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Abstract. In the classical problem of scheduling on unrelated parallel
machines, a set of jobs has to be assigned to a set of machines. The
jobs have a processing time depending on the machine and the goal is to
minimize the makespan, that is, the maximum machine load. It is well
known that this problem is NP-hard and does not allow polynomial time
approximation algorithms with approximation guarantees smaller than
1.5, unless P=NP. We consider the case that there is only a constant
number K of machine types. Two machines have the same type, if all
jobs have the same processing time for them. We present an efficient
polynomial time approximation scheme (EPTAS) for this problem, that is,
for any ε > 0 an assignment with makespan of length at most (1+ε) times
the optimum can be found in polynomial time in the input length and the
exponent is independent of 1/ε. In particular we achieve a running time

of 2O(K log(K)1/ε log4 1/ε) + poly(|I|), where |I| denotes the input length.
Furthermore, we study the case where the minimum machine load has to
be maximized and achieve a similar result.

1 Introduction

We consider the problem of scheduling jobs on unrelated parallel machines—or
unrelated scheduling for short—in which a set J of n jobs has to be assigned to
a set M of m machines. Each job j has a processing time pij for each machine
i and the goal is to find a schedule σ : J → M minimizing the makespan
Cmax(σ) = maxi∈M

∑
j∈σ−1(i) pij , i.e., the maximum machine load. The problem

is one of the classical scheduling problems studied in approximation. In 1990
Lenstra, Shmoys and Tardos [20] showed that there is no approximation algorithm
with an approximation guarantee smaller than 1.5, unless P=NP. Moreover, they
presented a 2-approximation and closing this gap is a rather famous open problem
in scheduling theory and approximation (see e.g. [23]).

In particular we study the special case where there is only a constant number
K of machine types. Two machines i and i′ have the same type, if pij = pi′j holds
for each job j. In many application scenarios this scenario is plausible, e.g. when
considering computers which typically only have a very limited number of different
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types of processing units. We denote the processing time of a job j on a machine
of type t ∈ [K] by ptj and assume that the input consist of the corresponding
K × n processing time matrix together with machine multiplicities mt for each
type t, yielding m =

∑
t∈[K] mt. Note that the case K = 1 is equivalent to the

classical scheduling on identical machines.
We will also consider the reverse objective of maximizing the minimum

machine load, i.e., Cmin(σ) = mini∈M
∑

j∈σ−1(i) pij . This problem is also known
as max-min fair allocation or the Santa Claus problem. The intuition behind
these names is that the jobs are interpreted as goods (e.g. presents), the machines
as players (e.g. children), and the processing times as the values of the goods from
the perspective of the different players. Finding an assignment that maximizes
the minimum machine load, means therefore finding an allocation of the goods
that is in some sense fair (making the least happy kid as happy as possible). We
will refer to the problem as Santa Claus problem in the following, but otherwise
will stick to the scheduling terminology.

We study approximation algorithms: Given an instance I of an optimization
problem, an α-approximation A produces a solution in time poly(|I|), where |I|
denotes the input length. For the objective function value A(I) it is guaranteed
that A(I) ≤ αOPT(I), in the case of an minimization problem, or A(I) ≥
(1/α)OPT(I), in the case of an maximization problem, where OPT(I) is the
value of an optimal solution. We call α the approximation guarantee or rate of the
algorithm. In some cases a polynomial time approximation scheme (PTAS) can
be achieved, that is, for each ε > 0 an (1 + ε)-approximation. If for such a family
of algorithms the running time can be bounded by f(1/ε)poly(|I|) for some
computable function f , the PTAS is called efficient (EPTAS), and if the running
time is polynomial in both 1/ε and |I| it is called fully polynomial (FPTAS).

