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Abstract. We address the problem of locating k sinks on dynamic
flow path networks with n vertices in such a way that the evacua-
tion completion time to them is minimized. Our two algorithms run
in O(n log n + k2 log4 n) and O(n log3 n) time, respectively. When all
edges have the same capacity, we also present two algorithms which run
in O(n + k2 log2 n) time and O(n log n) time, respectively. These algo-
rithms together improve upon the previously most efficient algorithms,
which have time complexities O(kn log2 n) [1] and O(kn) [11], in the
general and uniform edge capacity cases, respectively. The above re-
sults are achieved by organizing relevant data for subpaths in a strategic
way during preprocessing, and the final results are obtained by extract-
ing/merging them in an efficient manner.

1 Introduction

Ford and Fulkerson [5] introduced the concept of dynamic flow which models
movement of commodities in a network. In this model, each vertex is assigned
some initial amount of supply, each edge has a capacity, which limits the rate
of commodity flow into it per unit time, and the transit time to traverse it.
One variant of the dynamic flow problem is the quickest transshipment problem,
where the source vertices have specified supplies and sink vertices have specified
demands. The problem is to send exactly the right amount of commodity out of
sources into sinks in minimum overall time. Hoppe and Tardos [12] provided a
polynomial time algorithm for this problem in the case where the transit times
are integral. However, the complexity of their algorithm is very high. Finding a
practical polynomial time solution to this problem is still open. The reader is
referred to a recent paper by Skutella [18] on dynamic flows.

This paper discusses a related problem, called the evacuation problem [8,
14], in which the supplies (i.e., evacuees) are discrete, and the sinks and their
demands are not specified. In fact, the locations of the sinks are the output of the
problem. Many disasters, such as earthquakes, nuclear plant accidents, volcanic
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eruptions, flooding, have struck in recent years in many parts of the world, and
it is recognized that orderly evacuation planning is urgently needed.

A k-sink is a set of k sinks such that the evacuation completion time to
sinks is minimized, and our objective is to find a k-sink on a dynamic flow
path network. Congestion is said to occur when an evacuee cannot move at the
maximum speed constrained only by transit time. Thus, when the capacities of
the edges are sufficiently large, no congestion occurs and each evacuee can follow
the shortest path to its nearest sink at the maximum speed. This is equivalent
to the classical k-center problem in networks, which is known to be NP-hard
even on bipartite planar graphs of maximum degree 4 [17]. To the best of our
knowledge the most general polynomially solvable case for general k is where the
underlying graphs are cacti or partial t-trees with constant t. Congestion could
occur if vertex capacities are limited, in which case edges may get clogged and
congestion backs up. Our results are valid regardless of whether vertex capacities
(the number of evacuees that they can accommodate) are limited or not.

Mamada et al. [15] solved the 1-sink problem for the dynamic flow tree net-
works in O(n log2 n) time under the condition that only a vertex can be a sink,
where n is the number of vertices. When edge capacities are uniform, we have
presented O(n log n) time algorithms with a more relaxed condition that the
sink can be on an edge, as well as on a vertex [3, 10]. Dealing with congestion is
non-trivial even in path networks. On dynamic flow path networks with uniform
edge capacities, it is straightforward to compute the 1-sink in linear time, as
shown by Cheng et al. [4]. Arumugam et al. [1] showed that the k-sink problem
for dynamic flow path networks can be solved in O(kn log2 n) time, and when
the edge capacities are uniform Higashikawa et al. [11] showed that it can be
solved in O(kn) time.

In this paper we present two algorithms for the k-sink problem on dynamic
flow path networks with general edge capacities. A path network can model an
airplane aisle, a hall way in a building, a street, a highway, etc., to name a few.
Unlike the previous algorithm for the k-sink problem [1] which uses dynamic
programming, our algorithms adopt Megiddo’s parametric search [16] and the
sorted matrices introduced by Frederickson and Johnson [6, 7]. Together, they
outperform all other known algorithms, and they are the first sub-quadratic
algorithms for any value of k. These improvements were made possible by our
method of merging evacuation times of subpaths stored in a hierarchical data
structure. We also present two algorithms for the dynamic flow path networks
with uniform edge capacities.

