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Preface

The fifth edition of CMMNO conference was held together with the 6th Interna-
tional Congress on Technical Diagnostics in Gliwice, Poland, in September, 2016.
This time, the event was organized by Silesian University of Technology in
Gliwice, Faculty of Mechanical Engineering, and Polish Society of Technical
Diagnostics. The conference have been interesting, convolving CMMNO with
ICTD gave a chance to track new ideas in condition monitoring of machines under
nonstationary operations for broader audience.

Mission of the conference is to be as close as possible to real problems in
condition monitoring. It was a privilege and great honor to host as keynote speakers
outstanding experts in field of diagnostics, both with academic and industrial
background, namely:

• Prof. Fulei Chu, Department of Mechanical Engineering, Tsinghua University,
Beijing, China

• Prof. Giorgio Dalpiaz, Department of Engineering, University of Ferrara, Italy
• Prof. Spilios D. Fassois, Stochastic Mechanical Systems & Automation (SMSA)

Laboratory, Department of Mechanical and Aeronautical Engineering, Univer-
sity of Patras, Greece

• Dr. James Ottewill, ABB Corporate Research Center, Cracow, Poland
• Dr. Ibrahim A Sever, Rolls-Royce, UK

The conference (including ICDT that will be also summarized as separate vol-
ume in Applied Condition Monitoring series) consisted of 19 sessions, and it could
be said that almost all from important areas of modern technical diagnostics have
been presented.

All the chapters included in this book were rigorously reviewed by 2 referees, so
we would like to express our gratitude to all reviewers. Based on reviewer’s
opinions, 34 papers have been selected to be published as CMMNO proceedings
volume in Applied Condition Monitoring series.

Selected papers in most cases described novel diagnostic techniques that com-
bine known signal processing methods or decision-making approaches. In a few
cases, novel signal processing methods have been proposed, including adaptation of
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known techniques to seriously nonstationary signals. Also several papers discussed
technical aspects of condition monitoring systems (how to design it in the cheapest
way, what techniques should be used to minimize energy consumption, especially
in mobile, wireless systems, how to calibrate sensors, etc.). Two papers recalled
model-based diagnostic approach, i.e., model of mechanical system or phenomena
have been proposed and used to design diagnostic procedure.

It is worthy to mention that variety of objects have been investigated (gears,
bearings, engines, pipes, blades… etc.), and researchers used various physical data to
describe phenomena (vibration, acoustics, infrared thermography, temperature…).

It should be noted that majority of papers have highlighted nonstationarity of
operating condition that proves that this conference should be continued, and we
kindly invite researchers to Santander, Spain, in 2018 for sixth edition of CMMNO.

At the end, we would like to acknowledge to all authors, presenters, and par-
ticipants of 5th edition of CMMNO, thanks to all of them; this conference is still
important, has good reputation, and brings original contribution to engineering
community.

Gliwice, Poland Anna Timofiejczuk
Sfax, Tunisia Fakher Chaari
Wrocław, Poland Radosław Zimroz
Wrocław, Poland Walter Bartelmus
Sfax, Tunisia Mohamed Haddar
2017
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Structural Health Monitoring
of Aero-Engines in Non-stationary
Operations

Mirosław Witos, Mariusz Zieja, Andrzej Szczepankowski
and Janusz Szymczak

Abstract With the ultimate goal of rotating machinery diagnosis using Instanta-
neous Angular Speed (IAS) and Time of Arrival (TOA) signals, this paper provides
the theoretical background of non-stationary processes existing in the aero-engines
and their monitoring using atypical encoders (e.g. fans, compressors and turbine
blades cooperating with the induction sensors, AC and DC generators). The model
of TOA signal including aperiodic, periodic and stochastics components has been
described. The classical and expert approach to monitoring of operational and
structural health parameters (CM, NDT, SHM) of aircraft and its power transmis-
sion system has been also described. Finally, the experience of the Tip Timing
method used in the Armed Forces of the Republic of Poland is presented. The
possibility of structural health monitoring and active controlling of the material
fatigue by the aero-engine user through interference in the fuel system adjustment
quality has been confirmed. Phase portraits have been used to analyze TOA
components in transient state of the engine. Diagnostic criteria and expert algo-
rithms have been verified during active and passive experiments.