Related work. It is well known that the unrelated scheduling problem admits
an FPTAS in the case that the number of machines is considered constant [13]
and we already mentioned the seminal work by Lenstra et al. [20]. Furthermore,
the problem of unrelated scheduling with a constant number of machine types
is strongly NP-hard, because it is a generalization of the strongly NP-hard
problem of scheduling on identical parallel machines. Therefore an FPTAS can
not be hoped for in this case. However, Bonifaci and Wiese [5] showed that
there is a PTAS even for the more general vector scheduling case. However,
in the case considered here, their algorithm has to solve m to the power of
O(K(1/ε)1/ε log 1/ε) linear programs. Gehrke et al. [10] presented a PTAS with

an improved running time of O(Kn) +mO(K/ε2)(log(m)/ε)O(K2) for unrelated
scheduling with a constant number of machine types. On the other hand, Chen
et al. [7] showed that there is no PTAS for scheduling on identical machines with

running time 2(1/ε)
1−δ

for any δ > 0, unless the exponential time hypothesis fails.
Furthermore, the case K = 2 has been studied: Imreh [14] designed heuristic
algorithms with rates 2+(m1−1)/m2 and 4−2/m1, and Bleuse et al. [4] presented
an algorithm with rate 4/3 + 3/m2 and moreover a (faster) 3/2-approximation,
for the case that for each job the processing time on the second machine type is
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at most the one on the first. Moreover, Raravi and Nélis [22] designed a PTAS
for the case with two machine types.

Interestingly, Goemans and Rothvoss [11] were able to show that unrelated
scheduling is in P, if both the number of machine types and the number of job
types is bounded by a constant. Job types are defined analogously to machine
types, i.e., two jobs j, j′ have the same type, if pij = pij′ for each machine i. In this
case the matrix (pij) has only a constant number of distinct rows and columns.
Note that already in the case we study, the rank of this matrix is constant.
However the case of unrelated scheduling where the matrix (pij) has constant
rank turns out to be much harder: Already for the case with rank 4 there is no
approximation algorithm with rate smaller than 3/2 unless P=NP [8]. In a rather
recent work, Knop and Kouteck [19] considered the number of machine types as
a parameter from the perspective of fixed parameter tractability. They showed
that unrelated scheduling is fixed parameter tractable for the parameters K and
max pi,j , that is, there is an algorithm with running time f(K,max pi,j)poly(|I|)
for some computable function f that solves the problem to optimality.

For the case that the number of machines is constant, the Santa Claus problem
behaves similar to the unrelated scheduling problem: there is an FPTAS that is
implied by a result due to Woeginger [24]. In the general case however, so far
no approximation algorithm with a constant approximation guarantee has been
found. The results by Lenstra et al. [20] can be adapted to show that that there is
no approximation algorithm with a rate smaller than 2, unless P=NP, and to get
an algorithm that finds a solution with value at least OPT(I)−max pi,j , as was
done by Bezkov and Dani [3]. Since max pi,j could be bigger than OPT(I), this
does not provide an (multiplicative) approximation guarantee. Bezkov and Dani
also presented a simple (n−m+1)-approximation and an improved approximation
guarantee of O(

√
n log3 n) was achieved by Asadpour and Saberi [1]. The best

rate so far is O(nε) due to Bateni et al. [2] and Chakrabarty et al. [6], with a
running time of O(n1/ε) for any ε > 0.

Results and Methodology. In this paper we show:

Theorem 1. There is an EPTAS for both scheduling on unrelated parallel ma-
chines and the Santa Claus problem with a constant number of different machine
types with running time 2O(K log(K)1/ε log4 1/ε) + poly(|I|).

First we present a basic version of the EPTAS for unrelated scheduling with
a running time doubly exponential in 1/ε. For this EPTAS we use the dual
approximation approach by Hochbaum and Shmoys [12] to get a guess T of the
optimal makespan OPT. Then we further simplify the problem via geometric
rounding of the processing times. Next we formulate a mixed integer linear
program (MILP) with a constant number of integral variables that encodes a
relaxed version of the problem. We solve it with the algorithm by Lenstra and
Kannan [21, 18]. The fractional variables of the MILP have to be rounded and
we achieve this with a cleverly designed flow network utilizing flow integrality
and causing only a small error. With an additional error the obtained solution
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can be used to construct a schedule with makespan (1 +O(ε))T . This procedure
is described in detail in Section 2. Building upon the basic EPTAS we achieve
the improved running time using techniques by Jansen [15] and by Jansen, Klein
and Verschae [16]. The basic idea of these techniques is to make use of existential
results about simple structured solutions of integer linear programs (ILPs). In
particular these results can be used to guess the non-zero variables of the MILP,
because they sufficiently limit the search space. We show how these techniques
can be applied in our case in Section 3. Interestingly, our techniques can be
adapted for the Santa Claus Problem, which typically has a worse approximation
behaviour. We discuss the ideas needed for this in the last section of the paper.
More details and omitted proofs can be found in the long version of the paper
[17].

