An EPTAS for Scheduling on Unrelated
Machines of Few Different Types*

Klaus Jansen and Marten Maack

Christian-Albrechts-Universitat zu Kiel, 24118 Kiel, Germany,
{kj,mmaa}@informatik.uni-kiel.de

Abstract. In the classical problem of scheduling on unrelated parallel
machines, a set of jobs has to be assigned to a set of machines. The
jobs have a processing time depending on the machine and the goal is to
minimize the makespan, that is, the maximum machine load. It is well
known that this problem is NP-hard and does not allow polynomial time
approximation algorithms with approximation guarantees smaller than
1.5, unless P=NP. We consider the case that there is only a constant
number K of machine types. Two machines have the same type, if all
jobs have the same processing time for them. We present an efficient
polynomial time approximation scheme (EPTAS) for this problem, that is,
for any € > 0 an assignment with makespan of length at most (1+¢) times
the optimum can be found in polynomial time in the input length and the
exponent is independent of 1/e. In particular we achieve a running time
of 20K loa(K)1/zlog? 1/) | poly(]I]), where |I| denotes the input length.
Furthermore, we study the case where the minimum machine load has to
be maximized and achieve a similar result.

1 Introduction

We consider the problem of scheduling jobs on unrelated parallel machines—or
unrelated scheduling for short—in which a set J of n jobs has to be assigned to
a set M of m machines. Each job j has a processing time p;; for each machine
¢ and the goal is to find a schedule ¢ : J — M minimizing the makespan
Cnax(0) = max;e pm Zjeafl(z‘) Dij, i.e., the maximum machine load. The problem
is one of the classical scheduling problems studied in approximation. In 1990
Lenstra, Shmoys and Tardos [20] showed that there is no approximation algorithm
with an approximation guarantee smaller than 1.5, unless P=NP. Moreover, they
presented a 2-approximation and closing this gap is a rather famous open problem
in scheduling theory and approximation (see e.g. [23]).

In particular we study the special case where there is only a constant number
K of machine types. Two machines ¢ and ¢’ have the same type, if p;; = py/; holds
for each job j. In many application scenarios this scenario is plausible, e.g. when
considering computers which typically only have a very limited number of different

* This work was partially supported by the German Research Foundation (DFG)
project JA 612/16-1.

© Springer International Publishing AG 2017 497
F. Ellen et al. (Eds.): WADS 2017, LNCS 10389, pp. 497-508, 2017.
DOI: 10.1007/978-3-319-62127-2_42

498 K. Jansen and M. Maack

types of processing units. We denote the processing time of a job j on a machine
of type t € [K] by p;; and assume that the input consist of the corresponding
K X n processing time matrix together with machine multiplicities m; for each
type t, yielding m = ZtE[K] my. Note that the case K =1 is equivalent to the
classical scheduling on identical machines.

We will also consider the reverse objective of maximizing the minimum
machine load, i.e., Ciin(0) = min;e g EjGJ*l(i) pi;- This problem is also known
as max-min fair allocation or the Santa Claus problem. The intuition behind
these names is that the jobs are interpreted as goods (e.g. presents), the machines
as players (e.g. children), and the processing times as the values of the goods from
the perspective of the different players. Finding an assignment that maximizes
the minimum machine load, means therefore finding an allocation of the goods
that is in some sense fair (making the least happy kid as happy as possible). We
will refer to the problem as Santa Claus problem in the following, but otherwise
will stick to the scheduling terminology.

We study approximation algorithms: Given an instance I of an optimization
problem, an a-approximation A produces a solution in time poly(|I|), where |I|
denotes the input length. For the objective function value A(I) it is guaranteed
that A(I) < a«OPT(I), in the case of an minimization problem, or A(I) >
(1/a)OPT(I), in the case of an maximization problem, where OPT(I) is the
value of an optimal solution. We call a the approzimation guarantee or rate of the
algorithm. In some cases a polynomial time approximation scheme (PTAS) can
be achieved, that is, for each € > 0 an (1 + ¢)-approximation. If for such a family
of algorithms the running time can be bounded by f(1/e)poly(|I|) for some
computable function f, the PTAS is called efficient (EPTAS), and if the running
time is polynomial in both 1/¢ and |I| it is called fully polynomial (FPTAS).

