
Chapter 9
Differentially Private Social Network Data
Publishing

9.1 Introduction

With the significant growth of Online Social Networks (OSNs), the increasing
volumes of data collected in those OSNs have become a rich source of insight into
fundamental societal phenomena, such as epidemiology, information dissemination,
marketing, etc. Much of this OSN data is in the form of graphs, which represent
information such as the relationships between individuals. Releasing those graph
data has enormous potential social benefits. However, the graph data infer sensitive
information about a particular individual [13], which has raised concern among
social network participants.

If the differential privacy mechanism is adopted in graph data, the research
problem is then to design efficient algorithms to publish statistics about the graph
while satisfying the definition of either node differential privacy or edge differential
privacy. The former protects the node of the graph and the latter protects the edge in
the graph.

Previous works have successfully achieved either node differential privacy and
edge differential privacy when the number of queries is limited. For example, Hay
et al. [95] implemented node differential privacy, and pointed out the difficulties
to achieve the node differential privacy. Paper [229] proposed to publish graph
dataset using a dK-graph model. Chen et al. [41] considered the correlation between
nodes and proposed a correlated release method for sparse graphes. However, these
works suffer from a serious problem: when the number of queries is increasing, a
large volume of noise will be introduced. This problem can be tackled by iteration
mechanism, which will be presented in this chapter.

This chapter focuses on both node and edge differential privacy. First, the chapter
present several basic methods on node and edge differential privacy, then proposed
an iteration method to publish a synthetic graph. Specifically, given a set of queries,
an iteration method is used to generate a synthetic graph to answer these queries
accurately. The iteration process can be considered as a training procedure, in

© Springer International Publishing AG 2017
T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6_9

91

92 9 Differentially Private Social Network Data Publishing

Table 9.1 Application settings

Application Social network data publishing

Input data Graph

Output data Query answers and synthetic graph data

Publishing setting Non-interactive

Challenges Large query set

Solutions Iterative based method

Selected mechanism Iteration

Utility measurement Noise measurement

Utility analysis Laplace properties

Privacy analysis Sequential composition

Experimental evaluation Graph distance

Fig. 9.1 Graph

which queries are training samples and the synthetic graph is an output learning
model. A synthetic graph is finally generated by iterative update to answer the set of
queries. As the training process consumes less privacy budget than the state-of-the-
art methods, the total noise will be diminished. Table 9.1 shows the basic setting of
the application.

9.2 Preliminaries

We denote a simple undirected graph as GhV; Ei, where V D fv1; v2; : : : ; vng is a
set of vertices (or nodes) representing individuals in the social network and E �
f.u; v/ju; v 2 Vg is a set of edges representing relationships between individuals.
Figure 9.1 shows an example of a graph, in which the nodes are represented by
circles and edges are represented by lines. The degree of a node refers to the number
of its neighbourhoods. Formally, we define degree as follows:

Neighbourhood:

N.v/ D fuj.u; v/ 2 E; u ¤ vgI (9.1)

9.3 Basic Differentially Private Social Network Data Publishing Methods 93

Fig. 9.2 Queries on graphs

Degree:

D.v/ D jN.v/j: (9.2)

Besides the count of nodes and edges in a graph, Fig. 9.2 shows several popular
subgraph queries, including triangle counting, k-triangle counting, k-stars counting,
and degree distribution.

9.3 Basic Differentially Private Social Network Data
Publishing Methods

9.3.1 Node Differential Privacy

Node differential privacy ensures the privacy of a query over two neighbouring
graphs where two neighbouring graphs differ one node and all edges connected
to the node. Figure 9.3 shows the neighboring graphes in node differential privacy.
Hay et al. [95] first proposed the notion of node differential privacy and pointed
out the difficulties to achieve it. They showed that the result of query was highly
inaccurate for analyzing graph due to the large noise.

Let us use Fig. 9.3 to illustrate the problem. When answering query f1: how many
nodes are there in the graph? the 4f1 equals to 1, and the noise adding to f1 is scaled
to Lap.1=�/, which is quite low. However, when answering query f2: how many
edges are there in the graph? the sensitivity of f2 equals to 5 as the maximum degree
of all nodes is 5. The noise adding to the f2 result is quite large comparing with
the f1.