2 Basic EPTAS

In this chapter we describe a basic EPTAS for unrelated scheduling with a
constant number of machine types, with a running time doubly exponential in
1/ε. Wlog. we assume ε < 1. Furthermore log(·) denotes the logarithm with basis
2 and for k ∈ Z≥0 we write [k] for {1, . . . , k}.

First, we simplify the problem via the classical dual approximation concept
by Hochbaum and Shmoys [12]. In the simplified version of the problem a
target makespan T is given and the goal is to either output a schedule with
makespan at most (1 + αε)T for some constant α ∈ Z>0, or correctly report
that there is no schedule with makespan T . We can use a polynomial time
algorithm for this problem in the design of a PTAS in the following way. First we
obtain an upper bound B for the optimal makespan OPT of the instance with
B ≤ 2OPT. This can be done using the 2-approximation by Lenstra et al. [20].
With binary search on the interval [B/2, B] we can find in O(log 1/ε) iterations
a value T ∗ for which the mentioned algorithm is successful, while T ∗ − εB/2 is
rejected. We have T ∗ − εB/2 ≤ OPT and therefore T ∗ ≤ (1 + ε)OPT. Hence
the schedule we obtained for the target makespan T ∗ has makespan at most
(1+αε)T ∗ ≤ (1+αε)(1+ε)OPT = (1+O(ε))OPT. In the following we will always
assume that a target makespan T is given. Next we present a brief overview of
the algorithm for the simplified problem followed by a more detailed description
and analysis.

Algorithm 2.

1. Simplify the input via geometric rounding with an error of εT .
2. Build the mixed integer linear program MILP(T̄ ) and solve it with the

algorithm by Lenstra and Kannan (T̄ = (1 + ε)T ).
3. If there is no solution, report that there is no solution with makespan T .
4. Generate an integral solution for MILP(T̄ + εT + ε2T ) via a flow network

utilizing flow integrality.
5. The integral solution is turned into a schedule with an additional error of

ε2T due to the small jobs.
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Simplification of the Input. We construct a simplified instance Ī with mod-
ified processing times p̄tj . If a job j has a processing time bigger than T for a
machine type t ∈ [K] we set p̄tj = ∞. We call a job big (for machine type t), if
ptj > ε2T , and small otherwise. We perform a geometric rounding step for each
job j with ptj < ∞, that is, we set p̄tj = (1+ε)xε2T with x = �log1+ε(ptj/(ε

2T )).
Lemma 1. If there is a schedule with makespan at most T for I, the same
schedule has makespan at most (1 + ε)T for instance Ī and any schedule for
instance Ī can be turned into a schedule for I without increase in the makespan.

We will search for a schedule with makespan T̄ = (1 + ε)T for Ī.
We establish some notation for the rounded instance. For any rounded pro-

cessing time p we denote the set of jobs j with p̄tj = p by Jt(p). Moreover, for
each machine type t let St and Bt be the set of small and big rounded processing
times. Obviously we have |St| + |Bt| ≤ n. Furthermore |Bt| is bounded by a
constant: Let N be such that (1 + ε)Nε2T is the biggest rounded processing
time for all machine type. Then we have (1 + ε)N−1ε2T ≤ T and therefore
|Bt| ≤ N ≤ log(1/ε2)/ log(1 + ε) + 1 ≤ 1/ε log(1/ε2) + 1 (using ε ≤ 1).

