
A Data Parallel Algorithm
for Seismic Raytracing

Allen D. Malony(B), Stephanie McCumsey, Joseph Byrnes, Craig Rasmusen,
Soren Rasmusen, Erik Keever, and Doug Toomey

University of Oregon, Eugene, USA
malony@cs.uoregon.edu

Abstract. Dijkstra’s single-source shortest path algorithm has been
applied in seismic tomography to determine paths of minimum travel
time from all locations in a 3D earth model to sensors used in seismic
experiments. An iterative data parallel algorithm is formulated for seis-
mic tomography based on the Bellman-Ford-Moore (BFM) algorithm.
Performance is demonstrated for OpenMP on multicore processors and
OpenCL on GPUs.

Keywords: Seismic tomography · Shortest path · Data parallel

1 Introduction

A common problem in scientific computing is finding the shortest path from a
point to all other points in a given dataset. One of the most commonly used algo-
rithms was first described by Dijkstra in his famous 1959 paper, “A Note on Two
Problems in Connexion with Graphs” [4]. Given a graph of n nodes each with
cost u and a starting node s, Dijkstra’s “single-source shortest path” (SSSP)
algorithm finds the path from s to all other nodes with minimum cost. Unfortu-
nately, Dijkstra’s algorithm is difficult to implement in parallel. In this study, we
describe a data parallel algorithm for finding shortest paths on a regularly-spaced
grid of points that can compete with Dijkstra’s in seismic raytracing.

Just as doctors use x-ray tomography to image the internal structure of the
human body, scientists studying the Earth use seismic tomography to image
its interior. Seismic waves propagate through the Earth at a velocity that varies
with local temperature, composition, and the presence of magma. Understanding
how these factors vary within the Earth is crucial to understanding the dynamic
processes that shape the planet. The method works by measuring the arrival
times of seismic waves from a source of seismic radiation, often an earthquake
or an explosion, and comparing the observed arrival times to the arrival times
predicted with a starting model. Perturbations to the starting model are then
solved by minimizing the misfit between the predicted and measured arrivals
times, generally with one of several variations on a least-squares approach [10].

In many cases, perturbations to the starting model are large enough to change
the geometric ray paths of the first-arriving waves [15]. Ray paths for the new
c© Springer International Publishing AG 2017
I. Dutra et al. (Eds.): VECPAR 2016, LNCS 10150, pp. 89–98, 2017.
DOI: 10.1007/978-3-319-61982-8 10

90 A.D. Malony et al.

model must be calculated before new perturbations to the model are calculated.
This process increases the computation time of the algorithm from minutes to
many hours. For example, Bezada et al. [2] implemented Dijkstra’s algorithm
for a tomographic study of the upper mantle beneath Spain and Morocco. While
the improved results settled a long-standing controversy regarding the tectonic
history of the Western Mediterranean Ocean, Dijkstra’s algorithm had to be run
for 322 starting points over 8 iterations. A significant amount of computing time
was used for this purpose.

In general, reducing computation time is necessary to improve seismic tomog-
raphy for several reasons. Seismic tomography is an ill-posed inverse problem,
and several subjective parameters must be chosen to define the inverse problem.
Since these parameters influence the final model, many inversions employing
different parameter values must be analyzed before reliable inferences about
structures inside the Earth can be made. The resolving power of the available
data must also be explored, often through the inversion of many synthetic data
sets. Finally, the computation time taken by Dijkstra’s algorithm limits the scale
of the problems that can be addressed. Efficiency of the shortest path problem
must be improved for application to modern tomographic algorithms.

In this study, we present an alternative algorithm to that of Dijkstra [4] that
is more amenable to parallelization. The algorithm’s origin goes back to the
famous Bellman-Ford-Moore (BFM) [1,6,8] algorithms which iterates to deter-
mine shortest paths. In contrast to Dijkstra’s direct solution, ours then is an
indirect computation that must iterate to reach a converged state. Neverthe-
less, the significant increase in parallelism enabled by the algorithm translates
to overall reductions in execution times, as demonstrated for applications writ-
ten with OpenMP and OpenCL. More importantly, the algorithm will hopefully
expand the scale of the problems that can be addressed with seismic tomography
and aid in the rapid development of high quality models of seismic velocity.

2 Stingray

Fig. 1. Visualization of ray paths in a 2D
velocity model.