The high sensitivity of node differential privacy derives from the degree of a
node. When deleting a node, the maximum changing is determined by the largest
degree of node in a graph. Theoretically, the sensitivity of a graph G will be

94 9 Differentially Private Social Network Data Publishing

Fig. 9.3 Neighboring graph in node differential privacy

maximum to n � 1. How to decrease the sensitivity of f2 is a challenge. One of
the key ideas to achieve a better utility of node differential privacy is to transform
the original graph to a new graph with lower sensitivity. Several methods have been
proposed to achieve the goal. These methods roughly can be grouped into three
categories: truncation, Lipschitz extension and iterative based mechanism.

9.3.1.1 Truncation and Smooth Sensitivity

Truncation method transforms the input graphes into graphes with maximum degree
below a certain threshold � [117]. The graph G is truncated to G� by discarding
nodes with degree > � . Figure 9.4 shows a truncated graph G3 for original graph
G, in which one node with degree 5 is discarded to make sure all nodes are equal or
below the degree of 3. By this way, the sensitivity of edge counting query will be
decreased from sensitivity 5 to sensitivity of 3.

Algorithm 1 �-Node-Private Algorithm for Publishing Degree Distributions
Require: G, �, � , degree distributions query f
Ensure: bp.

1. determine the randomized truncated parameter: selectb� 2 fD C log n
ˇ

C 1; : : : ; 2D C log n
ˇ

g;
2. computer G

b�
and smooth bound S.G� / with ˇ D �

p
2.b�C1/

;

3. outputbf D f .G
b�

/ C Cauchy.
2
p

2

�
b�S.G� //b�C1.

Kasiviswanathan et al. [117] showed that given a query f defined on the trunked
graph G� , a smooth bound S is necessary for the number of nodes whose degrees
may change due to the truncation. They applied Nissim et al.’s [172] ˇ-smooth
bound S.G/ for local sensitivity, which has been discussion in Definition 2.4 in
Chap. 2. One can add noise proportional to smooth bounds on the local sensitivity
using a variety of distributions. Kasiviswanathan et al. used the Cauchy distribution
Cauchy.

p
2S.G/=�/. Algorithm 1 shows a typical algorithm to publish degree

distributions for a G.

9.3 Basic Differentially Private Social Network Data Publishing Methods 95

Fig. 9.4 Truncation method on graph

There are three major steps in the algorithm. The first step determines the
truncated parameter � . As we may not know the maximum degree in the graph,
or the maximum degree may be very large, � is normally approximated by b�

Therefore, the algorithm randomized the cutoff to obtain a better bound. Given a
target parameter � , the algorithm picks a random parameter in a range of bounded
constant multiple of � . The second step creates the truncated graph by discarding
the node with degree greater than � . The final step add Cauchy distributed noise to
each entry of the degree distribution.

Truncating G to G� is not easy, as deleting all nodes with degree greater than �

will ultimately delete more nodes and edges than we expected. Blocki et al. [27]
solved this problem by selecting an arbitrary order among the edges, traversing the
edges and removing each encountered edge that is connected to a node that has
degree is greater than � . Day [53] used an reverse way to create truncated graph.
They first deleted all edges and add edges in a pre-defined order to achieve G� .

9.3.1.2 Lipschitz Extension

A more efficient method to achieve node differential privacy is based on Lipschitz
extension. A function f 0 is a Lipschitz extension of f from G� to G if it satisfies with
(1) f 0 agrees with f on G� , and (2) the global sensitivity of f 0 on G is equal to the
local sensitivity of f on G� . As the sensitivity of f 0 is lower than that of f , Lipschitz
extension of f is considered as an efficient way to decrease the sensitivity.

Figure 9.5 shows two conditions of Lipschitz extension. The large square is
used to show all graphes with all possible degrees, and the eclipse inside the
square is applied to show G� . For a query f , the global sensitivity is denoted by
�f , which is larger than the local sensitivity �f� . If the algorithm can find an
efficiently computable Lipschitz extension f 0 that is defined on all of G, then we
can use the Laplace mechanism to releasebf .G/ with relatively small additive noise.
Consequently, the target of the algorithm is to find a f 0 for f .

