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Abstract In this paper, we study planar drawings of maximal outer-
planar graphs with the objective of achieving small height. (We do not
necessarily preserve a given planar embedding.) A recent paper gave an
algorithm for such drawings that is within a factor of 4 of the optimum
height. In this paper, we substantially improve the approximation fac-
tor to become 2. The main ingredient is to define a new parameter of
outerplanar graphs (the umbrella depth, obtained by recursively splitting
the graph into graphs called umbrellas). We argue that the height of any
poly-line drawing must be at least the umbrella depth, and then devise
an algorithm that achieves height at most twice the umbrella depth.

1 Introduction

Graph drawing is the art of creating a picture of a graph that is visually appeal-
ing. In this paper, we are interested in drawings of so-called outerplanar graphs,
i.e., graphs that can be drawn in the plane such that no two edges have a point
in common (except at common endpoints) and all vertices are incident to the
outerface. All drawings are required to be planar, i.e., to have no crossing. The
drawing model used is that of flat visibility representations where vertices are
horizontal segments and edges are horizontal or vertical segments, but any such
drawing can be transformed into a poly-line drawing (or even a straight-line
drawing if the width is of no concern) without adding height [6].

Every planar graph with n vertices has a straight-line drawing in an n × n-
grid [19,9]. Minimizing the area is NP-complete [17], even for outerplanar graphs
[7]. In this paper, we focus on minimizing just one direction of a drawing (we use
the height; minimizing the width is equivalent after rotation). It is not known
whether minimizing the height of a planar drawing is NP-hard (the closest related
result concerns minimizing the height if edges must connect adjacent rows [16]).
Given the height H, testing whether a planar drawing of height H exists is fixed
parameter tractable in H [12], but the run-time is exceedingly large in H. As
such, approximation algorithms for the height of planar drawings are of interest.
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It is known that any graph G with a planar drawing of height H has pw(G) ≤
H [13], where pw(G) is the so-called pathwidth of G. This makes the path-
width a useful parameter for approximating the height of a planar graph draw-
ing. For a tree T , Suderman gave an algorithm to draw T with height at
most � 3

2pw(T )� [20], making this an asymptotic 3
2 -approximation algorithm. It

was discovered later that optimum-height drawings can be found efficiently for
trees [18]. Approximation-algorithms for the height or width of order-preserving
and/or upward tree drawing have also been investigated [1,2,8].

For outerplanar graphs, the first author gave two results that will be improved
upon in this paper. In particular, every maximal outerplanar graph has a drawing
of height at most 3 log n−1 [3], or alternatively of height 4pw(G)−3 [5]. Note that
the second result gives a 4-approximation on the height of drawing outerplanar
graphs, and improving this “4” is the main objective of this paper. A number
of results for drawing outerplanar graphs have been developed since paper [3].
In particular, any outerplanar graph with maximum degree Δ admits a planar
straight-line drawing with area O(Δn1.48) [15], or with area O(Δn log n) [14].
The former bound was improved to O(n1.48) area [11]. Also, every so-called
balanced outerplanar graph can be drawn in an O(

√
n)×O(

√
n)-grid [11].

In this paper, we present a 2-approximation algorithm for the height of planar
drawings of maximal outerplanar graphs. The key ingredient is to define the
so-called umbrella depth ud(G) in Section 3. In Section 4, we show that any
outerplanar graph G has a planar drawing of height at most 2ud(G) + 1. This
algorithm is a relatively minor modification of the one in [5], albeit described
differently. The bulk of the work for proving a better approximation factor hence
lies in proving a better lower bound, which we do in Section 5: Any maximal
outerplanar graph G with a planar drawing of height H has ud(G) ≤ H − 1.