Related work. It is well known that the unrelated scheduling problem admits
an FPTAS in the case that the number of machines is considered constant [13]
and we already mentioned the seminal work by Lenstra et al. [20]. Furthermore,
the problem of unrelated scheduling with a constant number of machine types
is strongly NP-hard, because it is a generalization of the strongly NP-hard
problem of scheduling on identical parallel machines. Therefore an FPTAS can
not be hoped for in this case. However, Bonifaci and Wiese [5] showed that
there is a PTAS even for the more general vector scheduling case. However,
in the case considered here, their algorithm has to solve m to the power of
O(K(1/e)"/=1°8"/%) linear programs. Gehrke et al. [10] presented a PTAS with
an improved running time of O(Kn) + mO(K/EQ)(log(m)/e)o(KZ) for unrelated
scheduling with a constant number of machine types. On the other hand, Chen
et al. [7] showed that there is no PTAS for scheduling on identical machines with
running time 2(/ ' for any ¢ > 0, unless the exponential time hypothesis fails.
Furthermore, the case K = 2 has been studied: Imreh [14] designed heuristic
algorithms with rates 24+ (mj —1)/ms and 4—2/m;, and Bleuse et al. [4] presented
an algorithm with rate 4/3 + 3/ms and moreover a (faster) 3/2-approximation,
for the case that for each job the processing time on the second machine type is

An EPTAS for Scheduling on Unrelated Machines of Few Different Types 499

at most the one on the first. Moreover, Raravi and Nélis [22] designed a PTAS
for the case with two machine types.

Interestingly, Goemans and Rothvoss [11] were able to show that unrelated
scheduling is in P, if both the number of machine types and the number of job
types is bounded by a constant. Job types are defined analogously to machine
types, i.e., two jobs j, j” have the same type, if p;; = p;;- for each machine 4. In this
case the matrix (p;;) has only a constant number of distinct rows and columns.
Note that already in the case we study, the rank of this matrix is constant.
However the case of unrelated scheduling where the matrix (p;;) has constant
rank turns out to be much harder: Already for the case with rank 4 there is no
approximation algorithm with rate smaller than 3/2 unless P=NP [8]. In a rather
recent work, Knop and Kouteck [19] considered the number of machine types as
a parameter from the perspective of fixed parameter tractability. They showed
that unrelated scheduling is fixed parameter tractable for the parameters K and
max p; ;, that is, there is an algorithm with running time f(X, maxp; ;)poly(|7|)
for some computable function f that solves the problem to optimality.

For the case that the number of machines is constant, the Santa Claus problem
behaves similar to the unrelated scheduling problem: there is an FPTAS that is
implied by a result due to Woeginger [24]. In the general case however, so far
no approximation algorithm with a constant approximation guarantee has been
found. The results by Lenstra et al. [20] can be adapted to show that that there is
no approximation algorithm with a rate smaller than 2, unless P=NP, and to get
an algorithm that finds a solution with value at least OPT(I) — maxp; ;, as was
done by Bezkov and Dani [3]. Since max p; ; could be bigger than OPT([I), this
does not provide an (multiplicative) approximation guarantee. Bezkov and Dani
also presented a simple (n—m+1)-approximation and an improved approximation
guarantee of O(y/nlog® n) was achieved by Asadpour and Saberi [1]. The best
rate so far is O(n®) due to Bateni et al. [2] and Chakrabarty et al. [6], with a
running time of O(n'/¢) for any £ > 0.

Results and Methodology. In this paper we show:

Theorem 1. There is an EPTAS for both scheduling on unrelated parallel ma-
chines and the Santa Claus problem with4a constant number of different machine
types with running time 20K 108(K)/=log™ /) L noly(|1)).

