
Versat, a Minimal Coarse-Grain
Reconfigurable Array

João D. Lopes and José T. de Sousa(B)

INESC-ID/IST, University of Lisbon, Lisbon, Portugal
jose.desousa@inesc-id.pt

Abstract. This paper introduces Versat, a minimal Coarse-Grain
Reconfigurable Array (CGRA) used as a hardware accelerator to opti-
mize performance and power in a heterogeneous system. Compared to
other works, Versat features a smaller number of functional units and
a simpler controller, mainly used for reconfiguration and data transfer
control. This stems from the observation that competitive acceleration
can be achieved with a smaller array and more flexible reconfigurations.
Partial reconfiguration plays a central role in Versat’s runtime reconfig-
uration scheme. Results on core area, frequency, power and performance
are presented and compared to other implementations.

Keywords: Reconfigurable computing · Coarse-grain reconfigurable
arrays · Heterogeneous systems

1 Introduction

A suitable type of reconfigurable hardware for embedded devices is the Coarse-
Grain Reconfigurable Array (CGRA) [1]. Fine grain reconfigurable fabrics, such
as FPGAs, are often too large and power hungry to be used as embedded cores.
It has been demonstrated that certain algorithms can run orders of magnitude
faster and consume lower power in CGRAs when compared to CPUs (see for
example [2]).

A CGRA is a collection of programmable functional units and embedded
memories, interconnected by programmable switches for forming hardware data-
paths that accelerate computations. The reconfigurable array is good for accel-
erating program loops with data array expressions in their bodies. However, the
parts of the program which do not contain these loops must be run on a more
conventional processor. For this reason, CGRA architectures normally feature a
processor core. For example, the Morphosys architecture [3] uses a RISC proces-
sor and the ADRES architecture [4] uses a VLIW processor.

This work started with 3 observations: (1) because of Amdahl’s law, acceler-
ating kernels beyond a certain level does not result in significant overall accel-
eration and energy reduction of the application; (2) the kernels that are best
accelerated in CGRAs do not require much control code by themselves; (3) the
compute intensive inner loops that are normally accelerated in CGRAs tend to
c© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 174–187, 2017.
DOI: 10.1007/978-3-319-61982-8 17



Versat, a Minimal Coarse-Grain Reconfigurable Array 175

cluster in the code. About observation (2), note that typical target kernels are
transforms (IDCT, FFT, etc.), filter banks (FIR, IIR, etc.), and others. Obser-
vation (3) refers to loop nests and loop sequences where the data produced in
one loop is consumed in the next loop. If the hardware does not support these
constructs, the associated processor needs to reconfigure the array after each
inner loop, and the resulting time overhead may cancel the acceleration gains.
Previous work has targeted this problem by proposing CGRAs that can support
nested loops. For example, the approach in [5] supports nested loops using spe-
cial address generation units and has been successfully used in commercial audio
codec applications.

This paper extends the work in [5] to sequences of loop nests, achieving
further acceleration and increasing the granularity of the tasks handled by the
reconfigurable array. We propose a new architecture, Versat, which uses a rela-
tively small functional unit array coupled with a very simple controller. A smaller
array limits the size of the data expressions that can be mapped to the CGRA,
forcing large expressions to be broken down into smaller expressions executed
sequentially in the CGRA. Therefore, Versat requires mechanisms for handling
large numbers of configurations efficiently and flexibly.

Versat cores are to be used as co-processors in an embedded system con-
taining one or more commercial application processors. The advantage of having
one or more Versat cores in the system is to optimize performance and energy
consumption during the execution of compute intensive tasks. Application pro-
grammers can use the Versat cores by calling procedures that get executed on
the Versat cores. For that purpose, a Versat API library must be linked with
the host application. The API library is created by Versat programmers. In this
way, the software and programming tools of the CGRA are clearly separated
from those of the application processor.

A compiler for Versat has been developed. The compiler is simple as we have
restricted its functionality to the tasks that CGRAs can do well. The syntax
of the programming language is a small subset of the C/C++ language, with a
semantics that enables the description of hardware datapaths. The compiler is
not described in this paper whose main thrust is the description of the architec-
ture and VLSI implementation.

