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Abstract. Side-channel attacks put the security of the implementations
of cryptographic algorithms under threat. Secret information can be
recovered by analyzing the physical measurements acquired during the
computations and using key recovery distinguishing functions to guess
the best candidate. Several generic and model based distinguishers have
been proposed in the literature. In this work we describe two contribu-
tions that lead to better performance of side-channel attacks in challeng-
ing scenarios. First, we describe how to transform the physical leakage
traces into a new space where the noise reduction is near-optimal. Sec-
ond, we propose a new generic distinguisher that is based upon minimal
assumptions. It approaches a key distinguishing task as a problem of
classification and ranks the key candidates according to the separation
among the leakage traces. We also provide experiments and compare
their results to those of the Correlation Power Analysis (CPA). Our
results show that the proposed method can indeed reach better success
rates even in the presence of significant amount of noise.

1 Introduction

Side-Channel Analysis (SCA) attacks have become a powerful tool for extracting
secret information from cryptographic devices since the introduction of Differen-
tial Power Analysis (DPA) by Kocher et al. [18]. These attacks exploit the rela-
tionship between the side-channel measurements and the data-dependent leakage
models to reveal some part of the key. The Correlation Power Analysis (CPA)
method [6] is among the most efficient distinguishers when the relationship of
the leakage and data can be approximated with a linear model. However, due to
process variation in nano-scale devices and consequently the increase in the con-
tribution of the leakage component of the power consumption, different leakage
models become necessary. Since the performance of the CPA method strongly
depends on the assumed (linear) leakage model, imprecise predictions can lead
to complete failure of the method. Another major cause of the suboptimal per-
formance of key recovery attacks is the presence of noise in leakage traces. While
the performance of all SCA distinguishers are similar for a large Signal-to-Noise
Ratio (SNR) [20], in real world scenarios it is common that the physical leakage
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measurements contain a significant amount of noise originating from multiple
sources such as the power supply, the specifics of the measurement set-up, the
clock generator, parallel computations etc. As discussed by Mangard et al. [19],
the success of SCA attacks is heavily dependent on the SNR, and thus multiple
noise reduction methods such as filtering, Principal Component Analysis (PCA)
[17], Linear Discriminant Analysis (LDA) [15], singular spectrum analysis [16]
etc. have been studied in the domain of SCA attacks.

Summarizing, we note that there are two main directions for improving key
recovery methods: finding optimal distinguishers, and reducing the noise level in
measurements. In this work we shall address and combine both aspects.

1.1 Related Work

With respect to data (pre-)processing and transformation methods, various ideas
ranging from machine learning, pattern recognition and other localization tech-
niques have been suggested. As an example, some of the techniques have been
utilized for conducting template attacks as first introduced by Chari et al. [8].
Template attacks are the strongest form of side-channel attacks from the infor-
mation theoretic point of view, and can successfully extract secret information
from a limited number of traces. These attacks are typically carried out in two
main steps: a profiling step during which templates corresponding to each sub-
key candidate are derived, and a template matching step during which a new
trace is matched to the templates.

LDA and PCA are among the data transformation methods that have been
used [1,9,22] for feature extraction and dimensionality reduction in template
attacks. While the performance of PCA-based attacks is close to that of LDA-
based attacks when the measurements feature a high SNR, it deteriorates sub-
stantially when the SNR gets lower. LDA-based template attacks have been
shown to lead to better templates especially in the presence of higher noise lev-
els, because of the better separation of the classes in the transformed subspace
and the near-optimal noise reduction [7]. PCA has also been studied for both
data preprocessing and as a method for key recovery. Batina et al. [4] propose
to utilize it as a preprocessing technique before conducting the DPA attack.
The observed benefits of PCA in such scenarios are the noise reduction in the
traces and the better performance of the DPA after the transformation of the
traces into a lower dimension subspace spanned by eigenvectors. In contrast to
this, Souissi et al. [21] have investigated the applicability of the PCA as another
distinguisher by merely using the first principal component.