2 Preliminaries

Throughout this paper, we assume that G is a simple graph with n ≥ 3 vertices
that is maximal outerplanar. Thus, G has a standard planar embedding in which
all vertices are in the outer face (the infinite connected region outside the draw-
ing) and form an n-cycle, and all interior faces are triangles. We call an edge
(u, v) of G a cutting edge if G − {u, v} is disconnected, and a non-cutting edge
otherwise. In a maximal outerplanar graph, any cutting edge (u, v) has exactly
two cut-components, i.e., there are two maximal outerplanar subgraphs G1, G2

of G such that G1 ∩G2 = {u, v} and G1 ∪G2 = G.
The dual tree T of G is the weak dual graph of G in the standard embedding,

i.e., T has a vertex for each interior face of G, and an edge between two vertices
iff their corresponding faces in G share an edge. An outerplanar path P is a
maximal outerplanar graph whose dual tree is a path. P connects edges e and
e′ if e is incident to the first face and e′ is incident to the last face of the path
that is the dual tree of P . An outerplanar path P with n = 3 is a triangle and
connects any pair of its edges. Since any two interior faces are connected by a
path in T , any two edges e, e′ of G are connected by some outerplanar path.
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Figure 1: (a) A straight-line drawing in the standard embedding, including the
dual tree (dashed edges) and an outerplanar path (shaded) connecting (�1, �2)
with (r1, r2). (b) A flat visibility representation. Both drawings have height 4.

Graph drawing: A drawing of a graph assigns to each vertex a point or an
axis-aligned box, and to each edge a polygonal curve connecting its endpoints.
We only consider planar drawings where none of the points, boxes, or curves
intersect unless the corresponding elements do in the graph. In this paper, a
planar drawing is not required to reflect a graph’s given planar embedding.
We require that all defining features (points, endpoints of segments, bends) are
placed at points with integer y-coordinates. A layer (or row) is a horizontal line
with integer y-coordinate that intersects elements of the drawing, and the height
is the number of layers.

In a flat visibility representation vertices are horizontal line segments, and
edges are vertical or horizontal straight-line segments. (For ease of reading, we
draw vertices as boxes of small height in our illustrations.) In a poly-line drawing
vertices are points and edges are polygonal curves, while in a straight-line draw-
ing vertices are points and edges are line segments. In this paper, we only study
planar flat visibility representations, but simply speak of a planar drawing, be-
cause it is known that any planar flat visibility representation can be converted
into a planar straight-line drawing of the same height and vice versa [6].

3 Umbrellas, bonnets and systems thereof

In this section, we introduce a method of splitting maximal outerplanar graphs
into systems of special outerplanar graphs called umbrellas and bonnets.

Definition 1. Let G be a maximal outerplanar graph, let U be a subgraph of
G with n ≥ 3, and let (u, v) be a non-cutting edge of G. We say that U is an
umbrella with cap (u, v) if

1. U contains all neighbours of u and v,
2. there exists a non-empty outerplanar path P ⊆ U (the handle) that connects

(u, v) to some non-cutting edge of G, and
3. any vertex of U is either in P or a neighbour of u or v.
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See also Figure 2(a). For such an umbrella U , the fan at u is the outerplanar
path that starts at an edge (u, x) of the handle P , contains all neighbours of
u, and that is minimal with respect to these constraints. If all neighbours of u
belong to P , then the fan at u is empty. Define the fan at v similarly, using v.

Any edge (a, b) of U that is a cutting edge of G, but not of U , is called
an anchor-edge of U in G. (In the standard embedding, such edges are on the
outerface of U but not on the outerface of G.) The hanging subgraph with respect
to anchor-edge (a, b) of U in G is the cut-component Sa,b of G with respect to
cutting-edge (a, b) that does not contain the cap (u, v) of U . We often omit “of
U in G” when umbrella and super-graph are clear from the context.

Definition 2. Let G be a maximal outerplanar graph with n ≥ 3, and let (u, v)
be a non-cutting edge of G. An umbrella system U on G with root-edge (u, v) is
a collection U = U0 ∪U1 ∪ · · · ∪ Uk of subgraphs of G for some k ≥ 0 that satisfy
the following:

1. U0 contains only one subgraph U0 (the root umbrella), which is an umbrella
with cap (u, v).

2. U0 has k anchor-edges. We denote them by (ui, vi) for i = 1, . . . , k, and let
Si be the hanging subgraph with respect to (ui, vi).