In order to make the reconfiguration process efficient, full reconfiguration of
the array should be avoided. In this work we exploit the similarity of different
CGRA configurations by using partial reconfiguration. If only a few configuration
bits differ between two configurations, then only those bits are changed. Most
CGRAs are only fully reconfigurable [3,4,6] and do not support partial recon-
figuration. The disadvantage of performing full reconfiguration is the amount
of configuration data that must be kept and/or fetched from external memory.
Previous CGRA architectures with support for partial reconfiguration include
RaPiD [7], PACT [8] and RPU [2]. RaPiD supports dynamic (cycle by cycle)
partial reconfiguration for a subset of the configuration bitstream, using smaller
stored contexts. In PACT, one of its processors has access to the configura-
tion memory of the array, but using this feature for partial reconfiguration is



176 J.D. Lopes and J.T. de Sousa

Fig. 1. Versat top-level entity.

reportedly slow and users are recommended to avoid it and resort to full reconfig-
uration whenever possible. In RPU, a kind of partial reconfiguration called Hier-
archical Configuration Context is proposed to mitigate these problems. In this
work we propose a configuration register file using registers of variable length,
organized in configuration spaces and low-level configuration fields, where each
register corresponds to a configuration field, and we allow random access to the
configuration fields. This scheme is more flexible than the hierarchical organiza-
tion of the configuration contexts in [2].

2 Architecture

The top level entity of the Versat module is shown in Fig. 1. Versat is designed
to carry out computations on data arrays using its Data Engine (DE). To per-
form these computations the DE needs to be configured using the Configuration
Module (CM). A DMA engine is used to transfer the data arrays from/to the
external memory. It is also used to initially load the Versat program and to move
CGRA configurations to/from external memory.

The Controller executes programs stored in the Program Memory (8 kB).
A program executes an algorithm, coordinating the reconfiguration and execu-
tion of the DE and the DMA. The controller accesses the modules in the system
by means of the Control Bus.

Versat has a host interface and a memory interface. The host interface is used
by a host system to command the loading and execution of programs. The host and
the Controller communicate using the Control Register File (CRF). The memory
interface is used to access data from an external memory using the DMA.

2.1 Data Engine

The Data Engine (DE) has a fixed topology using 15 functional units (FUs) as
shown in Fig. 2. It is a 32-bit architecture and contains the following FUs: 4
dual-port 8 kB embedded memories, 4 multipliers, 6 Arithmetic and Logic Units



Versat, a Minimal Coarse-Grain Reconfigurable Array 177

Fig. 2. Data engine.

(ALUs) and 1 barrel shifter. The Controller can read and write the output regis-
ter of the FUs and can read and write to the embedded memories. In this work,
embedded memory blocks are treated like any other FU by our mapping tool.

Each FU contributes its 32-bit output(s) to a wide Data Bus of 19× 32 bits,
and is able to select one 32-bit data bus entry for each of its inputs. The FUs
read their configurations from the Config Bus. Each FU is configured with an
operation and input selections. The coarse-grain reconfiguration means that there
is a fixed set of operations available in the accelerator. For example, an ALU
can be configured to perform addition, subtraction, logical AND, maximum and
minimum, etc.

In Fig. 3, it is shown in detail how a particular FU is connected to the control,
data and configuration busses. The FU is labeled FU5 and it is of type ALU. It is
a pipelined ALU with 2 pipeline stages. The last pipeline stage stores the output
of the ALU (output register). FU5 is selecting one of the 19 sub-busses of the
Data Bus for each of its two inputs. Although Fig. 2 shows the Config Bus going
to all FUs, in fact only the configuration bits of each FU are routed to that FU.
These bits are called the configuration space of the FU. The configuration space
is further divided in configuration fields with specific purposes. In Fig. 3, the
example ALU has a configuration space with 3 configuration fields: the selection
of the ALU’s input A (5 bits), the selection of the ALU’s input B (5 bits) and
the selection of the ALU’s function (4 bits). Our partial reconfiguration scheme
works at the field level. Fields can be reconfigured one by one by the Controller.
The ALU output (pipeline register 1) can be read or written by the Controller
as shown in the figure. This feature enables a functional unit to be used as a
shared register between the Controller and the DE.