The Differential Cluster Analysis (DCA) technique introduced by Batina
et al. [2] is also framing key recovery as a classification problem. The authors
use metrics such as sum-of-squared-error and sum-of-squares to derive statistics
about clusters. This method does not require an accurate leakage model, however
including it would enhance the performance. The ANOVA (ANalysis Of VAri-
ance) F -test is using a distance measure between the classes, which is similar to
what we propose in this work [5]. The metric called Normalized Inter-Class Vari-
ance (NICV) is used for leakage detection in SCA. While efficient in determining
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the time where the sensitive information is computed, comparing different leak-
age models or speeding up attacks on asymmetric cryptography, this method
cannot be used as a distinguisher for recovering the secret information.

1.2 Contribution

Our main contribution is a new distinguisher which exploits the near-optimal
noise reduction offered by the LDA transformation. The new distinguisher is
versatile and can be adapted to any leakage model. We test the performance of
our distinguisher using two different low SNR trace sets and show that it has
superior performance compared to CPA.

This paper is organized as follows. In Sect. 2 we discuss background informa-
tion relevant to this work. In Sect. 3 we introduce our attack method. In Sect. 4
we address the caveats. In Sect. 5 we discuss the results of our experiments and
compare the Global Success Rates (GSR) of our attack to that of standard CPA.
We conclude in Sect. 6.

2 Background

Let X denote a random variable over a space X with realization x. X is a
d-dimensional (X1,X2, . . . , Xd) ∈ X d row vector with realization x.

2.1 Side-Channel Analysis

We adopt the terminology and notations of [3], and consider the schematic rep-
resentation of a classic SCA represented in Fig. 1. In this scenario, a targeted
cryptographic implementation is performing an encryption Ek(p) of the plaintext
p using a constant key k. During computation, the sensitive intermediate value
Vs,p that depends on a part s of the key k, and the plaintext p are handled. The
physical leakage generated during the computation of Vs,p is denoted as Yk,p

since the leakage may potentially depend on the whole key k. The adversary
acquires leakage traces by sampling or measuring the side-channel observables
(power, electromagnetic emanation) at successive time instances. The value Yk,p

can be captured in one sample or spread over multiple samples depending on
the implementation details and the parameters of the acquisition. To recover the
key, the adversary predicts the intermediate values handled during the computa-
tion of Ek(p) and calculates the values Vj,p for every possible subkey candidate
j ∈ S. The adversary maps the intermediate values Vj,p to the hypothetical leak-
age value Xj,p by applying an estimated leakage model. To recover k the same
steps are repeated for all the subkeys s.

2.2 Linear Discriminant Analysis (LDA)

LDA is a dimensionality reduction technique used for classification purposes in
machine learning, pattern recognition, etc. For a given data set, LDA seeks the
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Fig. 1. Schematic illustration of a side-channel key recovery

linear combination of features which preserves the class-discriminant informa-
tion. Then, the between-class (SB) and within-class (SW ) scatter matrices are
calculated according to Eqs. (1) and (2) respectively, where μ is the mean of all
the observations.

SB =
|C|∑

j=1

Nj(μj − μ)(μj − μ)T (1)

SW =
|C|∑

j=1

Nj∑

i=1

(xi,j − μj)(xi,j − μj)T (2)

The two matrix values are used to find the projection directions W which
maximize the separation between classes. The separation - J between the classes
is calculated according to Eq. (3). After determining the projection directions,
the observations are transformed to the new space as x̂ = xW .

J(W ) =
WTSBW

WTSWW
(3)

2.3 Information Theoretic Definitions

The entropy of a random variable X [10] represents the uncertainty or the
amount of information content and is defined as:

H[X] =
∑

x∈X
Pr[X = x] · log

(
1

Pr[X = x]

)
. (4)

The conditional entropy, H[X|Y ] of a random variable X given variable Y is the
measure of the uncertainty left about X when Y is known. Finally, mutual infor-
mation I(X;Y ) is a measure of the dependence between the random variables
X and Y and the amount of information they have in common.

