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Abstract Recent studies showed that one of the major environmental problems is
the transport-related air pollution and road transport alone is expected to be the
largest contributor to anthropogenic climate forcing in 2020. The development of
more efficient vehicles, the use of alternative energy sources, and the deployment of
intelligent transportation systems (ITS) are all solutions toward the decarbonization
of the sector. In this chapter, an energy-oriented driving assistance system focusing
on the assessment of the current driving style is proposed. In fact, it has been
observed that a change of the driving style may provide savings from 5 to 40% of
the total energy expenses, as well as reductions of the air pollution. The proposed
system is fully integrated in a smartphone application, which acquires the signals
related to the vehicle dynamics (e.g., velocity and acceleration) and computes three
power-related indices containing significant information about the current driving
style. Based on such indices, a feedback communication can be given to the driver
(if needed) to induce a change in the driving style, which in turns would result into
an energy saving. Differently from the existing studies, the proposed application is
vehicle-independent and does not require any connection to the vehicle CAN-bus or
OBD-interface. The effectiveness of the proposed approach is assessed via an
experimental campaign carried out on urban and extra-urban routes by different
drivers. Experimental results show that the proposed driving assistance system may
reduce the vehicle consumption up to 30%.
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1 Introduction

The complete energy conversion chain related to vehicle energy consumption is
depicted in Fig. 1. A first step, commonly referred as “wheel-to-tank”, is the
conversion of the primary energy carries (e.g., chemical energy in fossil hydro-
carbons or kinetic energy in wind, etc.) to an energy carrier that can be stored
on-board (e.g., gasoline, electricity, hydrogen, etc.). Then, the energy stored inside
the vehicle is converted by the propulsion system into mechanical energy, in the
so-called tank- to-wheel conversion. Finally, the “wheel-to-miles” step refers to
the dissipation of mechanical energy used to move a vehicle with the speed and the
acceleration profiles chosen by the driver.

In order to optimize the total vehicle energy consumption, all the three step
efficiencies need to be improved: the “Well-to-tank” conversion by optimizing the
upstream processes, the “tank-to-wheel” by optimizing the power train components,
architectures, and control strategies, and the “wheel-to-miles” step by reducing
vehicle mass and frictions or by influencing the driver’s profiles and behavior.

Several research studies in this field have been focused on optimizing the
“well-to-tank” and the “tank-to-wheel” energy conversions. The former has been

Fig. 1 Energy conversion
chain
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enhanced by improving the refinery and transportation of fossil oil. The latter has
been improved by optimizing the power train components, architectures, and
control strategies.

However, the so-called wheel-to-miles has been less considered until the last
decade. This energy conversion step depends on the vehicle characteristics (mass,
frontal surface, drag, etc.) and on the vehicle’s speed and acceleration imposed by
the driver’s commands: the so-called driving style. The driving style itself depends
on driver’s behavior and experience but also on external factors such as traffic and
car performance (Brundell-Freij and Ericsson 2005). It is well known that the
driving style has a huge impact on vehicle consumption.

Driving style systems can be classified in two subcategories (Corti et al. 2013):
active and passive (see Fig. 2).

Active driving style systems (Fig. 2a) control directly the driving style by
imposing constraints on the vehicle performance. As an example, (Dardanelli et al.
2011a, b, 2012) propose to limit the acceleration and velocity of a light electric
vehicle to manage the battery discharge rate. As shown by these works, the active
control of the driving style can decrease the energy consumption and increase the
range. However, these systems override driver commands and introduce some
drawbacks. First of all, active driving style systems introduce safety issues. For
example, they could limit the vehicle performance also in case of an emergency
maneuver when the vehicle has to move fast to avoid collision or crash.

(a)

(b)

Fig. 2 Driving style systems
classification: a Active
driving style system,
b Passive driving style
system
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Furthermore, an ad hoc installation of additional electronic control unit is required
for existing vehicles.

