
An Application-Level Solution for the Dynamic
Reconfiguration of MPI Applications

Iván Cores1, Patricia González1, Emmanuel Jeannot2, Maŕıa J. Mart́ın1(B),
and Gabriel Rodŕıguez1

1 Grupo de Arquitectura de Computadores, Universidade da Coruña,
A Coruña, Spain
mariam@udc.es

2 INRIA Bordeaux Sud-Ouest, Bordeaux, France

Abstract. Current parallel environments aggregate large numbers of
computational resources with a high rate of change in their availability
and load conditions. In order to obtain the best performance in this type
of infrastructures, parallel applications must be able to adapt to these
changing conditions. This paper presents an application-level proposal to
automatically and transparently adapt MPI applications to the available
resources. The architecture includes: automatic code transformation of
the parallel applications, a system to reschedule processes on available
nodes, and migration capabilities based on checkpoint-and-restart tech-
niques to move selected processes to target nodes. Experimental results
show a good degree of adaptability and a good performance in different
availability scenarios.

Keywords: HPC · MPI · Checkpointing · Migration · Scheduling

1 Introduction

The resources availability of large-scale distributed systems may vary during a
job execution, making malleable applications, that is, parallel programs that are
able to adapt their execution to the number of available processors at runtime,
specially appealing. Malleable jobs provide important advantages for the final
users and the whole system, like a higher productivity and a better response
time [3,9], or a greater resilience to node failures [5]. These characteristics will
allow to improve the use of resources, which will have a direct effect on the
energy consumption required for the execution of applications, resulting in both
cost savings and a greener computing.

High performance computing (HPC) is nowadays dominated by the MPI
paradigm. Most MPI applications follow the SPMD (single program, multiple
data) programming model and they are executed in HPC systems by specifying a
fixed number of processes running on a fixed number of processors. The resource
allocation is statically specified during job submission, and maintained constant
during the entire execution. Thus, MPI applications are unable to dynamically
adapt to changes in resource availability.
c© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 191–205, 2017.
DOI: 10.1007/978-3-319-61982-8 18



192 I. Cores et al.

The aim of this work is to propose a solution to transform existing MPI appli-
cations into malleable jobs, that is, jobs that are capable of adapting their execu-
tions to changes in the environment. The proposed solution is based on process
migration, thus, if a node becomes unavailable, the processes on that node will
be migrated to other available ones, overloading nodes when necessary. Check-
point and restart is used to implement this migration. The state of each process
to be migrated is stored into memory and transferred to a new available node.
Afterwards, this state is recovered by a newly created process, which continues
the execution. To this end, the proposal is implemented at the application-level,
extending the functionalities of the CPPC (ComPiler for Portable Checkpoint-
ing) framework [18]. CPPC is an application-level checkpointing tool, available
under GNU general public license (GPL) at http://cppc.des.udc.es, that appears
to the final user as a compiler tool and a runtime library. At compile time, the
CPPC source-to-source compiler automatically transforms a parallel code into
an equivalent version with calls to the CPPC library to instrument the dynamic
reconfiguration.

The structure of this paper is as follows. Section 2 describes related work.
Section 3 describes the solution proposed to automatically and transparently
transform existing MPI application into malleable jobs. Section 4 evaluates the
performance of the proposal. Finally, Sect. 5 concludes the paper.

2 Related Work

There are several proposals in the literature that use a stop-and-restart approach
to implement malleable MPI applications [1,16,20]. However, stop and restart
solutions imply a job requeueing, with the consequent loss of time. Dynamic
reconfiguration [8,12,17,22], on the other hand, allows to change the number of
processors while the program is running without having to stop and relaunch the
application. Most of these solutions [12,17,22] change the number of processes
to adapt to the number of available processors, which implies a redistribution of
the data and, thus, they are very restrictive with the kind of application they
support. On the other hand, in AMPI [8] the number of processes is preserved and
the application adapts to changes in the number of resources through migration
based on virtualization.