2.4 Experimental Setup

For this research, we consider software implementations of AES128 [14] and DES
[13] running on an ARM Cortex-M4F core based board operating at a 168 MHz
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clock frequency. The board has been physically modified and programmed in
order to be a target for SCA and it accurately models current 32-bit embedded
devices. As discussed in Sect. 1, the SNR of side-channel traces is an indication
of their quality. Since we are interested in noisy side-channel traces, we acquire
electro-magnetic (EM) measurements which have lower SNR than the power
measurements (i.e., a more challenging scenario). To do so, we build a standard
setup (as described e.g. in [19]). We utilize a PicoScope 3207B [23] digital oscillo-
scope with a 500 MHz sampling rate. We carry out two measurement campaigns
(one for each cryptographic algorithm implementation), as follows:

TraceSet1: 50 000 traces were obtained for the implementation of the AES128
algorithm. The key was fixed and the traces were obtained for random plain-
text inputs. The SNR value is 1.01 dB.

TraceSet2: 50 000 traces were obtained for the implementation of the DES algo-
rithm. The key was fixed and the traces were obtained for random plaintext
inputs. The SNR value is 2.78 dB.

3 Attack Description

The key recovery attack proposed in this paper relies on the central assumption
that all leakages corresponding to the processing of some fixed key dependent
intermediate value are similar. In other words, when a set of physical leak-
ages Yk,p is classified according to the values of Xs,p as defined in Sect. 2.1,
the between-class to within-class scatter matrices ratio is large. Note that the
above requirement is indeed met in the context of side-channel attacks, as the
instantaneous power consumption of a cryptographic implementation is generally
expected to be data dependent. However, in practice side-channel measurements
often include noise, which leads to a weaker separation amongst classes and in
consequence decreases the success rate of key recovery attacks.

The approach proposed in this work targets such challenging scenarios where
the SNR is low, and achieves key extraction with fewer traces. It consists of two
steps: (i) the leakage transformation step; and (ii) the distinguishing step.

In the following we describe in more detail the working principles of our
attack. In Sect. 3.1 we describe how parts of the plaintext can be used for clas-
sification purposes and how measured leakages can be projected into a sub-
space where they are maximally separated and the SNR level is higher. Then in
Sect. 3.2 we propose a function that enumerates subkeys based on the separation
of the model based classes.

3.1 The Leakage Transformation Step

The objective of the leakage transformation step is to identify and select time
samples where the difference between mean traces corresponding to distinct
classes of intermediates is maximized. In order to apply a LDA transformation
in this step, information that allows for the separation of traces into classes must
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Ŷk,p

j = s?

Fig. 2. Schematic illustration of the proposed attack

be available, e.g. one must know the plaintexts or ciphertexts. The sensitive key
dependent intermediate variables are predicted as Vj,p, as represented in Fig. 2.
Although the correct intermediate values Vs,p depend on the unknown subkey
s ∈ S, they may still be classified based only on the value of the plaintext due to
the fact that for any j ∈ S and (p1, p2) ∈ P, if p1 = p2 then Vj,p1 = Vj,p2 . After
separating the physical leakages into groups based on the plaintext or ciphertext
values, the projection directions are calculated and the leakages are projected
onto the new subspace. The transformed leakages are subsequently used for key
recovery, as represented in Fig. 2.

