
Inapproximability of the Standard Pebble Game
and Hard to Pebble Graphs

Erik D. Demaine, Quanquan C. Liu

MIT CSAIL, Cambridge, Massachusetts

Abstract. Pebble games are single-player games on DAGs involving
placing and moving pebbles on nodes of the graph according to a certain
set of rules. The goal is to pebble a set of target nodes using a minimum
number of pebbles. In this paper, we present a possibly simpler proof of
the result in [4] and strengthen the result to show that it is PSPACE-hard
to determine the minimum number of pebbles to an additive n1/3−ε term
for all ε > 0, which improves upon the currently known additive constant
hardness of approximation [4] in the standard pebble game. We also
introduce a family of explicit, constant indegree graphs with n nodes
where there exists a graph in the family such that using 0 < k <

√
n

pebbles requires Ω((n/k)k) moves to pebble in both the standard and
black-white pebble games. This independently answers an open question
summarized in [14] of whether a family of DAGs exists that meets the
upper bound of O(nk) moves using constant k pebbles with a different
construction than that presented in [1].

1 Introduction

Pebble games were originally introduced to study compiler operations and pro-
gramming languages. For such applications, a DAG represents the computational
dependency of each operation on a set of previous operations and pebbles repre-
sent register allocation. Minimizing the amount of resources allocated to perform
a computation is accomplished by minimizing the number of pebbles placed on
the graph [16]. The standard pebble game (also known as the black pebble game)
is traditionally used to model such behavior. In the standard pebble game, one
is given a DAG, G = (V,E), with n nodes and constant indegree and told to
perform a set of pebbling moves that places, removes, or slides pebbles around
the nodes of G.

The premise of such games is given some input modeled by source nodes
S ⊆ V one should compute some set of outputs modeled as target nodes T ⊆ V .
In terms of G, S is typically the set of nodes without incoming edges and T
is typically the set of nodes without outgoing edges. The rules of the standard
pebble game are as follows:

© Springer International Publishing AG 2017
F. Ellen et al. (Eds.): WADS 2017, LNCS 10389, pp. 313–324, 2017.
DOI: 10.1007/978-3-319-62127-2_27

313

Standard Pebble Game
Input: Given a DAG, Gn,δ = (V,E). Let pred(v) = {u ∈ V : (u, v) ∈ E}. Let
S ⊆ V be the set of sources of G and T ⊆ V be the set of targets of G. Let
P = {P0, . . . , Pτ} be a valid pebbling strategy that obeys the following rules
where Pi is a set of nodes containing pebbles at timestep i and P0 = ∅ and
Pτ = {T}. Let Peb(G,P) = maxi∈[τ]{|Pi|}.

Rules:

1. At most one pebble can be placed or removed from a node at a time.
2. A pebble can be placed on any source, s ∈ S.
3. A pebble can be removed from any vertex.
4. A pebble can be placed on a non-source vertex, v, at time i if and only if its

direct predecessors are pebbled, pred(v) ∈ Pi−1.
5. A pebble can slide from vertex v to vertex w at time i if and only if (v, w) ∈ E

and pred(w) ∈ Pi−1.

Goal: Determine minP{Peb(G,P)} using a valid strategy P.

In addition to the standard pebble game, other pebble games are useful for
studying computation. The red-blue pebble game is used to study I/O complex-
ity [12], the reversible pebble game is used to model reversible computation [3],
and the black-white pebble game is used to model non-deterministic straight-line
programs [5]. Although we will be proving a result about the black-white pebble
game in Section 4, we will defer introducing the rules of the game to our full
paper [6] since the black-white pebble game is not central to the main results of
this paper.

Much previous research has focused on proving lower and upper bounds on the
pebbling space cost (i.e. the maximum number of pebbles over time) of pebbling a
given DAG under the rules of each of these games. For all of the aforementioned
pebble games (except the red-blue pebble game since it relies on a different set
of parameters), any DAG can be pebbled using O(n/ log n) pebbles [9,11,15].
Furthermore, there exist DAGs for each of the games that require Ω(n/ log n)
pebbles [9,11,15].