3. For i = 1, . . . , k, Ui (the hanging umbrella system) is an umbrella system of
Si with root-edge (ui, vi).

The depth of such an umbrella system is defined recursively to be d(U) := 1 +
max1≤i≤k d(Ui); in particular d(U) = 1 if k = 0.

u v

a b
x

(a)

u v

(b)

Figure 2: (a) An umbrella system of depth 3. The root umbrella is shaded, with
its handle darker shaded. (b) The same graph has a bonnet system of depth 2,
with the root bonnet shaded and its ribbon darker shaded.

See also Figure 2(a). A graph may have many different umbrella systems
with the same root-edge. Define ud(G;u, v) (the (rooted) umbrella depth of G)
to be the minimum depth over all umbrella systems with root-edge (u, v). Note
that the umbrella depth depends on the choice of the root-edge; define the free
umbrella depth ud(G) := udfree(G) to be the minimum umbrella depth over all
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possible root-edges. (One can show that the free umbrella depth is at most one
unit less than the rooted umbrella depth for any choice of root-edge; see [10].)

Bonnets: A bonnet is a generalization of an umbrella that allows two handles,
as long as they go to different sides of the interior face at (u, v). Thus, condition
(2) of the definition of an umbrella gets replaced by

2’. There exists a non-empty outerplanar path P ⊆ U (the ribbon) that connects
two non-cutting edges and contains u, v and their common neighbour.

Other than that, bonnets are defined exactly like umbrellas. See also Figure 2(b).
We define bonnet system, root bonnet, etc., exactly as for an umbrella system,
except that “bonnet” is substituted for “umbrella” everywhere. Let bd(G;u, v)
(the rooted bonnet-depth of G) be the minimum possible depth of a bonnet
system with root-edge (u, v), and let bdfree(G) = bd(G) be the minimum bonnet-
depth over all choices of root-edge. Since any umbrella is a bonnet, we have
bd(G) ≤ ud(G).

By definition the root bonnet U0 must contain all edges incident to the ends
u, v of the root-edge. If follows that no edge incident to u or v can be an anchor-
edge of U0, else the hanging subgraph at it would contain further neighbours of
u (resp. v). We note this trivial but useful fact for future reference:

Observation 1 In a bonnet system with root-edge (u, v), no edge incident to u
or v is an anchor-edge of the root bonnet.

4 From Bonnet System to Drawing

In this section, we show that any outerplanar graph G has a flat visibility rep-
resentation of height at most 2ud(G) + 1. We actually show a slightly stronger
bound, namely a height of 2bd(G) + 1 ≤ 2ud(G) + 1. So fix a bonnet system of
G of depth bd(G) with root-edge (u, v). For merging purposes, we want to draw
(u, v) in a special way: It spans the top layer, which means that u touches the
top left corner of the drawing, and v touches the top right corner, or vice versa
(see for example Figure 3(d)). We first explain how to draw the root bonnet U0.

Lemma 1. Let U0 be the root bonnet of a bonnet system with root-edge (u, v).
Then there exists a flat visibility representation Γ of U0 on three layers such that

1. (u, v) spans the top layer of Γ .
2. Any anchor-edge of U0 is drawn horizontally in the middle or bottom layer.