3.2 The Distinguishing Step

The objective of this step is to distinguish between the key candidates. Note
that because the traces have previously been linearly transformed to maximize
the separation between classes, the correlation between the traces and the hypo-
thetical power consumption may be lost. By definition, the transformation is
the sum of the inner product between the leakage with the projection directions
where each direction is a column of the transformation matrix W̃ . It follows that
the magnitudes of the coefficients of each direction are proportional to the con-
tribution of the corresponding samples to the transformation. Figure 3 shows the
Pearson correlation coefficients and the first projection direction for TraceSet1.
While there are clear peaks in the 159µs to 164µs time interval, the domi-
nating samples in the first projection direction are situated in different regions.
Therefore, the need for a new distinguisher that better matches the properties
of the transformed traces arises. To this end, we propose to use the ratio of the
between- and the within-class scatter. The features extracted through the LDA
transformation correspond to the linear combination of the leakage samples that
maximally separate classes. At the same time, for a given leakage model, traces
corresponding to the same values of Xs,p are expected to have similar features.
Since for each projection direction the contribution of each sample of the side-
channel leakages towards this direction is the same, when the projected leakages
are labelled according to the model obtained from the correct key, the separa-
tion of the clusters should be maximum. Whereas, if the model obtained from
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Fig. 3. Known key correlation (left) vs. the first projection eigenvector (right)
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Fig. 4. Visualization of the class separation under different key candidates

the wrong key is used for labelling, the lack of similar features within classes
should lead to a weaker separation as shown in Fig. 4. Since the objective of the
distinguisher is to retrieve ordinal information about the variance of the ratio
matrix, its largest eigenvalue can be a numerical measure for separation [24].

Summarizing, in the second stage |S| models (each corresponding to a dif-
ferent j ∈ S) are computed and the transformed physical leakages are classified
accordingly. After calculating between-class (ŜB) and within-class (ŜW ) scatter
of Ŷk,p, the diagonal matrix of eigenvalues Δ̂ is calculated by eigendecomposing

Ŝ
− 1

2
W ŜBŜ

− 1
2

W = ÛΔ̂ÛT . The eigenvalue is assigned as the candidate score. Finally,
the candidate leading to the largest score is selected as the correct key.

4 Caveats

In this section we explore the two caveats of our method, which are due to
intrinsic characteristics of the LDA transformation.

First, the number of side-channel traces must be larger than the number of
analysed samples. To overcome the need for a very large trace set, it is possible
to analyse only a selected block of samples at a time. In this case for each key



LDA-Based Clustering as a Side-Channel Distinguisher 69

candidate the number of discriminant scores will be the same as the number of
blocks. If a selected block does not include samples related to the calculation
of the predicted intermediate values, classification of the leakages according to
possible values of the subkey candidate will not be significantly different from
each other. Whereas, in the block where leakage occurs, the correct key candidate
should lead to significantly better separation among the classes. In order to
find the block where the leakage occurs, the scores for each block have to be
normalised and the one with the highest ratio of the scores for the first and
second candidates is chosen as the leaking block. The first candidate of the
leaking block is subsequently chosen as the correct key.

Second, the size of the plaintext space P must be reasonably small. To esti-
mate the between-class scatter, more than one trace should belong to each class.
Since in the classification and transformation stage the number of classes is equal
to |P|, the number of leakage traces needed for finding the projection directions
would be significantly high. This restriction can be avoided by obtaining the
measurements for chosen plaintexts such that text space size is small.

5 Experimental Validation

We now validate our attack methodology using the trace sets described in
Sect. 2.4 under different leakage assumptions. Section 5.1 describes the calcu-
lation of the projection directions and transformation of the traces. In Sect. 5.2
we describe the attacks where the hypothetical power consumption is linked to
the Hamming weight (HW) of intermediate values, and in Sect. 5.3 we describe
how the (partial) identity leakage model can be exploited. We report the per-
formance of the attacks by looking at the GSR, i.e. the ratio of the correctly
guessed subkeys to the total number of subkeys.