Keywords Transport ⋅ Fatigue of material ⋅ Condition monitoring ⋅ Structural
health monitoring ⋅ Modal analysis ⋅ Time of arrival ⋅ Tip timing method ⋅
Encoder ⋅ Expertsystem ⋅ Safety
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1 Introduction

Aircraft and helicopters are operated in nonstationary states. Even during:

• ground operation of an engine with constant average rotational speed, or
• an aircraft horizontal flight with constant forward speed,

exist random interferences (such as: wind, rain, thermal currents, bird ingestion,
icing), which locally or globally create disturbances of stationary processes, gen-
erating reactions of different aircraft systems (i.e. an autopilot, a power-supply
system, a hydraulic system). Factors creating disturbances of stationary processes
are also pilot’s actions regarding operation, navigation and providing aircraft sta-
bility. An issue of nonstationary processes concerns particularly a power trans-
mission system and its subsystems.

Processes of:

• a flow round a rotating blade profile in a compressor or a turbine and their
aerodynamic loads;

• fuel combustion with flow keying in the inlet and the outlet of the combustion
chamber (through the compressor and the turbine, and modal properties of the
combustion chamber);

are the main factors, that have an impact on the load spectrum, fatigue degradation
processes of engine elements (problems of Low Cycle Fatigue, LCF, High Cycle
Fatigue, HCF, Very High Cycle Fatigue, VHCF and Thermo-Mechanical Fatigue,
TMF) and the risk level of the aviation accident for technical reasons. Incomplete
information on the spectrum of nonstationary processes in the engine is a challenge
both for design and diagnostic engineers.

In the article many years’ experience with active control of material fatigue in
critical elements of the SO-3 jet engine. Experience is based on monitoring of
engine’s intermediate states, analyses of modal properties for critical elements and
active interference in the spectrum of stationary and nonstationary processes [1].

2 Theoretical Basis

2.1 Stationary Versus Non-stationary Processes

Loosely speaking a stationary process is one whose statistical properties do not
change over time. A strictly stationary stochastic process is one where given
t1, . . . , tn the joint statistical distribution of Xt1 , . . . ,Xtn is the same as the joint
statistical distribution of Xt1 + τ, . . . ,Xtn + τ for all n and τ. Since the definition of

2 M. Witos et al.



strict stationarity is generally too strict for everyday life a weaker definition of
second order or weak stationarity is usually used. Weak stationarity means that
mean and the variance of a stochastic process do not depend on t and the auto
covariance between Xt and Xt+ τ only can depend on the lag τ (τ is an integer the
quantities also need to be finite). Hence for stationary processes, Xtf g, the definition
of autocovariance is

γ τð Þ= cov Xt,Xt+ τð Þ=E Xt −E Xt½ �ð Þ Xt+ τ −E Xt+ τ½ �ð Þ½ � ð1Þ

for integer τ. E Xt½ � is the expected value of Xt, also known as the mean of Xt.
Stationary processes can be divided into deterministic and random [2].

Rotating machinery generally produces stationary vibration signals in order
domain (f ̸fr where ff is frequency of the rotor), but no aero-engines with:
(1) variable rotation speed, (2) low stiffness of the hull and the rotor, (3) nonlin-
earity of rotor supports, (4) broadband extortion (mass and aerodynamic), including
the combustion process as the main source of extortion variables, and (5) interfer-
ence vibration of compressor and turbine blades and the engine rotor with the
control system. In aero-engines many processes are non-stationary, including
processes of the material degradation.

A non-stationary process is one whose statistical properties change over time.
Non-stationary behaviors can be trends, cycles (i.e. AM-FM-PM modulation of
sine), random walks or combinations of the three [1, 2]. Before we get the point of
transformation for the diagnostic of non-stationary time series data, we should
distinguish between the different types of the non-stationary processes—Table 1.
This will provide us with a better understanding of the processes and allow us to
apply the correct transformation.

Table 1 Type of non-stationary processes existing in the aero-engines [1, 2]

Non-stationary process Model

Non-stationarity in variance Xt = μt + εt
Non-stationarity in mean (trend)

Xt = μt = ∑
d

i=1
citi

Non-stationary sinusoid Xt =Atej φt +φ0ð Þ

Pure random walk Xt =Xt− 1 + εt
Random walk with drift Xt = α+Xt− 1 + εt
Deterministic trend Xt = α+ βt+ εt
Random walk with drift and deterministic trend Xt = α+Xt− 1 + βt+ εt
Where μt is a non-stochastic mean level, εt is random error component, At is amplitude of
non-stationary sinusoid, φt is angle of non-stationary sinusoid, α is a drift, βt is regressed on a time
trend.