From the explanation in the previous paragraph, one concludes there are
direct connections from any FU to any other FU. This complete mesh topology
may be unnecessary but it greatly simplifies the compiler design as it avoids
expensive place and route algorithms commonly used in CGRAs. More com-
pact interconnect may be developed in the future simultaneously with compiler
improvements. In any case, the interconnect consumes very little power since
Versat is reconfigured only after a complete program loop is executed in the
DE. Moreover our IC implementation results indicate that only 4.04% of the
core area is occupied by the full mesh interconnect, which means there is little



178 J.D. Lopes and J.T. de Sousa

Fig. 3. Functional unit detail.

motivation to optimize the interconnect. One could argue that a full mesh topol-
ogy also limits the frequency of operation. However, our IC implementation is
able to work at a maximum frequency of 170 MHz in a 130 nm process, while
many target applications that we have investigated, for example, in the multi-
media space, are required to work at even lower frequencies because of power
and energy constraints.

Each configuration of the DE corresponds to one or more hardware data-
paths. Datapaths can have parallel execution lanes to exploit Data Level Paral-
lelism (DLP) or pipelined paths to exploit Instruction Level Parallelism (ILP).
Given enough resources, multiple datapaths can operate in parallel in Versat.
This corresponds to having Thread Level Parallelism (TLP). In Fig. 4, three
example hardware datapaths that can be mapped onto the DE are illustrated.
Datapath (a) implements a pipelined vector addition. Despite the fact that a
single ALU, configured as an adder, is used, ILP is being exploited: the memory
reads, addition operation and memory write are being executed in parallel for
consecutive elements of the vector. Datapath (b) implements a vectorized version
of datapath (a) to illustrate DLP. The vectors to be added spread over memories
M0 and M2, so that 2 additions can be performed in parallel. ILP and DLP can
be combined to yield very parallel datapaths such as datapath (c), whose func-
tion is to compute the inner product of two vectors. Four elements are multiplied
in parallel and the results enter an adder tree followed by an accumulator.

Each memory port is equipped with an Address Generator Unit (AGU) to
access data from the embedded memories during the execution of a program
loop. The discussion of the details of the AGU falls out of the scope of this
paper. Our scheme is similar to the one described in [9] in the sense that both
schemes use parallel and distributed AGUs. We will simply state the following



Versat, a Minimal Coarse-Grain Reconfigurable Array 179

Fig. 4. Data engine datapaths.

properties of our AGUs: (1) two levels of nested loops are supported (reconfigu-
ration after each inner loop would cause excessive reconfiguration overhead); (2)
the AGUs can start execution with a programmable delay, so that paths with
different accumulated latencies can be synchronized; (3) one AGU can be started
independently of the other AGUs, which may be at rest or running.

The third property is instrumental for exploiting TLP, which can be illus-
trated using datapath (b) in Fig. 4. Suppose one block of vector elements to be
added are placed in memory M0, and that address generators M0-A, M0-B and
M1-A are started right away (Thread 1). In parallel, one can move the next block
to memory M2 and start AGUs M2-A, M2-B and M1-B (Thread 2). Then the
Controller can monitor the completion of Thread 1 in order to restart it with a
new vector block, and then monitor the completion of Thread 2 to also restart
it with a new block. By alternately managing Thread 1 and Thread 2, vectors
that largely exceed the capacity of the Versat memories can be processed in a
continuous fashion.

2.2 Configuration Module

The set of configuration bits is organized in configuration spaces, one for each FU.
Each configuration space may contain several configuration fields. All configura-
tion fields are memory mapped from the Controller point of view. Thus, the Con-
troller is able to change a single configuration field of a functional unit by writing
to the respective address. This implements partial reconfiguration. Configuring a
set of FUs results in a custom datapath for a particular computation.

