|X| = O(k2

√
log k log n). In the next step, we argue that if a graph H is a

disjoint union of a distance-hereditary graph and a complete bipartite graph and
(H, k) is a Yes-instance and satisfies a certain property, then in polynomial time,
one can construct a DH-modulator of size O(k2) for H (Proposition 2). Using
this sub-algorithm � times, we construct an approximate DH-modulator with
O(k3 log n) vertices. This part follows a vein similar to the approach of Jansen
and Pilipczuk [15] for Chordal Vertex Deletion. Given a DH-modulator S
of size O(k3 log n), we can obtain a new DH-modulator S′ of size O(k5 log n)
such that for every v ∈ S′, G[(V (G) \ S′) ∪ {v}] is also distance-hereditary by
adding O(k2) vertices per each vertex in S. Such a DH-modulator is called a
good DH-modulator and the details will be explained in Section 4.

The remaining part of the paper is contributed to reduce the number of
vertices in G−S′. Two vertices v and w are twins if they have the same neighbors
outside {v, w}. In Section 5, we present a reduction rule that bounds the size
of each set of pairwise twins in G − S′. We give, in Section 6, a reduction rule
that bounds the number of components of G−S′. Lastly in Section 7, we reduce
the size of each component of G − S′ having at least 2 vertices. For the last
part, we use split decompositions of distance-hereditary graphs. Briefly, a split
decomposition displays a tree-like structure of a distance-hereditary graph in
the form of a decomposition tree with bags for each nodes, such that each bag
consists of a maximal set of pairwise twins (possibly with an extra vertex) in G−
S′. We will provide a rule that bounds the number of bags in the decomposition
tree, which results in bounding the size of each component.

2 Preliminaries

We follow [8] for basic graph terminology. A graph is trivial if it consists of a
single vertex, and non-trivial otherwise. For two sets A,B ⊆ V (G), we say A is
complete to B if for every v ∈ A and w ∈ B, v is adjacent to w. Two vertices v
and w of a graph G are twins if they have the same neighbors in G− {v, w}. A
vertex partition (A,B) of G is split if NG(A) is complete to NG(B).

A graph H is a biclique if there is a bipartition of V (H) into non-empty sets
A�B such that any two vertices a ∈ A and b ∈ B is adjacent. Notice that there
may be edges among the vertices of A or B. For K ⊆ V (G), we say that K is a
biclique of G if G[K] is a biclique. For a connected graph G, a vertex subset S
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of G is called a balanced vertex separator of G if every component of G− S has
at most 2

3 |V (G)| vertices. We allow V (G) to be a balanced vertex separator of
G. For a vertex subset S of G, a path is called an S-path if its end vertices are
in S and all other internal vertices are in V (G) \ S.

house gem domino cycle ≥ 5

Fig. 1. The induced subgraph obstructions for distance-hereditary graphs.

A graph is called a DH obstruction if it is isomorphic to a gem, a house,
a domino or an induced cycle of length at least 5, that are depicted in Fig-
ure 1. A DH obstruction is small if it has at most 6 vertices. Bandelt and
Mulder [2] proved that a graph is distance-hereditary if and only if it has no
induced subgraph isomorphic to one of DH obstructions. A DH-modulator S is
good if G[(V (G) \ S) ∪ {v}] is distance-hereditary for every v ∈ S.

3 Approximation algorithm

We present a polynomial-time algorithm which constructs an approximate DH-
modulator of G whenever (G, k) is a Yes-instance.

Theorem 2. There is a polynomial-time algorithm which, given a graph G and
a positive integer k, either correctly reports that (G, k) is a No-instance to DH
Vertex Deletion, or returns a DH-modulator of size O(k3 log n).

If G contains k+1 vertex-disjoint copies of small DH obstructions, then (G, k)
is a No-instance. We may assume a maximal packing of small DH obstructions
has cardinality at most k. Since a maximal packing consists of at most 6k vertices,
it is sufficient to prove Theorem 2 when G has no small DH obstruction.

We prove the following two propositions, implying Theorem 2 together.