Moser’s formulation of the Dijkstra’s
shortest-path (DSP) method for seis-
mic tomography [9] as implemented by
Toomey et al. [15] is referred to in this
paper as Stingray-DSP. Moser’s app-
roach represents the seismic velocity of
a region of the Earth by a 3D grid of
N = Nx ×Ny ×Nz points. The objec-
tive is to find the shortest path from
a starting point s to all other points p
in the grid. This is done by initializing
the travel time to s at all points p to
∞, and the travel time at point s to
zero. The travel time to all the points

A Data Parallel Algorithm for Seismic Raytracing 91

in a neighborhood near s are then calculated along straight line paths. (The
travel time between any 2 points p and q is a function of the velocity values at
p and q and the distance between them.) The neighborhood of points used is
called the “forward star” for s, FS(s). In this first step, the infinite travel times
for all the points in FS(s) are replaced by the travel time from s.

Once the travel time to all of the points within FS(s) are found, the point p
with the minimum travel time from s is identified. The algorithm moves to p and
then the travel times for FS(p) are found. This is the standard DSP step. Again,
only the minimum travel time for each point in FS(p) is kept. Travel times along
paths that are not minimum time are discarded. The algorithm continues with
the next point q with minimum travel time which has not yet had a forward star
centered on it. The process is repeated until a forward star had been centered
at every point in the velocity model.

The accuracy of the Moser method primarly depends on how finely the model
is discretized and how many points are included in the forward star. The error
varies with both these quantities because both control how the angles of the
ray paths leaving the center of the forward star are discretized. In pratice, we
generally use a forward star of radius 71, with certain points removed that do not
effect the final accuracy of the solution [7]. In practice, a total of 818 points are
included in the reduced forward star of size 7. Figure 1 shows an example of the
fidelity of ray paths that can be obtained with Stingray-DSP with an 818-point
forward star resolution.

Various modifications to the algorithm are often to made to accommodate
the scientific problem being addressed. Seismic velocities are often anisotropic,
that is, the seismic velocity depends not only on local properties of the rock
but on the direction of the ray path. Three extra arrays must be stored in
addition to the seismic velocity (the fractional magnitude of anisotropy, and
the dip and azimuth of the fast direction) to compute anisotropic velocities, but
the algorithm is essentially unchanged. Many starting points can be initialized at
once to study the radiation of waves from an interface or a plane wave instead of a
point source. Essentially, the solution for each starting point becomes a separate
run of the algorithm. Finally, the choice of how the velocities are calculated
along a ray path can be varied based on the complexity of the problem. Often,
the velocity along a single ray is found by averaging the velocity at the end
points. However, if velocities vary on a length scale shorter than the size of the
forward star, a more expensive approach of integrating the velocities along the
ray can be used. The run times given here all use end point averaging, which is
appropriate for most geologic applications [2].

1 A forward star around point p of radius r will include all grid points within a distance
of δ ∗ r from p, where δ is the grid point unit spacing. Some of those points will be
redundant (e.g., colinear points) and can be removed from consideraton.

92 A.D. Malony et al.

3 Stingray Iterative Constraint Convergence Algorithm

The Stingray-DSP algorithm gives seismic modeling scientists high-quality ray-
tracing results compared to other methods. However, there are inherent limita-
tions on parallelism in the algorithm that prevent high-performance computing
(HPC) implementations. At each step of the algorithm, it is necessary to find
the leaf point on the unfolding spanning tree that has the minimum travel time.
This point must be the next one to expand, effectively sequentializing the control
path. It is possible to execute the Stingray-DSP algorithm on multiple starting
points at the same time, thus taking advantage of multiple computing resources.
Over a hundred starting points for a single velocity model are used routinely in
our work. Replicated parallelism is beneficial to geological scientists for through-
put purposes, but it does not produce a faster single starting point solution. Also,
very large velocity models could exceed the memory bounds of a single process-
ing node, requiring a splitting of the Stingray-DSP computation across nodes.
In general, DSP algorithms face fundamental performance inefficiencies when
executing in distributed memory systems.