Kasiviswanathan et al. [117] proposed a flow-based method to implement such
extensions for subgraph counts. Figure 9.6 shows the graph flow. Given a graph
G D .V; E/ and a degree bound � , the flow-based method first constructs a flow
graph by copy two versions of nodes set Vl D vljv 2 V and Vr D vrjv 2 V , which
are called left and right copies, respectively. The flow graph of G with a source s
and a sink t is a directed graph on nodes Vl

S

Vr
Sfs; tg. Edges .s; vl/ and .vr; t/

96 9 Differentially Private Social Network Data Publishing

Fig. 9.5 Lipschitz extension

Fig. 9.6 Flow based method
to obtain Lipschitz extension

are with capacity � , while each edge .u; v/ in E is added as .u; v0/ between vl

and vr with capacity 1. Let vfl.G/ denote the value of maximum flow from s to
t, vfl.G/=2 is a Lipschitz extension of an edge query f . The global node sensitivity
4vfl.G/ � 2� . Accordingly, Kasiviswanathan et al. [117] published the number of
edges by Algorithm 2.

Algorithm 2 �-Node-Private Algorithm for Publishing Edge Numbers
Require: G, �, � , number of edge query f
Ensure: bf .

1.bf D f .G/ C Lap.2n=�/ and threshold � D nlogn
�

;

ifbf � 3� then
2. outputbf .

else
3. compute vfl.G/ with � ;

end if
4.bf D vfl.G/=2 C Lap.2�=�/.

Blocki et al. [27] proceeded with a similar intuition. They showed that Lipschitz
extensions exist for all real-valued functions, and give a specific projection from any
graph to a particular degree-bounded graph, along with smooth upper bound on its
local sensitivity.

Above works can only efficiently compute Lipschitz extensions for one-
dimensional functions, in which the output is a single value. Raskhodnikova
et al. [189] developed Lipschitz extensions for degree distribution queries with
multidimensional vector outputs, via convex programming. Specifically, they

9.3 Basic Differentially Private Social Network Data Publishing Methods 97

designed Lipschitz extensions with small stretch for the sorted degree list and
for the degree distribution of a graph.

9.3.1.3 Iterative Based Mechanism

Chen et al. [45] proposed an iterative based method to achieve node differential
privacy. Given graph G and any real-valued function f , they defined a sequence of
real-valued functions 0 D f0.G/ � f1.G/ � � � � � fm.G/ D f .G/ with the recursive
monotonicity property that: fi.G0/ � fi.G/ � fiC1.G0/ for all neighbors G and G0 and
8i 2 f0; 1; � � � ; mg. They then defined quantity X to approximate the true answer
of f , and the global sensitivity of X is �. X�.G/ D mini2Œ0;1�.fi.G/ C .n � i/�/,
where Xı.G/ � f .G/ but close to f .G/ for larger �. For a carefully chosen �,
they output the X�.G/ via Laplace mechanism in the global sensitivity framework,
as an approximation of the real-valued function f .G/. This recursive approach can
potentially return more accurate subgraph counting for any kinds of subgraphs with
node differential privacy. However, constructing the sequence of functions fi.G/ is
usually NP-hard, and how to efficiently implement it remains an open problem.

9.3.2 Edge Differential Privacy

Edge differential privacy means adding or deleting a single edge between two nodes
in the graph makes negligible difference to the result of the query. The first research
over edge differential privacy was conducted by Nissim et al. [172], who showed
how to evaluate the number of triangles in a social network with edge differential
privacy. They showed how to efficiently calibrate noise for subgraph counts in terms
of the smooth sensitivity. The results of this technique are investigated by Karwa
et al. [113] to release counts on k-triangles and k-stars.