Besides AMPI, there exist in the literature different research works that
provide process migration through the use of virtualization technologies [7,13].
However, virtualization solutions present important performance penalties due
to larger memory footprints [21]. Moreover, the performance of MPI applications
relies heavily on the performance of communications. Currently virtualization of
CPU and memory resources presents a low overhead. However, the efficient vir-
tualization of network I/O is still work in progress. For instance, recent results
in migration over Infiniband networks [6] show very high overhead, strong scal-
ability limitations and tedious configuration issues.

http://cppc.des.udc.es


Dynamic Reconfiguration of MPI Applications 193

3 Reconfiguration of MPI Applications

The aim of this work is to build MPI applications that are able to dynami-
cally adapt their execution to changes in the resource availability. The follow-
ing subsections describe the main components of the proposed solution: (1) the
triggering of the reconfiguration operation; (2) the scheduling algorithm imple-
mented to allow the application to autonomously decide which processes should
be moved and to which target nodes; and (3) the migration operation itself. The
main steps of the reconfiguration process are depicted in Fig. 1.

Fig. 1. Steps in the reconfiguration operation: (1) Negotiation to select a single safe
location to trigger the reconfiguration; (2) Scheduling algorithm to decide the processes
to be migrated and the new allocations; (3) Spawning of new processes and reconfigura-
tion of the communicators; (4) Checkpointing of the migrating processes; (5) Sending of
the checkpoint files; (6) Recovering the state from the checkpoint files; and (7) Effective
recovering of the application state. Steps (4) to (6) are partially overlapped.

3.1 Triggering the Reconfiguration Operation

The proposed solution is based on dynamic live process migration. If a node
becomes unavailable, the processes on that node will be migrated to other avail-
able ones (without stopping the application), overloading nodes when necessary.
Our proposal relies on a monitoring system that provides dynamical informa-
tion about the available resources. There are in the literature many proposals for
different environments and objectives. For this work we assume that an avail-
ability file is set up for each malleable MPI job. This file contains the names
of all the nodes that are assigned to execute the MPI job together with their
number of available cores. A change in this file activates a flag in the CPPC
controller to start the reconfiguration of the execution. During this reconfigu-
ration, some MPI processes will be migrated and, thus, communication groups
must be rebuilt. The reconstruction of the communication groups is a critical
step, since replacing communicators may lead to an inconsistent global state:
messages sent/received using the old communicators cannot be received/sent
using the new ones. A possible solution to this problem is to restrict the points



194 I. Cores et al.

at which the migration can be started, making the reconstruction of the commu-
nicators, and thus the reconfiguration, in locations where there are no pending
communications, i.e., safe points. The CPPC compiler automatically detects safe
points, thus facilitating the implementation of this approach. However, conduct-
ing the reconfiguration from different safe points in different processes may lead
to inconsistencies. Therefore, a negotiation protocol is needed at runtime to
select a single safe location as the place to trigger the reconfiguration operation
to achieve a consistent global state after migration. This location will be the
next safe point to be reached by the process that has advanced the farthest in
the execution. Each process communicates to all other processes the last safe
point it has crossed. One-sided asynchronous MPI communications are used so
that processes may continue running without synchronizations during the nego-
tiation, overlapping negotiation operations with execution progress and avoiding
deadlocks.

3.2 Scheduling Algorithm

Previous to the start of the migration operation, the processes to be migrated
and their mapping to the available resources need to be selected.

In MPI applications the communication overhead plays an important role
in the global performance of the parallel application. To be able to migrate the
processes efficiently we need to know the affinity between the processes so as to
map those with a high communication rate as close to each other as possible. For
this aim TreeMatch [11] and Hwloc [2] are used. TreeMatch is an algorithm that
obtains the optimized process placement based on the communication pattern
among the processes and the hardware topology of the underlying computing
system. It tries to minimize the communications at all levels, including network,
memory and cache hierarchy. It takes as input both a matrix modeling the
communications among the processes, and a representation of the topology of the
system. The topological information, represented as a tree, is provided by Hwloc
and obtained dynamically during application execution. TreeMatch returns as
output an array with the core ID that should be assigned to each process.