It turns out that finding a strategy to optimally pebble a graph in the standard
pebble game is computationally difficult even when each vertex is allowed to be
pebbled only once. Specifically, finding the minimum number of black pebbles
needed to pebble a DAG in the standard pebble game is PSPACE-complete [8]
and finding the minimum number of black pebbles needed in the one-shot case is
NP-complete [16]. In addition, finding the minimum number of pebbles in both
the black-white and reversible pebble games have been recently shown to be
both PSPACE-complete [4,10]. But the result for the black-white pebble game is
proven for unbounded indegree [10]. A key open question in the field is whether
hardness results can be obtained for constant indegree graphs for the black-white
pebble game. However, whether it is possible to find good approximate solutions
to the minimization problem has barely been studied. In fact, it was not known

314 E.D. Demaine and Q.C. Liu

until this paper whether it is hard to find the minimum number of pebbles
within even a non-constant additive factor [4]. The best known multiplicative
approximation factor is the very loose Θ(n/ log n) which is the pebbling space
upper bound [11], leaving much room for improvement.

Our results deal primarily with the standard pebble game, but we believe
that the techniques could be extended to show hardness of approximation for
other pebble games. We prove the following:

Theorem 1. The minimum number of pebbles needed in the standard pebble
game on DAGs with maximum indegree 2 is PSPACE-hard to approximate to
within an additive n1/3−ε for any ε > 0.

In addition to determining the pebbling space cost, we sometimes also care
about pebbling time which refers to the number of operations (placements,
removals, or slides) that a strategy uses. For example, such a situation arises if
we care not only about the memory used in computation but also the time of
computation. It is previously known that there exists a family of graphs such
that, given Θ(n

log n) pebbles, one is required to use Ω(2Θ(n
log n)) moves to pebble

any graphs with n nodes in the family [13].
Less is known about the trade-offs when a small number (e.g. constant k) of

pebbles is used until the very recent, independent result presented in [1]. It can
be easily shown through a combinatorial argument that the maximum number of
moves necessary using k = O(1) pebbles to pebble n nodes is O(nk) [14]. It is an
open question whether it is possible to prove a time-space trade-off such that
using k = O(1) pebbles requires Ω(nk) time. In this paper, we resolve this open
question for both the standard pebble and the black-white pebble games using
an independent construction from that presented in [1].

Theorem 2. There exists a family of graphs with n vertices and maximum
indegree 2 such that Ω((n−k2

k)k) moves are necessary to pebble any graph with n
vertices in the family using k <

√
n pebbles in both the standard and black-white

pebble games.

In particular, when k = O(1), the number of moves necessary to pebble a
graph in the family is Θ(nk).

The organization of the paper is as follows. First, in Section 2, we provide the
definitions and terminology we use in the remaining parts of the paper. Then, in
Section 3, we provide a proof for the inapproximability of the standard pebble
game to an n1/3−ε additive factor.

In Section 4, we present our hard to pebble graph families using k <
√

n
pebbles and prove that the family takes Ω(nk) moves to pebble in both the
standard and black-white pebble games when k = O(1).

Finally, in Section 5, we discuss some open problems resulting from this
paper.

Inapproximability of the Standard Pebble Game and Hard to Pebble Graphs 315

2 Definitions and Terminology

In this section, we define the terminology we use throughout the rest of the paper.
All of the pebble games we consider in this paper are played on directed acyclic
graphs (DAGs). In this paper, we only consider DAGs with maximum indegree 2.
We define such a DAG as G = (V,E) where |V | = n and |E| = m.

The purpose of any pebble game is to pebble a set of targets T ⊆ V using
minimum number of pebbles. In all pebble games we consider, a player can always
place a pebble on any source node, S ⊆ V . Usually, S consists of all nodes with
indegree 0 and T consists of all nodes with outdegree 0.