Rastogi et al. [190] studied the release of more general subgraph counts under
a much weaker version of differential privacy, edge adversarial privacy, which
considers a Bayesian adversary whose prior knowledge is drawn from a specified
family of distributions. By assuming that the presence of an edge does not make the
presence of other edges, they computed a high probability upper bound on the local
sensitivity, and then added noise proportional to that bound. Rastogi et al.’s method
can release more general graph statistics, but their privacy guarantee protects
only against a specific class of adversaries, and the magnitude of noise grows
exponentially with the number of edges in the subgraph.

Hay et al. [95] considered releasing a different statistics about graph, the degree
distributions. They showed that the global sensitivity approach can still be useful
when combined with post-processing of the released output to remove some added
noise, and constructed an algorithm for releasing the degree distribution of a graph,
with the edge differential privacy.

98 9 Differentially Private Social Network Data Publishing

Based on the local sensitivity, Zhang [249] adopted exponential mechanism to
sample the most suitable answer for subgraph query. The score function is designed
carefully to make sure it reflects the distribution of query outputs. A different
approach was proposed by Xiao [234], who inferred the networks structure via
connection probabilities. They encoded the structure information of the social
network by the connection probabilities between nodes instead of the presence or
absence of the edges, which reduced the impact of a single edge.

Zhu et al. [260] proposed an iterative graph published method to achieve edge
differential privacy. They proposed a graph update method that transfers the query
publishing problem to an iteration learning process. The details are presented in the
following section.

9.4 Graph Update Method

9.4.1 Overview of Graph Update

The proposed method is called Graph Update method as the key idea is to update
a synthetic graph until all queries have been answered [260]. For a social network
graph G and a set of queries F D ff1; : : : ; fmg, the publishing goal is to release a
set of query results bF and a synthetic graph bG to the public. The general idea is to
define an initial graph bG0 and update it to bGm�1 in m round according to m queries
in F. Release answersbF and the synthetic graph bG are generated during the iteration.
During the process, four different types of query answer involve in the iteration:

• True answer at: this is the real answer that a graph response to a query. True
answer can not be published directly as it will arise privacy concern. The true
answer is normally used as the baseline to measure the utility loss of a privacy-
preserving algorithm. The symbol at is used to represent the true answer for a
single query f , and At D F.G/ D fat1; : : : ; atmg is applied to represent an answer
set for a query set F.

• Noise answer an: when we add Laplace noise to a true answer, the result will
be the noise answer. Traditional Laplace method will release the noise answer
directly. However, as we mentioned in Sect. 9.1, it will introduce large amount
of noise to the release result. A single query answer is represented by an D
bf .G/ D f .G/ C Lap.s=�/ and an answer set is represented by An D bF.G/ D
fan1; : : : ; anmg.

• Synthetic answer as: this is the answer generated by a synthetic graph bG. A single
query is presented by as D f .bG/ and As D F.bG/ D fas1; : : : ; asmg is applied to
represent an answer set.

• Release answer ar: this is the answer finally released after the iteration. In Graph
Update method, the release answer set will consist of noise answers and synthetic
answers. The algorithm applied ar Dbf and Ar D bF D far1; : : : ; armg to represent
the single answer of a query and the answer set, respectively.

These four different query answers will control the graph update process. The
overview of the method is presented in Fig. 9.7. On the left side of the figure, the

9.4 Graph Update Method 99

Fig. 9.7 Overview of Graph Update method

query set F performs on the G to get true answer set At. Laplace noise is then added
to At to get a set of noise answer As D fas1; : : : asmg. Each noise answer asi helps
to update the initial bG0 and produce a release answer ari. The method eventually
outputs Ar D far1; : : : ; armg and the bGm as final results.

Comparing with the traditional Laplace method, the proposed Graph Update
method adds less noise. As some queries are answered by the synthetic graph, these
query answers will not consume any privacy budget. Moreover, the synthetic graph
can be applied to predict new queries without any privacy budget. Eventually, the
Graph Update method can outperform the tractional Laplace method.