It is possible to reformulate seismic raytracing as an iterative constraint con-
vergence (ICC) problem, where the constraint is the minimization of a travel
time metric. Let V be the velocity field defined on a 3D grid of points and T the
travel times from each grid point to a starting point s. Assuming the final travel
times are known for each model point p, T (p), they must satisfy the constraint:

T (p) = min(T (q) + Delay(p, q)), ∀ q ∈ FS(p) (1)

where FS(p) is the “forward star” set of points of p and Delay(p, q) is the
seismic time delay (determined by the velocity values, plus additional physcial
properties, in the case of anisotropic analysis) at p and q. The reason is that the
minimum travel time path from p to s must pass through a point, r, in FS(p),
and r must be the point in FS(p) whose own travel time to s, plus the delay
from p to r is the smallest. Any other point can not be on the minimum travel
time path from p to s. Based on this final constraint, an interative procedure to
update the travel times can be specified as follows:

T0(p) = ∞ ∀ p �= s, T0(s) = 0 (2)

Ti+1(p) = min(Ti(q) + Delay(p, q)) ∀ q ∈ FS(p) (3)

where Ti(p) and Ti+1(p) are the travel times of p to s at steps i and i+1, respec-
tively. The procedure continues until Ti+1(p) = Ti(p) ∀ p. Note, convergence is
guaranteed because the travel times at each point are monotonically decreasing.

The Stingray-ICC algorithm formulated in this manner is highly data-
parallel, in that all points can be updated simultaneously. However, time to
solution will depend on how long the algorithm takes to converge. There are
three issues to consider. First, at step 0, all points have a time of ∞, except for
the starting point. Thus, much of the early computation will be irrelevant and
wasted until valid travel times radiate from the starting point. Second, the prop-
agation of valid travel times is directly correlated with the radius of the forward

A Data Parallel Algorithm for Seismic Raytracing 93

star. Geological scientists prefer forward stars with larger radii for better accu-
racy, which will radiate travel times faster and hopefully result in fewer steps for
convergence, but will also increase the computational work at each step. Third,
as the iterative algorithm gets closer to convergence, fewer travel times will be
adjusted, meaning more points will be already at their final travel times and the
computation will be redundant.

4 Parallelization Design Strategy

The highly-parallel nature of the Stingray-ICC algorithm provides an excellent
opportunity for parallelization on both multicore CPUs and manycore coproces-
sors. Ideally, we would like to articulate a parallelization design model that could
map to different execution targets. The idea is to decompose the model domain
into rectangular regions that can be worked on in parallel at each iteration step.
The regions will be defined such that they are non-overlapping, in order to elim-
inate dependencies between regions during the step-wise parallel computation.
However, between steps, exchanges between neighbor regions will be required
to update the travel times for points on the region boundaries. This is a stan-
dard domain decomposition approach with halos used for exchanging boundary
data. Typically, applications using domain decomposition will apply stencils in
updating values within a region. The forward star in Stingray-ICC is effectively
a stencil. The problem is that the 818-point forward star is a very large stencil.
This makes it more challenging.

In order to update the travel time of a single point, a region in the Stingray-
ICC domain decomposition must be at least of size 15× 15× 15 in order to hold
all of the points in the 818-point forward star. For a 150 × 150 × 150 velocity
model, this partitioning would generate 1000 regions. Once the partitioning is
done, the objective is to update every point in the region in parallel across all
regions, at each step. However, to do so, we would need to access the forward
star around every point in the region. That requires information to be exchanged
with our region neighbors to get those forward star points that are outside the
region boundary. (Only, the point in the center of the region has it entire forward
star set of points contained in the region.)

Fig. 2. Illustration of 15×15×15 region, forward
star, and 22 × 22 × 22 region with halo.

Deciding on halo size is essen-
tially a tradeoff of extra buffer
space versus when the exchanges
with neighbors must be made. To
accommodate all points in neigh-
boring regions needed to update
all points in a 15 × 15 × 15
region with a 818-point forward
star, a region + halo dimension
of 22 × 22 × 22 is necessary.
Figure 2 illustrates the decompo-
sition approach. It shows how the forward star defines the boundary overlap and
the resulting halo surrounding the region.