First we present a basic version of the EPTAS for unrelated scheduling with
a running time doubly exponential in 1/e. For this EPTAS we use the dual
approximation approach by Hochbaum and Shmoys [12] to get a guess T of the
optimal makespan OPT. Then we further simplify the problem via geometric
rounding of the processing times. Next we formulate a mixed integer linear
program (MILP) with a constant number of integral variables that encodes a
relaxed version of the problem. We solve it with the algorithm by Lenstra and
Kannan [21, 18]. The fractional variables of the MILP have to be rounded and
we achieve this with a cleverly designed flow network utilizing flow integrality
and causing only a small error. With an additional error the obtained solution

500 K. Jansen and M. Maack

can be used to construct a schedule with makespan (1 + O(g))T. This procedure
is described in detail in Section 2. Building upon the basic EPTAS we achieve
the improved running time using techniques by Jansen [15] and by Jansen, Klein
and Verschae [16]. The basic idea of these techniques is to make use of existential
results about simple structured solutions of integer linear programs (ILPs). In
particular these results can be used to guess the non-zero variables of the MILP,
because they sufficiently limit the search space. We show how these techniques
can be applied in our case in Section 3. Interestingly, our techniques can be
adapted for the Santa Claus Problem, which typically has a worse approximation
behaviour. We discuss the ideas needed for this in the last section of the paper.
More details and omitted proofs can be found in the long version of the paper
[17].

2 Basic EPTAS

In this chapter we describe a basic EPTAS for unrelated scheduling with a
constant number of machine types, with a running time doubly exponential in
1/e. Wlog. we assume € < 1. Furthermore log(-) denotes the logarithm with basis
2 and for k € Z>o we write [k] for {1,...,k}.

First, we simplify the problem via the classical dual approximation concept
by Hochbaum and Shmoys [12]. In the simplified version of the problem a
target makespan T is given and the goal is to either output a schedule with
makespan at most (1 + ae)T for some constant a € Zsq, or correctly report
that there is no schedule with makespan T. We can use a polynomial time
algorithm for this problem in the design of a PTAS in the following way. First we
obtain an upper bound B for the optimal makespan OPT of the instance with
B < 20PT. This can be done using the 2-approximation by Lenstra et al. [20].
With binary search on the interval [B/2, B] we can find in O(log 1/¢) iterations
a value T* for which the mentioned algorithm is successful, while T* — eB/2 is
rejected. We have T* — eB/2 < OPT and therefore T* < (1 + ¢)OPT. Hence
the schedule we obtained for the target makespan T has makespan at most
(I+0e)T* < (14ag)(1+¢)OPT = (1+0O(g))OPT. In the following we will always
assume that a target makespan T is given. Next we present a brief overview of
the algorithm for the simplified problem followed by a more detailed description
and analysis.

Algorithm 2.

1. Simplify the input via geometric rounding with an error of €7'.

2. Build the mixed integer linear program MILP(T) and solve it with the

algorithm by Lenstra and Kannan (T = (1 + ¢)T).

If there is no solution, report that there is no solution with makespan 7.

4. Generate an integral solution for MILP(T + T + £2T) via a flow network
utilizing flow integrality.

5. The integral solution is turned into a schedule with an additional error of
2T due to the small jobs.

©w

An EPTAS for Scheduling on Unrelated Machines of Few Different Types 501

Simplification of the Input. We construct a simplified instance I with mod-
ified processing times p;;. If a job j has a processing time bigger than T for a
machine type t € [K] we set p;; = co. We call a job big (for machine type t), if
Dij > £2T, and small otherwise. We perform a geometric rounding step for each
job j with p;; < oo, that is, we set py; = (14¢)%e?T with = [logy . (p;/(€*T))].

Lemma 1. If there is a schedule with makespan at most T for I, the same
schedule has makespan at most (14 &)T for instance I and any schedule for
instance I can be turned into a schedule for I without increase in the makespan.

We will search for a schedule with makespan T' = (1 +)T for 1.

We establish some notation for the rounded instance. For any rounded pro-
cessing time p we denote the set of jobs j with pi; = p by J;(p). Moreover, for
each machine type t let S; and By be the set of small and big rounded processing
times. Obviously we have |S;| 4+ |B;| < n. Furthermore |B;| is bounded by a
constant: Let N be such that (1 4 ¢)Ve?T is the biggest rounded processing
time for all machine type. Then we have (1 + ¢)V 12T < T and therefore
|Bi| < N <log(1/e?)/log(l+¢)+ 1< 1/elog(1/e?) + 1 (using ¢ < 1).