This paper is organized as follows. In the next section, we define our model
and the terms that are used throughout the paper. Sec. 3 introduces a new
data structure, named the capacities and upper envelopes tree, which plays a
central role in the rest of the paper. In Sec. 4 we identify two important tasks
that form building blocks of our algorithms, and also discuss a feasibility test.
Sec. 5 presents several algorithms for uniform and general edge capacities. Fi-
nally, Sec. 6 concludes the paper.
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2 Preliminaries

2.1 Definitions

Let P = (V,E) be a path network, whose vertices v1, v2, . . . , vn are arranged from
left to right in this order. For i = 1, 2, . . . , n, vertex vi has an integral weight
wi (> 0), representing the number of evacuees, and each edge ei = (vi, vi+1) has
a fixed non-negative length li and an integral capacity ci, which is the upper limit
on the number of evacuees who can enter an edge per unit time. We assume that
a sink has infinite capacity, so that the evacuees coming from the left and right
of a sink do not interfere with each other. An evacuation starts at the same time
from all the vertices, and all the evacuees from a vertex evacuate to the same
sink. This is called “confluent flow” in the parlance of the network flow theory.
This constraint is desirable in evacuation in order to avoid confusion among the
evacuees at a vertex as to which way they should move.

By x ∈ P , we mean that point x lies on either an edge or a vertex of P . For
two points a, b ∈ P , a ≺ b or b � a means that a lies to the left of b. Let d(a, b)
denote the distance (sum of the edge lengths) between a and b. If a and/or b lies
on an edge, we use the prorated distance. The transit time for a unit distance
is denoted by τ , so that it takes d(a, b)τ time to travel from a to b, and τ is
independent of the edge. Let c(a, b) denote the minimum capacity of the edges
on the subpath of P between a and b. The point that is arbitrarily close to vi

on its left (resp. right) side is denoted by v−i (resp. v+
i ). Let P [a, b] denote the

subpath of P between a and b satisfying a ≺ b. If a, b or both are excluded, we
denote them by P (a, b], P [a, b) or P (a, b), respectively. Let V [a, b] (resp. V (a, b],
V [a, b) or V (a, b)) denotes the set of vertices on P [a, b] (resp. P (a, b], P [a, b) or
P (a, b)). We introduce a weight array W [·], defined by

W [i] �
∑

vj∈V [v1,vi]

wj , for i = 1, 2, . . . , n, (1)

and let W [vi, vj ] � W [j] − W [i − 1] for i ≤ j.

2.2 Completion time functions

In our model, a set of k sinks accepts evacuees from k disjoint subpaths of P .
We thus need to be able to compute the completion time for each such subpath
P [vi, vj ]. For simplicity, from now on, we assume that the optimal k sinks are
on edges, not on vertices. Small modifications will be necessary if we allow some
sinks to be on vertices. We define the completion time from left (L-time for short)
to x � vj of vertex vp on P [vi, vj ] to be the evacuation completion time to x
for the evacuees on the vertices on P [vi, vp], assuming that they all arrive at
x continuously at a uniform rate c(vp, x). We similarly define the completion
time from right (R-time for short) to x ≺ vi of vertex vp on P [vi, vj ] to be the
evacuation completion time to x for all the evacuees on the vertices on P [vp, vj ],
arriving at x continuously at a uniform rate c(x, vp). For any vertex vp ∈ V [vi, vj ],
its L-time and R-time are given mathematically as

θ
[i,j]
L (x, vp) � d(vp, x)τ + W [vi, vp]/c(vp, x) for x � vj , (2)

θ
[i,j]
R (x, vp) � d(x, vp)τ + W [vp, vj ]/c(x, vp) for x ≺ vi, (3)
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Fig. 1. An example path P = (V, E) with x ∈ e9 = (v9, v10).

respectively. For convenience we sometimes refer to the first (resp. second) term
in the righthand side of (2) and (3) as the distance time (resp. weight time).
Note that the distance time is linear in the distance to x. Consider an arbitrary
subpath P [vi, vj ], where i ≤ j.