MILP. For any set of processing times P we call the P -indexed vectors of non-
negative integers ZP

≥0 configurations (for P ). The size size(C) of configuration C

is given by
∑

p∈P Cpp. For each t ∈ [K] we consider the set Ct(T̄ ) of configurations
C for the big processing times Bt and with size(C) ≤ T̄ . Given a schedule σ, we
say that a machine i of type t obeys a configuration C, if the number of big jobs
with processing time p that σ assigns to i is exactly Cp for each p ∈ Bt. Since
the processing times in Bt are bigger than ε2T we have

∑
p∈Bt

Cp ≤ 1/ε2 for

each C ∈ Ct(T̄ ). Therefore the number of distinct configurations in Ct(T̄ ) can be

bounded by (1/ε2 + 1)N < 2log(1/ε
2+1)1/ε log(1/ε2)+1 ∈ 2O(1/ε log2 1/ε).

We define a mixed integer linear program MILP(T̄ ) in which configurations
are assigned integrally and jobs are assigned fractionally to machine types. To
this amount we introduce variables zC,t ∈ Z≥0 for each machine type t ∈ [K]
and configuration C ∈ Ct(T̄ ), and xj,t ≥ 0 for each machine type t ∈ [K] and job
j ∈ J . For p̄tj = ∞ we set xj,t = 0. Besides this, the MILP has the following
constraints: ∑

C∈Ct(T̄ )

zC,t = mt ∀t ∈ [K] (1)

∑
t∈[K]

xj,t = 1 ∀j ∈ J (2)

∑
j∈Jt(p)

xj,t ≤
∑

C∈Ct(T̄ )

CpzC,t ∀t ∈ [K], p ∈ Bt (3)

∑
C∈Ct(T̄ )

size(C)zC,t +
∑
p∈St

p
∑

j∈Jt(p)

xj,t ≤ mtT̄ ∀t ∈ [K] (4)

With constraint (1) the number of chosen configurations for each machine type
equals the number of machines of this type. Due to constraint (2) the variables
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xj,t encode the fractional assignment of jobs to machine types. Moreover, for
each machine type it is ensured with constraint (3) that the summed up number
of big jobs of each size is at most the number of big jobs that are used in the
chosen configurations for the respective machine type. Lastly, (4) guarantees that
the overall processing time of the configurations and small jobs assigned to a
machine type does not exceed the area mtT̄ . It is easy to see that the MILP
models a relaxed version of the problem:

Lemma 2. If there is schedule with makespan T̄ there is a feasible (integral)
solution of MILP(T̄ ), and if there is a feasible integral solution for MILP(T̄ )
there is a schedule with makespan at most T̄ + ε2T . ��

We have K2O(1/ε log2 1/ε) integral variables, i.e., a constant number. Therefore
MILP(T ) can be solved in polynomial time, with the following classical result
due to Lenstra [21] and Kannan [18]:

Theorem 3. A mixed integer linear program with d integral variables and en-
coding size s can be solved in time dO(d)poly(s).

Rounding. In this paragraph we describe how a feasible solution (zC,t, xj,t)
for MILP(T̄ ) can be transformed into an integral feasible solution (z̄C,t, x̄j,t) of
MILP(T̄ +εT +ε2T ). This is achieved via a flow network utilizing flow integrality.

For any (small or big) processing time p let ηt,p = �
∑

j∈Jt(p)
xj,t be the

rounded up (fractional) number of jobs with processing time p that are assigned to
machine type t. Note that for big job sizes p ∈ Bt we have ηt,p ≤

∑
C∈Ct(T̄ ) CpzC,t

because of (3) and because the right hand side is an integer.

α ω

vj1

vjn

u1,p

um∗,p

1

1

1

1

1

1

η1,p

ηm∗,p

Fig. 1. A sketch of the flow network.