A sequential pebbling strategy, P = [P0, . . . , Pτ] is a series of configurations
of pebbles on G where each Pi is a set of pebbled vertices Pi ⊆ V . Pi follows
from Pi−1 by the rules of the game and P0 = ∅ and Pτ = T . Then, by definition,
|Pi| is the number of pebbles used in configuration Pi. For a sequential strategy,
|Pi−1| − 1 ≤ |Pi| ≤ |Pi−1| + 1 for all i ∈ [τ] = [1, . . . , τ] (i.e. at most one pebble
can be placed, removed, or slid on the graph at any time). In this paper, we only
consider sequential strategies.

Given any strategy P for pebbling G, the pebbling space cost, Peb(G,P), of P
is defined as the maximum number of pebbles used by the strategy at any time:
Peb(G,P) = maxi∈[τ]{|Pi|}.

The minimum pebbling space cost of G, Peb(G), is defined as the smallest
space cost over the set of all valid strategies, P, for G:

Definition 1 (Minimum Pebbling Space Cost).

Peb(G) = min
P∈P

{Peb(G,P)}.

The pebbling time cost, Time(G,P, s) = |P| − 1, of a strategy P using s
pebbles is the number of moves used by the strategy. The minimum pebbling
time cost of any strategy that has pebbling space cost s is the minimum number
of moves used by any such strategy.

Definition 2 (Minimum Pebbling Time Cost).

Time(G, s) = min
P′∈{P∈P:|P|≤s}

{Time(G,P ′, s)} ≥ n.

3 Inapproximability of the Standard Pebble Game

In this section, we provide an alternative proof of the result presented in [4] that
the standard pebble game is inapproximable to any constant additive term. Then,
we show that our proof technique can be used to show our main result stated in
Theorem 1. We make modifications to the proof presented by [8] to obtain our
main result. A quick explanation of the relevant results presented in [8] can be
found in our full paper [6].

316 E.D. Demaine and Q.C. Liu

3.1 Inapproximability to n1/3−ε additive term for any ε > 0

We now prove our main result. For our reduction we modify the variable, clause,
and quantifier gadgets in [8] to produce a gap reduction from the PSPACE-hard
problem, QBF.

Important Graph Components Before we dive into the details of our con-
struction, we first mention two subgraphs and the properties they exhibit.

The first graph is the pyramid graph (please refer to [6] for a figure), Πh with
height h, which requires a number of pebbles that is equal to the height, h, of the
pyramid to pebble [8]. Therefore, in order to pebble the apex of such a graph, at
least h pebbles must be available. As in [8], we depict such pyramid graphs by a
triangle with a number indicating the height (hence number of pebbles) needed
to pebble the pyramid (see Figure 1 for an example of the triangle symbolism).

We make use of the following definition and lemma (restated and adapted)
from [8] in our proofs:

Definition 3 (Frugal Strategy [8]). A pebbling strategy, P, is frugal if the
following are true:

1. Suppose vertex v ∈ G is pebbled for the first time at time t′. Then, for all
times, t > t′, some path from v to q1 (the only target node) contains a pebble.

2. At all times after v is pebbled for the last time, all paths from v to q1 contain
a pebble.

3. The number of pebble placements on any vertex v ∈ G where v �= q1, is
bounded by the number of pebble placements on pred(v).

Lemma 1 (Normal Pebbling Strategy [8]). If the target vertex is not inside
a pyramid, Πh, and each of the vertices in the bottom level of the pyramid has at
most one predecessor each, then any pebbling strategy can be transformed into a
normal pebbling strategy without increasing the number of pebbles used. A normal
pebbling strategy is one that is frugal and after the first pebble is placed on any
pyramid, Πh, no placements of pebbles occurs outside Πh until the apex of Πh is
pebbled and all other pebbles are removed from Πh.

The other important subgraph is the road graph (see [6] for figure), Rw with
width w, which requires a number of pebbles that is the width of the graph to
pebble any of the outputs [7,14]. Therefore, we state as an immediately corollary
of their proof:

Corollary 1 (Road Graph Pebbling). To pebble O ⊆ {o1, . . . , ow} of the
outputs of Rw, with a valid strategy, P = [P0, . . . , Pτ] where Pτ = O, requires
w + |O| − 1 pebbles.

We define a regular pebbling strategy for road graphs similarly to the normal
pebbling strategy for pyramids.