An alternative approach is represented by passive driving style systems (see
Fig. 2b). This kind of systems does not act directly on vehicle control system but
provides a suitable feedback to the driver in order to change his driving style. The
interaction between the system and the driver can be performed through different
human–machine interfaces (HMIs). Indeed, the main drawback of such an approach
is that the effectiveness of the system cannot be guaranteed, as the user may ignore
the feedback or not pay attention to the HMI. A huge research effort has been
devoted to passive driving style systems, and most of existing studies try to classify
the behavior of a driver.

The work in (Murphey et al. 2009) presents a method to classify the driver’s
style by means of the analysis of the online jerk profile combined with the
knowledge of the road type. In (Won and Langari 2005), the driving style is
classified in three categories (aggressive, normal, and calm) according to the ratio of
the standard deviation and the average acceleration within a specified window and
they use the information for the power management system. Likewise, (Tricot et al.
2002) classify the driving behavior into three driving styles applying data classi-
fication techniques to vehicle position and driver’s actions. Fuzzy systems are used
in (Kamal et al. 2007) to determine the driver behavior from noisy data. In (Araujo
et al. 2012), a driving style mobile application based on fuzzy system is proposed.
The smartphone application gathers vehicle’s data through an OBD–Bluetooth
interface. In (Lin et al. 2006), Lin and co-authors present a method to classify the
driving style in a virtual reality as aggressive or gentle by analyzing the driver’s
electroencephalogram. In the papers (Syed et al. 2007, 2008, 2009), an advisory
system which provides visual and haptic feedback to the driver to change his
driving style behavior and reduce the fuel consumption is proposed. Haptic inter-
faces for improving fuel economy through driving style classification have also
been patented (Coughlin 2009). Although all existing systems focus on driving
style assessment, they all have two main limitations: (i) the classification of the
driver behavior is limited to a finite set of discrete label; (ii) a complete knowledge
of vehicle efficiency or the vehicle-dependent measurements is required.

The second limitation is due to the fact that the works are developed just for a
particular model of car. The algorithms rely on a deep vehicle knowledge (engine
map, gear ratio, gear used by the driver, throttle position). For this reason, the
proposed works are not flexible and reusable on different vehicles. Moreover,
additional interfaces (like the OBD) are required to read signals from the vehicle
CAN-bus.

An alternative is to rely upon inertial measurements. The main advantage of
developing driving style application by relying on only such data is the system
flexibility. The same system can be used on different categories of vehicles just by
adapting few parameters without any vehicle-dependent connection. The first
attempt in assessing the driving style via inertial measurements is proposed in
(Manzoni et al. 2010; Savaresi et al. 2010). The authors design a method to evaluate
the performance of a bus driver. Every time the driver stops, its velocity profile is
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compared to a realistic reference from an energetic point of view. A synthetic result
is provided with a feedback on the bus HMI display. The system was implemented
on the buses of Udine in Italy. However, this approach shows some limitation from
the user interaction point of view. The feedback is generated only when the vehicle
stops so that the driver does not receive any feedback for a long period of time
when the vehicle travels without stopping (e.g., highway).

In this chapter, we propose a smartphone-based driving style system based on
real-time feedback. A continuous evaluation of the driving style based on inertial
measurements is shown to the driver. Differently from the previous works, the
proposed system estimates in real-time three indexes related to vehicle power
over-consumption instead of classifying the driving style in a finite set of cate-
gories. The proposed system is implemented on a low-cost, vehicle-independent
device, a smartphone. In this way, we take advantage from an existing pervasive
device that integrates all the required hardware (CPU, GPS, accelerometers, and
HMI).

An experimental campaign has been carried out with five drivers on a test route
for evaluating the performance of the system.

Experimental results show that it is possible to save up to 30% of the total
energy.

2 Three Model-Based Indexes

To start with, the considered vehicle model is briefly presented. Then, three
model-based indexes to evaluate the driving style are introduced and motivated, as
described in Sect. 2.2.