Structural Health Monitoring of Aero-Engines … 3



2.2 Measurement Signals

Stationary and nonstationary processes Xi tð Þf g can be or have already been
monitored with application of contemporary measuring techniques and methods of
numerical analysis. A proper selection of:

• methods of process observation H tð Þ—an implicit transition function
processes⇒ signals, and

• a set of analogue signals S tð Þ—state observers,

should provide observability of monitored process on the level, which enables to
make a diagnosis with minimum probability, POD. A stage of input data acquisition
to monitor processes is described using the relationship (2). A matrix of analogue
signals includes aperiodic A tð Þ, periodic P tð Þ and stochastic components I tð Þ.

S tð Þ=H tð Þ ⋅ Xi tð Þf g=A tð Þ+P tð Þ+ I tð Þ ð2Þ

Contemporary systems to monitor operational and structural health parameters
are based on the microprocessor technique and the digital discrete-time signal S kð Þ.
Digitalization of a continuous-time signal can be done with uniform and
non-uniform steps of sampling [3, 4].

Results of measurements are always encumbered with noises and measurement
interferences Im kð Þ, that can be different for particular measurement channels. As a
result, diagnostician receives information about monitored processes in the form of
noise time series:

Sm kð Þ=S kð Þ+ Im kð Þ ð3Þ

in which can be found:

• duplicated spectrum (alias) of continuous-time signal S tð Þ,
• harmonics generated by nonlinearity of the function H tð Þ and the measurement

section,
• drift of the measurement section.

2.3 Signal Analysis

In order to reliably diagnose processes in the tested object, components S kð Þ and
Im kð Þ should be separated from measurement data Sm kð Þ. The component Im kð Þ
enables the assessment of structural health of measurement section and reliability of
measurement data. When measurement data are reliable, the signal matrix S kð Þ is
analyzed in order to separate diagnostic symptoms and compare their values with
reference criteria.

4 M. Witos et al.



There are several books and papers on time series analysis without aliasing [5–10].
Most statistical books are concentrated on stationary time series and some texts
provide complex coverage of “globally non-stationary” series. The problem of pro-
cessing time series with aliases is overlooked in the literature, despite considerable
benefits that can be achieved with the conscious use of aliasing in the diagnosis.

3 Condition Monitoring of Aircraft

Monitoring of operational and structural health parameters (CM, NDT, SHM) of
aircraft and its power transmission system is done in order to decrease
operational/maintenance costs and risk of aviation accidents. There are two different
diagnostic approaches:

• classical,
• advisory and expert,

which are different taking the range and the purpose into consideration.

3.1 The Classical Approach

A classical approach is used to monitor how the aircraft operational/maintenance
regulations are observed by flight crew and technical personnel, to assess opera-
tional parameters of functional systems, and to identify exceeding of operational
limits. In order to monitor the power transmission system (a jet engine or a tur-
boprop engine) there are used signals (Table 2) registered by:

• cockpit indicators (analogue and/or digital), that on-line inform flight crew about
average values of operational parameters;

• accident data recorders, that inform flight crew and ground personnel about
exceeding instantaneous values of operational parameters;

• flight data recorders, that inform ground personnel about instantaneous values
of operational parameters during the flight (post factum analysis).

There are also used signals from periodical nondestructive testing and laboratory
research of oil and fuel.

Diagnostic criteria are based on simple relations in the analysis of simple signals
with complete disregard for relationships between registered signals (in fact, signals
are mutually dependent by the thermodynamic cycle, the automatic control system
and the thermal capacity of the engine and its systems). Criteria in the following form:

if value ∉ the scope of the rule pointsð Þ then, “1” else “0”, ð4Þ

Structural Health Monitoring of Aero-Engines … 5



should detect exceeding of the acceptable operating range (state “1”). Among
registered data there often are not signals of power unit control (power lever and
collective pitch lever), which encumbers getting reliable diagnosis about causes for
monitored exceeding even in stationary states. In classical monitoring systems
detection of serious engine failures, which don’t result in “visible” operational
exceeding, is also encumbered—the example 1. The failures most often are not
detected by classical monitoring systems!