Fig. 1 shows an example, where vertices v1, v2, v3, . . . (represented by black
circles) have weights 8, 14, 5, . . ., and edges e1, e2, e3, . . . have lengths 3, 2, 4, . . .
and capacities 5, 3, 4, . . . Point x is located on e9 = (v9, v10) so that d(v9, x) = 2
(represented by a white circle). Assuming τ = 1, let us compute the L-time to
x of vertex v5 on P [v2, v7]. From d(v5, x) = 13, W [v2, v5] = 36 and c(v5, x) = 3,
we obtain θ

[2,7]
L (x, v5) = 25.

To be more precise, the weight time should be �W [vi, vp]/c(vp, x)� and
�W [vp, vj ]/c(x, vp)� in (2) and (3), respectively, since the evacuees are discrete
entities. Although only small modifications are necessary to get exact solutions
as shown in [4], we use (2) and (3) for simplicity.

Lemma 1. [9] Let s be the sink for a subpath P [vi, vj ] of a path network P . The
evacuation completion time to s (vi � vh ≺ s ≺ vh+1 � vj) for the evacuees on
P [vi, vj ] is given by

Θ[i,j](s) � max
{

max
v∈V [vi,s)

{θ[i,h]
L (s, v)}, max

v′∈V (s,vj ]
{θ[h+1,j]

R (s, v′)}
}

. (4)

Referring to (2) and (3), the vertex vp ∈ V [vi, vj ] that maximizes θ
[i,j]
L (v+

j , vp)

(resp. θ
[i,j]
R (v−i , vp)) is called the L-critical vertex (resp. R-critical vertex) of

P [vi, vj ], and is denoted by c
[i,j]
L (resp. c

[i,j]
R ). Note that (v+

j , vp) (resp. (v−i , vp))
is used instead of (vj , vp) (resp. (vi, vp)), and that we have d(vp, v

+
j ) = d(vp, vj)

and c(vp, v
+
j ) = min{c(vp, vj), cj} (resp. d(v−i , vp) = d(vi, vp) and c(v−i , vp) =

min{c(vi, vp), ci−1}).
Using the example in Fig. 1 again, let us find the L-critical vertex of P [v2, v7].

We first compute θ
[2,7]
L (v+

7 , vp) for p = 2, . . . , 7: θ
[2,7]
L (v+

7 , v2) = 14 + 14/2 = 21,
θ
[2,7]
L (v+

7 , v3) = 12+19/2 = 21.5, θ
[2,7]
L (v+

7 , v4) = 8+29/2 = 22.5, θ
[2,7]
L (v+

7 , v5) =
5+36/3 = 17, θ

[2,7]
L (v+

7 , v6) = 3+51/3 = 20, and θ
[2,7]
L (v+

7 , v7) = 0+59/3 ≈ 19.7.
Comparing these values, we obtain c

[2,7]
L = v4.
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Proposition 1. Critical vertex vp = c
[i,j]
L (resp. vp = c

[i,j]
R ) maximizes θ

[i,j]
L (x, vp)

(resp. θ
[i,j]
R (x, vp)) for any point x ∈ (vj , vj+1] (resp. x ∈ [vi−1, vi)).

3 Data structures

A problem instance is said to be t-feasible if there are k sinks such that every
evacuee can reach a sink within time t. In our algorithms, we want to perform
t-feasibility tests for many different values of completion time t. Therefore, it is
worthwhile to spend some time during preprocessing to construct data structures
which facilitate these tests.