Now we describe the flow network G = (V,E) with source α and sink ω.
For each job j ∈ J there is a job node vj and an edge (α, vj) with capacity
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1 connecting the source and the job node. Moreover, for each machine type t
we have processing time nodes ut,p for each processing time p ∈ Bt ∪ St. The
processing time nodes are connected to the sink via edges (ut,p, ω) with capacity
ηt,p. Lastly, for each job j and machine type t with p̄t,j < ∞, we have an
edge (vj , ut,p̄t,j

) with capacity 1 connecting the job node with the corresponding
processing time nodes. We outline the construction in Figure 1. Obviously we
have |V | ≤ (K + 1)n+ 2 and |E| ≤ (2K + 1)n.

Lemma 3. G has a maximum flow with value n.

Proof. Obviously n is an upper bound for the maximum flow, and the solution
(zC,t, xj,t) for MILP(T̄ ) can be used to design a flow f with value n, by setting
f((α, vj)) = 1, f((vj , ut,p̄t,j

)) = xj,t and f((ut,y, ω)) =
∑

j∈Jt(y)
xj,t. ��

Using the Ford-Fulkerson algorithm, an integral maximum flow f∗ can be found
in time O(|E|f∗) = O(Kn2). Due to flow conservation, for each job j there is
exactly one machine type t∗ such that f((vj , ut∗,y∗)) = 1, and we set x̄j,t∗ = 1
and x̄j,t = 0 for t �= t∗. Moreover we set z̄C,t = zC,t. Obviously (z̄C,t, x̄j,t) fulfils
(1) and (2). Furthermore (3) is fulfilled, because of the capacities and because
ηt,p ≤

∑
C∈Ct(T̄ ) CpzC,t for big job sizes p. Utilizing the geometric rounding

and the convergence of the geometric series, as well as
∑

j∈Jt(p)
x̄j,t ≤ ηt,p <∑

j∈Jt(p)
xj,t + 1, we get:∑

p∈St

p
∑

j∈Jt(p)

x̄j,t <
∑
p∈St

p
∑

j∈Jt(p)

xj,t +
∑
p∈St

p <
∑
p∈St

p
∑

j∈Jt(p)

xj,t + ε2T
1 + ε

ε

Hence, we have
∑

C∈Ct(T̄ ) size(C)z̄C,t+
∑

s∈St

∑
j∈Jt,s

pj,tx̄j,t < mt(T̄+εT+ε2T )

and therefore (4) is fulfilled as well.

Analysis. The solution found for MILP(T̄ ) can be turned into an integral
solution for MILP(T̄ + εT + ε2T ). This can easily be turned into a schedule with
makespan T̄ + εT + ε2T + ε2T ≤ (1 + 4ε)T . It is easy to see that the running
time of the algorithm by Lenstra and Kannan dominates the overall running
time. Since MILP(T̄ ) has O(K/ε log 1/ε+ n) many constraints, Kn fractional

and K2O(1/ε log2 1/ε) integral variables, the running time of the algorithm can be

bounded by 2K2O(1/ε log2 1/ε)

poly(|I|).

3 Better running time

We improve the running time of the algorithm using techniques that utilize
results concerning the existence of solutions for integer linear programs (ILPs)
with a certain simple structure. In a first step we can reduce the running time
to be only singly exponential in 1/ε with a technique by Jansen [15]. Then we
further improve the running time to the one claimed in Theorem 1 with a very
recent result by Jansen, Klein and Verschae [16]. Both techniques rely upon the
following result about integer cones by Eisenbrandt and Shmonin [9].
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Theorem 4. Let X ⊂ Zd be a finite set of integer vectors and b ∈ int-cone(X) =
{
∑

x∈X λxx |λx ∈ Z≥0}. Then there is a subset X̃ ⊆ X, such that b ∈ int-cone(X̃)

and |X̃| ≤ 2d log(4dM), with M = maxx∈X ‖x‖∞.

For the first improvement of the running time this Theorem is used to show:

Corollary 1. MILP(T̄ ) has a feasible solution where for each machine type
O(1/ε log2 1/ε) of the corresponding integer variables are non-zero.

