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Abstract. In this paper, the suitability of implementing parallel homo-
morphic word searching on Intel Xeon Phi coprocessors is evaluated for
the first time. Homomorphic encryption allows to produce a cryptogram
that encrypts the result of applying some values to any function, even
when the input values are encrypted and without access to the private-
key. For example, it is possible to search if any word of a set of encrypted
words matches a plaintext reference word and generate a new cryptogram
that encrypts the amount of matches. In this paper it is shown that this
operation is about 834 times faster by using a system with 4 Intel Xeon
Phi coprocessors 5110P attached to an Intel Xeon CPU E5-2630 v2, when
compared with an implementation on a single core of the Xeon CPU.

Keywords: Intel Xeon Phi · Homomorphic encryption · Homomorphic
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1 Introduction

The use of embedded systems is becoming ubiquitous, as more sensors and actu-
ators are incorporated into everyday electronics and on the general infrastruc-
ture. Since these devices often have limited computational resources, it would
be beneficial to offload parts of their computation to a third party. However,
the processed data may be private, which means that the third party should
not have access to it. Cryptography enables the encryption of data, such that
access to it is impossible without the usage of a specific key. In particular, with
public-key cryptography, every user produces a pair of keys: one is public, and
should be widely distributed, while the other is private. Someone with access to
the public-key may produce a cryptogram by applying the encryption algorithm
to a plaintext. This cryptogram cannot be decrypted by anyone but the owner of
the corresponding private-key. Homomorphic Encryption (HE), in turn, allows
one to operate on ciphered data [2]. With this approach, one can produce an
encryption of the output of an arbitrary function from the encrypted inputs, and
without access to the deciphering key.
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With homomorphic encryption, processors with limited resources may offload
the processing of sensitive data without compromising the privacy of that data.
This may be useful for instance, for advertising companies that wish to select
ads based on the browsing history or keywords in e-mails of potential customers;
or to analyze medical data of sensors connected to a patient without breaching
the patient’s privacy; or for companies wishing to offload the computation of
the purchasing patterns of its customers. It is therefore of interest to investigate
how current servers may execute these procedures in an efficient and scalable
way. Some platforms to provide High Performance Computing (HPC) in server
settings include various Field-Programmable Gate-Array (FPGA) solutions, the
use of Graphics Processing Units (GPUs) for general purpose processing, among
others. However, these solutions typically lead to high development and mainte-
nance costs.

As an alternative, Intel developed the Many Integrated Core (MIC) archi-
tecture [5]. Intel MIC is a many core coprocessor architecture supported on a
modified version of the P54C design, used on the original Pentium. These cores
can be very power efficient on current semiconductor process architectures due
to short pipelines and low frequency operations. Also, the modified cores enable
the use of many of the programming models that most developers are already
accustomed to, such as OpenMP, OpenCL, Message Parsing Interface (MPI),
Cilk/Cilk Plus, and specialized versions of Fortran, C++ and math libraries.
This is twofold important. First, there is a large amount of code already being
deployed with these tools, that can be readily executed on the Intel Xeon Phi.
Second, it eases the process of porting applications to the new architecture. We
consider, therefore, that this architecture is one of the most suitable for servers
with heterogeneous workloads, and investigate for the first time how well it is
adapted to homomorphic word searching.

The rest of the paper is organized as follows. In Sect. 2, we give an intro-
duction to HE, and describe how it can be applied to perform word searching.
Afterwards, in Sect. 3, procedures and algorithms are proposed for the Intel Xeon
Phi architecture. The performance of the proposed parallel algorithms is eval-
uated in Sect. 4, compared with related work in Sect. 5, and finally conclusions
are drawn in Sect. 6.