An example of the output of TreeMatch is given in Fig. 2. On the left, a
communication matrix representing the affinity between processes is given as
input: the darker the dot the higher the communication volume and hence the
affinity. TreeMatch computes the permutation (σ) of the processes such that the
cores with high affinity are mapped close together on the tree representing the
target topology. After applying the permutation the communication matrix on
the right is obtained.

The communication matrix needed by TreeMatch is obtained dynamically,
just before the scheduling algorithm is triggered, using a monitoring compo-
nent developed for Open MPI and integrated in an MCA (Modular Component
Architecture) framework called pml (point-to-point management layer). This
component, if activated at launch time (through the mpiexec option --mca
pml monitoring enable), monitors all the communications at the lower level
of Open MPI (i.e., once collective communications have been decomposed into



Dynamic Reconfiguration of MPI Applications 195

5 10 15

5
10

15

Sender rank

R
ec

ei
ve

r r
an

k

5 10 15

5
10

R
ec

ei
ve

r 
ra

nk

Sender rank

15

0
1

2
3

4
5

6
7

σ=(0,2,8,10,4,6,12,14,1,3,9,11,5,7,13,15)

Fig. 2. TreeMatch example for a binary tree of 4 levels and 16 leaves (cores).

send/recv communications). Therefore, contrary to the MPI standard profiling
interface (PMPI) approach where the MPI calls are intercepted, here the actual
point-to-point communications that are issued by Open MPI are monitored,
which is much more precise. This monitoring component was previously devel-
oped by one of the authors and it will be released in Open MPI 2.0.

To evaluate the overhead of this monitoring, the execution of the LU NAS
benchmark with and without monitoring have been compared. The LU kernel
has been selected since it is the one that sends the largest number of messages.
Results for this kernel are shown in Table 1. Shown times are the average of 10
runs. Results using 16 and 64 processes using classes A, B and C show that the
overhead is very low (less than 0.7%). Moreover, it decreases with the class of
the kernel (i.e., the problem size), being the overhead to manage one message
1µs or less.

TreeMatch focuses on minimizing the communication cost in a parallel execu-
tion. Thus, if TreeMatch is directly applied to find the processes mapping during
a reconfiguration phase, it could lead to a complete replacement of all the appli-
cation processes. This would involve unnecessary process migrations and, thus,

Table 1. Monitoring overhead for the LU NAS Kernel on nodes with 2 quad-core
Nehalem Intel Xeon processors interconnected by an InfiniBand QDR network.

Class Number of
processes

Total
number of
messages

Number of
mess. per
processes

Exec. time
(s)

Monitoring
exec. time
(s)

Overhead

A 16 380630 23789.375 5.696 5.72 0.42%

B 16 609542 38096.375 23.155 23.189 0.15%

C 16 970982 60686.375 90.665 90.727 0.10%

A 64 1777226 27769.156 1.732 1.744 0.69%

B 64 2845482 44460.656 6.522 6.567 0.69%

C 64 4532202 70815.656 25.335 25.374 0.15%



196 I. Cores et al.

unnecessary overheads. To avoid this behavior, a two-step mapping algorithm
was designed. The first step decides the number and the specific processes to be
migrated. The second step finds the best target nodes and cores to place these
processes. An interesting feature of TreeMatch is that the topology given as an
input can be a real machine topology or a virtual topology designed to sepa-
rate groups of processes in clusters such that communications within clusters
are maximized while communications outside the clusters are minimized.

– Step 1: identify processes to migrate. A process should be migrated
either because it is running on nodes that are going to become unavailable,
or because it is running on oversubscribed nodes and new resources have
become available. To know the number of processes that need to be migrated,
all processes exchange, via MPI communications, the numbers of the node and
core in which they are currently running. Then, using this information, each
application process calculates the current computational load of each node
listed in the availability file associated to the application. A load array is
computed, where load(i) is the number of processes that are being executed
in node ni. Besides, each process also calculates the maximum number of
processes that could be allocated to each node ni in the new configuration:

maxProcs(i) =
⌈
nCores(i) × N

nTotalCores

⌉

where nCores(i) is the number of available cores of node ni, N is the num-
ber of processes of the MPI application, and nTotalCores is the number of
total available cores. If load(i) > maxProcs(i) then load(i) − maxProcs(i)
processes have to be migrated. If the node is no longer available, maxProcs(i)
will be equal to zero and all the processes running in that node will be iden-
tified as migrating processes. Otherwise, TreeMatch is used to identify the
migrating processes. The aim is to maintain in each node the most related
processes according to the application communication pattern. Figure 3 illus-
trates an example with two 16-core nodes executing a 56-process application
in an oversubscribed scenario. When two new nodes become available, 12
processes per node should be migrated to the new resources. To find the
migrating processes, TreeMatch is queried once for each oversubscribed node.
The input is a virtual topology breaking down the node into two virtual ones:
one with maxProcs(i) cores and the other with load(i) − maxProcs(i) cores.
TreeMatch uses in runtime this virtual topology, and a sub-matrix with the
communication pattern between the processes currently running on the node,
to identify the processes to be migrated, that is, those mapped to the second
virtual node.

– Step 2: identify target nodes. Once the processes to be migrated are
identified, the target nodes (and the target cores inside the target nodes)
to place these processes have to be found. TreeMatch is again used to find
the best placement for each migrating process. It uses a sub-matrix with the
communication pattern of the migrating processes, and a virtual topology
built from the real topology of the system but restricted to use only the



Dynamic Reconfiguration of MPI Applications 197

potential target nodes in the cluster. The potential targets are those nodes
that satisfy load(i) < maxProcs(i). They can be empty nodes, nodes already
in use but with free cores, or nodes that need to be oversubscribed. Since
TreeMatch only allows the mapping of one process per core, if there are
no sufficient real target cores to allocate the migrating processes, a virtual
topology will simulate maxProcs(i) − load(i) extra cores in the nodes that
need to be oversubscribed. Figure 4 illustrates the second step of the algorithm
for the same example of Fig. 3. In this example, the virtual topology used
consists of the new available nodes in the system, two 16-core nodes to map
the 24 processes. After executing TreeMatch, the target cores and, therefore,
the target nodes for the migrating processes obtained in step 1 are identified
and CPPC can be used to perform the migration.

Fig. 3. Step 1: identifying processes to be migrated. Virtual topology built to migrate
12 processes from a 16-core node where 28 processes are running (16 processes remain
and 12 processes migrate).

Fig. 4. Step 2: identifying target nodes. Topology built to map the migrating processes
selected in step 1 to the empty cores in the system.



198 I. Cores et al.

3.3 Migration Operation

Once the mapping of migrated processes to available resources is decided, the
migration operation can start. First, new processes are spawned in the target
nodes to replace the migrating ones, and the global communicator is recon-
structed. The dynamic process management facilities of MPI-2 are used for these
operations. Then, the migrating processes save their state, storing it into mem-
ory. The checkpoint files of the terminating processes are sent using MPI commu-
nications. At this point the terminating processes can safely finalize. Then, the
new processes restart the execution by reading the checkpoint files and recover-
ing the application state. This is achieved by delegating to CPPC and employing
its native capabilities. The procedure is depicted in Fig. 1.

Initially the new spawned processes are not bound to any specific core. The
TreeMatch assignment is sent to the new processes together with the checkpoint
file and CPPC performs the binding via the Hwloc library.

To minimize the overhead associated to the I/O operations needed for the
migration, the checkpoint files are split into several chunks and transferred in a
pipelined fashion, overlapping the writing in the terminating processes with the
reading in the newly spawned ones [19].

4 Experimental Results

This section aims to show the feasibility of the proposal and to evaluate the
cost of the reconfiguration whenever a change in the resource availability occurs.
A multicore cluster was used to carry out these experiments. It consists of 16
nodes, each powered by two octa-core Intel Xeon E5-2660 CPUs with 64 GB of
RAM. The cluster nodes are connected through an InfiniBand FDR network. The
working directory is mounted via network file system (NFS) and it is connected
to the cluster by a Gigabit Ethernet network.