2.1 Vehicle Model

The vehicle longitudinal dynamics of interest can be modeled as

PinerðtÞ ¼ PwheelðtÞ�ðPbrakeðtÞþPaeroðtÞþProllðtÞþPslopeðtÞÞ ð1Þ

where Piner(t) = Ma(t)v(t) is the inertial power, M is the vehicle mass, v(t) is the
longitudinal speed, and a(t) is the longitudinal acceleration. Further, Pwheel(t) is the
net power at the wheel, Pbrake(t) is the braking power, Pslope(t) is the power gen-
erated by the road gradient, and Paero(t) and Proll(t) represent the power dissipated
by the non-conservative aerodynamic and rolling friction forces acting on the
vehicle, respectively. Two simplifications will now be made, by neglecting the
following terms:

Pslope(t), as the system has been conceived for urban environment and the test
site is assumed to be flat. It should be noticed that the road gradient may be
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estimated with a longitudinal accelerometer and/or inferred by road maps made
available via Internet connection, see (Dai and Lee 2002; Vahidi et al. 2005).

Pbrake(t), as it is not measurable and will be treated as a disturbance from now
on.

Therefore, one has

PwheelðtÞ ¼ PinerðtÞþPaeroðtÞþProllðtÞ ð2Þ

The parameters of this model are the vehicle mass M, the rolling drag Cr, the
aerodynamic drag Cd, and the frontal surface S. They are approximated as constants
(Cr and Cd may in fact vary according to vehicle speed and tires pressure) and
depend only on the specific vehicle. Thus, once the vehicle has been fixed, Pwheel is
a nonlinear function of speed and acceleration, i.e.,

PwheelðvðtÞ; aðtÞÞ ¼ PinerðvðtÞ; aðtÞÞþPresðvðtÞÞ ð3Þ

with resistance power Pres(t) = Paero(t) + Proll(t) depending on vehicle speed only.
The parameters of such a nonlinear dependence can be experimentally estimated by
appropriate identification experiments that require measuring only the wheel speed
(Dardanelli et al. 2012).

The driver’s commands translate into vehicle speed and acceleration, and these
are the variables that one must act upon to reduce the energy consumption.

2.2 Cost Function Definition

The cost functions selected to assess the driving style aim at capturing all aspects of
power consumption, while being computable in real-time based on inertial mea-
surements only.

The first index c1(t) is generated as indicated in Fig. 3. It is the high-pass filtered
version of Pwheel. This cost function stems from considering that Pwheel(t) can be
split into two parts: a low-frequency one, PLPF(t), which is really needed to move
the vehicle, and a high-frequency one, PHPF(t) that represents unnecessary inertial
power that is wasted during the process.

The filter order and the cutoff frequency must be tuned to correctly separate the
two contributions according to the signal characteristics and to the measurement
noise, which are vehicle-dependent. Thus, c1(t) can be interpreted as the power

Fig. 3 Block diagram for the computation of c1
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wasted by a fast variation of the vehicle power, a “measure” of the driver
aggressiveness. Based on this rationale, the ideal driving style would make the
vehicle travel at constant speed (see Fig. 4).

The cost function c1(t) is, in practice, a measure of the smoothness of the
velocity profile imposed by the driver. However, c1(t) is always equal to zero when
the vehicle is proceeding at constant speed (e.g., on a highway).

To increase the driver’s awareness about the energy losses due to the cruising
speed value, the cost function c2(t) is introduced as:

c2 tð Þ ¼ Pres v tð Þð Þ ¼ 0:5qACdvðtÞ3 þMgCrvðtÞ ð4Þ

which takes into account the power losses due to friction effects and depends on the
cruising speed value v(t), the vehicle mass M, the frontal surface A, and roll and
drag coefficients Cr and Cd.

Note that both c1 and c2 depend on the instantaneous driving style (velocity v(t)
and acceleration a(t)). In order to keep track of the driver’s behavior over a time
window of, say, M seconds, the cost function c3(t) is defined as

c3 ¼
Xi

t¼i�M

d M�tð Þ Pres tð Þ
Pwheel tð Þ ð5Þ

Fig. 4 Examples of two driving profiles. Top plots: time histories of the vehicle speed; bottom
plots: spectral content of the signal Pwheel(t). Notice that, when the speed is constant, there are no
contributions at high frequency
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where d is a forgetting factor parameter which allows attributing more importance
to most recent data, see (Ljung 1999). Letting d = 1, c3 is the ratio between the
power spent by resistance dissipative forces Pres(t) and the total power Pwheel(t).