5.1 Leakage Transformation

As described in Sect. 2.2, the projection directions that will map the traces into
a new subspace where the ratio of the between-class (SB) and within-class(SW )
scatter matrices are maximised have to be calculated. During the calculation
of these matrices the traces are classified as described in Sect. 3.1. The matrix
of projection directions is built as W = S

− 1
2

W U [9], where U is the matrix of

eigenvectors obtained by eigendecomposing S
− 1

2
W SBS

− 1
2

W = UΔUT . Δ denotes
diagonal matrix of eigenvalues. The projection matrix can be truncated accord-
ing to the Eckart-Young theorem [12] as W̃ = S

− 1
2

W Ũ , where Ũ is the matrix of
eigenvectors corresponding to the m largest eigenvalues.

5.2 HW Leakage Model

As shown in Fig. 1, the intermediate values for both of the implementations are
predicted as Vj,p = Sbox(j ⊕ p) and the leakages are modelled as the HW of
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the intermediate values. The subkeys of the first round key were targeted at
every implementation with the goal of recovering the full round key. As studied
by Doget et al. [11], when the chosen leakage model exactly corresponds to the
actual leakage function of the implementation, CPA has one of the best perfor-
mances for key extraction. Therefore, we have used this method as a reference for
comparing the performance of the proposed attack. It should be noted that while
the CPA attack is based upon an assumption of linear dependence between the
HW of the intermediate values and the actual power consumption, our attack
does not require such a strict relation. We only assume that the power consump-
tion corresponding to the processing of intermediate values that have the same
HW is consistent and it differs from that corresponding to other HW values.
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Fig. 5. Global Success Rate (GSR)

For CPA attacks, the hypothetical power consumption models for each pos-
sible value of the subkey were built and the Pearson correlation coefficients were
calculated for each sample of the trace sets. The key candidate which maximizes
the absolute value of the correlation coefficient was chosen as the correct key.
Both the proposed attack and CPA were run on randomly selected subsets of
the trace sets multiple times and the average results were compared. Figure 5
reports the GSR for both implementations. This figure clearly shows that the
proposed attack is outperforming CPA for both implementations.

The analysis of the leakage traces after the LDA transformation shows that
depending on the number of retained components, the SNR level can be signif-
icantly higher compared to the original traces. The graph in Fig. 6 shows the
SNR levels as the function of the projection directions retained after the trans-
formation. Since the increase in SNR together with the supervised classification
are the reasons for the better performance of the proposed attack method, it is
important to select a significantly large number of components. We have adapted
the heuristics of keeping the directions corresponding to the 95th percentile of
the eigenvalues after the eigendecomposition of S

− 1
2

W SBS
− 1

2
W [25].
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Fig. 6. The SNR before and after the LDA transformation

5.3 Identity Leakage Model

To further extend our experiments, we have also investigated key extraction
when no assumptions about the leakage model are made. To this end, instead
of classifying leakage traces according to the HW of intermediate values, we
separate them according to some selected bits of the intermediate values. Due
to intrinsic properties of the AES ans DES encryption algorithms (in particular:
the bijectivity of the S-box), we will analyse them separately.
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Fig. 7. GSR for the target implementations

AES Encryption. The intermediate values in this case were also predicted as
Vj,p = Sbox(j ⊕ p). The classification of the leakage traces does not depend on
the value of key candidate j due to the bijectivity of the S-box function. The
absence of mutual information leads to the conclusion that the classification
based on the hypothetical intermediate values will be the same for each key
candidate. Therefore, instead of assigning identical intermediate values, we assign
similar intermediate values to the same class. In this context, we define similar
intermediate values as those whose preselected l ∈ {1 . . . 7} bits are equal.
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DES Encryption. The intermediate values were again chosen as Vj,p =
Sbox(j ⊕ p). The mutual information between the classification based on the
intermediate values and the key candidate is larger than 0 due to the non-
bijectivity of the S-boxes. Therefore, it is possible to select l in the interval of
{1 . . . 4}.