3.1 Capacities and upper envelopes (CUE) tree

We want to design a data structure with which critical vertices c
[i,j]
L and c

[i,j]
R can

be found efficiently for an arbitrary pair (i, j) with 1 ≤ i ≤ j ≤ n. To this end we
introduce the capacities and upper envelopes tree (CUE tree, for short), denoted
by T , with root ρ, whose leaves are the vertices of P arranged from left to right.
It is a balanced tree with height O(log n). In balancing, the vertex weights are
not considered. For a node5 u of T , let T (u) denote the subtree rooted at u,
and let l(u) (resp. r(u)) denote the index of the leftmost (resp. rightmost) vertex
on P that belongs to T (u). See Fig. 2. Let ul, ur and up denote the left child
of u, the right child of u, and the parent of u, respectively. We say that node

v
i

v
j

ρ’

π(v
i 
,
 
ρ’ ) π(v

j 
,
 
ρ’ )

u

v
l(u)

v
r(u)

Fig. 2. Illustration of a part of CUE tree T . The small gray disks represent nodes of
N [vi, vj ] and dashed circles enclose subpaths in P[vi, vj ].

u spans subpath P [vl(u), vr(u)]. At node u, we store l(u), r(u) and the capacity
c(vl(u), vr(u)) among others. This information at every node can be computed
bottom up in O(n) time by performing heap-like operations.

For two nodes u, u′ of T , let π(u, u′) denote the path from u to u′ along
edges of T . Suppose that for an index pair (i, j) with 1 ≤ i ≤ j ≤ n, node ρ′ is

5 We use the term “node” here to distinguish it from the vertices on the path. A
vertex, being a leaf of T , is considered a node, but an interior node of T is not a
vertex.
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the lowest common ancestor of vi and vj in T . Consider every node of T that
is the right child of a node on π(vi, ρ

′) or the left child of a node on π(vj , ρ
′),

but which itself is not on π(vi, ρ
′) or π(vj , ρ

′). Let N [vi, vj ] denote the set of
such nodes plus vi and vj . Then clearly N [vi, vj ] consists of O(log n) nodes. Let
P[vi, vj ] denote the set of O(log n) subpaths spanned by nodes of N [vi, vj ].

In order to determine c
[i,j]
L for a given pair (i, j), we need to compute

max
vp∈V [vi,vj ]

{d(vp, vj)τ + W [vi, vp]/c(vp, vj+1)} . (5)

To facilitate such a computation for an arbitrary pair (i, j), at each node u,
we precompute and store two upper envelope functions associated with sub-
path P [vl(u), vr(u)]. Then for u ∈ N [vi, vj ] that spans vp, we have W [vi, vp] =
W [vi, vl(u)−1]+W [vl(u), vp] and c(vp, vj+1) = min{c(vp, vr(u)+1), c(vr(u)+1, vj+1)}.
Since (i, j), hence W [vi, vl(u)−1] and c(vr(u)+1, vj+1), is not known during pre-
processing, we replace these values with variables W and c, respectively, and
express the two upper envelopes stored at u as functions of W = W [vi, vl(u)−1]
and c = c(vr(u)+1, vj+1), respectively. We can now break (5) down into a number
of formulea, one for each u ∈ N [vi, vj ], which is given by

max
vp∈V [vl(u),vr(u)]

{
d(vp, vr(u))τ + (W + W [vl(u), vp])/ min{c(vp, vr(u)+1), c}

}
. (6)

Using the concrete values of W and c, we can evaluate (5) by finding the maxi-
mum of the |N [vi, vj ]| = O(log n) values, computed by (6).