Inapproximability of the Standard Pebble Game and Hard to Pebble Graphs 317

Lemma 2 (Regular Pebbling Strategy). If each input, ij ∈ {i1, . . . , iw}, to
the road graph has at most 1 predecessor, any pebbling strategy can be transformed
into a regular pebbling strategy without increasing the number of pebbles used. A
regular pebbling strategy is one that is frugal and after the first pebble is placed
on any road graph, Rw, no placements of pebbles occurs outside Rw until a set of
desired outputs, O ⊆ {o1, . . . , ow}, of Rw all contain pebbles and all other pebbles
are removed from Rw.

We immediately obtain the following corollary from Lemmas 1 and 2:

Corollary 2. Any pebbling strategy, P, can be transformed into a pebbling strat-
egy, P ′, that is normal and regular if no target vertices lie inside a pyramid or
road graph and each input node to either the pyramid or road graph has at most
one predecessor.

Modified Graph Constructions We first describe the changes we made to
each of the gadgets used in the PSPACE-completeness proof presented by [8] and
then prove our inapproximability result using these gadgets in Section 3.1. Given
a QBF instance, B = Q1x1 · · ·QuxuF , with c clauses, we create the following
gadgets:

Variable Nodes: We replace all variable nodes in the proof provided in [8]
with road graphs each of width K. The modified variable nodes are shown
in Figure 1. Each variable node as in the original proof by [8] has 3 possible
configurations which are also shown in Figure 1.

Fig. 1: Modified variable gadget with 3 possible configurations using the road
graph subgraph previously described. Here K = 3. a) xi is True. b) xi is True. c)
Double false.

Quantifier Blocks: Each universal and existential quantifier blocks are also
modified to account for the new variable nodes. See Figure 2 and Figure 3 which
depict the new quantifier gadgets that use the new variable nodes. Note that
instead of each quantifier gadget requiring 3 total pebbles, each gadget requires
3K pebbles to remain on each block before the clauses are pebbled. The basic
idea is to expand all nodes ai, bi, ci...etc. into a path of length K to account for
each of the K copies of xi and each of the K copies of xi. Each si = si−1 − 3K
and s1 = 3Ku + 3K + 1.

318 E.D. Demaine and Q.C. Liu

Fig. 2: Modified universal quantifier block. Here K = 3.

Fig. 3: Modified existential quantifier block. Here K = 3.

Inapproximability of the Standard Pebble Game and Hard to Pebble Graphs 319

Clause Gadgets: Each clause gadget is modified to be a pyramid of height
3K + 1 where the bottom layer is connected to 2 nodes from two different literals.
Therefore, for a given clause (li, lj , lk), K nodes are connected to li and lj , K
nodes to lj and lk, and K nodes to li and lk. See Figure 4 for an example of the
modified clause gadget.

Fig. 4: Modified clause gadget. The clause here is (xi, xl, xr) where xi = True,
xl = False, and xr = False. Here K = 3.

Proofs of the Construction We construct a graph G using the gadgets
described above in Section 3.1 for any given QBF instance, B = Q1x1 · · ·QkxuF .
In short, the proof relies on the fact that each quantifier gadget requires 2K
pebbles to set the corresponding variable to true or false (i.e. the corresponding
literals to true or false). An additional K pebbles need to remain on each quantifier
in order to be able to repebble quantifiers when checking for universal variables’
satisfaction. Furthermore, a clause would consist of modified pyramids of height
3K + 1 connected to pairs of nodes from different literals. Following the proof
in [8], the quantifier gadgets are pebbled first with 3Ku pebbles remaining on
the quantifier gadgets. Then, the clauses are pebbled with 3K + 1 pebbles.

If B is satisfiable, then clauses can be pebbled with 3K +1 pebbles. Otherwise,
4K pebbles are needed to pebble one or more unsatisfied clauses in G, resulting
in a gap of K − 1 pebbles between when B is satisfiable and unsatisfiable. Thus,
if given an approximation algorithm that estimates the number of pebbles needed
within additive K − 1, we can distinguish between the case when B is satisfiable
(at most 3Km+3K +1 pebbles are needed) and the case when B is unsatisfiable
(when at least 3Km + 4K pebbles are needed).