Proposition 1. There is a polynomial-time algorithm which, given an instance
(G, k), either computes a decomposition V (G) = D�K��· · ·�K1�X such that
G[D] is distance-hereditary, each Ki is a biclique, |X| = O(k2

√
log k log n) and

� = O(k log n), or correctly reports that (G, k) is a No-instance.

When G does not contain any small DH obstructions, a linear program of
DH Vertex Deletion for G can be formulated as follows, where xv ≥ 0 for
each v ∈ V (G):

min
∑

v∈V (G)

xv s.t
∑

v∈V (H)

xv ≥ 1 ∀ induced cycle H of length at least 7

A mapping x = (xv)v∈V (G) from V (G) to R is a feasible fractional solution to
DH Vertex Deletion for G if it is feasible to the above linear program for G.
For a subgraph H of G, we write x(H) :=

∑
v∈V (H) xv and |x| := x(G).
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Proposition 2. Let (G, k) be an instance to DH Vertex Deletion such that
G has no small DH obstructions, V (G) = D � K where G[D] is distance-
hereditary, and K is a biclique. Let x∗ be a feasible fractional solution to DH
Vertex Deletion for G such that x∗

v < 1
20 , ∀v ∈ V (G). Given such G and x∗,

one can in polynomial time find a DH-modulator X with O(|x∗|2) vertices.

We first explain Proposition 1. First, we obtain an O(n3) bound on the num-
ber of maximal bicliques in a graph having no small DH obstructions. Secondly,
we prove that every connected distance-hereditary graph on at least two vertices
contains a balanced vertex separator that is a biclique. Combining these results,
we can show the following.

Lemma 1. Whenever (G, k) is a Yes-instance and G has no small DH obstruc-
tions, one can in polynomial time find a balanced vertex separator K �X where
K is a biclique or an empty set and |X| = O(k

√
log k).

Proof (Sketch of proof). Over all maximal bicliques K of G, we apply the
O(

√
logOPT )-approximation algorithm for finding a balanced vertex separa-

tor in G − K, due to Feige et al [10]. One can observe that since (G, k) is a
Yes-instance, there is some set X of size at most k and a balanced vertex sepa-
rator of K ′ of G−X that is a biclique. Thus, a maximal biclique of G containing
this K ′ is detected in the algorithm, and the approximation algorithm provides
a set X ′ of size O(k

√
log k) where K ′ �X ′ is a balanced vertex separator. ��

We set G1 := G, K0 = X0 = ∅, and at i-th recursive step, we apply Lemma 1
to a connected component Gi of G −

⋃
j<i(Kj � Xj) which is not distance-

hereditary and obtain a balanced vertex separator Ki � Xi of Gi. In the end,
we obtain a decomposition V (G) = D � K� � · · · � K1 � X� � · · · � X1, where
G[D] is distance-hereditary, each Ki is a biclique or an empty set, and |Xi| =
O(k

√
log k). Since we only apply Lemma 1 to a component that is not distance-

hereditary, if (G, k) is a Yes-instance, then the size-k-modulator of G intersects
every such component. By representing the recursive procedure as a collection
of branching trees T , we can show that � = O(k log n), as the maximum length
of a root-to-leaf path in T is O(log n).

Now, we explain Proposition 2. Suppose G has no small DH obstructions
and V (G) = D �K where G[D] is distance-hereditary, and K is a biclique with
a bipartition (A,B), and x∗ is a feasible fractional solution to DH Vertex
Deletion such that x∗

v < 1
20 for every v ∈ V (G). We first observe that a

new vector x′ where x′
v = 0 if v ∈ K and x′

v = 2x∗
v if v ∈ D, is again a

feasible fractional solution. For this, we show that every induced cycle H of
length at least 7 in G satisfies that if G[V (H) ∩ K] has one component, then
|V (H)∩K| ≤ 3, and otherwise, H contains a K-path whose length is at least 3.
In the former case, we have x′(H) = x′(G[V (H)∩D]) = 2x∗(G[V (H)∩D]) ≥ 1
as x∗(G[V (H) ∩ K]) < 3 · 1