Ideally, in this case, an efficient driving style keeps Pres(t) = Pwheel(t), that is, the
energy consumed by the vehicle is due to the chosen speed value and the inertial
power dissipated by acceleration/deceleration is minimal.

2.3 System Architecture

The proposed driving style system is entirely developed as a mobile phone appli-
cation. Using a mobile device is particularly intriguing, due to its pervasiveness and
user’s acceptance, see also (Dardanelli et al. 2012; Manzoni et al. 2010; Corti et al.
2012). Furthermore, modern smartphones already integrate all the hardware
required for a driving style application.

The algorithm has been developed to read the smartphone sensors, process the
signals, compute the three cost functions, and provide a visual feedback to
the driver. The block diagram of the driving style algorithm is depicted in Fig. 5.
The main blocks are the following:

• signal acquisition block is responsible of the acquisition of inertial sensors and
GPS;

Fig. 5 Block diagram of the
driving style algorithm
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• phone orientation block performs the estimation of the mobile device orienta-
tion, since smartphone acceleration measurements depend on the specific ori-
entation the driver choice in setting the device in the car;

• vehicle power estimation block computes the vehicle power consumption from
previous measurements by using data fusion techniques;

• driving style assessment block computes the driving style cost functions and
implements suitable interfaces to provide a visual feedback to the driver.

2.4 Experimental Results

The aim of the experiments is to evaluate if the proposed mobile application can
improve the energy consumption in a possible mixed urban and extra-urban route.

The test has been performed on a real route in Milan, and it involves a small set
of different drivers. The test track, shown in Fig. 6, is 8.8 km long, and it is
composed of 5.3 km-long urban route and of a 3.5 km-long extra-urban route. The
two parts are generally characterized by different acceleration and speed profiles. In
particular, the former is full of traffic because of the presence of several traffic lights
and roundabouts, while higher speed and large streets characterize the latter.

The acquisition campaign has been performed with a Tazzari Zero Evo1 (see
Fig. 7.

Fig. 6 Map of the experimental track
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The Tazzari Zero Evo is a two-seat, four-wheeled electric car with a driving
range of about 140 km and a maximum speed of 100 km/h. The vehicle has a
nominal power of 15 kW, a mass of 540 kg, and a frontal surface of 2.1 m2. The
lithium-ion battery pack (160Ah@80 V) requires about 9 h for a full charge
(0–100%). Since the heater is powered by the traction battery and its use signifi-
cantly reduces the range (about one-fourth the total range), it has been switched off
for the entire duration of the tests. The main vehicle specifications are synthetically
reported in Table 1).

The vehicle is part of a fleet of EVs used for the Green Move vehicle-sharing
project and has been equipped with an electronic unit, the Green e-Box (see Fig. 8)
which can read signals from the vehicle electronic boards and log them into a
micro-SD support. In particular, the considered data are the battery voltage Vbatt(t)
and current ibatt(t), sampled every 0.2 s. From these two signals, the power
extracted from the battery has been computed as Pbatt = Vbatt(t) ibatt(t). Wheel speed
values are also logged and the vehicle speed is computed by simple averaging the
wheel speeds over the time. Note that the use of an EV allows an easier and more
precise computation of the consumption at the tank, given by the electric power.

Fig. 7 Tazzari Zero Evo used in the experimental campaign

Table 1 Tazzari Zero Evo
specifications

Weight 540 kg

Frontal surface 2.1 m2

Max speed 100 km/h

Range 105 km

Battery lithium-ion 12.8 kWh 80 V

Max power 15 kW

Charging time Approx. 9 h

See http://www.tazzari-zero.com/ for further details.
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Figure 9 shows the block scheme of acquisition campaign setup. The vehicle has
been equipped with a smartphone (an iPhone 4) running the driving style appli-
cation that preprocesses the inertial data, runs the algorithm, and provides visual
feedback through the device screen. The electronic box logs the real vehicle
measurements.