Proof. As a first step, we draw the ribbon P of U0 on 2 layers in such a way
that (u, v) and all anchor-edges are drawn horizontally; see Figure 3(a) for an
illustration. (This part is identical to [5].) To do this, consider the standard
embedding of P in which the dual tree is a path, say it consists of faces f1, . . . , fk.
We draw k + 1 vertical edges between two layers, with the goal that the region
between two consecutive ones belong to f1, . . . , fk in this order. Place u and
v as segments in the top layer, and with an x-range such that they touch all
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the regions of faces that u and v are incident to. Similarly create segments for
all other vertices. The placement for the vertices is uniquely determined by the
standard planar embedding, except for the vertices incident to f1 and fk. We
place those vertices such that the leftmost/rightmost vertical edge is not an
anchor-edge. To see that this is possible, recall that P connects two non-cutting
edges e1, e2 of G that are incident to f1 and fk. If e1 
= (u, v), then choose the
layer for the vertices of f1 such that e1 is drawn vertically. If e1 = (u, v), then one
of its ends (say u) is the degree-2 vertex on f1 and drawn in the top-left corner.
The other edge e′ incident to u is not an anchor-edge of U by Observation 1, and
we draw e′ vertically. So the leftmost vertical edge is either a non-cutting edge
(hence not an anchor-edge) or edge e′ (which is not an anchor-edge). We proceed
similarly at fk so that the rightmost vertical edge is not an anchor-edge. Finally
all other vertical edges are cutting edges of U0 and hence not anchor-edges.

The drawing of P obtained in this first step has (u, v) in the top layer. As a
second step, we now release (u, v) as in [5]. This operation adds a layer above
the drawing, moves (u, v) into it, and re-routes edges at u and v by expanding
vertical ones and turning horizontal ones into vertical ones. In the result, (u, v)
spans the top layer. See Figure 3(b) for an illustration and [5] for details.

Figure 3: From bonnet system to drawing.

As the third and final step, we add the fans. Consider the fan at v, and let
(v, br) be the edge that it has in common with the ribbon P . Assume first that
(v, br) was drawn horizontally after the first step, see Figure 3(a). After releasing
(u, v) therefore no edge at br attaches on its left, see Figure 3(b). Into this space

vu

rest of P

a�

br

e2e′ f1 f2 f3 f4

(a) Drawing the ribbon.

v

a�

br

rest of P
fan at u

fan at v

u

(c) Adding the fans. The resulting drawing is not in
the standard embedding.

vu

new layers

a b

Sa,b

x y

Sx,y

(d) Merging hanging subgraphs.

vu

a�

br
rest of P

(b) Releasing (u, v).
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we insert, after adding columns, the remaining vertices of the fan at v, in order
in which they appear around v in the standard embedding. See Figure 3(c)).

Else, (v, br) was drawn vertically after the first step. (Figure 3(c) does not
illustrate this case for v, but illustrates the corresponding case for u.) Since the
drawing of the first step is in the standard embedding, and (v, br) is on the
outerface of the ribbon, therefore (v, br) must be the rightmost vertical edge.
We can then simply place the vertices of the fan to the right of br and extend v.

The fan at u is placed in a symmetric fashion. It remains to show that all
anchor-edges are horizontal and in the bottom two layers. We ensured that this
is the case in the first step. Releasing (u, v) adds more vertical edges, but all of
them are incident to u or v and not anchor-edges by Observation 1. Likewise,
all vertical edges added when inserting the fans are incident to u or v. The only
horizontal edge in the top layer is (u, v), which is not an anchor-edge. �

Now we explain how to merge hanging subgraphs.

Theorem 1. Any maximal outerplanar graph G has a planar flat visibility rep-
resentation of height at most 2bdfree(G) + 1.

Proof. We show by induction that any graph with a bonnet system U of depth
H has a drawing Γ of height 2H + 1 where the root-edge (u, v) spans the top
layer. This proves the theorem when using a bonnet system U of depth bdfree(G).

Let U0 be the root bonnet of the bonnet system, and draw U0 on 3 layers
using Lemma 1. Thus (u, v) spans the top and any anchor-edge (a, b) of U0

is drawn as a horizontal edge in the bottom two layers of Γ0. If H = 1 then
there are no hanging subgraphs and we are done. Else add 2H − 2 layers to Γ0

between the middle and bottom layers. For each anchor-edge (a, b) of U0, the
hanging subgraph Sa,b of U0 has a bonnet system of depth at most H − 1 with
root-edge (a, b). By induction Sa,b has a drawing Γ1 on at most 2H − 1 layers
with (a, b) spanning the top layer.