20 < 1
2 . In the latter case, the end vertices of the

K-path P are contained in the same part of A or B, and it forms another DH
obstruction H ′ with a vertex in the other part, where G[V (H ′) ∩ K] has one
component. Thus, we have x′(H) ≥ x′(P ) ≥ x′(H ′) ≥ 1, as x′

v = 0 for v ∈ K.
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We construct an instance (G[D], T ) of Vertex Multicut with terminal
pairs T := {(s, t) ⊆ D × D : distG[D],x′(s, t) ≥ 1}, where distG[D],x′(s, t) is the
minimum x′(P ) over all (s, t)-paths P . Notice that for every terminal pair (s, t) ∈
T , and for every (s, t)-path P in G[D], we have x′(P ) ≥ distG[D],x′(s, t) ≥ 1,
meaning that x′ is a feasible fractional solution to Vertex Multicut for the
instance (G[D], T ). Using an approximation algorithm for Vertex Multicut
by Gupta [14], we can obtain a vertex set X ⊆ D of size O(|x′|2) such that
G[D \X] contains no (s, t)-path for every terminal pair (s, t) ∈ T in polynomial
time. We prove, in the appendix, that the obtained set X is a DH-modulator.

Proof (of Theorem 2). It is sufficient to prove when G has no small DH obstruc-
tions. Let x∗ be an optimal fractional solution to DH Vertex Deletion for G.
We may assume |x∗| ≤ k, otherwise we report that (G, k) is a No-instance. Let
X̃ be the set of all vertices v such that x∗

v ≥ 1
20 . Observe that |X̃| ≤ 20k since

otherwise, |x∗| ≥ 1
20 |X̃| > k, a contradiction. Also x∗ restricted to V (G) \ X̃ is

a fractional feasible solution for G− X̃ such that x∗
v < 1

20 for every v.

We compute a decomposition V (G−X̃) = D�
⋃�

i=1 Ki∪X as in Proposition 1,
or correctly report (G, k) as a No-instance. Recall that � = O(k log n) and

|X| = O(k2
√
log k log n). Note that V (G− (X̃ ∪X)) = D�

⋃�
i=1 Ki. From i = 1

up to �, we want to obtain a DH-modulator Si of Gi, where G1 := G[D∪K1] and
for i = 2, . . . , �, Gi is the subgraph of G induced by (V (Gi−1) \Si−1)∪Ki. Note
that Gi−Si is distance-hereditary and Ki is a blique. Hence, we can inductively
apply the algorithm of Proposition 2 and obtain a DH-modulator Si of size at
most O(|x∗|2) of Gi. Especially, G�−S� is distance-hereditary, implying that the

set defined as S := X̃ ∪X ∪
⋃�

i=1 Si is a DH-modulator of G. From |x∗| ≤ k, we
have |Si| = O(k2) for each i. It follows that |S| = O(k3 log n). ��

4 Good modulator

Theorem 3. There is a polynomial-time algorithm which, given a graph G and a
positive integer k, either correctly reports that (G, k) is a No-instance, or returns
an equivalent instance (G′, k′) with a good DH-modulator of size O(k5 log n).

Proof (Sketch of Proof). If the algorithm of Theorem 2 reports that the instance
is a No-instance, then we are done. Let S be a DH-modulator of size O(k3 log n)
given by Theorem 2. Let U := ∅, and for v ∈ S, let Hv := G[(V (G) \ S) ∪ {v}].
One can in polynomial time find either k+1 small DH obstructions in Hv whose
pairwise intersection is v, or a vertex set Tv of V (G) \S such that |Tv| ≤ 5k and
Hv − Tv has no small DH obstructions. In the former case, we add v to U .

Assume we obtain a vertex set Tv. Since Hv − Tv has no small DH obstruc-
tions, every DH obstruction in Hv − Tv is an induced cycle of length at least
7. We assert that either Hv − Tv contains a vertex set Xv of size O(k2) such
that Hv − (Tv ∪ Xv) has no DH obstructions, or correctly reports that every
DH-modulator of size at most k contains v.