94 A.D. Malony et al.

The general parallelization design strategy above provides a basis for trans-
lation to target environments. In doing so, there are some additional strategies
we can apply. For instance, in multicore shared memory systems, where mul-
tithreading is used to process regions (1 thread per region), it is possible to
avoid the allocation of halos altogether by scheduling which region points are
updated when in a cooperative manner with neighbor regions. The basic idea is
illustrated in Fig. 3. Inspired by alternating direction implicit methods [5], the
top row shows how points in a region could be processed in sweeps across the
X (left), Y (middle), and Z (right) directions. (Reverse sweeps are also shown.)
By coordinating neighbor regions in synchronous sweeps, forward star points in
neighbor regions can be accessed directly without memory races. This is shown
in the bottom row for two neighbor regions in the X, Y , and Z orientations. The
strategy above could also have benefit in translation to manycore coprocessors,
but more specialization will likely be required, especially for GPU accelerators.

Fig. 3. Illustration of sweep methods for coordinated
scheduling in and between regions.

A strategy to improve
convergence is made pos-
sible by a slight addi-
tion in the Stingray-ICC
algorithm. At every step,
the algorithm updates the
travel time of a point p
by checking the travel times
and delays of the points in
its forward star. In doing
so, the following condition
might occur:

Ti(q) < Ti(p) + Delay(p, q) (4)

This means that we have discovered a better travel time for q. The strategy then
is to update q’s travel time opportunistically:

T
′
i (q) = Ti(p) + Delay(p, q)) if Ti(q) < Ti(p) + Delay(p, q) (5)

The notation T
′
i (q) is used to indicate that the update occurs in step i. The intu-

ition is that any travel time updates carry new information, potentially improv-
ing convergence rate. However, care must be taken with this strategy to ensure
that new memory race conditions are not introduced. Combining it with the
“sweeping” strategy above will help.

5 Implementation Approach

Our objective was to compare the Stingray-DSP implementation of Moser’s
method with different implementations of the Stingray-ICC algorithm. The For-
tran Stingray-DSP code runs sequentially for a velocity model and single starting
point. Travel times for multiple starting points can be solved by replicating the
Stingray-DSP execution across computing threads.

A Data Parallel Algorithm for Seismic Raytracing 95

The Stingray-ICC algorithm was implemented for both a CPU and GPU. The
CPU code was written in C with OpenMP for parallelization. The Stingray-ICC-
multistart version will execute the algorithm sequentially, but for multiple start-
ing points. This provides a close approximation to how the Stingray-DSP pro-
gram is used in practice. The Stingray-ICC-parsingle parallelizes the algorithm
for a single starting point. The Stingray-ICC-gpu program was adapted from the
original Fortran source using CoArray Fortran extensions (CAFe) to communi-
cate with and run OpenCL kernels on the GPU. CAFe allows the programmer to
explicitly allocate memory on the GPU, transfer memory between the CPU and
the GPU, and execute OpenCL kernels using coarray Fortran [12,14] syntax.
CAFe is implemented as an embedded Domain Specific Language (DSL) and
CAFe source is transformed automatically to standard Fortran [11], with wrap-
pers [13] implementing the OpenCL C library interfaces. The OpenCL kernels
implementing the Stingray-ICC-gpu algorithm were coded by hand.

6 Experimental Results

Table 1. Velocity model descriptions.

Model X Dim Y Dim Z Dim # Points

v100 100 100 100 1000000
v150 150 150 150 3375000
v200 200 200 200 8000000
v300 300 300 300 27000000
v241 241 241 51 2962131

To evaluate the performance and
scaling behavior of the Stingray-
DSP and Stingray-ICC codes,
we ran a series of experiments
on different velocity models and
sizes. These are described in
Table 1. The v100, v150, v200,
and v300 models are synthet-
ically generated by chosing a
velocity value randomly within
a velocity range for each model
point. The v241 model is taken from a real-world example. Each model is run
with 12 starting points. This is done in Stingray-DSP by replicating the code as
a separate process on each core of the CPU server. This is done in the Stingray-
ICC-multistart code with OpenMP. An additional set of experiments using the
v241 model and a single starting point were conducted with the Stingray-ICC-
parsingle for 1, 2, 4, 8, and 12 threads.

The shared memory machine used for our study was a HP ProLiant SL390 G7
server with two Intel X5650 2.66 GHz 6-core CPUs (12 cores total) and 72 GB
DDR3 memory. Two GPUs were used: a NVIDIA M2070 (448 CUDA cores,
6 GB) and NVIDIA K80 (2496 CUDA cores, 12 GB).