The application testbed is composed of six out of the eight applications in the
MPI version of the NAS Parallel Benchmarks v3.1 [14] (NPB from now on). The
IS and EP benchmarks were discarded due to their low execution times. For all
the executions the benchmark size used was class C. The Himeno benchmark [10]
was also tested. Himeno uses the Jacobi iteration method to solve the Poissons’s
equation, evaluating the performance of incompressible fluid analysis code, being
a benchmark closer to real applications.

The MPI implementation used was Open MPI v1.8.1 [15] modified to enable
dynamic monitoring. The mpirun environment has been tuned using MCA para-
meters to allow the reconfiguration of the MPI jobs. Specifically, the parameter
orte allowed exit without sync has been set to allow some processes to con-
tinue their execution when other processes have finished their execution safely.
The parameter mpi yield when idle was also set to force degraded execution
mode and, thus, to allow progress in an oversubscribed scenario.

To evaluate the feasibility of the proposed solution and its performance,
different scenarios have been forced during the execution of the applications.
Figure 5 illustrates these scenarios. The applications were initially launched in



Dynamic Reconfiguration of MPI Applications 199

a 64-process configuration running on 4 available nodes of the cluster (16 cores
per node). Then, after a time, one of the nodes becomes unavailable. In this sce-
nario, the 16 processes running on the first node should be moved to the empty
node, and the application execution continues in a 4 node configuration. After a
while, the 4 nodes where the application is running start to become unavailable
sequentially, first one, then another, without spare available nodes to replace
them, until only one node is available and the 64 processes are running on it.
Finally, in a single step, the last node fails but 4 nodes become available again,
and the processes are migrated to return again to using 4 nodes. To demonstrate
the feasibility of the solution, the iteration time was measured across the execu-
tion in those scenarios. Measuring iteration time allows to have a global vision
of the instantaneous performance impact.

Fig. 5. Selected scenarios to show the feasibility of the proposal and evaluate the
migration and scheduling cost.

Figure 6 shows the results for all the benchmarks in the scenarios illustrated
in Fig. 5. These results demonstrate that, using the proposed solution, the appli-
cations are capable of adjusting their execution to changes in the environment.
The high peaks in these figures correspond to reconfiguration points. For com-
parison purposes, the compute times that would be attained if the application
could adjust its granularity to the available resources1, instead of oversubscribing
them without modifying the original number of processes are also shown (green
line). The overhead that would introduce the data distribution needed to adjust
the application granularity is not shown in the figure.

Table 2 details the main impacting steps in the reconfiguration overhead for
all the NPB applications. As shown in Fig. 1, the iteration time when a recon-
figuration is performed can be broken down into the following stages:

– Negotiation: execution time of the negotiation protocol used to reach consen-
sus on the reconfiguration point.

1 This time is measured executing the application with a different number of processes
depending on the hardware available (16 processes version when only 1 node is
available, 32 processes version when 2 nodes are available, etc.).



200 I. Cores et al.

Fig. 6. Iteration execution times in the scenarios illustrated in Fig. 5. (Color figure
online)



Dynamic Reconfiguration of MPI Applications 201

– Scheduling : execution time of the scheduling algorithm to identify processes
to be moved and target nodes.

– Spawn&Rec: execution time of the spawn function and the reconfiguration of
the communicators.

– ChkptTransfer&Read : average time to write the checkpoint files in the ter-
minating processes, transfer them to target nodes, and read them in newly
spawned processes.

– Restart : average time to complete the restart of the application once the
checkpoint files have been read.

– Compute: the computational time of the iteration where the reconfiguration
takes place.