2 Homomorphic Encryption

HE can be metaphorically explained by the jewelry shop problem [3], whose
solution is represented in Fig. 1. Alice, a shop owner, wanted her workers to
assemble precious materials, such as gold and diamonds, into intricately designed
rings and necklaces. However, she distrusted her workers, and thus did not want
the workers to come in direct contact with the materials, since she was afraid
they might steal them. In order to solve this problem, Alice used a transparent
impenetrable glovebox. She would then open the box, and store the raw materials
inside. Afterwards, she would lock the box using a key to which only she had
access. This process embodies the encryption procedure. As shown in Fig. 1,
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Fig. 1. A piece of gold is locked inside a glovebox, so that a worker may transform it
into a ring. The ring is later removed when the glovebox is unlocked

the workers could use the gloves to assemble the rings and necklaces. In this
situation, the gloves represent the homomorphism of an HE scheme. Since the
box was impenetrable they could not have access to the precious materials; in a
similar manner to how a server is not be able to access the encrypted values it
processes homomorphically. When the piece was finished, Alice could open the
box, and retrieve the result, which is mirrored as the decryption operation in
the case of a cryptosystem.

Fully Homomorphic Encryption (FHE) was first uncovered in 2009 [2]. In
contrast to previous Somewhat Homomorphic Encryption (SHE) schemes that
only enabled a subset of all possible operations on cryptograms, with FHE it is
possible to arbitrarily process encrypted data. In this paper, the cryptosystem
described in [6] will be focused on. This cryptosystem is a leveled FHE scheme:
with it, it is possible to evaluate arbitrary functions of encrypted data; one
only needs to specify the maximum “size” of functions beforehand and the size
of the generated public-key depends on this value. Arithmetic is performed in
Rq = Z/(qZ)[x]

Φ(x) , with Φ(x) = xn + 1 and n a power of two. In this ring, two
elements are congruent (i.e. equivalent) if their difference is a multiple of Φ(x).
Similarly, two elements a(x) and b(x) are congruent if the difference between
all corresponding coefficients ai and bi is a multiple ki of q. An example of
operations in this ring for n = 2 and q = 2 is as follows:

(x + 1) + x = 2x + 1 ≡ 1
(x + 1) × x = x2 + x ≡ x + 1 (1)

where ≡ is used to denote congruency. In the first case, if we consider the coef-
ficients of x, one can see that 2 − 0 = 2 is a multiple of q = 2, and therefore
the congruency is valid. In the second equation, we can see that x2 − (−1) is
a multiple of Φ(x) = x2 + 1, hence x2 + x ≡ x − 1. Since (−1) − 1 is also a
multiple of q = 2, the second congruency is valid in this ring. Typically, the
elements of Rq with the smallest polynomial degrees, and with the smallest non-
negative coefficients are used as the representatives for the congruency classes.
With this representation, addition and multiplication of polynomials is followed
by the computation of the remainder of the division by Φ(x), and afterwards by
the computation of the remainder of the division of the coefficients by q.

In this cryptosystem, the secret-key corresponds to a vector s2×1 =
(1,−t)T ∈ R2

q , where t ← DRq,σk
is a polynomial drawn from a “narrow” distrib-

ution [6], namely a Gaussian distribution. In order to produce the corresponding
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public-key, a ← Rq is drawn uniformly from Rq, e ← DRq,σk
is produced, and

b = at + e is computed. The public-key corresponds to A1×2 = (b, a). Note that

A1×2 × s2×1 = e (2)

where e is a “small” polynomial. A cryptogram CN×2, with N = 2l and l =
�log q�, encrypting a value μ ∈ Rq is a matrix such that, for a small error :

CN×2 × s2×1 = μ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
2 0
...

...
2l−1 0

0 1
0 2
...

...
0 2l−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× s2×1 + error (3)

If we add two cryptograms CN×2 and DN×2, the resulting cryptogram retains
the format described in Eq. (3). Homomorphic multiplication, in contrast, is
more complex. To multiply two ciphertexts CN×2 and DN×2, one computes
BD(CN×2)×DN×2. The BD(CN×2) function expands each entry of the matrix
across l columns performing bit decomposition. In concrete, each element ci,j is
decomposed into ci,j [k] for k ∈ {0, . . . , l − 1}, such that ci,j =

∑l−1
k=0 ci,j [k]2k,

where the ci,j [k] are polynomials with coefficients either 0 or 1, producing a
matrix: ⎛

⎜⎜⎜⎝

c0,0[0] . . . c0,0[l − 1] c0,1[0] . . . c0,1[l − 1]
c1,0[0] . . . c1,0[l − 1] c1,1[0] . . . c1,1[l − 1]

...
. . .

...
...