Periodic nondestructive testing (e.g. visual inspections, ultrasonic inspections,
eddy current inspections) and oil examination are aimed at detection of accelerated
degradation of engine structure—results of unrecognized and unadjusted hazards,
including adjustment errors for fuel and control systems [1, 13].

Example 1: The increase of temperature field non-uniformity before the turbine.
The temperature before/behind the turbine is registered by the system of ther-

mocouples located circumferentially on the given draught (radius). The signal from
thermocouples is subject to average before the arrival at the cockpit indicator and
the flight data recorder. Growing circumferential non-uniformity of the temperature
field, of the order of 30%, can be transformed by the thermocouple system into the
temperature value decrease in regard to the expected value for the given engine
operational mode. The situation takes place, when the majority of thermocouples is

Table 2 Typical signals applied in diagnostics of engine and power transmission system

Monitoring
scheme

Advantages Disadvantages

Rotation speed Direct measurement of the range of
aero-engine operation

The offset analogue gauges may be
greater than the tolerance range of
the engineAble to detect errors adjusting the

fuel control system and its fault
Torque Direct measurement of the range of

turboprop engine operation
High signal dynamics—a level
exceeding the operational limitations
may not be noticed by the crew (to
transient conditions)

Able to detect errors adjusting the
pitch control unit and its fault and
control errors by the crew

Temperature at
the inlet/outlet
of the turbine

Detection TMF risk of turbine blade
and adjust the fuel system errors or
failures or errors automatic nozzle

High signal dynamics—a level
exceeding the operational limitations
may not be noticed by the crew (to
transient conditions)

Temperature of
oil

Detection of failure of the oil system,
and operation errors

Do not detect overheating of the oil
after the engine is stopped

Pressure of oil
Setting the
vanes of the
compressor

Detection system failure of
compressor mechanization

Information not available in the
cabin

Vibration
monitoring

Detection of unbalance and
misalignment of the rotor

Low band signal—lack of
information about the vibration of
gears and rotating bladesReliable

6 M. Witos et al.



located in minimums of the non-uniform temperature field. An operator finds out
the existing hazard of TMF for turbine blades only during nondestructive testing of
hot engine elements or after their break-off [1, 11].

The non-uniform temperature field before the turbine can modify also the
aerodynamic and mass load spectrum for compressor blades (the influence of
viscous flow on reverse propagation of the disturbance in the engine gas dynamical
duct) and bearing. Also in the engine remoted areas, accelerated material degra-
dation and failure conditions, resulting from the non-uniform temperature field
before the turbine, can be present (RTO/NATO [1, 12]).

3.2 The Advisory and Expert Approach

Knowledge of classical approach disadvantages in power unit monitoring and
financial cost incurred by operators are an inspiration to design and apply in
aviation:

• developed monitoring systems of the power unit, i.e. CAMP Engine Health
Monitoring application for Pratt and Whitney Canada engines, and Health and
Usage Monitoring Systems (CAMP web, HUMS conference database), which
include condition-based maintenance and operational data recording,

• new proactive methods of aircraft flight safety management (RTO/NATO [1, 12,
16, 17]).

Software of advisory and expert systems embodies multi-parametric criteria,
covering the numerical model of the diagnosed object and processes, and relations
existing between registered parameters. There are also available new broadband
signals and results of trend analysis, which give signals to operators about increasing
hazard of the lasting effect appearance in the engine and financial cost, i.e. the
decrease of compressor/turbine efficiency as a result of erosion or excessive soil inside
the engine (flights in dust-laden air). Multi-parametric monitoring systems have
higher POD achieved at the expense of aircraft/helicopter equipping with additional
measurement sections and increasing of processing time for measurement data.

3.3 Tip Timing Method

A distinctive approach to the expert and complex diagnosis of the aircraft engine
has been implemented in the SNDŁ-1b/SPŁ-2b/CTM-PER monitoring system,
which has been applied for operation/maintenance and overhauls of SO-3 engines
for 20 years [18]. The SNDŁ-1b/SPŁ-2b/CTM-PER monitoring system uses only
one signal—information on time of arrival TOA for rotating and vibrating com-
pressor blades under a stationary sensor fixed in the fuselage (Tip Timing Method)
[1, 19–22].