Now we want to compute (6) efficiently for “arbitrary” W and c, but of
course we have W = W [vi, vl(u)−1] and c = c(vr(u)+1, vj) in mind for some i
and j. Consider two extreme cases, where for any p with vp ∈ V [vl(u), vr(u)] (i)
c > c(vp, vr(u)+1), and (ii) c ≤ c(vp, vr(u)+1), respectively. In Case (i), we have
from (6)

Θu
L,1(W ) � max

vp∈V [vl(u),vr(u)]

{
d(vp, vr(u))τ +(W +W [vl(u), vp])/c(vp, vr(u)+1)

}
(7)

= max
vp∈V [vl(u),vr(u)]

{
θ
[l(u),r(u)]
L (v+

r(u), vp) + W/c(vp, vr(u)+1)
}

. (8)

Note that c(vp, vr(u)+1) gets smaller as vp moves to the left. From (7) it is seen
that Θu

L,1(W ) is the upper envelope of linear functions of W and each coefficient
of W is positive, which means that Θu

L,1(W ) is piecewise linear, continuous, and
increasing in W . Thus it can be encoded as a sequence of bending points. In
Case (ii), we have from (6)

Θu
L,2(c) = max

vp∈V [vl(u),vr(u)]

{
d(vp, vr(u))τ + W [vl(u), vp]/c

}
. (9)

Note that (9) was obtained from (6) by removing the term W/c, which does
not depend on vp. If we plot Θu

L,2(c) vs. (1/c) as a graph, it is also piecewise
linear, continuous, and increasing in (1/c), and can be encoded as a sequence of
bending points.
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At node u we store both Θu
L,1(W ) and Θu

L,2(c) in encoded form with bending
points, which can be computed in time. Similarly, in order to
determine c

[i,j]
R for an arbitrary pair (i, j), we store two functions which are

symmetric to Θu
L,1(W ) and Θu

L,2(c), respectively, named Θu
R,1(W ) and Θu

R,2(c),
in linear time. We can now prove the following lemma.

Lemma 2. Given a dynamic flow path network with n vertices, CUE tree T
with associated data can be constructed in O(n log n) time and O(n log n) space.

3.2 Using CUE tree

Suppose we want to find the L-critical vertex c
[i,j]
L for subpath P [vi, vj ]. We

work on P [vl(u), vr(u)] ∈ P[vi, vj ] for each node u ∈ N [vi, vj ]. Each such subpath
provides a candidate for c

[i,j]
L . Clearly, among those candidates, the one that has

the largest L-time is c
[i,j]
L .

Let us first compute c = c(vr(u)+1, vj+1). For this purpose, we trace the path
π(vr(u)+1, vj+1) in T and, at each node u′ ∈ N [vr(u)+1, vj+1] \ {vj+1}, retrieve
c(vl(u′), vr(u′)) and cr(u′)+1. Taking the minimum of the retrieved capacities, we
obtain c(vr(u)+1, vj+1), which costs O(log n) time.

Using binary search, we then find the largest index q (l(u) ≤ q ≤ r(u)), if
any, such that c(vq, vr(u)+1) < c = c(vr(u)+1, vj+1) holds. Note that c(vq, vr(u)+1)
is monotonically non-increasing as q decreases. To find q we trace the path
π(vr(u), u) in T as follows. Set cmin to cr(u)+1 and u′ to vr(u). If cmin < c, q is
determined as r(u). Otherwise update u′ to u′

p. While u′ 
= u and

min{cmin, c(vl(u′
l)
, vr(u′

l)
), cr(u′

l)+1} ≥ c, (10)

update cmin to the L.H.S. of (10), and u′ to u′
p. If u′ = u and (10) holds, such

q does not exist. If (10) stops holding at some node u′, then update u′ to u′
l.

While
min{cmin, c(vl(u′

r), vr(u′
r)), cr(u′

r)+1} ≥ c, (11)

update cmin to the L.H.S. of (11) and u′ to u′
r. If (11) stops holding at some node

u′, then update u′ to u′
r. This way we will eventually reach vq, if it exists, in

O(log n) time. If q exists, we partition P [vl(u), vr(u)] into two subpaths P [vl(u), vq]
and P [vq+1, vr(u)]. Letting V1 = V [vl(u), vq], V2 = V [vq+1, vr(u)], and W = W [vi,
vl(u)−1], we define