As can be seen from the results plotted in Fig. 7, the GSR for the Iden-
tity Model is lower than that of the HW model when the implementations are
attacked with the proposed method. When compared to the results of CPA,
it can be observed that depending on the number of selected bits and traces
the new attack can be more successful in extracting the subkeys. The empiri-
cal study of the S-box functions of the encryption algorithms reveals that the
mutual information between the key candidate and the classification increases
with decreasing l (see Table 1), while the GSR does not follow the same pattern.
When l gets smaller, the number of distinct intermediate values that are assigned
to the same class increases, which leads to weaker separation among classes.
Therefore, a compromise between getting maximum possible mutual informa-
tion and keeping the classes well separable has to be made. Given that for fairly
large amount of traces the performance of the attack is better than CPA even
without making any assumptions about the leakage model, we can argue that
the proposed attack is preferable.

Table 1. The analysis of the mutual information between the key and the classification
for AES and DES S-box outputs

Mutual information

AES DES

l S S1 S2 S3 S4 S5 S6 S7 S8

8 0 – – – – – – – –

7 0.060 – – – – – – – –

6 0.116 – – – – – – – –

5 0.204 – – – – – – – –

4 0.340 0.306 0.294 0.302 0.263 0.285 0.297 0.306 0.296

3 0.545 0.538 0.541 0.541 0.543 0.537 0.544 0.544 0.537

2 0.812 0.859 0.832 0.858 0.827 0.831 0.861 0.867 0.856

1 1.001 1.037 1.023 1.039 1.025 1.011 1.028 1.053 1.019

5.4 Computational Complexity

While the success rates of different key extraction attacks may be high, their
adaptation in real world scenarios is also bounded by the computational com-
plexity. Since the side-channel security evaluations of cryptographic devices can
involve millions of traces, it is desirable to be able to perform the analysis within
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Algorithm 1. Pseudo-code of the proposed attack
Input: Matrix of leakage traces: Y (m × d)
Input: Vector of plaintexts: P (m × 1)
Output: Vector of key candidate scores: k (|S| × 1)

1 [SW , SB ] = scatter(Y, P );

2 T = S
− 1

2
W ;

3 M = TSBT ;
4 [U, Δ] = eig(M);
5 I = sort(Δ);

6 ˜U = U(I);

7 ˜W = T ˜U ;

8 ̂Y = Y˜W ;
9 for j ∈ S do

10 XP = model(P, j);

11 [̂SW , ̂SB ] = scatter(̂Y , XP );

12 ̂T = ̂S
− 1

2
W ;

13 ̂M = ̂T ̂SW
̂T ;

14 [̂U, ̂Δ] = eig(̂M);

15 k(j) = max( ̂Δ);

16 end

the bounds of target time interval. We note that it is not feasible to run the
analysis using the proposed method on a large number of traces.

The analysis of the attack algorithm described in Algorithm 1 shows that
the costly part is the transformation of the original leakage traces to the new
subspace spanned by the eigenvectors of the ratio of scatter matrices. In par-
ticular, the calculation of the between-class and within-class scatter matrices
have the complexity of O(md2) where m is the number of leakage traces and d
is the number of samples. Similarly, the complexities of the operations in lines
2–4 are equal to O(d3). Since the number of traces is larger than the number
of samples as described in Sect. 4, the complexity of the attack is O(md2). The
linear relation between the computational complexity and the number of traces
implies that the attack can indeed be carried out using large number of leakage
traces if the number of samples per trace is kept small.

6 Conclusion

In this paper we have introduced a new method for conducting a key recov-
ery side-channel attack. We have described how the matrix that transforms the
side-channel leakage traces into a new subspace where the SNR is increased
can be constructed. Later, a distinguisher which compares the classifications of
the traces based on different values of the key candidates has been introduced.
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The method has been tested against noisy trace sets with and without mak-
ing assumptions about the leakage model of the implementations. We have also
discussed the theoretical restrictions arising from the application of the LDA
transformation and proposed a method for achieving a higher GSR with lower
number of traces. The experiments conducted on the software implementations
of the AES and DES encryption have confirmed the efficiency of the proposed
method. We have compared the new method to the CPA and have observed that
significantly less number of traces were needed to achieve the same GSR.
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