If (a, b) is in the bottom layer of Γ0, then we can rotate (and reflect, if
necessary) Γ1 so that (a, b) is in the bottom layer of Γ1 and the left-to-right
order of a and b in Γ1 is the same as their left-to-right order in Γ0. This updated
drawing of Γ1 can then be inserted in the space between (a, b) in Γ0. This fits
because Γ1 has height at most 2H−1, and in the insertion process we can re-use
the layer spanned by (a, b). If (a, b) is in the middle layer of U0, then we can
reflect Γ1 (if necessary) so that (a, b) has the same left-to-right order in Γ1 as in
Γ0. This updated drawing of Γ1 can then be inserted in the space between (a, b)
in Γ0. See Figure 3(d). Since we added 2H − 2 layers to a drawing of height 3,
the total height of the final drawing is 2H + 1 as desired. �

Our proof is algorithmic, and finds a drawing, given a bonnet system, in
linear time. One can also show (see [10]) that the rooted bonnet depth, and an
associated bonnet system, can be found in linear time using dynamic program-
ming in the dual tree. The free bonnet depth can be found in quadratic time by
trying all root-edges, but one can argue [10] that this will save at most one unit
of depth and hence barely seems worth the extra run-time.
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Comparison to [5]: The algorithm in [5] has only two small differences. The
main one is that it does not do the “third step” when drawing the root bonnet,
thus it draws the ribbon but not the fans. Thus in the induction step our algo-
rithm always draws at least as much as the one in [5]. Secondly, [5] uses a special
construction if pw(G) = 1 to save a constant number of levels. This could easily
be done for our algorithm as well in the case where pw(G) = 1 but bd(G) = 2.
As such, our construction never has worse height (and frequently it is better).

Comparison to [3]: One can argue that bd(G) ≤ log(n + 1) (see [10]). Since
[3] uses 3 log n− 1 levels while ours uses 2bd(G)+ 1 ≤ 2 log(n+1)+1 levels, the
upper bound on the height is better for n ≥ 9.

5 From Drawing to Umbrella System

The previous section argued that given an umbrella system (or even more gen-
erally, a bonnet system) of depth H, we can find a drawing of height at most
2H−1. To show that this is within a factor of 2 of the optimum, we show in this
section that any drawing of height H gives rise to an umbrella system of depth
at most H − 1. (Any umbrella system is also a bonnet system, so it also has a
bonnet system of depth at most H − 1.)

We first briefly sketch the idea. We assume that we have a flat visibility
representation, and further, for some non-cutting edge (u, v) we have an “escape
path”, i.e., a poly-line to the outerface that does not intersect the drawing. Now
find an outerplanar path that connects the leftmost vertical edge (x, y) of the
drawing with (u, v). This becomes the handle of an umbrella U with cap (u, v).
One can now argue that any hanging subgraph of U is drawn with height at
most H − 1, and furthermore, has an escape path from its anchor-edge. The
claim then holds by induction.

We first clarify some definitions illustrated in Figure 4(a). Let Γ be a flat
visibility representation, and let BΓ be a minimum-height bounding box of Γ .
A vertex w ∈ G has a right escape path in Γ if there exists a polyline inside BΓ

from w to a point on the right side of BΓ that is vertex-disjoint from Γ except
at w, and for which all bends are on layers. We say that (r1, r2) is a right-free
edge of Γ if it is vertical, and any layer intersected by (r1, r2) is empty, except
for vertices r1, r2, to the right of the edge. In particular, for both r1 and r2 the
rightward ray on its layer is an escape path. Define left escape paths and left-free
edges symmetrically; an escape path is a left escape path or a right escape path.

Observe that in any flat visibility representation any leftmost vertical edge
(v, w) is left-free. (Such vertical edges exist, presuming the graph has minimum
degree 2, since the leftmost vertex in each layer has at most one incident hori-
zontal edge.) For in any layer spanned by (v, w), no vertical edge is farther left
by choice of (v, w), and no vertex can be farther left, else the incident vertical
edge of the leftmost of them would be farther left. So (v, w) is left-free.