The Configuration Module (CM) is illustrated in Fig. 5 with a reduced number
of configuration spaces and fields for simplicity. It contains a variable length con-
figuration register file, a configuration shadow register and a configuration mem-
ory. The configuration shadow register holds the current configuration of the DE,



180 J.D. Lopes and J.T. de Sousa

Fig. 5. Configuration module.

which is copied from the main configuration register whenever the Update signal
is asserted. In this way, the configuration register can be changed while the DE is
running. Figure 5 shows 5 configuration spaces, FU0 to FU4, where each FUj has
configuration fields FUj i. Note that, unlike what is suggested by the figure, the
FUj i fields do not have necessarily the same length (number of bits). A configura-
tion memory that can hold 5 complete configurations is also shown. In the actual
implementation the configuration word is 660 bits wide, there are 15 configuration
spaces, 110 configuration fields in total and 64 configuration memory positions.

Still referring to Fig. 5, if the CM is being addressed by the Controller, the
decode logic checks whether the configuration register file or the configuration
memory is being addressed. The configuration register file accepts write requests
and ignores read requests. The configuration memory interprets read and write
requests as follows: a read request causes the addressed contents of the configura-
tion memory to be read into the configuration register file; a write request causes
the contents of the configuration register file to be stored into the addressed posi-
tion of the configuration memory. This is a mechanism for saving and loading
entire configurations in a single clock cycle with all configuration fields concate-
nated in a 660-bit word.

The CM has a special address that, when the Controller writes anything to
it, all bits of the configuration register are cleared in one clock cycle. The default
values of the configuration fields are coded with the value zero, so that this action
restores the default configuration. Building a configuration of the DE from the
default configuration is about 40% faster than writing all fields because many
fields are left with their default values. The default values have been chosen so
that they have a high likelihood of being used.

In most applications there is also a high likelihood that one configuration will
be reused again, as is or with little modifications. Thus, it is useful to save certain
configurations in the configuration memory to later load them and eventually
tweak them.



Versat, a Minimal Coarse-Grain Reconfigurable Array 181

Fig. 6. Controller.

2.3 Controller

Versat uses of a minimal controller for reconfiguration, data transfer and simple
algorithmic control. The instruction set contains just 16 instructions for the
following actions: (1) loads/stores; (2) basic logic and arithmetic operations; (3)
branching. Versat has an accumulator architecture with a 2-stage pipeline shown
in Fig. 6. The controller architecture contains 3 main registers: the program
counter (PC), the accumulator (RA) and the address register (RB), which is
used in indirect loads and stores. There is only one instruction type as illustrated
in the figure. The controller is the master of a simple bus called the Control Bus,
whose signals are also explained in the figure.

The instruction set is outlined in Table 1. Brackets are used to represent
memory pointers. For example, (Imm) represents the contents of the memory
position whose address is Imm.

Table 1. Instruction set.

Mnemonic Opcode Description

nop 0x0 No operation; PC = PC+1

rdw 0x1 RA = (Imm); PC = PC+1

wrw 0x2 (Imm) = RA; PC = PC+1

rdwb 0x3 RA = (RB); PC = PC+1

wrwb 0x4 (RB) = RA; PC = PC+1

beqi 0x5 RA == 0? PC = Imm: PC = PC+1; RA = RA−1

beq 0x6 RA == 0? PC = (Imm): PC = PC+1; RA = RA−1

bneqi 0x7 RA != 0? PC = Imm: PC = PC+1; RA = RA−1

bneq 0x8 RA != 0? PC = (Imm): PC = PC+1; RA = RA−1

ldi 0x9 RA = Imm; PC = PC+1

ldih 0xA RA[31:16] = Imm; PC = PC+1

shft 0xB RA = Imm < 0? RA = RA << 1: RA=RA >> 1

add 0xC RA = RA+(Imm); PC = PC+1

addi 0xD RA = RA+Imm; PC = PC+1

sub 0xE RA = RA−(Imm); PC = PC+1

and 0xF RA = RA&(Imm); PC = PC+1



182 J.D. Lopes and J.T. de Sousa

2.4 Qualitative Comparison with Other Architectures

Versat has some distinctive features which can not be found in other architec-
tures: (1) it has a small number of processing elements (PEs) organized in a full
mesh structure; (2) it has a fully addressable configuration register combined
with a configuration memory to support partial configuration; (3) it has a ded-
icated controller for reconfiguration, DMA management and simple algorithm
control – no RISC [3] or VLIW [4] processors are used.