Algorithm 3 Graph Update Method
Require: G, F D ff1; : : : ; fmg, �, �0

Ensure: Ar D far1; : : : ; armg.
1. �0 D �=m
2. initial graphbG0;
for each query fi 2 F do

3. Compute true answer ati;
4. Add Laplace Noise to true answer ani Dbf i D fi.G/ C Lap.S=�0/;
5. Compute synthetic answer asi D fi.bG/;
6. �i D ani � asi;
if jtaij > �0 then

7. ari D ani;
8. update thebGi�1 tobGi;

else
9. ari D asi;
10.bGm DbGm�1

end if
end for
11. Make all degrees in G round numbers.
12. Output Ar D far1; : : : ; armg, andbG;

100 9 Differentially Private Social Network Data Publishing

9.4.2 Graph Update Method

At a high level, the Graph Update method works in three steps:

• initial the synthetic graph: As the method only preserves the edge privacy, it
assumes that the number and the labels of nodes are fixed. The synthetic graph is
initialed as a fully connected graph with fixed nodes.

• update the synthetic graph: the initial graph will be updated according to result
of each query in F, until all queries in F have been used.

• release query answers and synthetic graph: Two types of answers, noise answers
and synthetic answers that have potential to be released. Synthetic graph is also
released to the public.

Algorithm 3 is a detailed description of the Graph Update method. In step 1,
the privacy budget � is divided by m and will be arranged to each query in the set.
Step 2 initializes the graph to bG0 as a full connected one. Then for each query fi
in the query set F, the algorithm computes the true answer fi.G/ at Step 3. After
that, the noise answer and the synthetic answer of fi are computed at Step 4 and 5,
respectively. Step 6 measures the distance between the true answer and the synthetic
answer. If the distance is larger than a threshold �0, the Step 7 will release the noisy
answer. Otherwise, the synthetic graph will be updated by an Updated Function in
Step 8 and Step 9 will release the synthetic answer. This means the synthetic graph
is applicable for answering question, so in Step 10, the algorithm puts the current
synthetic graph to the next round. This process is iterated until all queries in F are
preceded. Finally, As the number of edges should be a integer, the algorithm round
the number of degrees in Step 11. the algorithm generates Ar and bG as the output
in Step 12.

Algorithm 4 Update Function

Require: bG, f , �, �; .0 < � < 1/

Ensure: bG0.
1. Identify related nodes Vf that f involved;
if � > 0 then

2. D.Vf / D .1 C �/ � D.Vf /;
else

3. D.Vf / D � � D.Vf /;
end if
4.bG0 D G [D.Vf /.

5. OutputbG0.

The parameter �0 is a threshold controlling the distance between An and As.
A larger �0 means less update of the graph and most of the answer in Ar are
synthetic answers. It leads to less privacy budget consuming, however, when the
synthetic graph is far away from the original graph, the performance may not
optimal. A smaller �0 means the algorithm has more updates of the graph and

9.4 Graph Update Method 101

most of the answer in Ar are noise answers. More privacy budgets will be consumes
in this configuration. Consequently, the choice of �0 will have impact on different
scenarios.

9.4.3 Update Function

Step 8 in Algorithm 3 involves with an Update Function, which updates the
synthetic graph bG to graph bG0 according to query answers. Specifically, Update
Function is controlled by the distance � between the an and as of f . If an is smaller
than as, it means that the synthetic graph has more edges than the original graph in
the related nodes. Update Function has to delete some edges between the related
nodes. Otherwise, Update Function will add some edges in the synthetic graph.

These related nodes is defined in the follow Definition 9.1:

Definition 9.1 (Related Node) For a query f and a graph G, related nodes Vf are
all nodes that response to the query f , D.Vf / is used to denote degrees of those
nodes.
The number of edges for a node should be a integer. However, to adjust degree of
those related nodes, we arrange weight � .0 � � � 1/ for each edge. After the
updating, these weights will be rounded to represent node edges.

Algorithm 4 illustrates the detail of Update Function. In the first step, the
function identifies related nodes. If � > 0, which means the synthetic graph has
less edges than the original one, the function will enhance the � in Step 2. If � � 0,
which means the synthetic graph has too many edges, the function will diminish
those edges by � in Step 3. Step 4 merges the edges to the original graph. Step 5

outputs the bG0.