We consider an instance (Hv − (Tv ∪ {v}), T ) of Vertex Multicut where
T := {(s, t) : s, t ∈ NHv−Tv

(v), distHv−(Tv∪{v})(s, t) ≥ 3}. We can show that
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X ⊆ V (Hv) \ (Tv ∪ {v}) hits all induced cycles of Hv − Tv of length at least
7 if and only if X is a vertex multicut for (Hv − (Tv ∪ {v}), T ), because the
restriction of an induced cycle of Hv −Tv of length at least 7 is an induced path
of length at least 3 between two neighbors of v in Hv − Tv, and the shortest
path between those vertices and the induced path have the same length, as
Hv − (Tv ∪ {v}) is distance-hereditary. Let x∗ be an optimal fractional solution
to Vertex Multicut, which can be efficiently found using the ellipsoid method
and an algorithm for the (weighted) shortest path problem as a separation oracle.
If |x∗| ≤ k, then we can construct a multicut Xv ⊆ V (Hv) \ (Tv ∪ {v}) of size
O(|x∗|2) = O(k2) using the approximation algorithm of Gupta [14]. If |x∗| > k,
then any integral solution for (Hv − (Tv ∪ {v}), T ) is larger than k, and any
DH-modulator of size at most k must contain v. In this case, we add v to U .

We can confirm that (G−U, k− |U |) is an instance equivalent to (G, k) and
S ∪ (

⋃
v∈S\U (Tv ∪Xv)) is a good DH-modulator for G− U . ��

5 Twin Reduction Rule

In a distance-hereditary graph, there may be a large set of pairwise twins. We
introduce a reduction rule that bounds the size of a set of pairwise twins in G−S
by O(k2|S|3), where S is a DH-modulator (not necessarily good). The underlying
observation is that it suffices to keep up to k+1 vertices that are pairwise twins
with respect to each subset of S of small size. For a subset S′ ⊆ S, two vertices
u and v in V (G) \ S are S′-twins if u and v have the same neighbors in S′. It is
not difficult to get an upper bound O(k|S|5), by considering all subsets S′ of S
of size min{|S|, 5} and marking up to k+ 1 S′-twins. To get a better bound, we
proceed as follows.

Reduction Rule 1 Let W be a set of pairwise twins in G − S, and let m :=
min{|S|, 3}. (1) Over all subsets S′ ⊆ S of size m, we mark up to k+1 pairwise
S′-twins in W that are unmarked yet. (2) When |S| ≥ 4, over all subsets S′ ⊆ S
of size 4, if there is an unmarked vertex v of W such that G[S′∪{v}] is isomorphic
to the house or the gem, then we mark up to k+1 previously unmarked vertices
in W including v that are pairwise S′-twins. (3) If there is an unmarked vertex
v of W after finishing the marking procedure, we remove v from G.

If (G, k) is irreducible with respect to Reduction Rule 1 and |S| ≥ 4, then
each set W of pairwise twins in G−S contains O(k2|S|3) vertices, or (G, k) is a
No-instance. This is because, if (G, k) is a Yes-instance, then all chosen subsets
S′ in (2) can be covered by at most 4k vertices. If |S| ≤ 3, then W has at most
8(k + 1) vertices. To see the safeness, suppose there is an unmarked vertex v
of W after finishing the marking procedure. It is clear that if (G, k) is a Yes-
instance, then (G− v, k) is a Yes-instance. Suppose G− v has a DH-modulator
T of size at most k, and G − T contains a DH obstruction F containing v. In
case when F − v is an induced path, let w, z be the end vertices of the path,
and choose a set S′ ⊆ S of size 3 containing {w, z} ∩ S. Since v is unmarked
in Reduction Rule 1, there are v1, . . . , vk+1 ∈ W \ {v} where v1, . . . , vk+1, v are
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pairwise S′-twins. Note that V (F ) ∩ {v1, . . . , vk+1} = ∅ since no other vertex in
F is adjacent to both w and z. Thus, there exists v′ ∈ {v1, . . . , vk+1} \ T such
that G[V (F ) \ {v} ∪ {v′}] is a DH obstruction in (G− v)− T , contradiction.