CGRAs started as 1-D structures [7] but more recently square mesh 2-D
PE arrays are more common [2–4]. However, the problem with square mesh
topologies is that many PEs end up being used as routing resources, reducing the
number of PEs available for computation and requiring sophisticated mapping
algorithms [10]. Thus, we decided to use a rich interconnect structure and fewer
PEs. As explained before, for a small number of PEs, the silicon area occupied by
the full mesh interconnect is less than 5% and the limits placed in the frequency
of operation are not as stringent as the ones imposed by the energy budgets of
certain applications.

It is also important to keep the configuration time to a minimum. As
explained in [2], the reconfiguration time in CGRAs can easily dominate the
total execution time. To counter this effect we have decided to take partial
reconfiguration to the extreme of using a fully addressable configuration regis-
ter. This keeps the reconfiguration time to a minimum and contrasts with the
more moderate hierarchical reconfiguration scheme proposed in [2].

Since it is crucial to have the reconfigurations done quickly, we have decided
to include a small dedicated controller with just 16 instructions and low IO
latency. It turned out that this controller also proved useful in managing data
transfers and running the algorithms of interesting kernels such as the FFT
kernel. In other architectures [2–4], more comprehensive processors are used.
Our approach reduces the silicon area and power consumption of the core but
also limits the complexity of the algorithms that can be run on it. Thus, we rely
on other processors that exist in the system to run more complex algorithms,
and we restrict Versat to be a kernel accelerator only.

3 Programming

The Versat controller can be programmed using a small C/C++ subset using
the Versat compiler. Certain language constructs are interpreted as DE config-
urations and the compiler automatically generates instructions that write these
configurations to the CM. The Versat controller can also be programmed in
assembly language, given its easy to apprehend structure. To the best of our
knowledge, Versat is the only CGRA that can be programmed in assembly.
Despite its simplicity, the Versat controller is able to execute rather complex
kernels autonomously.

The purpose of this paper is to describe the Versat architecture, not the
Versat programming tools. However, after describing the Controller, it is useful
to show an example program to illustrate the features of the C++ subset that



Versat, a Minimal Coarse-Grain Reconfigurable Array 183

int main(){

//initiate data transfer into Versat using DMA

dma.config(1024, 256, 256, 1);

dma.run();

//clear configuration register and create new configuration

de.clearConfig();

for(j = 0; j < 128; j++)

mem1A[j] = mem0A[j*2] + mem0B[1+j*2];

//wait for data transfer to finish

dma.wait();

//run the data engine

de.run();

//configure DMA to transfer result back to memory

dma.config(2048, 2048+128, 256, 2);

//wait for data engine to finish

de.wait(mem1A);

//transfer result back to memory using DMA

dma.run();

dma.wait();

}

Fig. 7. Example code.

can be used. The chosen example is the interleaved vector addition program
shown in Fig. 7. Comments are added to help understand the code.

Note that the Versat C/C++ dialect does not yet support object or variable
declarations. All objects and variables that can be used are predefined. For loops
with expressions involving memory ports are interpreted as DE configurations
and trigger partial reconfigurations. Two nested loops and multiple expressions
in the loop body are also supported. Whenever possible, the compiler keeps
track of the current state of the configuration register to perform a minimal
number of partial reconfigurations needed to prepare the next configuration.
Partial reconfigurations generate store instructions in the assembly code, one per
configuration field. In many practical situations, the configurations are generated
in a program loop where, in each iteration, only a few configuration fields change.
A configuration generation loop has a much smaller code footprint than storing
all the configurations in memory.