9.4.4 Privacy and Utility Analysis

9.4.4.1 Privacy Analysis

To analyze the privacy level of the proposed method, the sequential composition is
applied. For the traditional Laplace method, when answering F with m queries, �

will be divided into m pieces and arranged to each query fi 2 F. Specifically, we
have �0 D �=m and for each query, the noise answer will be ani D fi C Lap.s=�0/.
According to the sequential composition, the Laplace method preserve .�0 � m/-
differential privacy, which is equal to �-differential privacy.

In Graph Update method, the release answer set Ar are the combination of noise
answers An and synthetic answers As. Only An consume privacy budget, while As do
not. In Algorithm 4, even Step 4 adds Laplace noise to the true answer, the noise
result does not release directly. Only when the algorithm processed to Step 7, in

102 9 Differentially Private Social Network Data Publishing

which an is released, the algorithm consumes the privacy budget. Suppose there are
j.0 � j � m/ queries in F is released by synthetic answers, the algorithm preserves
..m� j/��0/-differential privacy. As .m� j/��0 � m��0, the Graph Update method
preserve more strict privacy than tractional Laplace method.

9.4.4.2 Utility Analysis

Error measurement is applied to evaluate the utility. The error is defined by Mean
Absolute Error (MAE). MAEr of release answer Ar is defined as Eq. (9.3)

MAEr D 1

m
jbFi.G/ � Fi.G/j

D 1

m

X

fi2F

jbf i.G/ � fi.G/j

D 1

m

X

ai2Ar

jari � atij

D 1

m
jAr � Atj: (9.3)

Similarly, MAEn of noise answers and MAEs of synthetic answers are defined as
Eqs. (9.4) and (9.5), respectively.

MAEn D 1

m
jAn � AtjI (9.4)

MAEs D 1

m
jAs � Atj: (9.5)

It is obvious that for true answers At, the MAE is zero. MAEn represents the perfor-
mance of traditional Laplace method. A lower MAE implies a better performance.

The target of Graph Update method is to achieve a lower MAEr in a fixed privacy
budget. A simulated figure, Fig. 9.8, is applied to illustrate the relationship between
MAE values and the size of the query set m.

In Fig. 9.8, x axis is the size of the query set and y axis is the value of MAE.
For noise answer An, MAEn is arising with the increasing of m. A smooth line
is applied to represent the MAEn in this simulated figure. In real case, the line is
fluctuated as the noise is derived from Laplace distribution. The MAEs is decreasing
at the beginning with the increasing of m. When it reaches to its lowest point, the
MAEs begins to rise with the enhance of m. This is because with the update of
the graph, the synthetic graph is getting more and more accurate, MAEs is keeping
decreasing. However, as the iteration procedure is controlled by the noise answer, it
is impossible for synthetic graph to equal to the original graph, no matter how large
m is. On the contrary, with the increasing of m, more noise will be introduced to
iteration and the synthetic graph will be far away from the original graph.

9.4 Graph Update Method 103

Fig. 9.8 Utility of the query
set on a graph

As Ar is the combination of An and As, MAEr of release answers can be reflected
by synthetic answer MAEs and noise answer MAEn. Figure 9.8 shows that MAEs

will below MAEn when the query size reaches to m1. After reaching to a lowest
point, it begins to increase. After reaching to m2, the MAEs is higher than MAEn.
Consequently, when m in the scale of Œ0; m1/ [.m2; m�, the MAEr is dominated by
noise answer MAEn. When m in the scale of Œm1; m2�, the MAEr is dominated by
synthetic answer MAEs. By this way, in the scale of Œ0; m�, the MAEr of release
answers is smaller than MAEn, which means that the performance of the proposed
Graph Update method is better than the traditional Laplace method.

9.4.5 Experimental Evaluation

This section evaluates the performance of the proposed Graph Update method
comparing with Laplace mechanism.

9.4.5.1 Datasets and Configuration

The experiment involve with four datasets listed in Table 9.2. These datasets are
collected from Stanford Network Analysis Platform (SNAP) [136].