. . .
...

cN−1,0[0] . . . cN−1,0[l − 1] cN−1,1[0] . . . cN−1,1[l − 1]

⎞
⎟⎟⎟⎠ (4)

It can be proved that the result of BD(CN×2) × DN×2 retains the format in
(3), but μ now takes the value of the product of the original plaintexts. If the
term error remains small enough, the result can still be deciphered.

As more operations are performed, error grows, and as such the number
of operations that can be applied are limited by the homomorphic capacity of
the cryptosystem. In the particular case of homomorphic multiplication, noise
growth is asymmetric, i.e. if matrices CN×2 and DN×2 are swapped in the expres-
sion BD(CN×2) × DN×2, the final error will not necessarily be the same. It is
best to use the ciphertext with the largest error as CN×2 [6].

2.1 Ring Arithmetic

The parameters for the cryptosystem described in [6] enable efficient arith-
metic over Rq. In particular, the value of n was set to n = 1024 and q to
q = 0x7FFE0001 in hexadecimal. This leads to l = 31 and N = 62. Reduction
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modulo q after multiplications is achieved by noting that the following congru-
ence is valid (both side of the expression have the same remainder modulo q):

231 ≡ 217 − 1 mod q (5)

since q = 231 − 217 + 1. Thus, the value z ∈ {0, . . . , (q − 1)2} of the product of
two polynomial coefficients can be rewritten as z = z1231 + z0, and the following
congruence can be applied:

z ≡ z1217 + z0 − z1 (6)

This latter congruence is iteratively employed as depicted in Algorithm 1
until z ∈ {0, . . . , 231 − 1}. Afterwards, a conditional subtraction by q when
z ∈ {q, . . . , 231 − 1} suffices to ensure that z is in {0, . . . , q − 1}. When adding or
subtracting two polynomial coefficients, a subtraction or an addition by q suffices
to bring the result z back to {0, . . . , q − 1} when z ≥ q or z < 0, respectively.

Algorithm 1. Modular reduction in Z/(qZ)
Require: z ∈ {0, . . . , q2 − 2q + 1}
Ensure: z ∈ {0, . . . , q − 1}

while z ≥ 231 do
z1 = z >> 31
z0 = z&(231 − 1)
z = z12

17 + (z0 − z1)
end while
if z ≥ q then

z = z − q
end if
return z

Addition of polynomials in Rq is performed by adding the corre-
sponding polynomial coefficients in Z/(qZ) with Single Instruction Multi-
ple Data (SIMD) instructions. Multiplication of two polynomials in Z/(qZ)[ẋ]

ẋn−1

is equivalent to a cyclic convolution of n points: if u(ẋ) =
∑n−1

i=0 uiẋ
i,

u(ẋ)ẋk ≡ ∑n−1
i=0 un−k+i mod nẋi mod ẋn − 1, thus z(ẋ) = u(ẋ) × v(ẋ) ≡∑n−1

i=0

∑n−1
j=0 un−j+i mod nvj ẋ

i mod ẋn − 1. This operation is equivalent to mul-
tiplying the coefficients of the Fast Fourier Transform (FFT) over Z/(qZ) of the
two polynomials, which results in an algorithm with lower complexity. By noting
that if ηn ≡ −1(modq), and ẋ = ηx, then

ẋn − 1 = (ηx)n − 1 ≡ −(xn + 1) ≡ 0(modxn + 1) (7)

This means that if the change of variable ẋ = ηx is applied, operations modulo
ẋn−1 will be converted to operations modulo xn+1 when the variable is changed
back to x = η−1ẋ.
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Thus, to multiply two polynomials a(x) and b(x) in Rq, one first computes
u(ẋ) ≡ ∑n−1

i=0 aiη
−i

︸ ︷︷ ︸
ui

ẋi and v(ẋ) ≡ ∑n−1
i=0 biη

−i

︸ ︷︷ ︸
vi

ẋi. Afterwards, one applies a FFT

over Z/(qZ) to u and v, and multiplies the resulting transforms coefficient-wise.
To get the final result, an inverse FFT has to be applied, and a final change of
variable to return the polynomials from ẋ to x.