If |S ∩ V (F )| ≤ 3, then we can proceed in the same way. We may assume
F − v is not an induced path and |S ∩ V (F )| ≥ 4. If F is the house or the gem,
then we marked necessary vertices in (2), and thus we can proceed similarly. If F
is the domino, then v should be a vertex of degree 2 in F . We can prove that the
3 vertices S′ in F −v, two neighbors of v and the vertex farthest from v, satisfies
that the existence of S′-twins with v is enough to get another DH obstruction.

6 The number of non-trivial components of G − S

We provide a reduction rule that bounds the number of non-trivial components
of G − S, when S is a good DH-modulator. For v ∈ S and a component C of
G−S, let N(v, C) := NG(v)∩V (C). We say that a pair (v, w) of vertices in S is a
witnessing pair (for being non-split) for a component C of G−S if N(v, C) �= ∅,
N(w,C) �= ∅ and N(v, C) �= N(w,C). The following lemma is essential.

Lemma 2. If C1, C2, . . . , Cm are distinct connected components of G − S with
m ≥ 2 and v1, v2, . . . , vm are distinct vertices of S (vm+1 = v1) such that for each
i ∈ {1, . . . ,m}, (vi, vi+1) is a witnessing pair for Ci, then G[{v1, v2, . . . , vm} ∪⋃

i∈{1,...,m} V (Ci)] contains a DH obstruction.

Lemma 2 for m = 2 observes that if a pair of vertices in S witnesses at least k+2
non-trivial components in G−S, at least one of the pair must be contained in any
size-k DH-modulator. Furthermore, keeping exactly k+2 non-trivial components
would suffice to impose this restriction. This suggests the following rule.

Reduction Rule 2 For each pair of vertices v and w in S, we mark up to k+2
non-trivial (previously unmarked) connected components C of G − S such that
(v, w) is a witnessing pair for C. If there is an unmarked non-trivial connected
component C after the marking procedure, then we remove all edges in C.

For the safeness of Reduction Rule 2, suppose there was an unmarked non-
trivial connected component C after the marking procedure, and G′ is the re-
sulting graph. We mainly observe that if G′ has a DH-modulator T of size at
most k, then (V (C) \ T, V (G) \ V (C) \ T ) is a split in G− T . Otherwise, there
are v, w ∈ S and components C1, . . . , Ck+2 where (v, w) is a witnessing pair
for C,C1, . . . , Ck+2 in G. Then there are 2 components among C1, . . . , Ck+2

that does not intersect T , and by Lemma 2, G − T contains a DH obstruc-
tion, contradiction. Thus, if there is a DH obstruction H in G − T , then since
(V (C) \ T, V (G) \ V (C) \ T ) is a split in G− T and S is a good-modulator, we
have |V (H)∩V (C)| ≤ 1. This implies that G′−T also contains H, contradiction.
We prove for the other direction in the similar way.

Proposition 3. If (G, k) is irreducible with respect to Reduction Rule 2, then
either the number of non-trivial components is O(k2|S|) or it is a No-instance.
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Proof (of Proposition 3). Suppose (G, k) is a Yes-instance. We define an auxil-
iary multigraph F on S such that for v, w ∈ S, the multiplicity of the edge vw
equals the number of non-trivial components that are marked by the witness of
(v, w) in Reduction Rule 2. It suffices to obtain a bound on the number of edges
in F with the edge multiplicity taken into account.