Three user interfaces (HMIs) will be considered and evaluated separately to
assess the amount of energy savings: the first interface (Fig. 10a) reports all the
three indexes, the second interface (Fig. 10b) has a single bar with a cumulate c1
plus c2 indication, whereas in the third interface (Fig. 10c) only c1 is shown.

The experimental campaign involved five different drivers (25–30 years old).
Each driver performed five different trips on the same route: the first is aimed only
at taking confidence with vehicle and route. Another one was carried out without

Fig. 8 Test vehicle: the iPhone with the driving style application (left) and the electronic control
unit, Green e-Box (right)

Fig. 9 Block scheme of acquisition campaign setup
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any interaction with the driving style application. Such a trip is labeled as blind and
used as a benchmark to quantify the power consumption associated to the single
driver. During the remaining three trials, the volunteers have been driving using all
the three interfaces available, one at a time (see again Fig. 10). The order of the
blind trial and of the three ones with the driving style application was randomly

Fig. 10 Three interfaces of
the driving style application
tested by the different drivers

182 S. Formentin et al.



chosen for each driver, so as to minimize systematic errors in the evaluation of the
results.

The experimental results are now illustrated, starting by analyzing those obtained
with a single driver and then showing the aggregate results for all volunteers.

2.5 Wheel-to-Miles

Figures 11 and 12 show the vehicle speed and the longitudinal acceleration, as
functions of distance, imposed by Driver 2 on the test route (the first test is omitted
as it served only to explore the route). It can be easily noticed that Driver 2 imposes
higher acceleration and speed when no feedback is active (blind trial): in the
extra-urban area at approximately 2.5 km, the maximum speed decreases from 23
to 20 m/s, and the same happens between km 7 and km 8 of the urban part of the
test route.

Figure 12 shows a similar pattern for the acceleration: in the blind trial, a peak of
more than 2 m/s2 is reached after 2 km. When the same driver gets feedback from
the application, this value decreases to less than 1.5 m/s2.

Further, Fig. 13 shows the energy spent at the wheel, computed using Eq. 3.1.
Indeed, since the vehicle, the route, and the distance are the same, the energy spent
at the wheel Ewheel depends only on speed and acceleration profiles. The energy
spent at the end of the trip in the blind trial is 1.12 kWh, while it ranges from
0.78 kWh with version C to 0.75 kWh with version A of the driving style appli-
cation, therefore assessing the effectiveness of the proposed approach.

To concisely and quantitatively express the results obtained with all drivers, let
us define /i as the percentage of energy savings at the wheel with respect to the
blind trial, namely

Fig. 11 Speed measured during the four trials of Driver 2 as a function of the travelled distance
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ui ¼
Ewheel;blind � Ewheel;i

Ewheel;blind
ð6Þ

where i 2 A, B, C is the version of the HMI used.
As reported in Table 2, Driver 2 has /A = 32.8%, /B = 32.9%, and /C = 30.1%

during the campaign; consequently, more than 30% of energy has been saved with
all three user interfaces. Moreover, note that the savings on the extra-urban area are
mainly due to the reduction of the average speed. Without any driving style
application, the average speed is 15.5 m/s, while it decreases from 11.2 to 12.6 m/s

Fig. 12 Acceleration measured during the four trials of Driver 2 as a function of the travelled
distance

Fig. 13 Energy spent at the wheel by the vehicle with the different versions of the user interface
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with the different application versions. In the urban area, savings are not related just
to velocity; for instance, with version A the driver saves more than 32.2% of
energy, but he proceeds with an average velocity (7.5 m/s) of 0.3 m/s greater than
with blind version.

It should be remarked here that the average velocity might be influenced also by
traffic condition. A driver could take less time to finish a trip just because the traffic
was lower during the trial. In order to avoid this bias, we explicitly ignore the idle
time in computing the average speed.