Table 2. Execution time (s) of the reconfiguration phases.

scenarios NPB applications Himeno

BT CG FT LU MG SP

Negotiation 1 → 2 0.88 1.18 0.01 1.08 0.93 0.94 1.12

2 → 3 0.80 0.85 0.01 0.86 0.94 0.81 0.90

3 → 4 0.88 0.89 0.14 0.53 0.94 0.86 0.95

4 → 5 1.06 1.11 0.02 1.15 1.07 1.04 1.09

5 → 6 1.86 1.94 0.02 1.90 1.88 1.87 1.95

Spawn&Rec 1 → 2 1.32 1.18 1.44 1.61 1.28 1.29 1.13

2 → 3 1.15 1.18 1.11 1.08 1.09 1.14 0.99

3 → 4 1.43 1.43 1.32 1.31 1.35 1.59 1.48

4 → 5 2.23 2.14 2.14 2.17 2.38 2.07 2.12

5 → 6 3.27 3.19 3.25 3.28 3.20 3.22 3.23

ChkptTransfer&Read 1 → 2 0.35 0.10 0.39 0.16 0.44 0.39 1.44

2 → 3 0.37 0.11 0.43 0.18 0.42 0.40 1.59

3 → 4 0.48 0.14 0.47 0.21 0.54 0.54 1.96

4 → 5 0.75 0.23 0.84 0.36 0.84 0.93 2.92

5 → 6 1.01 0.28 1.41 0.47 1.41 1.06 4.96

Restart 1 → 2 0.15 0.01 0.04 0.01 0.04 0.12 0.25

2 → 3 0.05 0.01 0.20 0.02 0.03 0.08 0.46

3 → 4 0.24 0.01 0.26 0.02 0.03 0.30 0.47

4 → 5 0.36 0.02 0.41 0.02 0.06 0.30 0.57

5 → 6 0.36 0.01 0.41 0.01 0.03 0.29 0.45

The Negotiation phase depends on the application as in this phase MPI one-
sided communications are used and the progress of these remote operations is
affected by the MPI calls inside the application. These times could be lower
using other MPI implementations and/or computer architectures [4].



202 I. Cores et al.

The largest contribution to the reconfiguration cost is due to the Spawn&Rec
step. The time spent in the spawn function depends on the number of spawned
processes and the degree of oversubscription. The more processes to be migrated,
the larger the overhead of this phase. This can be observed comparing the over-
head associated to the reconfiguration from scenario 1 to scenario 2, where 16
processes are moved to an empty target node, and the overhead associated to
the reconfiguration from scenario 5 to scenario 6, where 64 processes are moved
to 4 empty target nodes. When target nodes are oversubscribed, the computa-
tion time of each process is penalized and so is the Spawn&Rec phase, specially
affected due to their collective communications. This can be observed in the
increase that the overhead of the Spawn&Rec phase suffers in the reconfigura-
tion from scenario 2 to scenario 3, from scenario 3 to scenario 4, from scenario 4
to scenario 5, and from scenario 5 to scenario 6, where 16, 21, 32 and 64 processes
are migrated each time, oversubscribing the surviving nodes. Finally, since this
phase involves different collective communications, its time depends on the total
number of processes in the application. This can be observed in Table 3, that
shows the overhead of the Spawn&Rec step when migrating 16 processes to an
empty target node with a different number of processes in the application.

Table 3. Overhead (in seconds) of the Spawn&Rec step when spawning 16 new
processes vs total number of processes in the application.

NPB Number of total processes

16 32/36 64 128/121

BT 0.97 0.99 1.32 1.57

CG 0.98 1.01 1.18 1.79

FT 0.96 1.07 1.44 1.75

LU 1.00 1.01 1.61 1.89

MG 1.02 1.01 1.28 1.63

SP 0.99 1.00 1.29 1.72

Himeno 0.99 1.01 1.13 1.96

The ChkptTransfer&Read step also impacts significantly the reconfiguration
overhead. The I/O operations are recognized to be one of the main impacting
factors in the performance of migration operations, specially in those associated
to checkpoint solutions. Checkpoint file sizes are critical to minimize the I/O
time. CPPC applies live variable analysis and identification of zero-blocks to
decrease checkpoint file sizes. Table 4 shows the checkpoint sizes per process and
the total data size transferred between nodes when migrating 16, 32 and 64
processes. The total amount of data varies between 127 MB for CG migrating
a single node (16 processes) and 10.42 GB for Himeno when migrating 4 nodes
(64 processes). By means of a pipelined approach [19] that overlaps the state
file writing in the terminating processes, the data transfer through the network,



Dynamic Reconfiguration of MPI Applications 203

Table 4. Transfer size (checkpoint size in MB).