MILP. For any set of processing times P we call the P-indexed vectors of non-
negative integers ZZ, configurations (for P). The size size(C)) of configuration C
is given by > . p Cpp. For each ¢ € [K] we consider the set Ci(T) of configurations
C for the big processing times B; and with size(C) < T. Given a schedule o, we
say that a machine ¢ of type t obeys a configuration C, if the number of big jobs
with processing time p that o assigns to ¢ is exactly C), for each p € B;. Since
the processing times in B, are bigger than 2T we have ZpGBt Cp < 1/% for
each C' € C;(T). Therefore the number of distinct configurations in C;(T) can be
bounded by (1/e2 + 1)N < 2los(/=+1)1/=log(/=)+1 ¢ 9OC/clog™ 1/5)

We define a mixed integer linear program MILP(T') in which configurations
are assigned integrally and jobs are assigned fractionally to machine types. To
this amount we introduce variables z¢ ¢ € Z>(for each machine type t € [K]
and configuration C' € C;(T), and z;; > 0 for each machine type ¢ € [K] and job
j € J. For py; = co we set x;; = 0. Besides this, the MILP has the following
constraints:

Z ZC,t = mt Vt E [K] (1)
CeC(T)
Z xj,t =1 vj € «7 (2)
te[K]
ST xe< Y Cprew Ve [KLpeB: (3)
jeJi(p) Cecy(T)

Z size(C)zcy + Z P Z zje < myT vt e [K] (4)

cec(T) pESt je€J(p)

With constraint (1) the number of chosen configurations for each machine type
equals the number of machines of this type. Due to constraint (2) the variables

502 K. Jansen and M. Maack

x;+ encode the fractional assignment of jobs to machine types. Moreover, for
each machine type it is ensured with constraint (3) that the summed up number
of big jobs of each size is at most the number of big jobs that are used in the
chosen configurations for the respective machine type. Lastly, (4) guarantees that
the overall processing time of the configurations and small jobs assigned to a
machine type does not exceed the area m,T. It is easy to see that the MILP
models a relaxed version of the problem:

Lemma 2. If there is schedule with makespan T there is a feasible (integral)
solution of MILP(T), and if there is a feasible integral solution for MILP(T')
there is a schedule with makespan at most T + 2T . a

We have K20 (/<log” /<) integral variables, i.e., a constant number. Therefore
MILP(T') can be solved in polynomial time, with the following classical result
due to Lenstra [21] and Kannan [18]:

Theorem 3. A mized integer linear program with d integral variables and en-
coding size s can be solved in time d°(@Dpoly(s).

Rounding. In this paragraph we describe how a feasible solution (zc¢,x;¢)
for MILP(T)) can be transformed into an integral feasible solution (Z¢ 4, Z ;) of
MILP(T + €T +€2T). This is achieved via a flow network utilizing flow integrality.

For any (small or big) processing time p let np, = [>_;¢c 7,) Zjt| be the
rounded up (fractional) number of jobs with processing time p that are assigned to
machine type ¢. Note that for big job sizes p € B, we have i, < > ccc,(7) Cp2on
because of (3) and because the right hand side is an integer.

Fig. 1. A sketch of the flow network.

Now we describe the flow network G = (V| E) with source o and sink w.
For each job j € J there is a job node v; and an edge (o, v;) with capacity

An EPTAS for Scheduling on Unrelated Machines of Few Different Types 503

1 connecting the source and the job node. Moreover, for each machine type ¢
we have processing time nodes u;, for each processing time p € B; U S;. The
processing time nodes are connected to the sink via edges (up,w) with capacity
n,p- Lastly, for each job j and machine type ¢t with p,; < oo, we have an
edge (vj,uq,p, ;) with capacity 1 connecting the job node with the corresponding
processing time nodes. We outline the construction in Figure 1. Obviously we
have |V| < (K 4+ 1)n+ 2 and |E| < (2K + 1)n.

Lemma 3. G has a mazimum flow with value n.

