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One of the greatest challenges in computational science and engineering today
is how to combine complex data with complex models to create better pre-
dictions. This challenge cuts across every application area within CS&E, from
geosciences, materials, chemical systems, biological systems, and astrophysics
to engineered systems in aerospace, transportation, structures, electronics, bio-
medicine, and beyond. Many of these systems are characterized by complex non-
linear behavior coupling multiple physical processes over a wide range of length
and time scales. Mathematical and computational models of these systems often
contain numerous uncertain parameters, making high-reliability predictive mod-
eling a challenge. Rapidly expanding volumes of observational data—along with
tremendous increases in HPC capability—present opportunities to reduce these
uncertainties via solution of large-scale inverse problems.

In an inverse problem, we infer unknown model parameters (e.g., coeffi-
cients, material properties, source terms, initial or boundary conditions, geome-
try, model structure) from observations of model outputs. The need to quantify
the uncertainty in the solution of such inverse problems has attracted wide-
spread attention in recent years. This can be carried out in a systematic manner
by casting the inverse problem within the framework of Bayesian inference. In
this framework, uncertain observations and uncertain models are combined with
available prior knowledge to yield a probability density in the model parame-
ters as the solution of the inverse problem, thereby providing a rational and
systematic means of quantifying uncertainties in the inference of these parame-
ters. The resulting uncertainties in model parameters are then propagated for-
ward through models to yield predictions with associated uncertainty. Finally,
given this capability to quantify uncertainties in inverse problems, one can deter-
mine the design of the observational system (e.g., location of sensors, nature of
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measured quantities) that maximizes the information gain from the observations
(or minimizes the uncertainty in the inferred model or subsequent prediction).
This is the optimal experimental design (OED) problem, which wraps an opti-
mization problem around the Bayesian inverse problem.

The Markov chain Monte Carlo (MCMC) method has emerged as the method
of choice for solving Bayesian inverse problems. Unfortunately, when the forward
model is large and complex (e.g., when the model takes the form of an expensive-
to-solve system of partial differential equations), and when the parameters are
high-dimensional (as results from discretization of an infinite dimensional field
such as an initial condition or heterogeneous material property), solution of
Bayesian inverse problems via conventional MCMC is intractable. Moreover,
addressing the meta-question of how to optimally obtain experimental data for
such problems via solution of an OED problem is completely out of the question.

However, a number of advances over the past decade have brought the goal of
Bayesian inference of large-scale complex models from large-scale complex data
much closer. First, improvements in scalable forward solvers for many classes
of large-scale models have made feasible numerous evaluations of model outputs
for differing inputs. Second, sustained growth in HPC capabilities has multiplied
the effects of the advances in solvers. Third, the emergence of MCMC methods
that exploit problem structure (e.g., curvature of the posterior probability) has
radically improved the prospects of sampling posterior distributions for inverse
problems governed by expensive models. And fourth, recent exponential expan-
sions of observational capabilities have produced massive volumes of data from
which inference of large computational models can be carried out.

To overcome the prohibitive nature of Bayesian methods for high-dimensional
inverse problems governed by expensive-to-solve PDEs, we exploit the fact that,
despite the large size of observational data, they typically provide only sparse
information on model parameters. This implicit dimension reduction is provided
by low rank approximations of the Hessian of the data misfit functional, which is
typically a compact operator due to ill-posedness of the inverse problem. A low
rank approximation of the Hessian can be extracted efficiently in a matrix-free
manner (without forming the Hessian) by a Lanczos [8,14] or randomized SVD
[4,5,12,15,21] method, requiring a number of matrix-vector products that scales
only with the rank of the Hessian, and not the parameter dimension. Moreover,
the rank reflects how informative the data are, i.e., how many directions in
parameter space are informed by the data. Finally, each Hessian-vector product
can be computed using just a pair of linearized forward/adjoint PDE solves
[4,5,8,9,12,14–17,21,22].

We have applied the methodology described above (for exploiting the geo-
metric structure of the posterior) to geophysical inverse problems arising in ice
sheet flow, seismic wave propagation, mantle convection, atmospheric transport,
poromechanics, and subsurface flow. We are able to substantially reduce the
effective parameter dimension (often by three orders of magnitude) at a cost,
measured in (linearized) forward/adjoint PDE solves, that is independent of
both the parameter and data dimensions [4,5,8,9,12,14,15,20,21].
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For linearized Bayesian analysis of nonlinear inverse problems, the Hessian
evaluated at the point in parameter space that maximizes the posterior (i.e., the
MAP point) completely characterizes the uncertainty in inferred parameters.
One can build on this idea to solve optimal experimental design problems at
a cost that also does not scale with the parameter or data dimensions [1–3].
For nonlinear Bayesian inverse problems, the Hessian varies from point to point.
However the low rank Hessian approximation machinery described above can still
be exploited to accelerate MCMC sampling, by serving as an inverse covariance
approximation for a Gaussian proposal that is tailored to the local curvature of
the posterior [14,15] (this is known as the stochastic Newton method).

The most complex inverse problem for which we have carried out Bayesian
inversion involves ice sheet flow [12,15,16,22]. The flow of ice from polar ice
sheets such as Antarctica and Greenland is the primary contributor to projected
sea level rise in the 21st century. The ice is modeled as a creeping, viscous,
incompressible, non-Newtonian, shear-thinning fluid, for which we have devel-
oped custom scalable parallel solvers [13,18,19] on adaptively refined forest-of-
octree meshes [6,7,10,11], the combination of which has scaled to hundreds of
billions of unknowns on up to 1.6 million cores [4,6,18]. One of the main diffi-
culties faced in modeling ice sheet flow is the unknown spatially-varying Robin
boundary condition that describes the resistance to sliding at the base of the ice.
Satellite observations of the surface ice flow velocity can be used to infer this
uncertain basal boundary condition. We have solved this ill-posed inverse prob-
lem using the (linearized) Bayesian inference machinery described above, which
allows us to infer not only the unknown basal sliding parameters, but also the
associated uncertainty [12]. We have demonstrated that the number of required
forward solves is independent of the parameter dimension, data dimension, and
number of processor cores. The largest Bayesian inverse problem solved has over
one million uncertain parameters.
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