Figure 4 (left) shows how the performance scales for the synthetic mod-
els and different codes. The Stingray-ICC versions perform significantly better
than Stingray-DSP. Both Stingray-DSP and Stingray-ICC-multistart solve for
12 starting points, where each is run sequentially on 1 of 12 cores. Thus, these
times reflect how long a serial execution for 1 starting point would take. In con-
trast, the Stingray-ICC-gpu results also solve for 12 starting points, but one after
the other. We plot the average execution time for a single starting point for each

96 A.D. Malony et al.

Fig. 4. Performance with synthetic and real velocity models.

GPU. Note, the average number of steps to reach convergence are constant at 6
steps for Stingray-ICC-multistart, but increase from 21 (v100) to 61 (v300) for
Stingray-ICC-gpu.

The story gets more intriguing moving to the v241 model experiments.
Figure 4 (right) shows results from running Stingray-DSP and Stingray-ICC-
multistart on 12 starting points. Again, Stingray-ICC-multistart is faster and
it takes 7 steps to reach convergence for all 12 starting points. Figure 4 (right)
also plots Stingray-ICC-parsingle results for 1, 2, 4, 8, and 12 threads, run with
a single starting point. In this case, only 5 steps are needed to converge for 1
thread. However, the convergence steps increase from 2 to 12 threads (29 to 53
steps), though the time per sweep improves from 17.02 (1 thread) to 3.37 (12
threads). The increase in convergence steps nullifies the parallel performance
gains (12 threads take 178.4 seconds). Note, the GPU times for the v241 model
were less than 10 secionds.

7 Discussion

Dijkstra’s algorithm in Stingray-DSP only visits each point in the model once.
Thus, the number of steps is determined by the number of points N in the model.
In contrast, the ICC algorithm visits every vertex in each sweep of the model
until the solution converges. Thus, the ICC execution time will be determined
by the time per iteration multiplied by the number of iterations necessary for
convergence. While the Stingray-ICC implementations are running faster than
the Stingray-DSP code we have used for many years (which is certainly a welcome
surprise), we notice that the number of convergence steps increases with larger
problem sizes and more parallelism. Our goal is to scale to much larger seismic
tomography problems with data parallel methods like ICC. If we can not get the
convergence better under control, scaling limits might occur.

There is an interesting tradeoff in parallelism and convergence. We see the
time per iteration decreasing in the v241 model experiments with Stingray-ICC-
parsingle. However, we believe the convergence steps increase because the sweep

A Data Parallel Algorithm for Seismic Raytracing 97

algorithm becomes more localized for each core and therefore less effective in
propagating knowledge about shortest delay paths to its neighbors. Performance
will improve with greater degrees of parallelism as long as the per iteration time
reduces fast enough to offset more convergence steps. From the trajectory of the
graph, we believe that great numbers of cores (e.g., as on the Xeon Phi) will
allow OpenMP to obtain faster execution times.

Clearly, the Stingray-ICC-gpu execution times on the two GPUs (NVIDIA
M2070 and K80) are taking significant advantage of data parallelism. The
increase in the number of CUDA cores in the K80 also demonstrates the benefit
of greater parallelism. The new NVIDIA Pascal architecture should deliver even
faster execution.

In general, the ICC algorithm as implemented in this study is ignorant of
anything having to do with the seismic model and the starting point. In fact,
where the starting point is located does affect the convergence rate. In contrast,
Stingray-DSP begins at the starting point. We believe that the runtime of the
ICC algorithms can be improved by considering the behavior of the DSP “wave-
front” propagation. Starting at the source, the wavefront will expand in roughly
an oblong shape with deviations from a sphere due to anisotropies in the velocity
model. Dijkstra’s algorithm calculates the travel time from the starting point to
its nearest neighbor (in time), then calculates the next nearest neighbor, and so
on. At any given travel time, the set of vertices updated with this travel time
will approximately map out the oblong shape of the expanding wavefront. If
we can approximate this type of wavefront in how the ICC algorithm deicides
which point to process, convergence rates might improve. This is currently being
investigated.