Proof. Obviously n is an upper bound for the maximum flow, and the solution
(zc,t,5,) for MILP(T) can be used to design a flow f with value n, by setting

Flle,v)) =1, f((vjsuep,,;)) = 20 and f((uty,w)) = D 5e, () Lot O

Using the Ford-Fulkerson algorithm, an integral maximum flow f* can be found
in time O(|E|f*) = O(Kn?). Due to flow conservation, for each job j there is
exactly one machine type t* such that f((v;,us 4+)) = 1, and we set T, =1
and Z;, = 0 for ¢ # t*. Moreover we set Zc; = z¢ 4. Obviously (Zo 4, Z;,¢) fulfils
(1) and (2). Furthermore (3) is fulfilled, because of the capacities and because
Nep < Ecect(f) Cpzc,+ for big job sizes p. Utilizing the geometric rounding
and the convergence of the geometric series, as well as > 7) Zjt < Mmp <

EjeJt(p) T+ 1, we get:

Dop D Eu< Y P Y Tty p< D P Y :vj,tJrsQTlgj

pES: jE€Ji(p) pES: j€Ji(p) PES: pES: jEJi(p)

Hence, we have 3 e, (7 size(C)Ze+3 e, D je s, , PiaTit < my(T+eT+£2T)
and therefore (4) is fulfilled as well.

Analysis. The solution found for MILP(T) can be turned into an integral
solution for MILP(T + T + &2T'). This can easily be turned into a schedule with
makespan T + T + 2T + 2T < (1 + 4e)T. It is easy to see that the running
time of the algorithm by Lenstra and Kannan dominates the overall running
time. Since MILP(T') has O(K/elog1/e + n) many constraints, Kn fractional
and K20(/<log” /<) integral variables, the running time of the algorithm can be

€ 10, 2 £
bounded by 25275 Y9 L o1v (1)),

3 Better running time

We improve the running time of the algorithm using techniques that utilize
results concerning the existence of solutions for integer linear programs (ILPs)
with a certain simple structure. In a first step we can reduce the running time
to be only singly exponential in 1/ with a technique by Jansen [15]. Then we
further improve the running time to the one claimed in Theorem 1 with a very
recent result by Jansen, Klein and Verschae [16]. Both techniques rely upon the
following result about integer cones by Eisenbrandt and Shmonin [9].

504 K. Jansen and M. Maack

Theorem 4. Let X C Z¢ be a finite set of integer vectors and b € int-cone(X) =
{Deex Ae® | Ap € Z>o}. Then there is a subset X C X, such that b € int-cone(X)

and | X| < 2dlog(4dM), with M = maxgex ||]oo-

For the first improvement of the running time this Theorem is used to show:

Corollary 1. MILP(T) has a feasible solution where for each machine type
O(1/elog®1/¢) of the corresponding integer variables are non-zero.

We get the better running time by guessing the non-zero variables and removing all
the others from the MILP. The number of possibilities of choosing O(1/elog? 1/¢)
elements out of a set of 20(/<198” /=) clements can be bounded by 20(/<*log" 1/¢),
Considering all the machine types we can bound the number of guesses by
20(K/<* log" /<) The running time of the algorithm by Lenstra and Kannan with
O(K /elog? 1/¢) integer variables can be bounded by 20(%/=log /2 108* Vo) o1y (| 11).
This yields a running time of 20 (K log(K)1/2* log* Y poly(|1]).

In the following we first proof Corollary 1 and then introduce the technique
from [16] to further reduce the running time.

Proof of Corollary 1. We consider the so called configuration ILP for schedul-
ing on identical machines. Let m’ be a given number of machines, P be a set of
processing times with multiplicities k, € Z~ for each p € P and let C C ZZ, be
some finite set of configurations for P. The configuration ILP for m’, P, k, and
C is given by:

Z Cryc = kp Vper (5)
cec
> yo=m' (6)
cec
Yo € Lo vCecC (7)

The default case that we will consider most of the time is that C is given by a
target makespan T that upper bounds the size of the configurations.