2.2 Homomorphic Word Matching

In this work, the previous scheme was applied to homomorphically perform word
matching. One can imagine a server where e-mails are stored in encrypted format.
The senders of e-mails should encrypt the words of those e-mails by applying
Algorithm 2 to the set of words in the e-mail. It should be noted that since a
hash function is used to conceal the words lengths it is not possible to obtain
the plaintext words back from the cryptograms. For practical implementations,
the sender would have to cipher the e-mail twice, once where all the words are
encrypted with this algorithm, and another time where the e-mail is encrypted
as a whole with a “reversible” encryption.

Algorithm 2. Encryption of a list of words to be searched
Require: List of words to be searched, input list
Ensure: List of encrypted words, output list

output list = {}
for all word in input list do

encrypted bit list = {}
a = Hash(word)
for all bit ai in a do

ci = Encrypt(ai)
encrypted bit list = encrypted bit list ∪ {ci}

end for
output list = output list ∪ {encrypted bit list}

end for
return output list

The e-mail client could then issue word searching queries. We assume, for
simplicity, that the queried word is provided in the clear. The e-mail server
would iterate through all encrypted words, and apply Algorithm 3 to each of
them and the plaintext queried word. In this algorithm, one starts by computing
the hash of the word to be searched, producing a. Afterwards, the value of
Encrypt(

∏
i ai XNOR bi) is homomorphically computed, where bi is the ith bit

of the hash of the encrypted word. When processing the cryptograms, the term
i in the product has the value of ci if ai = 1, and Encrypt(1) − ci otherwise,
where ci is the encryption of bi. This operation produces a cryptogram that
encrypts 1 when the two words are the same, or 0 otherwise. It should be noted
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that due to the asymmetric noise growth, it is best to compute the product
linearly, instead of using a logarithmic tree. I.e., it is best to keep a product
“accumulator” and multiply all terms by this accumulator sequentially. This
allows one to always choose the accumulator of the product as the operand CN×2

in BD(CN×2) × DN×2, leading to a slower growth of the error term. Moreover,
when one wants to perform a search over a set of encrypted words, one can apply
Algorithm 3 to each of these words, and afterwards add the results to get the
encrypted value of the number of matches. The server could then transfer this
result back to the client, without ever having access to the amount of matches.
The client could afterwards decipher the result.

Algorithm 3. Matching a plaintext word with an encrypted word
Require: Encrypted bits ci of the hash of word1
Require: Plaintext word2
Ensure: Cryptogram match encrypts 1 if there was a match, and 0 otherwise

match = Encrypt(1)
a = Hash(word2)
for all bit ai in a do

if ai = 1 then
di = ci

else
di = Encrypt(1) − ci

end if
match = BD(match) × di

end for
return match

In this work, only the more burdensome Algorithm 3 was parallelized and
accelerated using Xeon Phis. The parallel implementation of this algorithm will
be explained in detail in the following section.

3 Parallel Algorithms

The targeted system provided 4 Xeon Phi Knights Corner coprocessors [5]. Each
coprocessor features 61 cores operating at 1.053 GHz, interconnected via a 512-
bit bidirectional ring, as shown in Fig. 2. Since the Xeon Phi coprocessor runs
an Operating System (OS) inside, one of the cores will typically be dedicated
to answering hardware/software requests like interrupts. As such, there are 60
usable cores, each supporting four-way hyperthreading, and thus 240 hardware
threads are available. The cores can run at turbo modes, increasing the frequency
of operation, if the power envelope allows.

Each core has two 32 kB L1 individual caches, for data and instructions, and
a 512 kB L2 cache. The L2 caches are kept fully coherent by a global-distributed
tag directory. The performance of the architecture is boosted with the vector
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Fig. 2. Knights Corner schematic [11]

processing unit, which enables the processing of 512-bit registers. Each of the
Xeon Phi cores has 32 × 512-bit SIMD registers. At each clock cycle, up to
two instructions of a single thread are executed at each core. However, the two
instructions follow two architecturally different pipelines, and therefore only one
vector instruction can be executed at each cycle. The hardware cannot issue
instructions back to back from the same thread in the core, and therefore at
least two threads are necessary to reach full utilization of a core. Running 3
or 4 threads allows to hide more periods of latency, such as wrong instruction
prefetches.