NPB Checkpoint size per process Total data size migrated

16 proc. 32 proc. 64 proc.

BT 33.15 530.45 1060.90 2121.80

CG 7.93 126.97 253.95 507.90

FT 48.09 769.50 1539.01 3078.02

LU 15.48 247.74 495.48 918.96

MG 39.26 628.19 1256.39 2512.78

SP 32.12 513.99 1027.99 2055.98

Himeno 166.71 2667.36 5334.72 10669.44

and the state file read in the new processes, the proposed solution achieves to
significantly reduce this impact.

The Restart step is a small contributor to the reconfiguration overhead. An
important part of this time is derived from the negotiation protocol used. During
the negotiation phase each process specifies a memory region (window) that it
exposes to others. Since the MPI communicators of the application have been
reconfigured, at restart time the old MPI windows have to be closed and new
ones have to be created. Although not as impacting as the spawning function,
the overhead of this operation is not negligible.

Finally, the Scheduling phase is negligible for all the NPB applications, being
always smaller than 0.1 s. Thus, these times are not included in the table.

5 Concluding Remarks

In this paper a proposal to automatically and transparently adapt MPI appli-
cations to available resources is proposed. The solution relies on a previous
application-level migration approach, incorporating a new scheduling algorithm
based on TreeMatch, Hwloc and dynamic communication monitoring, to obtain
well balanced nodes while preserving performance as much as possible.

The experimental evaluation of the proposal shows successful and efficient
operation, with an overhead of a few seconds during reconfiguration, which will
be negligible in large applications with a more realistic reconfiguration frequency.

Proposals like the one in this paper will be of particular interest in future
large scale computing systems, since applications that are able to dynamically
reconfigure themselves to adapt to different resource scenarios will be key to
achieve a tradeoff between energy consumption and performance.

Acknowledgments. This research was partially supported by the Ministry of Econ-
omy and Competitiveness of Spain and FEDER funds of the EU (Project TIN2013-
42148-P), by the Galician Government and FEDER funds of the EU (consolidation
program of competitive reference groups GRC2013/055) and by the EU under the
COST programme Action IC1305, Network for Sustainable Ultrascale Computing.



204 I. Cores et al.

References

1. Agbaria, A., Friedman, R.: Starfish: fault-tolerant dynamic MPI programs on clus-
ters of workstations. Cluster Comput. 6(3), 227–236 (2003)

2. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier,
G., Thibault, S., Namyst, R.: hwloc: a generic framework for managing hardware
affinities in HPC applications. In: Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), pp. 180–186 (2010)

3. Buisson, J., Sonmez, O., Mohamed, H., Lammers, W., Epema, D.: Scheduling
malleable applications in multicluster systems. In: 2007 International Conference
on Cluster Computing (CLUSTER), pp. 372–381 (2007)

4. Cores, I., Rodŕıguez, G., Mart́ın, M.J., González, P.: Achieving checkpointing
global consistency through a hybrid compile time and runtime protocol. Proce-
dia Comput. Sci. 18, 169–178 (2013). International Conference on Computational
Science (ICCS)

5. George, C., Vadhiyar, S.S.: ADFT: an adaptive framework for fault tolerance on
large scale systems using application malleability. Procedia Comput. Sci. 9, 166–
175 (2012). International Conference on Computational Science (ICCS)

6. Guay, W.L., Reinemo, S.A., Johnsen, B.D., Yen, C.H., Skeie, T., Lysne, O.,
Tørudbakken, O.: Early experiences with live migration of SR-IOV enabled infini-
band. J. Parallel Distrib. Comput. 78, 39–52 (2015)

7. Hacker, T.J., Romero, F., Nielsen, J.J.: Secure live migration of parallel applica-
tions using container-based virtual machines. Int. J. Space Based Situated Comput.
2(1), 45–57 (2012)