Lets assume we had a feasible solution (Z¢, ;) for MILP(T). For t € [K]
and p € B; we set I::t,p = ZCEC,,(T) CpZc,. We fix a machine type t. By setting
yc = Zc we get a feasible solution for the configuration ILP given by my, By,
k, and C,(T). Theorem 4 can be used to show the existence of a solution for
the ILP with only a few non-zero variables: Let X be the set of column vectors
corresponding to the left hand side of the ILP and b be the vector corresponding
to the right hand side. Then b € int-cone(X) holds and Theorem 4 yields that
there is a subset X of X with cardinality at most 2(|By|+1) log(4(|B| +1)1/£2) €
O(1/elog?1/¢) and b € int-cone(X). Therefore there is a solution (jj¢) for the
ILP with O(1/elog® 1/¢) many non-zero variables. If we set %c; = yc and
Zj+ = Z;+ and perform corresponding steps for each machine type, we get a
solution (Z¢¢, #,,¢) that obviously satisfies constraints (1),(2) and (3) of MILP(T).
The last constraint is also satisfied, because the number of covered big jobs of
each size does not change and therefore the overall size of the configurations does
not change either for each machine type. This completes the proof of Corollary 1.

An EPTAS for Scheduling on Unrelated Machines of Few Different Types 505

Further Improvement of the Running Time. The main ingredient of the
technique by Jansen et al. [16] is a result about the configuration ILP, for the
case that there is a target makespan 7" upper bounding the configuration sizes.
Let C(T") be the set of configurations with size at most 7. We need some further
notation. The support of any vector of numbers v is the set of indices with
non-zero entries, i.e., supp(v) = {i|v; # 0}. A configuration is called simple, if
the size of its support is at most log(T” + 1), and complezx otherwise. The set of
complex configurations from C(7”) is denoted by C°(T").

Theorem 5. Let the configuration ILP for m', P, k, and C(T") have a feasible
solution and let both the makespan T’ and the processing times from P be integral.
Then there is a solution (yc) for the ILP that satisfies the following conditions:

1. |supp(

Yleern) < 2(|P| + 1) log(4(|P| + 1)T") and yc < 1 for C € C(T").
2. [supp(y)|

l(§T4(|P| + 1) log(4(|P| + 1)T7).

We will call such a solution thin. Furthermore they argue:
Remark 1. The total number of simple configurations is in 20 (log?(T")+log?(IP]))

The better running time can be achieved by determining configurations that are
equivalent to the complex configurations (via guessing and dynamic program-
ming), guessing the support of the simple configurations, and solving the MILP
with few integral variables. The approach is a direct adaptation of the one in [16]
for our case. We now explain the additional steps of the modified algorithm in
more detail and analyze its running time.

We have to ensure that the makespan and the processing times are integral
and that the makespan is small. After the geometric rounding step we scale the
makespan and the processing times, such that T = 1/&% and T = (1 + ¢)/e3
holds and the processing times have the form (1 + €)*c?T = (1 + ¢)* /e. Next we
apply a second rounding step for the big processing times, setting p: ; = [pr ;]
for p; ; € By and denote the set of these processing times by B,. Obviously we
have |By| < |By| < 1/elog(1/e2) + 1. We denote the corresponding instance by I.
Since for a schedule with makespan 7T for instance I there are at most 1/£2 big
jobs on any machine, we get:

Lemma 4. If there is a schedule with makespan at most T for I, the same
schedule has makespan at most (1 + 2¢)T for instance I and any schedule for
instance I can be turned into a schedule for I without increase in the makespan.

We set T = (1 + 2¢)T and for each machine type ¢ we consider the set of
configurations Cy(|T']) for B, with size at most |7]. Rounding down 7' ensures
integrality and causes no problems, because all big processing times are integral.
Furthermore let CS(|T']) and C$(|T']) be the subsets of complex and simple
configurations. Due to Remark 1 we have:

C3(|T])| € 2000 | TI+og® |Bel) — 9Olog™ 1/2)) (8)