Since 512-bit SIMD instructions are available, 16 coefficients of a polynomial
f(x) can be processed in parallel, as each coefficient was represented with 32
bits. When performing reductions after additions or subtractions, comparison
with q or 0 was implemented with the instruction vpcmpud, which produces a
mask that indicates which lanes are greater or equal than q, or less than 0.
This mask was used to prefix operations vpsubd and vpaddd that respectively
subtract or add q to the lanes of the source register whose corresponding mask bit
is 1. Furthermore, the repeated application of congruence (6) to reduce modular
multiplications, as shown in Algorithm 1 was implemented with SIMD after
unrolling the loop for when z initially had the value of z = (q − 1)2, so as to
avoid divergent code on parallel operations.

Addition of polynomials in Rq was implemented by adding the corresponding
polynomial coefficients over Z/(qZ) with SIMD instructions. Polynomial mul-
tiplications were implemented using changes of variable and FFTs. FFTs are
decomposed into epochs, the number of which depends on the used radix r.
In particular, each FFT consists of logr n epochs, and in each epoch n/r com-
putations, denominated butterflies, are performed. Using higher radices allows
one to improve data locality. For the considered parameters, a radix-4 FFT was
implemented, since 1024 = 45. It is not possible to use higher radices (except
for radix-1024, which is prohibitively large), since one cannot write 1024 as a
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power of a larger integer. Moreover, 16 butterflies were processed in parallel
using SIMD extensions to speed up the FFT computation.

The homomorphic multiplication EN×2 = BD(CN×2) × DN×2 proceeded in
three steps:

– In step (i), multiple threads processed the DN×2 matrix. It consists on chang-
ing the variable of the polynomials from x to ẋ, and afterwards applying the
FFT, producing a new matrix ÛN×2 = FFT (CONV (CN×2)) (where CONV
denotes the change in variable).

– In step (ii), the matrix multiplication operation was processed in blocks.
Each of the 240 threads in a Xeon Phi coprocessor was given an identifier-
pair (idx, idy), with idx ∈ {0, . . . , 15} and idy ∈ {0, . . . , 14}. By denoting

V̂N×N = FFT (CONV (BD(CN×2))), xi =
⌊

idx×N
16

⌋
, xf =

⌊
(idx+1)×N

16

⌋
,

yi =
⌊

idy×N
15

⌋
, and yf =

⌊
(idy+1)×N

15

⌋
, each thread performed the following

operation:

Ŵ (idx,idy) =

⎛
⎜⎝

v̂yi,xi
. . . v̂yi,xf−1

...
. . .

...
v̂yf−1,xi

. . . v̂yf−1,xf−1

⎞
⎟⎠ ×

⎛
⎝

ûxi,0 ûxi,1

. . . . . .
ûxf−1,0 ûxf−1,1

⎞
⎠ (8)

where the values of v̂i,j are produced from the matrix CN×2 as they are needed
so as to reduce the memory requisites. Then, Algorithm 4 is used to add the
blocks Ŵ (idx,idy) with equal idy to produce the matrix ŴN×2. In particular,
this algorithm implements a logarithmic tree structure to add the intermedi-
ary results of the matrix: the base of the tree contains all intermediary values
before running the algorithm, and the levels of the tree are processed from the
base to the root. Each level corresponds to a time instant where the nodes are
processed in parallel. In each of these nodes the values from its children are
added, and therefore after the root is reached all intermediary results have
been accumulated.

– In step (iii), an Inverse FFT (IFFT) is applied to the polynomials in Ŵ , and
W = IFFT (Ŵ ) is converted to EN×2 = BD(CN×2) × DN×2, by changing
the variable from ẋ to x. Thread parallelism was used to process multiple
polynomials simultaneously.

Since steps (i) and (iii) did not fully utilize the computational power of
the Xeon Phi coprocessor, because there was not enough parallelism, several
matrices were processed in parallel in these steps; which corresponds to searching
on several words in parallel. Therefore, to compute s matrix multiplications, step
(i) is first applied to s matrices in parallel, then step (ii) is repeated s times
(once for each matrix multiplication), and finally step (iii) is applied s times in
parallel to get the s results.