184 J.D. Lopes and J.T. de Sousa

4 Results

Versat has been designed using a UMC 130 nm process. Table 2 compares Versat
with a state-of the-art embedded processor and two other CGRA implemen-
tations. The Versat frequency and power results have been obtained using the
Cadence IC design tools. The power figures have been obtained using the node
activity rate extracted from simulating an FFT kernel.

Table 2. Integrated circuit implementation results.

Core Node (nm) Area (mm2) RAM (kB) Freq. (MHz) Power (mW)

ARM Cortex A9 [11] 40 4.6 65.54 800 500

Morphosys [3] 350 168 6.14 100 7000

ADRES [4] 90 4 65.54 300 91

Versat 130 4.2 46.34 170 99

Because the different designs use different technology nodes, to compare the
results in Table 2, we need to use a scaling method [12]. A standard scaling
method is to assume that the area scales with the square of the feature size and
that the power density (W/m2) remains constant at constant frequency. Doing
that, we conclude that Versat is the smallest and least power hungry of the
CGRAs. If Versat were implemented in the 40 nm technology, it would occupy
about 0.4 mm2, and consume about 44 mW running at a frequency of 800 MHz.
That is, Versat is 10× smaller and consumes about 11× lower power compared
with the ARM processor.

The ADRES architecture is about twice the size of Versat. Morphosys is the
biggest one, occupying half the size of the ARM processor. These differences
can be explained by the different capabilities of these cores. While Versat has a
16-instruction controller and 11 FUs (excluding the memory units), ADRES has
a VLIW processor and a 4x4 FU array, and Morphosys has a RISC processor
and an 8x8 FU array.

A prototype has been built using a Xilinx Zynq 7010 FPGA, which features a
dual-core embedded ARM Cortex A9 system. Versat is connected as a peripheral
of the ARM cores using its AXI4 slave interface. The ARM and Versat cores are
connected to an on-chip memory controller using their AXI master interfaces.
The memory controller is connected to an off-chip DDR module. This FPGA
prototype has only been used to measure the execution time in clock cycles.
The performance and energy estimates discussed in the next paragraph have
been obtained using the measured execution times combined with frequency
and power estimates extrapolated from the results in Table 2.

Results for a set of kernels are summarized in Table 3. For both ARM and
Versat, the program has been placed in on-chip memory and the data in an
external DDR memory device. The Versat Total cycle counts include data trans-
fer, processing, control and reconfiguration. The Versat Unhidden cycle counts



Versat, a Minimal Coarse-Grain Reconfigurable Array 185

means the control and reconfiguration cycles that do not occur in parallel with
the DE or DMA. The average number of FUs used and the code size are given
for each kernel. The speedup and energy ratio have been obtained assuming the
ARM is running at 800 MHz and Versat is running at 600 MHz in the 40 nm
technology. The energy ratio is the ratio between the energy spent by the ARM
processor alone and the energy spent by an ARM/Versat combined system using
the power figures in Table 2.

Table 3. Kernel benchmark results.

Kernel ARM Cortex Versat cycles Versat Versat code Speedup Energy ratio

A9 cycles Total Unhidden FUs used size (bytes)

vec add 14726 4517 36 3 152 2.45 2.29

iir1 18890 7487 26 5 220 1.89 1.77

iir2 24488 10567 26 8 332 1.74 1.62

cip 25024 6673 26 10 408 2.81 2.63

fft 394334 16705 624 8.5 3028 17.70 16.55

In Table 3, vec add is a vector addition, iir1 and iir2 are 1st and 2nd
order IIR filters, cip is a complex vector inner product and fft is a Fast Fourier
Transform. This kernel set occupies only 50% of the 8 kB program memory. All
kernels operate on Q1.31 fixed-point data with vector sizes of 1024. The first 4
kernels use a single Versat configuration and the data transfer size dominates.
For example, the vec add kernel processing time is only 1090 cycles and the
remaining 3427 cycles account for data transfer and control. The FFT kernel is
more complex and goes through 43 Versat configurations generated on the fly
by the Versat controller. The processing time is 12115 cycles and the remaining
4590 cycles is for data transfer and control. It should be noted that most of the
reconfiguration and control is done while the data engine is running. In fact, only
605 cycles are unhidden reconfiguration and control cycles in the FFT kernel. In
general, this is true for all kernels: unhidden reconfiguration and control cycles
are about 1–5% of the total time. The number of FUs used is low for simple
kernels like vec add and iir1 (which could have used a smaller array) but is
over 50% for more complex kernels. However, the simpler kernels could have
been designed in a more parallel fashion, using more FUs. For example, vec add
can use multiple adders in parallel but only one has been instantiated. These
results show good performance speedups and energy savings, even for single
configuration kernels.