Construct a maximal packing of 2-cycles in F and let S1 ⊆ S be the vertices
contained in the packing. By Lemma 2, a packing of size k + 1 implies the
existence of k + 1 vertex-disjoint DH obstructions. Therefore, |S1| ≤ 2k. Again,
due to the assumption that (G, k) is a Yes-instance, the subgraph F − S1 does
not have k+1 vertex-disjoint cycles: otherwise, G contains k+1 vertex-disjoint
DH obstructions by Lemma 2. By the Erdős-Pósa property of cycles, there exists
S2 ⊆ V (F )\S1 hitting all cycles of F −S1 with |S2| ≤ rk log k for some constant
r. Now, the number of edges in F is at most |S1| · |S|(k + 2) + |S2| · |S \ S1| +
(|S \ S1 \ S2|) = 2k(k + 2)|S|+ rk log k|S|+ |S| ≤ (7 + r)k2|S|. ��

7 The size of non-trivial components of G − S

It remains to bound the size of each non-trivial connected component of G− S.
For this, we need to use split decompositions that present tree-like structure of
distance-hereditary graphs. For the length constraint, we shortly define here with
an example, and put the full description in the appendix (preliminary section).

B1 B2

B4

B3

B5

G

Fig. 2. An example of a split decomposition of a distance-hereditary graph. Dashed
edges denote marked edges and each Bi denotes a bag.

A connected graph G is prime if |V (G)| ≥ 5 and it has no split. A connected
graph D with a distinguished set of cut edges M(D) of D is called a marked
graph if M(D) forms a matching. An edge in M(D) is a marked edge, and every
other edge is an unmarked edge. A vertex incident with a marked edge is a
marked vertex, and every other vertex is an unmarked vertex. Each component
of D−M(D) is a bag of D. See Figure 2 for an example. When G admits a split
(A,B), we construct a marked graph D on the vertex set V (G) ∪ {a′, b′} such
that (1) a′b′ is a new marked edge, (2) there are no edges between A and B,
(3) {a′} is complete to NG(B), {b′} is complete to NG(A), and (4) G[A] = D[A]
and G[B] = D[B]. The marked graph D is a simple decomposition of G. A split
decomposition of a connected graph G is a marked graph D defined inductively
to be either G or a marked graph defined from a split decomposition D′ of G by
replacing a bag B with its simple decomposition.
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Cunningham and Edmonds [6] developed a canonical way to decompose a
graph into a split decomposition. A split decomposition D of G is canonical if
each bag of D is either a prime graph, a star, or a complete graph, and recom-
posing any marked edge of D violates this property. It is unique up to isomor-
phism [6] and can be computed in time O(|V (G)| + |E(G)|) [7]. In particular,
Bouchet [3] proved that a graph is distance-hereditary if and only if every bag
in its canonical split decomposition is a star or a complete graph.

Let D be the canonical split decomposition of a non-trivial component H of
G−S. It is known that unmarked vertices in each bag of D consist of at most two
twin sets in G− S. Thus, by Reduction Rule 1, it suffices to bound the number
of bags of D. Since S is a good DH-modulator, for each v ∈ S, G[V (H) ∪ {v}]
is distance-hereditary. Gioan and Paul [13, Theorem 3.4] described the way of
extendingD to the canonical split decomposition of G[V (H)∪{v}]. In particular,
there exists a bag or a marked edge that is modified when pushing v, and we
can find this place in time O(|V (G)|). Such a bag or a marked edge is called
S-affected. A bag B is a branch bag if D − V (B) contains at least 3 connected
components having at least two bags. For two adjacent bags B1 and B2, we
denote by e(B1, B2) the marked edge linking B1 and B2.

We first apply three reduction rules dealing with leaf bags. Firstly, we remove
a vertex of degree 1 in G. Since any DH obstruction does not contain a vertex of
degree 1, this is safe. Secondly, if there are a leaf bag B and its neighbor bag B′

such that B,B′, e(B,B′) are S-unaffected, and B′ is a star bag whose center is
adjacent to B, and D − V (B′) has exactly two components, then we remove all
unmarked vertices of B′. In this case, all neighbors of a vertex in B′ are contained
in B whose unmarked vertices are pairwise twins in G. Thus, any DH obstruction
does not contain a vertex of B′, and this rule is safe. Lastly, if A ⊆ V (H) is a
maximal set of pairwise twins in G and flipping the adjacency between every
two vertices of A reduces the number of bags, then we flip the adjacency. For
instance, if B is a leaf bag that is a complete graph and its neighbor bag is a
star bag whose leaf is adjacent to B, and B is S-unaffected, then by flipping the
adjacency between two vertices in B, we can transform B into a star bag and
merge with B′. This rule is also used in the FPT algorithm [9].