A modified version of Algorithm 3 was then implemented on the Xeon Phi.
This modification corresponds to the comparison of the plaintext word with s
encrypted words simultaneously, using the proposed matrix multiplication algo-
rithm. Furthermore, the subtraction featured in the algorithm was accelerated
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Algorithm 4. Logarithmic addition tree
Require: Ŵ (idx,idy), ∀idx ∈ {0, . . . , 15}, ∀idy ∈ {0, . . . , 14}
Ensure: Ŵ = (

∑
idx

Ŵ (idx,0), . . . ,
∑

idx
Ŵ (idx,14))

ŴN×2 = 0
The following code, until the return statement, is executed by all threads
for hop = 2; hop ≤ 16; hop = hop × 2 do

Thread barrier
if idx is a multiple of hop then

if hop = 16 then
for i = yi; i < yf ; i = i + 1 do

Ŵi,0 = Ŵ
(idx,idy)
i−yi,0

+ Ŵ
(idx+hop/2,idy)
i−yi,0

Ŵi,1 = Ŵ
(idx,idy)
i−yi,1

+ Ŵ
(idx+hop/2,idy)
i−yi,1

end for
else

Ŵ (idx,idy) = Ŵ (idx,idy) + Ŵ (idx+hop/2,idy)

end if
end if

end for
Thread barrier
return Ŵ

using multi-threading and SIMD extensions. When using a system with k Xeon
Phis, the modified algorithm can be processed k times in parallel, and ks matches
are homomorphically tested at the same time. Thus, when performing a search
of a plaintext word over a set of encrypted words, the set was broken into smaller
sets of ks encrypted words, and the Xeon Phis processed the sets in sequence.
Afterwards, the host Central Processing Unit (CPU) adds the encrypted matches
to create a cryptogram that when decrypted indicates how many encrypted
words are equal to the plaintext.

4 Experimental Results

The proposed parallel algorithm was implemented on a system with an Intel
Xeon CPU E5-2630 v2, operating at a frequency of 2.6 GHz, connected to 4 Intel
Xeon Phi coprocessors 5110P, running at 1.053 GHz. The code was compiled with
icc 16.0.1, using the optimization flag −O2. Computation was offloaded to the
Xeon Phi coprocessors through icc pragmas, and the code on the Xeon Phi
coprocessors was parallelized with OpenMP and SIMD intrinsics.

In order to find the optimal value for s (the number of matrix multiplica-
tions processed at a time by each Xeon Phi coprocessor), the homomorphic word
searching algorithm was run on the 4 Xeon Phi coprocessors and timed for dif-
ferent values of s. In particular, a plaintext word was compared with sets of over
90 words for s ∈ {2, 4, 6, 8, 10, 12}. The relative execution time per encrypted
word of the code offloaded to the Xeon Phi coprocessors can be found in Fig. 3.
One can see that the relative search time per word decreases from 0.154 s for
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Fig. 3. Relative execution time per encrypted word as a function of the number of
matrix multiplications (s) processed at a time by each Xeon Phi coprocessor

Table 1. Total execution time for homomorphic keyword searching

Number of encrypted words Sequential execution [s] Parallel execution [s] Speedup

24 2662.6 3.6 743.9

48 5585.6 6.0 933.2

72 8418.6 10.5 803.2

96 11735 13.7 856.0

s = 2 until 0.119 s for s = 6, and stabilizes around that value for larger values
of s. Therefore, the value of s = 6 was chosen for evaluating the performance of
the parallel algorithms and obtaining the results presented next.

A sequential baseline version of Algorithm 3 was also implemented on a single
core of the Xeon processor. Both the parallel implementation running on the
Xeon Phi coprocessors and the sequential version running on the Xeon core were
executed to perform a word search over sets of 24, 48, 72 and 96 encrypted words.
The execution times of the word searching algorithm can be found in Table 1.
There is a significant improvement in performance when executing the algorithm
on the Xeon Phi coprocessors. In particular, an average speedup of 834 was
obtained. By computing the obtained efficiency as the ratio between the speed-
up and the product of the number of hardware threads and the number of SIMD
lanes, and by taking into account the different frequencies of the Xeon processor
and the Xeon Phi accelerator, one gets a value of 13.3%. This is accounted for by
the fact that the vector unit is not exploited by all the instructions; that overhead
is introduced when exploiting SIMD parallelism – for instance, in Algorithm 1
the while loop is unrolled for the worst case when exploiting SIMD extensions;
and that there is also overhead associated with multi-threading parallelism – for
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example, when Algorithm 4 is executed, the underlying cache-coherence protocol
introduces delay in every iteration, so that data sharing is possible.