506 K. Jansen and M. Maack

Due to Theorem 5 (using the same considerations concerning configuration
ILPs like in the last paragraph) we get that there is a solution (¢, ;) for
MILP(T) (adjusted to this case) that uses for each machine type ¢ at most
4(|By|+1) log(4 (\BA—H)LTJ) €0(1/e log? 1/e) many conﬁgura’mons from C,(|T]).
Moreover at most 2(|By| + 1) log(4(|B:| + 1)|T]) € O(1/elog®1/¢) complex con-
figurations are used and each of them is used only once. Since each configuration
corresponds to at most 1/e2 jobs, there are at most O(1/e%log® 1/¢) many jobs
for each type corresponding to complex configurations. Hence, we can determine
the number of complex configurations m§ for machine type ¢ along with the
number of jobs kf , with processing time p that are covered by a complex con-
figuration for each p € B; in 20(%/=108" /=) steps via guessing. Now we can use
a dynamic program to determine configurations (with multiplicities) that are
equivalent to the complex configurations in the sense that their size is bounded
by LTL their summed up number is m§ and they cover exactly ki, jobs with

processing time p. The dynamic program iterates through [m$] determining By-
indexed vectors y of non-negative integers with y, < kf ,. A vector y computed
at step ¢ encodes that y, jobs of size p can be covered by ¢ configurations from
Ci(|T]). We denote the set of configurations the program computes with C,
and the multiplicities with Zo for C' € C. It is easy to see that the running
time of such a program can be bounded by O(mg([[,cz, (5, + 1))?). Using
m§ € O(1/elog?1/¢) and ki, € O/ log? 1/¢) this yields a running time of
K20(/=108 Y/ <), when considering all the machine types.

Having determined configurations that are equivalent to the complex configu-
rations, we may just guess the simple configurations. For each machine type, there
are at most 20(log” 1/¢) simple configurations and the number of configurations
we need is bounded by O(1/elog? 1/e). Therefore the number of needed guesses
is bounded by 20(*/=108* /=) Now we can solve a modified version of MILP(T)
in which z¢ is fixed to Z¢ for C € C; and only variables z¢s corresponding to
the guessed simple configurations are used. The running time for the algorithm
by Lenstra and Kannan can again be bounded by 20K log K1/zlog® 1/5) holy (| 11).
Thus we get an overall running time of 20K log K/¢ log™ 1/E)p01y(|I|). Considering
the two cases 20K log K¥/=108" /) 1oly(|1]) and 20K leg KY/=1og* /=) > 1ol (|1))
yields the claimed running time of of 20K log(K)'/= log* 1/2) 1 poly(|I]) completing
the proof of the part of Theorem 1 concerning unrelated scheduling.

4 The Santa Claus Problem

Adapting the result for unrelated scheduling we achieve an EPTAS for the Santa
Claus problem. It is based on the basic EPTAS together with the second running
time improvement. In the following we briefly discuss the needed adjustments.
The dual approximation method can be applied in this case as well. However,
since we have no approximation algorithm with a constant rate, the binary search
is more expensive. For the simplification of the input it has to be taken into

An EPTAS for Scheduling on Unrelated Machines of Few Different Types 507

account that their may be huge jobs that are bigger than the optimal makespan,
but otherwise it can be done similarly.

Moreover, in the Santa Claus problem it makes sense to use configurations
of size bigger than T. Let P = |T| 4+ max{p,, |t € [K],j € B;}. It suffices to
consider configurations with size at most P and for each machine type ¢ we denote
the corresponding set of configurations by C:(P). Again we can bound C;(P) by
20(1/<10g”1/s) The MILP has integral variables z¢, for each such configuration
and fractional ones like before. The constraints (1) and (2) are adapted changing
only the set of configurations and for constraint (3) additionally in this case the
left-hand side has to be at least as big as the right hand side. The last constraint
(4) has to be changed more. For this we partition C;(P) into the set C;(P) of big
configurations with size bigger than |T| and the set C;(P) of small configurations

9

with size at most |T']|. The changed constraint has the following form:

Z size(C)zc ¢ + Z D Z T > (my — Z ze)T Vte[K] (9)

CeCy(P) pESt jeJi(p) Cceli(P)

To solve the MILP with the claimed running time, some additional non-trivial
considerations are needed that are omitted in this version of the paper.

Lastly, for the rounding of the MILP the flow network has to be changed as
well, using lower and upper bounds for the flow.

Acknowledgements. We thank Florian Mai and Jannis Mell for helpful discus-
sions on the problem.