In this construction, K can be any polynomial function of u where u is the
number of variables in B and c is the number of clauses (in other words, K = uacb

320 E.D. Demaine and Q.C. Liu

for any constants a and b). The total minimum number of pebbles necessary is
O(Ku) and the total number of nodes in the graph is O(K3(u + c)).

We first prove that the number of pebbles needed to pebble each quantifier
gadget is 3K and 3K pebbles remain on the quantifier blocks throughout the
pebbling of the clauses.

Lemma 3. Every regular and normal strategy, P ′, must be one where each
quantifier gadget must be pebbled with 3K pebbles before the clauses are pebbled.
Furthermore, each quantifier gadget must be pebbled wth 3K pebbles when qu is
pebbled.

Next we prove that provided 3Ku pebbles stay on the quantifier blocks, each
unsatisfied clause requires 4K pebbles.

Lemma 4. Given a clause gadget, Ci, its corresponding variable, ci is true if
and only if Ci can be pebbled with 3K + 1 pebbles. Furthermore, if ci is false and
all literals in Ci are set in the false configuration, then at least 4K pebbles are
necessary to pebble the clause.

Given the previous proofs, we now prove the following key lemmas:

Lemma 5. Given G which is constructed from the provided QBF instance, B =
Q1x1 · · ·QuxuF , using our modified reduction in Section 3.1, B is satisfiable if
and only if Peb(G) ≤ 3Ku + 3K + 1.

Before, we prove the next crucial lemma (Lemma 7), we first prove the
following lemma which will help us prove Lemma 7:

Lemma 6. Let Ni be the configuration such that some number of pebbles are on
the first i − 1 quantifier blocks and the i-th is being pebbled. Therefore, Nu+1 is
the configuration when some number of pebbles are on all u quantifier blocks and
the first clause gadget is being pebbled. There does not exist a frugal strategy, P,
that can pebble our reduction construction, G, such that Ni contains less than
s − si pebbles on the first i − 1 quantifier blocks when the i-th quantifier block or
when the first clause is being pebbled.

Lemma 7. Given G which is constructed from the provided QBF instance, B =
Q1x1 · · ·QuxuF , using our modified reduction in Section 3.1, B is unsatisfiable
if and only if Peb(G) ≥ 3Ku + 4K.

Proof of Inapproximability Using Lemmas 5 and 7, we prove that it is
PSPACE-hard to approximate the minimum number of black pebbles needed
given a DAG, G, to an additive n1−ε factor.

Theorem 3 (Restatement of Theorem 1). The minimum number of peb-
bles needed in the standard pebble game on DAGs with maximum indegree 2 is
PSPACE-hard to approximate to additive n1/3−ε for ε > 0.

Inapproximability of the Standard Pebble Game and Hard to Pebble Graphs 321

Proof. From Lemmas 5 and 7, the cost of pebbling a graph constructed from
a satisfiable B is at most 3Ku + 3K + 1 whereas the cost of pebbling a graph
constructed from an unsatisfiable B is at least 3Ku + 4K. As we can see, the
aforementioned reduction is a gap-producing reduction with a gap of K − 1
pebbles. Then, all that remains to be shown is that for any ε > 0, it is the case
that K ≥ (K3(u + c))(1/3−ε). (Note that for ε > 1/3, setting K to any positive
integer achieves this bound.) Suppose we set K = max(u, c)a where a > 0. Given
an 0 < ε ≤ 1/3, a = 1/3−ε

1+3ε ≥ 0 precisely when ε is in the stated range.
For values of a ≥ 0, we can duplicate the clauses and variables gadgets so that

u and c are large enough such that K = max(u, c)a ≥ 2. Let d = max(u, c). Then,
we need d to be large enough so that da ≥ 2 (i.e. we want da to be some integer).
Then, we can set d ≥ 21/a. Thus, we can duplicate the number of variables and
clauses so that d ≥ 2

1+3ε
1/3−ε .