Most of the 43 FFT configurations derive from two basic configurations that
are partially changed many times. The two configurations implement a radix-2
FFT butterfly: one configuration performs the complex product and the other
configuration performs the two complex additions in a butterfly. The variations of
these configurations alternate the source and destination memories for the data
(ping-pong processing), and the address generation constraints to read and write
the data values for the various stages and blocks of the FFT. On average only 26%
of the array is reconfigured each time. When the array is being configured from



186 J.D. Lopes and J.T. de Sousa

the default values, on average 68% of the bits need be written. There is also one
configuration to copy the FFT coefficients between two memories (so that they
can be accessed from 4 memory ports simultaneously) and to reorder the data by
bit reversing the addresses. Partial reconfiguration plays a key role in the FFT
example: with full reconfiguration, the execution time grows about 7%, as there
are many short loops that are not long enough to overlap with reconfiguration. If
full reconfiguration, with all configurations produced at compile time, were used,
like in [2–4], the FFT code would be 2.2× larger, penalizing memory bandwidth
and capacity.

We can compare Versat with Morphosys since it is reported in [13] that
the processing time for a 1024-point FFT is 2613 cycles. Compared with the
12115 cycles taken by Versat, this means that Morphosys was 4.6× faster. This
is not surprising since Morphosys has 64 FUs compared to 11 FUs in Versat.
However, our point is that an increased area and power consumption is not
justified when the CGRA is integrated in a real system. Note that, if scaled to
the same technology, Morphosys would be 5× the size of Versat. Unfortunately,
comparisons with the ADRES architecture have not been possible, since we have
not found any cycle counts published, despite ADRES being one of the most cited
CGRA architectures.

It would be nice if we implemented the other approaches in our setup to have a
fairer comparison, instead of using published results. However, those are complex
cores and implementing them ourselves, besides representing a formidable effort,
would carry the risk of us missing some important details that could distort the
results. It would also be nice to study Versat’s performance in a real application,
where it has to be reconfigured periodically to different kernels. We leave that
for a more mature state of our evaluation.

5 Conclusion

In this paper we have presented Versat, a minimal CGRA with 4 embedded
memories and 11 FUs, a fine partial reconfiguration scheme and a basic 16-
instruction controller.

Versat has fewer processing elements compared to other CGRAs (eg. RPU [2])
but uses a full mesh interconnect topology. Another unique feature is a fully
addressable configuration register combined with a configuration memory to
support partial configuration. The simple Versat controller is used for recon-
figuration, DMA management and simple algorithm control, dispensing with
complex RISC or VLIW processors proposed in other approaches. The controller
generates Versat configurations on the fly, instead of using pre-compiled config-
urations like other CGRAs. This saves configuration storage space and memory
bandwidth. Versat can be programmed in a C/C++ dialect and can be used by
host processors by means of an API containing a set of useful kernels.

Results on a VLSI implementation show that Versat is competitive in terms
of silicon area (2× smaller than ADRES [4]), and energy consumption (3.6×
lower compared with Morphosys [3]). Performance results show that a system



Versat, a Minimal Coarse-Grain Reconfigurable Array 187

combining a state-of-the-art embedded processor and the Versat core can be
17× faster and more energy efficient than the embedded processor alone when
running the FFT algorithm.

Acknowledgment. This work was supported by national funds through Fundação
para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013.