The experiment considers the degree query on nodes, which is similar to the
count query on relation dataset. To preserve the edge privacy, the degree query has
the sensitivity of 1, which means deleting an edge will have maximum impact of 1

on the query result. The performance of results is measured by Mean Absolute Error
(MAE) (9.3).

104 9 Differentially Private Social Network Data Publishing

Table 9.2 Graph datasets

Type Name Nodes Edges

Social networks Ego-Facebook 4039 88,234

Social networks Wiki-Vote 7115 103,689

Internet peer-to-peer networks p2p-Gnutella08 6301 20,777

Collaboration networks ca-GrQc 5242 14,496

Fig. 9.9 Performance of different methods. (a) ego-Facebook. (b) Wiki-Vote.
(c) p2p-Gnutella08. (d) ca-GrQc

9.4.5.2 Performance Evaluation on Diverse Size of Query Sets

The performance of the Update Graph is examined through comparison with the
Laplace method [62] and Correlated method [41]. The size of query sets is from 1

to 200, in which each query is independent to each other. Parameters �0 and � as
optimal ones for each dataset and the � is fixed at 1 for all methods.

According to Fig. 9.9, It is observed that with the increasing of the size of the
query sets, MAEs of all methods are increasing approximately in linear. This is

9.5 Summary 105

because the queries are independent to each other and the privacy budget is arranged
equally to each query. With the linear increasing of the query number, the noise
added to each query answer is enhanced linearly.

Second, Fig. 9.9 shows that Update Graph has lower MAE comparing with other
two methods, especially when the size of the query set is large. As shown in
Fig. 9.9a, when the size of query set is 200, the MAE of Graph Update is 99:8500

while the Laplace method has MAE of 210:0020, and the Correlated method has
MAE of 135:2078 which is 52:45 and 26:15% higher than the proposed Update
Graph. This trend can be observed in Fig. 9.9b–d. The proposed Graph Update
mechanism has better performance because part of query answers does not consume
any privacy budget, while noise is only added in the updated procedure. Other
methods, including Laplace method consume the privacy budget when answering
every query. The experimental results show the effectiveness of Graph Update in
answering a large set of queries.

Third, it is worth to mention that when the size of the query set is limited,
the proposed Graph Update may not necessary outperform the Correlated method.
Figure 9.9a shows that when the size is less than 20, MAEs of Graph Update and the
Correlated method are mixed together. This is because when the query set is limited,
the synthetic graph can not be fully updated and may differ from the original graph
largely. Therefore, the performance may not necessary outperform other methods
significantly. This result shows that Graph Update is more suitable in scenarios that
need to answer a large amount of queries.

9.5 Summary

Nowadays, the privacy problem have aroused peoples attention. Especially the
online social network data, which contains a massive personal information. How
to release social network data is a hot topic that attracts lots of attention. This
chapter proposes several method to meet with the graph publishing problem. And
to overcome the problem of providing accurate results even when releasing large
numbers of queries, this chapter then presents an iterative method that transfers the
query release problem into an iteration based update process, so as to providing a
practical solution for publishing a sequence of queries with high accuracy. In the
future, much more complied queries should be investigated, such as cut queries and
triangle queries, which can allow researchers to get more information of the dataset
while still can guarantee users’ privacy.

	9 Differentially Private Social Network Data Publishing
	9.1 Introduction
	9.2 Preliminaries
	9.3 Basic Differentially Private Social Network Data Publishing Methods
	9.3.1 Node Differential Privacy
	9.3.1.1 Truncation and Smooth Sensitivity
	9.3.1.2 Lipschitz Extension
	9.3.1.3 Iterative Based Mechanism

	9.3.2 Edge Differential Privacy

	9.4 Graph Update Method
	9.4.1 Overview of Graph Update
	9.4.2 Graph Update Method
	9.4.3 Update Function
	9.4.4 Privacy and Utility Analysis
	9.4.4.1 Privacy Analysis
	9.4.4.2 Utility Analysis

	9.4.5 Experimental Evaluation
	9.4.5.1 Datasets and Configuration
	9.4.5.2 Performance Evaluation on Diverse Size of Query Sets

	9.5 Summary