Therefore, for every ε > 0, we can construct a graph with a specific K
calculated from ε such that it is PSPACE-hard to find an approximation within
an additive n1/3−ε factor where n is the number of nodes in the graph.

4 Hard to Pebble Graphs for Constant k Pebbles

It is long known that the maximum number of moves necessary to pebble any
graph with constant k pebbles is O(nk). (Note that the maximum number of
moves necessary to pebble any graph is either O(nk−1) or O(nk) depending on
whether or not sliding is allowed. Here, we allow sliding in all of our games. The
bound of O(nk−1) proven in [14] is one for the case when sliding is not allowed.)
The upper bound of O(nk) for any constant k number of pebbles submits to a
simple combinatorial proof adapted from [14]) to account for sliding. However,
to the best of the author’s knowledge, examples of such families of graphs that
require O(nk) moves to pebble using k pebbles did not exist until very recently
in an independent work [1]. In this section, we present an independent, simple
to construct family of graphs that require Θ(nk) time for constant k number of
pebbles in both the standard and black-white pebble games. We further reduce
the indegree of nodes in this family of graphs to 2 and show that our results still
hold. Furthermore, we show this family of graphs to exhibit a steep time-space
trade-off (from exponential in k to linear) even when k is not constant. Such
families of graphs could potentially have useful applications in cryptography in
the domain of proofs of space and memory-hard functions [2].

We construct the following family of graphs, Hn,δ, below with n nodes and
indegree δ and show that for constant k pebbles, the number of steps it takes to
pebble the graph Hn,k ∈ Hn,δ with k pebbles is Ω(nk). We also show a family of
graphs, Hn,2 with indegree 2 that shows the same asymptotic tradeoff.

We construct the family of graphs in the following way.

Definition 4. Given a set of n nodes and maximum number of pebbles k where
k <

√
n, we lexicographically order the nodes (from 1 to n) and create the

following set of edges between the nodes where directed edges are directed from vi

to vj where i < j:

322 E.D. Demaine and Q.C. Liu

1. vi and vi+1 for all i ∈ [k, n]
2. vi and vj for all i ∈ [l − 1] for all 2 ≤ l ≤ k and j ∈ {f(l) + 2r − 2} for all

r ∈ [n−k
2k + 1] where f(l) = k + (l − 1)(n−k

k) + 1.
3. vi and vj for all i = f(l) − 1 and j ∈ {f(l) + 2r − 1} for all i ∈ [n−k

2k + 1]
where l ∈ [1, k − 1].

The target node (the only sink) is vn. Note that the sources in our construction
are vj for all j ∈ [1, k].

Due to the space constraints, we leave all proofs of the properties of the graph
family as well as an example figure of a member of the family in our full paper [6].

5 Open Problems

There are a number of open questions that naturally follow the content of this
paper.

The first obvious open question is whether the techniques introduced in this
paper can be tweaked to allow for a PSPACE-hardness of approximation to an
n1−ε additive factor for any ε > 0. We note that the trivial method of attempting
to reduce the size of the subgraph gadgets used in the variables (i.e. use a different
construction than the road graph such that less than K3 nodes are used) is not
sufficient since the number of nodes in the graph is still Θ(K3(u+ c)). This is not
to say that such an approach is not possible; simply that more changes need to
be made to all of the other gadgets. The next logical step is to determine whether
Peb(G) can be approximated to a constant 2 factor multiplicative approximation.

Another open question is whether the techniques introduced in this paper
can be applied to show hardness of approximation results for other pebble games
such as the black-white or reversible pebble games. The main open question in
the topic of hardness of approximation of pebble games is whether the standard
pebble game can be approximated to any factor smaller than n/ log n or whether
the games are PSPACE-hard to approximate to any constant factor, perhaps
even logarithmic factors.

With regard to hard to pebble graphs, we wonder if our graph family could
be improved to show Ω(nk) for any 0 < k ≤ n/ log n. This would be interesting
because to the best of the authors’ knowledge we do not yet know of any graph
families that exhibit sharp (asymptotically tight) time-space trade-offs for this
entire range of pebble number.