We get the better running time by guessing the non-zero variables and removing all
the others from the MILP. The number of possibilities of choosing O(1/ε log2 1/ε)

elements out of a set of 2O(1/ε log2 1/ε) elements can be bounded by 2O(1/ε2 log4 1/ε).
Considering all the machine types we can bound the number of guesses by
2O(K/ε2 log4 1/ε). The running time of the algorithm by Lenstra and Kannan with
O(K/ε log2 1/ε) integer variables can be bounded by 2O(K/ε logK/ε log2 1/ε)poly(|I|).
This yields a running time of 2O(K log(K)1/ε2 log4 1/ε)poly(|I|).

In the following we first proof Corollary 1 and then introduce the technique
from [16] to further reduce the running time.

Proof of Corollary 1. We consider the so called configuration ILP for schedul-
ing on identical machines. Let m′ be a given number of machines, P be a set of
processing times with multiplicities kp ∈ Z>0 for each p ∈ P and let C ⊆ ZP

≥0 be
some finite set of configurations for P . The configuration ILP for m′, P , k, and
C is given by: ∑

C∈C
CpyC = kp ∀p ∈ P (5)∑

C∈C
yC = m′ (6)

yC ∈ Z≥0 ∀C ∈ C (7)

The default case that we will consider most of the time is that C is given by a
target makespan T that upper bounds the size of the configurations.

Lets assume we had a feasible solution (z̃C,t, x̃j,t) for MILP(T̄ ). For t ∈ [K]

and p ∈ Bt we set k̃t,p =
∑

C∈Ct(T̄ ) Cpz̃C,t. We fix a machine type t. By setting
yC = z̃C,t we get a feasible solution for the configuration ILP given by mt, Bt,

k̃t and Ct(T̄ ). Theorem 4 can be used to show the existence of a solution for
the ILP with only a few non-zero variables: Let X be the set of column vectors
corresponding to the left hand side of the ILP and b be the vector corresponding
to the right hand side. Then b ∈ int-cone(X) holds and Theorem 4 yields that
there is a subset X̃ of X with cardinality at most 2(|Bt|+1) log(4(|Bt|+1)1/ε2) ∈
O(1/ε log2 1/ε) and b ∈ int-cone(X̃). Therefore there is a solution (y̆C) for the
ILP with O(1/ε log2 1/ε) many non-zero variables. If we set z̆C,t = y̆C and
x̆j,t = x̃j,t and perform corresponding steps for each machine type, we get a
solution (z̆C,t, x̆j,t) that obviously satisfies constraints (1),(2) and (3) of MILP(T̄ ).
The last constraint is also satisfied, because the number of covered big jobs of
each size does not change and therefore the overall size of the configurations does
not change either for each machine type. This completes the proof of Corollary 1.
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Further Improvement of the Running Time. The main ingredient of the
technique by Jansen et al. [16] is a result about the configuration ILP, for the
case that there is a target makespan T ′ upper bounding the configuration sizes.
Let C(T ′) be the set of configurations with size at most T ′. We need some further
notation. The support of any vector of numbers v is the set of indices with
non-zero entries, i.e., supp(v) = {i | vi �= 0}. A configuration is called simple, if
the size of its support is at most log(T ′ + 1), and complex otherwise. The set of
complex configurations from C(T ′) is denoted by Cc(T ′).

Theorem 5. Let the configuration ILP for m′, P , k, and C(T ′) have a feasible
solution and let both the makespan T ′ and the processing times from P be integral.
Then there is a solution (yC) for the ILP that satisfies the following conditions:

1. |supp(y|Cc(T ′))| ≤ 2(|P |+ 1) log(4(|P |+ 1)T ′) and yC ≤ 1 for C ∈ Cc(T ′).
2. |supp(y)| ≤ 4(|P |+ 1) log(4(|P |+ 1)T ′).

We will call such a solution thin. Furthermore they argue:

Remark 1. The total number of simple configurations is in 2O(log2(T ′)+log2(|P |)).

The better running time can be achieved by determining configurations that are
equivalent to the complex configurations (via guessing and dynamic program-
ming), guessing the support of the simple configurations, and solving the MILP
with few integral variables. The approach is a direct adaptation of the one in [16]
for our case. We now explain the additional steps of the modified algorithm in
more detail and analyze its running time.