For the proof of the lower bound, we use as handle an outerplanar path
connecting to a left-free edge. Recall that the definition of handle requires that
it connects to a non-cutting edge, so we need a left-free edge that is not a cutting
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Figure 4: w has a right escape path, (�1, �2) is left-free and (r1, r2) is right-free.
After flipping the cutting component at (�1, �2), the non-cutting edge (�′1, �

′
2)

becomes left-free.

now, we can modify the drawing without increasing the height such that such an
edge exists. To be able to apply it later, we must also show that this modification
does not destroy a given escape path.

Lemma 2. Let Γ be a flat visibility representation of a maximal outerplanar
graph G.

1. Let (r1, r2) be a right-free edge of Γ , and let w be a vertex that has a right
escape path. Then there exists a drawing Γ ′ in which w has a right escape
path, (r1, r2) is a right-free edge, and there exists a left-free edge that is not
a cutting edge of G.

2. Let (�1, �2) be a left-free edge of Γ , and let w be a vertex that has a left
escape path. Then there exists a drawing Γ ′ in which w has a left escape
path, (�1, �2) is a left-free edge, and there exists a right-free edge that is not
a cutting edge of G.

In either case, the y-coordinates of all vertices in Γ are unchanged in Γ ′, and
in particular both drawings have the same height.

Proof. We prove the claim by induction on n and show only the first claim (the
other is symmetric). Let (�1, �2) be the leftmost vertical edge of Γ ; this is left-free
as argued above. If (�1, �2) is not a cutting edge of G, then we are done with
Γ ′ = Γ . This holds in particular if n = 3 because then G has no cutting edge.

So assume n ≥ 4 and (�1, �2) is a cutting edge of G. Let A and B be the cut-
components of (�1, �2), named such that w ∈ A. Let ΓA [resp. ΓB ] be the drawing
of A [B] induced by Γ . Edge (�1, �2) is left-free for both ΓA and ΓB . Reflect ΓB

horizontally (this makes (�1, �2) right-free) to obtain Γ ′
B . By induction, we can

create a drawing Γ ′′
B from Γ ′

B in which (�1, �2) is right-free and there is a left-free
edge (�′1, �

′
2) that is not a cutting edge of B. We have (�′1, �

′
2) 
= (�1, �2), because

the common neighbour of �1, �2 in B forces a vertex or edge to reside to the left
of the right-free edge (�1, �2). So (�′1, �

′
2) is not a cutting edge of G either.

As in Figure 4(b), create a new drawing that places Γ ′′
B to the left of ΓA and

extends �1 and �2 to join the two copies; this is possible since (�1, �2) has the
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same y-coordinates in ΓA, Γ, ΓB and Γ ′′
B , and it is left-free in ΓA and right-free

in Γ ′′
B . Also delete one copy of (�1, �2). The drawing ΓA is unchanged, so w will

have the same right escape path in Γ ′ as in Γ , and Γ ′ will have right-free edge
(r1, r2) and left-free non-cutting edge (�′1, �

′
2), as desired. �

We are now ready to prove the lower bound if there is an escape path.

Lemma 3. Let Γ be a flat visibility representation of a maximal outerplanar
graph G with height H, and let (u, v) be a non-cutting edge of G. If there exists
an escape path from u or v in Γ , then G has an umbrella system with root-edge
(u, v) and depth at most H − 1.

Proof. We proceed by induction on H. Assume without loss of generality that
there exists a right escape path from v (all other cases are symmetric). Using
Lemma 2, we can modify Γ without increasing the height so that v has a right
escape path, and there is a left-free edge (�1, �2) in Γ that is a not a cutting edge
of G. Let P be the outerplanar path that connects edge (�1, �2) and (u, v). Let
U0 be the union of P , the neighbors of u, and the neighbors of v; we use U0 as
the root umbrella of an umbrella system.