Θ̃u
L,1(W ) = max

vp∈V1

{
θ
[l(u),r(u)]
L (v+

r(u), vp) + W/c(vp, vr(u)+1)
}

, (12)

Θ̃u
L,2(c) = max

vp∈V2

{
d(vp, vr(u))τ + W [vl(u), vp]/c

}
. (13)

Note that the range of maximization vp ∈ V1 in (12) (resp. vp ∈ V2 in (13)) is
limited compared with (8) (resp. (9)). If q does not exist, we set Θ̃u

L,1(W ) = 0
and V2 = V [vl(u), vr(u)]. It is clear that

max
{

Θ̃u
L,1(W ), Θ̃u

L,2(c) + W/c
}

(14)
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is equal to (6), and its maximizing vertex corresponds to a candidate from
P [vl(u), vr(u)] for the L-critical vertex of P [vi, vj ].

Let v∗1 (resp. v∗2) be a vertex in V1 ∪V2 = V [vl(u), vr(u)] which maximizes the
bracketed term in (8) (resp. (9)). Once W = W [vi, vl(u)−1] and c = c(vr(u)+1, vj+1)
are given, we can obtain v∗1 and v∗2 by binary search on the bending points of
Θu

L,1(W ) and Θu
L,2(c), respectively, which can be done in O(log n) time. We can

now prove the following lemma.

Lemma 3.

(a) If v∗2 ∈ V1, we have

Θ̃u
L,1(W ) > Θ̃u

L,2(c) + W/c. (15)

(b) If v∗1 ∈ V2, we have

Θ̃u
L,1(W ) ≤ Θ̃u

L,2(c) + W/c. (16)

(c) v∗1 ∈ V2 and v∗2 ∈ V1 cannot happen at the same time.

If v∗1 ∈ V1 and v∗2 ∈ V2, clearly v∗1 and v∗2 also achieve the maxima in (12)
and (13), respectively. Therefore, if Θ̃u

L,1(W ) > Θ̃u
L,2(c)+W/c (resp. Θ̃u

L,1(W ) ≤
Θ̃u

L,2(c) + W/c), v∗1 (resp. v∗2) is a candidate critical vertex from P [vl(u), vr(u)].
Otherwise, by Lemma 3, v∗1 , v∗2 ∈ V1 or v∗1 , v∗2 ∈ V2 holds. Also by Lemma 3, if
v∗1 , v∗2 ∈ V1 (resp. v∗1 , v∗2 ∈ V2), v∗1 (resp. v∗2) is a candidate critical vertex. Based
on the above arguments, we can prove the following lemma.

Lemma 4. Suppose that CUE tree T is available. Consider subpath P [vi, vj ]
with 1 ≤ i < j ≤ n.

(a) For each node u ∈ N [vi, vj ], candidates from P [vl(u), vr(u)] for L-critical and
R-critical vertices of P [vi, vj ] can be computed in O(log n) time.

(b) The L-critical and R-critical vertices for P [vi, vj ] can be computed in O(log2 n)
time.

4 Building blocks

There are two useful tasks that we can call upon repeatedly. Given the starting
vertex va, the first task is to find the rightmost vertex vd such that all the
evacuees on V [va, vd] can evacuate to a sink within time t. The second task is to
find the cost of the 1-sink on a given subpath P [vi, vj ]. To perform these tasks,
we start with more basic procedures.

4.1 Basic algorithms

To implement the first task, note that for a given index h > a, there are O(log n)
nodes in N [va, vh]. For each such node u, we want to test where a sink s should
be placed: to the left of vl(u), to the right of vr(u), or between vl(u) and vr(u).

Here is an algorithm for the first task.
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Algorithm 1 1-Sink(t, va)

1. Compute an integer b by binary search over h with a ≤ h ≤ n such that
the L-time of c

[a,b]
L to v+

b does not exceed t but the L-time of c
[a,b+1]
L to v+

b+1
exceeds t.