References

1. Asadpour, A., Saberi, A.: An approximation algorithm for max-min fair allocation
of indivisible goods. SIAM Journal on Computing 39(7), 2970-2989 (2010)

2. Bateni, M., Charikar, M., Guruswami, V.: Maxmin allocation via degree lower-
bounded arborescences. In: Proceedings of the forty-first annual ACM symposium
on Theory of computing. pp. 543-552. ACM (2009)

3. Bezdkovd, 1., Dani, V.: Allocating indivisible goods. ACM SIGecom Exchanges 5(3),
11-18 (2005)

4. Bleuse, R., Kedad-Sidhoum, S., Monna, F., Mounié, G., Trystram, D.: Schedul-
ing independent tasks on multi-cores with gpu accelerators. Concurrency and
Computation: Practice and Experience 27(6), 1625-1638 (2015)

5. Bonifaci, V., Wiese, A.: Scheduling unrelated machines of few different types. arXiv
preprint arXiv:1205.0974 (2012)

6. Chakrabarty, D., Chuzhoy, J., Khanna, S.: On allocating goods to maximize fair-
ness. In: Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE
Symposium on. pp. 107-116. IEEE (2009)

7. Chen, L., Jansen, K., Zhang, G.: On the optimality of approximation schemes
for the classical scheduling problem. In: Proceedings of the Twenty-Fifth Annual
ACM-STIAM Symposium on Discrete Algorithms. pp. 657-668. SIAM (2014)

8. Chen, L., Ye, D., Zhang, G.: An improved lower bound for rank four scheduling.
Operations Research Letters 42(5), 348-350 (2014)

508 K. Jansen and M. Maack

9. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Operations
Research Letters 34(5), 564-568 (2006)

10. Gehrke, J.C., Jansen, K., Kraft, S.E., Schikowski, J.: A ptas for scheduling unrelated
machines of few different types. In: International Conference on Current Trends in
Theory and Practice of Informatics. pp. 290-301. Springer (2016)

11. Goemans, M.X., Rothvof}, T.: Polynomiality for bin packing with a constant
number of item types. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms. pp. 830-839. Society for Industrial and Applied
Mathematics (2014)

12. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling
problems theoretical and practical results. Journal of the ACM (JACM) 34(1),
144-162 (1987)

13. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling noniden-
tical processors. Journal of the ACM (JACM) 23(2), 317-327 (1976)

14. Imreh, C.: Scheduling problems on two sets of identical machines. Computing 70(4),
277-294 (2003)

15. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an milp
relaxation with a constant number of integral variables. STAM Journal on Discrete
Mathematics 24(2), 457-485 (2010)

16. Jansen, K., Klein, K., Verschae, J.: Closing the gap for makespan scheduling
via sparsification techniques. In: 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy. pp.
72:1-72:13 (2016)

17. Jansen, K., Maack, M.: An EPTAS for scheduling on unrelated ma-
chines of few different types. arXiv preprint arXiv:1701.03263v1 (2017),
https://arxiv.org/abs/1701.03263

18. Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathe-
matics of operations research 12(3), 415-440 (1987)

19. Knop, D., Koutecky, M.: Scheduling meets n-fold integer programming. arXiv
preprint arXiv:1603.02611 (2016)

20. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling
unrelated parallel machines. Mathematical programming 46(1-3), 259-271 (1990)

21. Lenstra Jr, H.-W.: Integer programming with a fixed number of variables. Mathe-
matics of operations research 8(4), 538-548 (1983)

22. Raravi, G., Nélis, V.: A ptas for assigning sporadic tasks on two-type heterogeneous
multiprocessors. In: Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd. pp.
117-126. IEEE (2012)

23. Williamson, D.P.; Shmoys, D.B.: The design of approximation algorithms. Cam-
bridge university press (2011)

24. Woeginger, G.J.: When does a dynamic programming formulation guarantee the
existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS
Journal on Computing 12(1), 57-74 (2000)

	42 An EPTAS for Scheduling on Unrelated Machines of Few Different Types
	1 Introduction
	2 Basic EPTAS
	3 Better running time
	4 The Santa Claus Problem
	References