References

1. De Sutter, B., Raghavan, P., Lambrechts, A.: Coarse-grained reconfigurable array
architectures. In: Bhattacharyya, S.S., Deprettere, E.F., Leupers, R., Takala, J.
(eds.) Handbook of Signal Processing Systems, pp. 449–484. Springer, Heidelberg
(2010)

2. Liu, L., Wang, D., Zhu, M., Wang, Y., Yin, S., Cao, P., Yang, J., Wei, S.: An energy-
efficient coarse-grained reconfigurable processing unit for multiple-standard video
decoding. IEEE Trans. Multimed. 17(10), 1706–1720 (2015)

3. Lee, M.H., Singh, H., Lu, G., Bagherzadeh, N., Kurdahi, F.J.: Design and imple-
mentation of the MorphoSys reconfigurable computing processor. J. VLSI Signal
Process. Syst. Signal Image Video Technol. 24, 147–164. Kluwer Academic Pub-
lishers (2000)

4. Mei, B., Lambrechts, A., Mignolet, J.-Y., Verkest, D., Lauwereins, R.: Architecture
exploration for a reconfigurable architecture template. Des. Test Comput. 22(2),
90–101 (2005)

5. de Sousa, J.T., Martins, V.M.G., Lourenco, N.C.C., Santos, A.M.D., do Rosario
Ribeiro, N.G.: Reconfigurable coprocessor architecture template for nested loops
and programming tool. US Patent 8,276,120 (2012)

6. Hartenstein, R., Herz, M., Hoffmann, T., Nageldinger, U.: Mapping applications
onto reconfigurable KressArrays. In: Lysaght, P., Irvine, J., Hartenstein, R. (eds.)
FPL 1999. LNCS, vol. 1673, pp. 385–390. Springer, Heidelberg (1999). doi:10.1007/
978-3-540-48302-1 42

7. Ebeling, C., Cronquist, D.C., Franklin, P.: RaPiD — reconfigurable pipelined data-
path. In: Hartenstein, R.W., Glesner, M. (eds.) FPL 1996. LNCS, vol. 1142, pp.
126–135. Springer, Heidelberg (1996). doi:10.1007/3-540-61730-2 13

8. Baumgarte, V., Ehlers, G., May, F., Nückel, A., Vorbach, M., Weinhardt, M.:
PACT XPP - a self-reconfigurable data processing architecture. J. Supercomput.
26(2), 167–184 (2003)

9. Farahini, N., Hemani, A., Sohofi, H., Jafri, S.M.A.H., Tajammul, M.A., Paul, K.:
Parallel distributed scalable runtime address generation scheme for a coarse grain
reconfigurable computation and storage fabric. Microprocess. Microsyst. 38(8),
788–802 (2014)

10. Liu, D., Yin, S., Liu, L., Wei, S.: Polyhedral model based mapping optimization
of loop nests for CGRAs. In: 2013 50th ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1–8 (2013)

11. Wang, W., Dey, T.: A survey on ARM Cortex A processors. http://www.cs.
virginia.edu/skadron/cs8535s11/armcortex.pdf. Accessed 6 Apr 2016

12. Huang, W., Rajamani, K., Stan, M.R., Skadron, K.: Scaling with design con-
straints: predicting the future of big chips. IEEE Micro 31(4), 16–29 (2011)

13. Kamalizad, A.H., Pan, C., Bagherzadeh, N.: Fast parallel FFT on a reconfigurable
computation platform. In: 15th Symposium on Computer Architecture and High
Performance Computing, Proceedings, pp. 254–259 (2003)

http://dx.doi.org/10.1007/978-3-540-48302-1_42
http://dx.doi.org/10.1007/978-3-540-48302-1_42
http://dx.doi.org/10.1007/3-540-61730-2_13
http://www.cs.virginia.edu/skadron/cs8535s11/armcortex.pdf
http://www.cs.virginia.edu/skadron/cs8535s11/armcortex.pdf

	Versat, a Minimal Coarse-Grain Reconfigurable Array
	1 Introduction
	2 Architecture
	2.1 Data Engine
	2.2 Configuration Module
	2.3 Controller
	2.4 Qualitative Comparison with Other Architectures

	3 Programming
	4 Results
	5 Conclusion
	References