We have to ensure that the makespan and the processing times are integral
and that the makespan is small. After the geometric rounding step we scale the
makespan and the processing times, such that T = 1/ε3 and T̄ = (1 + ε)/ε3

holds and the processing times have the form (1 + ε)xε2T = (1 + ε)x/ε. Next we
apply a second rounding step for the big processing times, setting p̆t,j = �p̄t,j
for p̄t,j ∈ Bt and denote the set of these processing times by B̆t. Obviously we

have |B̆t| ≤ |Bt| ≤ 1/ε log(1/ε2) + 1. We denote the corresponding instance by Ĭ.
Since for a schedule with makespan T for instance I there are at most 1/ε2 big
jobs on any machine, we get:

Lemma 4. If there is a schedule with makespan at most T for I, the same
schedule has makespan at most (1 + 2ε)T for instance Ĭ and any schedule for
instance Ĭ can be turned into a schedule for I without increase in the makespan.

We set T̆ = (1 + 2ε)T and for each machine type t we consider the set of
configurations Ct(�T̆ �) for B̆t with size at most �T̆ �. Rounding down T̆ ensures
integrality and causes no problems, because all big processing times are integral.
Furthermore let Cc

t (�T̆ �) and Cs
t (�T̆ �) be the subsets of complex and simple

configurations. Due to Remark 1 we have:

|Cs
t (�T̆ �)| ∈ 2O(log2T̆�+log2 |B̆t|) = 2O(log2 1/ε)) (8)
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Due to Theorem 5 (using the same considerations concerning configuration
ILPs like in the last paragraph) we get that there is a solution (z̆C , x̆j,t) for

MILP(T̆ ) (adjusted to this case) that uses for each machine type t at most
4(|B̆t|+1) log(4(|B̆t|+1)�T̆ �) ∈ O(1/ε log2 1/ε) many configurations from Ct(�T̆ �).
Moreover at most 2(|B̆t|+ 1) log(4(|B̆t|+ 1)�T̆ �) ∈ O(1/ε log2 1/ε) complex con-
figurations are used and each of them is used only once. Since each configuration
corresponds to at most 1/ε2 jobs, there are at most O(1/ε3 log2 1/ε) many jobs
for each type corresponding to complex configurations. Hence, we can determine
the number of complex configurations mc

t for machine type t along with the
number of jobs kct,p with processing time p that are covered by a complex con-

figuration for each p ∈ B̆t in 2O(K/ε log2 1/ε) steps via guessing. Now we can use
a dynamic program to determine configurations (with multiplicities) that are
equivalent to the complex configurations in the sense that their size is bounded
by �T̆ �, their summed up number is mc

t and they cover exactly kct,p jobs with

processing time p. The dynamic program iterates through [mc
t ] determining B̆t-

indexed vectors y of non-negative integers with yp ≤ kct,p. A vector y computed
at step i encodes that yp jobs of size p can be covered by i configurations from

Ct(�T̆ �). We denote the set of configurations the program computes with C̃t
and the multiplicities with z̃C for C ∈ C̃t. It is easy to see that the running
time of such a program can be bounded by O(mc

t(
∏

p∈B̆t
(kct,p + 1))2). Using

mc
t ∈ O(1/ε log2 1/ε) and kct,p ∈ O(1/ε3 log2 1/ε) this yields a running time of

K2O(1/ε log2 1/ε), when considering all the machine types.

Having determined configurations that are equivalent to the complex configu-
rations, we may just guess the simple configurations. For each machine type, there
are at most 2O(log2 1/ε) simple configurations and the number of configurations
we need is bounded by O(1/ε log2 1/ε). Therefore the number of needed guesses

is bounded by 2O(K/ε log4 1/ε). Now we can solve a modified version of MILP(T̆ )
in which zC is fixed to z̃C for C ∈ C̃t and only variables zC′ corresponding to
the guessed simple configurations are used. The running time for the algorithm
by Lenstra and Kannan can again be bounded by 2O(K logK1/ε log3 1/ε)poly(|I|).
Thus we get an overall running time of 2O(K logK1/ε log4 1/ε)poly(|I|). Considering
the two cases 2O(K logK1/ε log4 1/ε) < poly(|I|) and 2O(K logK1/ε log4 1/ε) ≥ poly(|I|)
yields the claimed running time of of 2O(K log(K)1/ε log4 1/ε) + poly(|I|) completing
the proof of the part of Theorem 1 concerning unrelated scheduling.