References

1. Joël Alwen, Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. Cumula-
tive space in black-white pebbling and resolution. In Innovations in Theoretical
Computer Science, ITCS 2017, Berkeley, CA, USA, 9-11 January, 2017, 2017.

2. Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-
hard functions. In Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages
595–603, 2015. Available from: http://doi.acm.org/10.1145/2746539.2746622.

Inapproximability of the Standard Pebble Game and Hard to Pebble Graphs 323

3. Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM J.
Comput., 18(4):766–776, August 1989. Available from: http://dx.doi.org/10.
1137/0218053.

4. Siu Man Chan, Massimo Lauria, Jakob Nordström, and Marc Vinyals. Hardness of
approximation in PSPACE and separation results for pebble games. In IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley,
CA, USA, 17-20 October, 2015, pages 466–485, 2015. Available from: http://dx.
doi.org/10.1109/FOCS.2015.36.

5. Stephen Cook and Ravi Sethi. Storage requirements for deterministic / polynomial
time recognizable languages. In Proceedings of the Sixth Annual ACM Symposium
on Theory of Computing, STOC ’74, pages 33–39, New York, NY, USA, 1974. ACM.
Available from: http://doi.acm.org/10.1145/800119.803882.

6. Erik D. Demaine and Quanquan C. Liu. Inapproximability of the standard pebble
game and hard to pebble graphs. CoRR, 2017.

7. Peter Emde Boas and Jan Leeuwen. Theoretical Computer Science 4th GI Con-
ference: Aachen, March 26–28, 1979, chapter Move rules and trade-offs in the
pebble game, pages 101–112. Springer Berlin Heidelberg, Berlin, Heidelberg, 1979.
Available from: http://dx.doi.org/10.1007/3-540-09118-1_12.

8. John R. Gilbert, Thomas Lengauer, and Robert Endre Tarjan. The pebbling
problem is complete in polynomial space. In Proceedings of the Eleventh Annual
ACM Symposium on Theory of Computing, STOC ’79, pages 237–248, New York, NY,
USA, 1979. ACM. Available from: http://doi.acm.org/10.1145/800135.804418.

9. John R. Gilbert and Robert E Tarjan. Variations of a pebble game on graphs.
Technical report, Stanford, CA, USA, 1978.

10. Philipp Hertel and Toniann Pitassi. The PSPACE-completeness of black-white
pebbling. SIAM J. Comput., 39(6):2622–2682, April 2010. Available from: http:
//dx.doi.org/10.1137/080713513.

11. John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. J. ACM,
24(2):332–337, April 1977. Available from: http://doi.acm.org/10.1145/322003.
322015.

12. Hong Jia-Wei and H. T. Kung. I/O complexity: The red-blue pebble game. In
Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing,
STOC ’81, pages 326–333, New York, NY, USA, 1981. ACM. Available from:
http://doi.acm.org/10.1145/800076.802486.

13. Thomas Lengauer and Robert Endre Tarjan. Upper and lower bounds on time-space
tradeoffs. In Proceedings of the Eleventh Annual ACM Symposium on Theory of
Computing, STOC ’79, pages 262–277, New York, NY, USA, 1979. ACM. Available
from: http://doi.acm.org/10.1145/800135.804420.

14. Jakob Nordstrom. New wine into old wineskins: A survey of some pebbling classics
with supplemental results. 2015.

15. Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds
for a game on graphs. In Proceedings of the Eighth Annual ACM Symposium on
Theory of Computing, STOC ’76, pages 149–160, New York, NY, USA, 1976. ACM.
Available from: http://doi.acm.org/10.1145/800113.803643.

16. Ravi Sethi. Complete register allocation problems. SIAM J. Comput., 4(3):226–248,
1975. Available from: http://dx.doi.org/10.1137/0204020.

324 E.D. Demaine and Q.C. Liu

	27 Inapproximability of the Standard Pebble Game and Hard to Pebble Graphs
	1 Introduction
	2 Definitions and Terminology
	3 Inapproximability of the Standard Pebble Game
	3.1 Inapproximability to n1/3−ε additive term for any ε > 0

	4 Hard to Pebble Graphs for Constant k Pebbles
	5 Open Problems
	References