2. Solve θ
[a,b]
L (v+

b , c
[a,b]
L ) + xτ = t, and place a sink s ∈ (vb, vb+1] satisfying

d(vb, s) = x.
3. If s ∈ (vb, vb+1), set c to b+1. If s = vb+1, set c to b+2. Compute an integer

d by binary search over h with c ≤ h ≤ n such that the R-time of c
[c,d]
R to s

does not exceed t but the R-time of c
[c,d+1]
R to s exceeds t.

Lemma 5. If CUE tree T is available, 1-Sink(t, va) runs in O(log3 n) time.

Proof. In Step 1, for a fixed h, finding c
[a,h]
L and computing the L-time of c

[a,h]
L

to v+
h take O(log2 n) time by Lemma 4. Clearly, we repeat this computation

O(log n) times, thus Step 1 takes O(log3 n) time. Step 2 takes O(1) time and
Step 3 takes O(log3 n) time similarly to Step 1. Summarizing these, we complete
the proof. 
�

Here is an algorithm for the second task.

Algorithm 2 Local-Cost(vi, vj)

1. Let u be the node where the two paths π(vi, ρ) and π(vj , ρ) meet.
2. If the L-time of c

[i,r(ul)]
L and the R-time of c

[l(ur),j]
R have the same value at

some point x on the edge (vr(ul), vl(ur)), then output x as the 1-sink.
3. If the L-time of c

[i,r(ul)]
L is higher (resp. lower) than the R-time of c

[l(ur),j]
R at

every point on edge (vr(ul), vl(ur)), then let u = ul (resp. u = ur) and repeat
Step 2, using the new ul and ur.

We have the following lemma.

Lemma 6. If CUE tree T is available, Local-Cost(v , vi j) finds a 1-sink on
subpath P [vi, vj ] in O(log3 n) time.

4.2 t-feasibility test

We carry out 1-Sink(t, v) repeatedly, starting from the left end of P , i.e., v1.
Clearly, the problem instance is t-feasible if and only if the rightmost vertex vn

belongs to the l-th isolated subpath, where l ≤ k.

Lemma 7. Given a dynamic flow path network, if CUE tree T is available, we
can test its t-feasibility in O(min{n log2 n, k log3 n}) time.

Proof. Starting at the leftmost vertex v1 of P , invoke 1-Sink(t, v1), which iso-
lates the first subpath in O(log3 n) time by Lemma 5, and remove it from P .
We repeat this at most k − 1 more times on the remaining subpath, spending
O(k log3 n) time.

On the other hand, when each 1-Sink(t, va) is executed, suppose we compute
the L-time of c

[a,h]
L to v+

h for h = a, a + 1, . . . one by one at Step 1, and similarly
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the R-time of c
[c,h]
R to s for h = c, c + 1, . . . one by one, instead of binary search.

Then, the computations of L-time and R-time are invoked at most n times during
a t-feasibility test. Since each computation of L-time or R-time takes O(log2 n)
time by Lemma 4, the total time is O(n log2 n) in this way. 
�

4.3 Uniform edge capacity case

The problem is much simplified if the edges have the same capacity. In particular,
we can compute the critical vertex of a subpath resulting from concatenating
two subpaths in constant time. At each node u of T bottom up, we compute
and record the L- and R-critical vertices of P [vl(u), vr(u)] with respect to v+

r(u)

and their costs, based on the following lemma.

Lemma 8. [11] For a node u of CUE tree T , let vl(ul) = vh, vr(ul) = vi, vl(ur) =
vi+1, and vr(ur) = vj, and assume that the critical vertices, c

[h,j]
L , c

[h,j]
R , c

[i+1,j]
L ,

and c
[i+1,j]
R have already been computed.

(a) The L-critical vertex c
[h,j]
L is either c

[h,i]
L or c

[i+1,j]
L .

(b) The R-critical vertex c
[h,j]
R is either c

[h,i]
R or c

[i+1,j]
R .

The following two lemmas provide counterparts to Lemmas 2 and 4, respec-
tively.