8. Huang, C., Lawlor, O., Kalé, L.V.: Adaptive MPI. In: Rauchwerger, L. (ed.) LCPC
2003. LNCS, vol. 2958, pp. 306–322. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24644-2 20

9. Hungershofer, J.: On the combined scheduling of malleable and rigid jobs. In:
Computer Architecture and High Performance Computing (SBAC-PAD), pp. 206–
213 (2004)

10. Information Technology Center, RIKEN. HIMENO Benchmark. http://accc.riken.
jp/2444.htm. Accessed Aug 2016

11. Jeannot, E., Mercier, G.: Near-optimal placement of MPI processes on hierarchical
NUMA architectures. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par
2010. LNCS, vol. 6272, pp. 199–210. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15291-7 20

12. Mart́ın, G., Singh, D.E., Marinescu, M.C., Carretero, J.: Enhancing the perfor-
mance of malleable MPI applications by using performance-aware dynamic recon-
figuration. Parallel Comput. 46, 60–77 (2015)

13. Nagarajan, A.B., Mueller, F., Engelmann, C., Scott, S.L.: Proactive fault tolerance
for HPC with Xen virtualization. In: International Conference on Supercomputing
(ICS), pp. 23–32 (2007)

14. National Aeronautics and Space Administration. The NAS Parallel Benchmarks.
http://www.nas.nasa.gov/publications/npb.html. Accessed Aug 2016

15. Open MPI Team. Open MPI: Open Source High Performance Computing. http://
www.open-mpi.org/. Accessed Aug 2016

16. Raveendran, A., Bicer, T., Agrawal, G.: A framework for elastic execution of exist-
ing MPI programs. In: IEEE International Symposium on Parallel and Distributed
Processing Workshops (IPDPSW), pp. 940–947 (2011)

http://dx.doi.org/10.1007/978-3-540-24644-2_20
http://dx.doi.org/10.1007/978-3-540-24644-2_20
http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm
http://dx.doi.org/10.1007/978-3-642-15291-7_20
http://dx.doi.org/10.1007/978-3-642-15291-7_20
http://www.nas.nasa.gov/publications/npb.html
http://www.open-mpi.org/
http://www.open-mpi.org/


Dynamic Reconfiguration of MPI Applications 205

17. Ribeiro, F.S., Nascimento, A.P., Boeres, C., Rebello, V.E.F., Sena, A.C.: Auto-
nomic malleability in iterative MPI applications. In: Computer Architecture and
High Performance Computing (SBAC-PAD), pp. 192–199 (2013)

18. Rodŕıguez, G., Mart́ın, M.J., González, P., Touriño, J., Doallo, R.: CPPC: a
compiler-assisted tool for portable checkpointing of message-passing applications.
Concurr. Comput. Pract. Exper. 22(6), 749–766 (2010)

19. Rodŕıguez, M., Cores, I., González, P., Mart́ın, M.J.: Improving an MPI
application-level migration approach through checkpoint file splitting. In: Com-
puter Architecture and High Performance Computing (SBAC-PAD), pp. 33–40
(2014)

20. Vadhiyar, S.S., Dongarra, J.J.: SRS - a framework for developing malleable and
migratable parallel applications for distributed systems. Parallel Process. Lett.
13(02), 291–312 (2003)

21. Wang, C., Mueller, F., Engelmann, C., Scott, S.L.: Proactive process-level live
migration and back migration in HPC environments. J. Parallel Distrib. Comput.
72(2), 254–267 (2012)

22. Weatherly, D.B., Lowenthal, D.K., Nakazawa, M., Lowenthal, F.: Dyn-MPI: sup-
porting MPI on non dedicated clusters. In: ACM/IEEE Conference on High Per-
formance Networking and Computing (SC), p. 5 (2003)


	An Application-Level Solution for the Dynamic Reconfiguration of MPI Applications
	1 Introduction
	2 Related Work
	3 Reconfiguration of MPI Applications
	3.1 Triggering the Reconfiguration Operation
	3.2 Scheduling Algorithm
	3.3 Migration Operation

	4 Experimental Results
	5 Concluding Remarks
	References