4 The Santa Claus Problem

Adapting the result for unrelated scheduling we achieve an EPTAS for the Santa
Claus problem. It is based on the basic EPTAS together with the second running
time improvement. In the following we briefly discuss the needed adjustments.

The dual approximation method can be applied in this case as well. However,
since we have no approximation algorithm with a constant rate, the binary search
is more expensive. For the simplification of the input it has to be taken into
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account that their may be huge jobs that are bigger than the optimal makespan,
but otherwise it can be done similarly.

Moreover, in the Santa Claus problem it makes sense to use configurations
of size bigger than T̆ . Let P = �T̆ � + max{p̆t,j | t ∈ [K], j ∈ B̆t}. It suffices to
consider configurations with size at most P and for each machine type t we denote
the corresponding set of configurations by Ct(P ). Again we can bound Ct(P ) by

2O(1/ε log2 1/ε). The MILP has integral variables zC,t for each such configuration
and fractional ones like before. The constraints (1) and (2) are adapted changing
only the set of configurations and for constraint (3) additionally in this case the
left-hand side has to be at least as big as the right hand side. The last constraint
(4) has to be changed more. For this we partition Ct(P ) into the set Ĉt(P ) of big
configurations with size bigger than �T̆ � and the set Čt(P ) of small configurations
with size at most �T̆ �. The changed constraint has the following form:∑

C∈Čt(P )

size(C)zC,t +
∑
p∈St

p
∑

j∈Jt(p)

xj,t ≥ (mt −
∑

C∈Ĉt(P )

zC,t)T̆ ∀t ∈ [K] (9)

To solve the MILP with the claimed running time, some additional non-trivial
considerations are needed that are omitted in this version of the paper.

Lastly, for the rounding of the MILP the flow network has to be changed as
well, using lower and upper bounds for the flow.

Acknowledgements. We thank Florian Mai and Jannis Mell for helpful discus-
sions on the problem.
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ing independent tasks on multi-cores with gpu accelerators. Concurrency and
Computation: Practice and Experience 27(6), 1625–1638 (2015)

5. Bonifaci, V., Wiese, A.: Scheduling unrelated machines of few different types. arXiv
preprint arXiv:1205.0974 (2012)

6. Chakrabarty, D., Chuzhoy, J., Khanna, S.: On allocating goods to maximize fair-
ness. In: Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE
Symposium on. pp. 107–116. IEEE (2009)

7. Chen, L., Jansen, K., Zhang, G.: On the optimality of approximation schemes
for the classical scheduling problem. In: Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms. pp. 657–668. SIAM (2014)

8. Chen, L., Ye, D., Zhang, G.: An improved lower bound for rank four scheduling.
Operations Research Letters 42(5), 348–350 (2014)

An EPTAS for Scheduling on Unrelated Machines of Few Different Types 507
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20. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
unrelated parallel machines. Mathematical programming 46(1-3), 259–271 (1990)

21. Lenstra Jr, H.W.: Integer programming with a fixed number of variables. Mathe-
matics of operations research 8(4), 538–548 (1983)

22. Raravi, G., Nélis, V.: A ptas for assigning sporadic tasks on two-type heterogeneous
multiprocessors. In: Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd. pp.
117–126. IEEE (2012)

23. Williamson, D.P., Shmoys, D.B.: The design of approximation algorithms. Cam-
bridge university press (2011)

24. Woeginger, G.J.: When does a dynamic programming formulation guarantee the
existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS
Journal on Computing 12(1), 57–74 (2000)

508 K. Jansen and M. Maack


	42 An EPTAS for Scheduling on Unrelated Machines of Few Different Types
	1 Introduction
	2 Basic EPTAS
	3 Better running time
	4 The Santa Claus Problem
	References