Finally, the Intel Xeon CPU E5-2630 v2 processor supports up to 12 hard-
ware threads, with SIMD instructions of 8 × 32-bits lanes. Hence, even if 100%
efficiency were obtained, with the parallelization of the sequential Xeon homo-
morphic word searching operation, one would require a cluster 18 processors to
beat the performance of the 4 Xeon Phi coprocessors.

5 Related Work

There has been work in the literature on how to port scientific applications to the
Xeon Phi, such as the lattice Boltzmann code [13], the Monte Carlo tree search [9],
the Rodinia benchmark [10] and sparse matrix multiplications [14] with very sat-
isfactory performance. Common concerns among these works include the division
of the work-load in a balanced way among the large amount of threads of the Xeon
Phi coprocessor, an effective vectorization of code, and also of how to best distrib-
ute data in memory. While some works focus on the computation of the FFT [7,8],
they are supported on the complex plane instead of finite fields, since they target
telecommunications protocols, and hence their performance is not directly com-
parable with the FFT implementation presented in this work. Furthermore, long
integer operations are optimized in [1] for the Xeon Phi coprocessor, with a spe-
cial focus on vectorization. These operations are used to implement the Rivest-
Shamir-Adleman (RSA) cryptosystem [12]. While textbook RSA is homomor-
phically multiplicative, since the multiplication of two cryptograms results in an
encryption of the multiplication of the underlying plaintexts, textbook RSA is not
considered safe, and this feature is not exploited in [1].

The described cryptosystem was supported on an earlier scheme [4], also
based on matrix operations. However, the latter did not exploit ring arithmetic,
which arguably degrades performance, and hence, as far as we know, there are
no practical implementations. The cryptosystem proposed in [6] was also imple-
mented therein using an Intel Core-i7 5930 K and a NVIDIA GeForce GTX980 as
an accelerator. An homomorphic word searching procedure took a relative time
of about 20 ms per encrypted word. This result cannot be directly compared with
the results obtained herein (see Fig. 3) since the main objective of this work was
to evaluate the improvement of performance one could get with widely deployed
programming tools, such as OpenMP, that are available on the Xeon Phis, and
provide more manageable code development. The GTX980 GPU is organized
according to a different architecture, and targets a more strict range of applica-
tions, which does not allow a direct comparison with the results obtained for the
Xeon Phi. Furthermore, the GTX980 GPU has 2048 CUDA cores, whereas the
4 Xeon Phis feature a total of 960 hardware threads, and therefore it is possible
to exploit a larger level of parallelism with the GTX980. Also, the GTX980 runs
at a slightly higher frequency (1.126 GHz) than the Xeon Phis (1.053 Ghz).
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6 Conclusion

A large amount of embedded systems are currently being deployed in the mar-
ket, either in the form of consumer electronics or household appliances and in
the general infrastructure. Considering that they have limited computational
resources, more and more computation will start being offloaded to central
servers. Since this data may be private, it is expected that homomorphic encryp-
tion will become increasingly important, because it allows for the processing of
encrypted data. In this work, the performance of homomorphic encryption is
significantly enhanced with the use of Xeon Phi coprocessors. This enhancement
is achieved by exploiting the fact that the considered cryptosystem relies on
matrix multiplication over a specific ring, which is a burdensome operation with
a large level of parallelism. In concrete, a speedup of about 834 was obtained for
an homomorphic word searching procedure.

Furthermore, the Xeon Phi architecture has several advantages when com-
pared with other HPC systems. It is more flexible than GPU architectures,
supporting parallel divergent code more efficiently. It provides more manageable
and less time consuming tools for code development than FPGAs. Finally, it
supports multiple programming paradigms (such as OpenMP, and MPI) that
are widely deployed, and for which large codebases already exist.
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