2.6 Tank-to-Miles

The “tank-to-miles” energy conversion is not influenced just by speed and accel-
eration profiles, but also by the engine efficiency, which in turns depends on several
variables such as the engine type, the gear shift, the clutch dynamics. However, the
savings at the tank are the most important ones from the user’s perspective, since
they have a direct economic impact related to fuel/electricity consumption.

To analyze this aspect, Fig. 14 shows the energy extracted from the battery pack
of the test vehicle during the trials of Driver 2. Note that in the blind trial, the
vehicle consumes 1.69 kWh of electric energy, while, when feedback is active, Ebatt

significantly decreases (1.20–1.17 kWh).
Further, let ni represent the percentage of energy savings at the battery with

respect to the blind trial, given by

ni ¼
Ebatt;blind � Ebatt;i

Ebatt;blind
ð7Þ

where again i 2 A, B, C is the version of the HMI used. For Driver 2, nA = 30.9%,
nB = 30.8%, and nC = 29.0%. Note that the savings at the battery are slightly less
than the ones achieved at the wheel, nevertheless the user saves 30% of electric
energy on average.

This proves that optimizing the driving style in the wheel-to-miles phase also
enhances the overall fuel consumption.

Table 2 Synthetic results for
Driver 2

Urban Extra-urban Total

/A[%] 32.2 34.0 32.8

/B [%] 33.8 31.3 32.9

/C [%] 29.2 31.8 30.1

Avg. speed A [m/s] 7.5 11.4 8.5

Avg. speed B [m/s] 6.6 11.2 7.7

Avg. speed C [m/s] 6.8 12.6 8.2

Avg. speed BLIND [m/s] 7.2 15.5 8.9

A Smartphone-Based Energy-Oriented Driving Assistance System 185



2.7 Aggregate Results

To compare the results considering all five drivers, Fig. 15 shows the mechanical
energy consumed at the wheel by all of them. The ticker line represents the urban
consumption, while the thinner one represents that obtained on the extra-urban part

Fig. 14 Energy spent at the battery by the vehicle with different versions of the user interface

Fig. 15 Comparison between the mechanical energy Ewheel consumed by the five drivers. The
thicker line represents the energy consumption in the urban area; the thinner one is related to the
extra-urban part of the test route
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of the route. By comparing the blind trials, it can be noticed that the five drivers
behave quite differently. As an example, Driver 1 saves 100 Wh (�−10%) to
complete the test route with respect to what done by all the others.

Note that these experimental results demonstrate the effectiveness of the pro-
posed driving style system, as with all user interfaces (A, B, C) the energy con-
sumption is at least 0.2 kWh less than in the blind trial. Nevertheless, it is worth
noticing that the percentage of energy savings is: (i) user interface-dependent:
Driver 2, Driver 4, and Driver 5 perform better with the more informative interface
A, while Driver 1 and Driver 3 perform better with the user interface B;
(ii) driver-dependent: different drivers react in different ways to the visual feedback
provided by the application. As an example, it can be noticed that Driver 4 saves
less energy with respect to the others. Figure 16 reports the energy extracted from
the battery pack.

The complete results are summarized in Table 3 which highlights the suitability
of the proposed approach. In fact, the system induces all five drivers to save energy
when interacting with the driving style application. Driver 2 saves about 30% of the
electric energy, while for other drivers the percentage of saving ranges from 10 to
23%. All of them save more energy with the user interface labeled as A. Such HMI
can then be considered as the best interface (overall) for the application at hand.
This is not surprising, in that it describes a more detailed figure of the driving
condition with respect to the others.

Fig. 16 Comparison between the energy extracted from the battery pack Ebattery for all drivers.
The thicker line represents the urban energy consumption; the thinner line refers to the extra-urban
consumption
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3 Conclusions

In this chapter, a novel approach for reducing the vehicle energy consumption by
means of a quantitative driving style assessment system has been proposed. The
system is constituted by a smartphone application based on inertial measurements,
which is vehicle-independent and interacts with the driver by means of visual
feedback. Validation results are presented using three human–machine interfaces on
an experimental campaign with five drivers. The experiments show that the system
improves the driving style and reduces the vehicle energy consumption from about
10 up to 30%.
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