Lemma 9. Given a dynamic flow path network with n vertices and uniform
edge capacities, CUE tree T with associated data can be constructed in O(n)
time and O(n) space.

Lemma 10. Suppose that CUE tree T is available. For any i and j (1 ≤ i < j ≤
n), we can comput the L-critical and R-critical vertices for P [vi, vj ] in O(log n)
time.

Similarly to Lemma 7, we can prove the following lemma.

Lemma 11. Given a dynamic flow path network with uniform edge capacities,
if CUE tree T is available, we can test its t-feasibility in O(min{n, k log n}) time.

5 Optimization

5.1 Parametric search approach

Lemma 12. [1] If t-feasibility test can be tested in α(t) time, then the k-sink
can be found in O(kα(t) log n) time, excluding the preprocessing time.

By Lemma 2 it takes O(n log n) time to construct T with weight and capacity
data, and α(t) = O(k log3 n) by Lemma 7. Lemma 12 thus implies

Theorem 1. Given a dynamic flow path network with n vertices, we can find
an optimal k-sink in O(n log n + k2 log4 n) time.

Applying Megiddo’s main theorem in [16] to Lemma 11, we obtain

Theorem 2. Given a dynamic flow path network with n vertices and uniform
edge capacities, we can find an optimal k-sink in O(n + k2 log2 n) time.
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5.2 Sorted matrix approach

Let OPT (l, r) denote the evacuation time for the optimal 1-sink on subpath
P [vl, vr]. Define an n × n matrix A whose entry (i, j) entry is given by

A[i, j] =
{

OPT (n − i + 1, j) if n − i + 1 ≤ j
0 otherwise. (17)

It is clear that matrix A includes OPT (l, r) for every pair of integers (l, r)
such that 1 ≤ l ≤ r ≤ n. There exists a pair (l, r) such that OPT (l, r) is
the evacuation time for the optimal k-sink on the whole path. Then the k-sink
location problem can be formulated as: “Find the smallest A[i, j] such that the
given problem instance is A[i, j]-feasible.” Note that we do not actually compute
all the elements of A[ ], but element A[i, j] is computed on demand as needed.

A matrix is called a sorted matrix if each row and column of it is sorted in the
nondecreasing order. In [6, 7], Frederickson and Johnson show how to search for
an element in a sorted matrix. The following lemma is implicit in their papers.

Lemma 13. Suppose that A[i, j] can be computed in g(n) time, and feasibility
can be tested in f(n) time with h(n) preprocessing time. Then we can solve the
k-sink problem in O(h(n) + ng(n) + f(n) log n) time.

We have h(n) = O(n log n) by Lemma 2, g(n) = O(log3 n) by Lemma 6, and
f(n) = O(n log2 n) by Lemma 7. Lemma 13 thus implies

Theorem 3. Given a dynamic path network with n vertices and general edge
capacities, we can find an optimal k-sink in O(n log3 n) time.

In the uniform edge capacity case, we have h(n) = O(n) by Lemma 9, g(n) =
O(log n) by Lemma 10, and f(n) = O(n) by Lemma 11. Lemma 13 thus implies

Theorem 4. Given a dynamic path network with n vertices and uniform edge
capacities, we can find the k-sink in O(n log n) time.

6 Conclusion and discussion

We have presented more efficient algorithms than the existing ones to solve the
k-sink problem on dynamic flow path networks. Due to lack of space, we could
not present all the proofs. All our results are valid if the model is changed slightly,
so that the weights and edge capacities are not restricted to be integers. Then
it becomes confluent transshipment problem.

For dynamic flow tree networks with uniform edge capacities, it is known
that computing evacuation time to a vertex can be transformed to that on a
path network [13]. We believe that our method is applicable to each “spine,”
which is a path in the spine decomposition of a tree [2], and we think we may be
able to solve the k-sink problem on dynamic flow tree networks more efficiently.
This is work in progress.
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