8 Related Work

Methods for parallelizing Dijkstra’s SSSP have been developed and recent work
targets GPU implementations [3]. However, these have not been used the field of
seismic tomography to solve the problems we consider here. Recasting the DSP
approach to seismic raytracing as an iterative constraint convergence algorithm
for parallelization purposes is similar to what is being done in calculating accu-
mulated cost surfaces (ACS) [16] in spatial modeling. The BFM algorithm is the
fundamental basis for both, except ACS applications are typically in 2D, such
as in spatial analysis of raster images to determine route travel times. Speedup
on ACS problems has been demonstrated with the BFM-inspired data parallel
algorithm when targeting GPU.

9 Conclusion

Geological scientists turn to seismic raytracing as a preferred solution to cre-
ate high-resolution tomographic models of the earth’s interior. However, seis-
mic raytracing based on Dijkstra’s “single-source shortest path” (SSSP) algo-
rithm can not take full advantage of parallel computing. We have described and

98 A.D. Malony et al.

demonstrated an alternative algorithm for seismic raytracing by reformulating
the problem as an iterative constraint convergence algorithm. The Stingray-ICC
approach is more amenable to parallelization and hence significantly reduces the
computation time needed to calculate high quality seismic velocity models. We
have demonstrated the application of the algorithm with OpenMP and OpenCL
for GPUs. The use of this algorithm in the future will aid seismologists in enhanc-
ing our understanding the internal structure and dynamic behavior of our ever
mysterious planet.

References

1. Bellman, R.: On a routing problem. Q. Appl. Math. 16, 87–90 (1958)
2. Bezada, M., Humphreys, E., Toomey, D., Harnafi, M., Davila, J., Gallart, J.: Evi-

dence for slab rollback in westernmost mediterranean from improved upper mantle
imaging. Earth Planet. Sci. Lett. 368, 51–60 (2013)

3. Davidson, A., Baxter, S., Garland, M., Owens, J.: Work-efficient parallel GPU
methods for single-source shortest paths. In: International Parallel and Distributed
Processing Symposium, pp. 349–359. IEEE, May 2014

4. Dijkstra, E.: A note on two problems in connection with graphs. Numer. Math. 1,
269–271 (1959)

5. Douglas, J.: Alternating direction methods for three space variables. Numerische
Mathematik 4(1), 41–63 (1962)

6. Ford, L.: Network Flow Theory. RAND Corporation (1956)
7. Klimes, L., Kvasnicka, M.: 3-D network ray tracing. Geophys. J. Int. 116(3), 726–

738 (1994)
8. Moore, E.: The shortest path through a maze. In: International Symposium Switch-

ing Theory, pp. 285–292. Harvard University Press (1957)
9. Moser, T.: Shortest path calculation of seismic rays. Geophysics 56(1), 59–67

(1991)
10. Nolet, G.: A Breviary of Seismic Tomography: Imaging the Interior of the Earth

and Sun. Cambridge University Press, New York (2008)
11. Rasmussen, C., Sottile, M., Rasmussen, S., Nagle, D., Dumars, W.: Cafe: coarray

fortran extensions for heterogeneous computing. In: 21st International Workshop
High-Level Parallel Programming Models and Supportive Environments, HIPS
2016 Chicago, IL, USA, 23 May 23, 2016, Proceedings (2016)

12. Reid, J.: The new features of fortran 2008. SIGPLAN Fortran Forum 27(2), 8–21
(2008)

13. Sottile, M., Rasmussen, C., Weseloh, W., Robey, R., Quinlan, D., Overbey, J.:
ForOpenCL: transformations exploiting array syntax in fortran for accelerator pro-
gramming. Int. J. Comput. Sci. Eng. 8(1), 47–57 (2013)

14. The Fortran Committee. TS 18508 Additional parallel features in Fortran.
ISO/IEC JTC1/SC22/WG5 N2007, March 2014

15. Toomey, D., Solomon, S., Purdy, G.: Tomographic imaging of the shallow crustal
structure of the East Pacific Rise at 9◦30′. J. Geophys. Res. 99, 24–24 (1994)

16. Trunfio, G., Sirakoulis, G.: Computing multiple accumulated cost surfaces with
graphics processing units. In: International Conference on Parallel, Distributed,
and Network-based Processing (PDP). Euromicro (2016)

	A Data Parallel Algorithm for Seismic Raytracing
	1 Introduction
	2 Stingray
	3 Stingray Iterative Constraint Convergence Algorithm
	4 Parallelization Design Strategy
	5 Implementation Approach
	6 Experimental Results
	7 Discussion
	8 Related Work
	9 Conclusion
	References