After applying those rules exhaustively, to find a reducible part, we color the
bags of D with red and blue in the following way. (1) If a bag B is S-affected or
incident with an S-affected edge, we color B with red. (2) If a bag B is adjacent
to an S-affected leaf bag, we color B with red. (3) If B is a branch bag, then
we color B with red. (4) All other bags are colored with blue. We can show that
the number of red bags is at most 3|S|, and for each bag B, there is at most
one blue bag adjacent to B. We further show that the number of components of
D−

⋃
B∈R∪Q V (B) is at most 3|S|, where R is the set of red bags, and Q is the

set of blue leaf bags whose neighbor bags are red.

It remains to bound each connected component of D−
⋃

B∈R∪Q V (B). Let D′

be a connected component of D−
⋃

B∈R∪Q V (B). As R contains all branch bags,
D′ contains no branch bags. Therefore, there is a sequence B1 −B2 − · · · −Bm

of bags of D′ that are not leaf bags, and all other bags are leaf bags adjacent
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to one of B1, . . . , Bm. For 1 ≤ i1 < i2 < i3 ≤ m, Bi2 is a (Bi1 , Bi3)-separator
bag, if it is a star bag whose center is adjacent to neither Bi2−1 nor Bi2+1. We
first bound the number of (B1, Bm)-separator bags, since if there are many, then
we can merge two closest separator bags into one bag. This is similar to usual
bypassing rule in Feedback Vertex Set. One interesting part is to bound
the number of the sequence of consecutive bags that are not (B1, Bm)-separator
bags. We show that if there is such a sequence of length more than 5k+11, then
we can always find a vertex that can be safely removed. In the end, we reduce
the number of bags in each component of D −

⋃
B∈R∪Q V (B) to 20k + 52, and

we conclude that the number of all bags is bounded by 3|S|(20k + 54) bags.

Proof (of Theorem 1). We first prove that given an instance (G, k) and a good
DH-modulator S, one can output an equivalent instance of size O(k5|S|5). We
first apply Reduction Rule 2 to (G, k) with S. After that, G − S has O(k2|S|)
non-trivial components or we can correctly report that (G, k) is a No-instance
by Proposition 3. Next, we apply reduction rules for reducing the size of non-
trivial components ofG−S. We prove the safeness, polynomial-time applicability,
and preserving the goodness of S in the appendix. In the end, the canonical
split decomposition D of each non-trivial component of G − S has at most
3|S|(20k+54) bags. Last, we apply Reduction Rule 1 exhaustively in polynomial
time. This bounds the size of a twin set in G−S by O(k2|S|3). We note that the
unmarked vertices of a bag form at most two twin sets. Therefore, the number
of unmarked vertices in a bag is bounded by O(k2|S|3). Especially, the same
bounds apply to the number of trivial components in G − S since they form
an independent set in G − S. Combining the previous bounds altogether, we
conclude that V (G′) = O(k5|S|5), when (G′, k′) is the resulting instance.

We may assume n ≤ 2ck for some constant c. Recall that there is an algorithm
for DH Vertex Deletion running in time 2cknO(1) by Eiben, Ganian, and
Kwon [9]. If n > 2ck, then the algorithm of [9] solves the instance (G, k) correctly
in polynomial time, in which case we can output a trivial equivalent instance. By
Theorem 3, we can obtain a good DH-modulator S of size O(k5 log n) = O(k6)
in polynomial time or correctly report (G, k) as a No-instance. The previous
argument yields that in polynomial time, an equivalent instance (G′, k′) of size
O(k35) can be constructed. Now, applying Theorem 3 again3 to (G′, k′), we
can either correctly conclude that (G′, k′), and thus (G, k), is a No-instance or
output a good DH-modulator S′ of size O(k5 log k). Finally we obtain a kernel
of size O(k30 log5 k).
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