We now must argue that all hanging subgraphs of U0 are drawn with height
at most H − 1 and have escape paths from their anchor-edges; we can then find
umbrella systems for them by induction and combining them with U0 gives the
umbrella system for G as desired. To prove the height-bound, define “dividing
paths” as follows. The outerface of U0 in the standard embedding contains (�1, �2)
(since it is not a cutting edge) as well as v. Let P1 and P2 be the two paths from
�1 and �2 to v along this outerface in the standard embedding. Define the dividing
path Πi (for i = 1, 2) to be the poly-line in Γ that consists of the leftward ray
from �i, the drawing of the path Pi (i.e., the vertical segments of its edges and
parts of the horizontal segments of its vertices), and the right escape path from
v. See Figure 5.

u v

a

b�1

�2

Sa,b

P1

P2

u

v
b

a
�1

�2

Sa,b

Π2

Π1

Figure 5: Extracting dividing paths from a flat visibility representation. P1/Π1

is dotted while P2/Π2 is dashed.

Now consider any hanging subgraph Sa,b of U0 with anchor-edge (a, b). No
edge incident to v is an anchor-edge, and neither is (�1, �2), since it is not a
cutting edge. So (a, b) is an edge of P1 or P2 (say P1) that is not incident to v.
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Therefore (a, b) (and with it Sa,b) is vertex-disjoint from P2. It follows that the
drawing ΓS of Sa,b induced by Γ is disjoint from the dividing path Π2. Since
Π2 connects a point on the left boundary with a point on the right boundary,
therefore ΓS must be entirely above or entirely below Π2, say it is above. Since
Π2 has all bends at points with integral y-coordinate, therefore the bottom layer
of Γ is not available for ΓS , and ΓS has height at most H − 1 as desired.

Recall that (a, b) belongs to P1 and is not incident to v. After possible re-
naming of a and b, we may assume that b is closer to �1 along P1 than a. Then
the sub-path of P1 from b to �1 is interior-disjoint from Sa,b. The part of Π1

corresponding to this path is a left escape path from b that resides within the
top H − 1 layers, because it does not contain v and hence is disjoint from Π2.
We can hence apply induction to Sa,b to obtain an umbrella system of depth at
most H − 2 with root-edge (a, b). Repeating this for all hanging subgraphs, and
combining the resulting umbrella systems with U0, gives the result. �
Theorem 2. Let G be a maximal outerplanar graph. If G has a flat visibility
representation Γ of height H, then udfree(G) ≤ H − 1.

Proof. Using Lemma 2, we can convert Γ into a drawing Γ ′ of the same height in
which some edge (u, v) is a right-free non-cutting edge. This implies that there is
a right escape path from v, and by Lemma 3 we can find an umbrella system of
G with root-edge (u, v) and depth H−1. So udfree(G) ≤ ud(G;u, ) ≤ H−1. �

6 Conclusions and Future Work

We presented an algorithm for drawing maximal outerplanar graphs that is a
2-approximation for the optimal height. To this end, we introduced the umbrella
depth as a new graph parameter for maximal outerplanar graphs, and used as
key result that any drawing of height H implies an umbrella-depth of at least
H − 1. Our result improves the previous best result, which was based on the
pathwidth and gave a 4-approximation. We close with some open problems:

– Our result only holds for maximal outerplanar graphs. Can the algorithm be
modified so that it becomes a 2-approximation for all outerplanar graphs?
Clearly one could apply the algorithm after adding edges to make the graph
maximal, but which edges should be added to keep the umbrella depth small?

– The algorithm from Section 4 creates a drawing that does not place all
vertices on the outerface. Can we create an algorithm that approximates the
optimal height in the standard planar embedding?

– What is the width achieved by the algorithm from Section 4 if we enforce
integral x-coordinates? Any visibility representation can be modified without
changing the height so that the width is at mostm+n, wherem is the number
of edges and n is the number of vertices [6]. Thus the width is O(n), but
what is the constant?

Finally, can we determine the optimal height for maximal outerplanar graphs in
polynomial time? This question is of interest both if (as in our algorithm) the
embedding can be changed, or if the drawing must be in the standard embedding.
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