Structural Health Monitoring of Aero-Engines … 7



A system: a reluctance sensor—a rotating grid of blades and a rotor form a
particular encoder. Blades with unknown but forecast modal characteristics (me-
chanical combo filter) are both the phase indicator of rotor turns and the observer of
identified processes in the engine.

A sophisticated engine diagnosis by means of TTM method is practicable owing
to the complex structure of TOA signal [1]. Measured TOA signal covering the
measurement section noise Im kð Þ can be described using following relationship (5):

TOA kð Þ= 1+ ζφ kð Þ
1+ ζω kð Þ TOAt kð Þ+ Im kð Þ=A kð Þ+P kð Þ+ I kð Þ ð5Þ

where: TOAt is theoretical time of arrival of a blade from an ideal rotor without
errors of scale, vibration and seating of the rotor in supports, resulting from the
number of the phase marks (blades) NB and the instantaneous average angular
velocity of the rotor ω; ζφ is jitter of blades group components; ζω is jitter of rotor
group components.

All TOA signal components are used to diagnose the engine and the measure-
ment section. On the basis of numerical decomposition of TOA components cov-
ering, i.e.:

• data on expected signal characteristics—Table 1,
• algorithms of the analysis of TOA signal components on the phase plane,
• models of dynamic effects, including engine rotation dynamics, verified on the

basis of all year measurement data,

the engine operator complex and reliable information about:

• engine health (1st stage compressor rotor blades, fuel system, rotor bearing)—
Figs. 1 and 2 [1, 13, 17],

• disadvantageous dynamic effects (stall, surge, flutter, resonance of blade or
combustion chamber, foreign object in inlet, blade cracking).

Diagnostic rules are based on the multiple analysis of observed process
dynamics, which can be described using following relationship:

∀i∈ 1, 2, . . . ,mð ÞCV = Pari,
dPari
dt

,
d2Pari
dt2

� �
∈TS→DUT is suitable, ð6Þ

where CV is state vector, TS is technical specification.
Available simultaneous information on the rotor blade vibration spectrum and

the quality of the fuel system enables operators and diagnosticians to interfere in
engine dynamic processes [12]. The active control of fatigue processes of engines
SO-3 is realized by means of individual optimization of engine operational con-
ditions [1, 17, 18].

8 M. Witos et al.



4 Conclusions

The possibility of structural health monitoring and active controlling of the material
fatigue by the aero-engine user through interference in the fuel system adjustment
quality has been confirmed. Since 1991 any compressor blade crack in the SO-3
engine operation has not occurred—the statistical time between blade cracks has
been prolonged for over 1500%.
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Fig. 1 Illustrated some capabilities of the expert diagnostic system SPŁ-2b/CTM-PER
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Fig. 2 Example problems with the engine power unit diagnosed by means of TTM method
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A New Approach to Tune the Vold-Kalman
Estimator for Order Tracking

Amadou Assoumane, Julien Roussel, Edgard Sekko
and Cécile Capdessus

Abstract In the purpose to diagnose rotating machines using vibration signal, engi-

neers use order tracking method to process non-stationary signals. We deal here with

order tracking when the vibration signal is represented in a state space model. Such a

methodology leads to the Kalman estimator that requires knowledge about the noise

statistics affecting the state and the measurement equation. These noise statistics

are usually unknown and need to be estimated from operating data for the use of

the Kalman estimation algorithm. Several methods to tune these parameters have

been developed for time-invariant model. In this paper, we introduce a technique

to estimate the noise covariances for a linear time-variant system using the inno-

vation process. The efficiency of this new approach is evaluated using a synthetic

non-stationary vibration signal. The advantage of this approach is that it converges

quickly and provides a small estimation error compared to those used for the linear

time-invariant model.

Keywords Order tracking ⋅Kalman estimator ⋅Non-stationary signal ⋅Covariance

matrix estimation

1 Introduction

Nowadays, the tools dedicated to the condition monitoring deal more and more with

non-stationary signal from mechanical systems. Non-stationary events occur during

machine run-up or shut-down. The non-stationary phenomena can also be observed

during the variation of wind speed in wind turbines or the variation of load in a

crushing machine. Over the last two decades, several approaches have been proposed

to extract information from non-stationary signals. All these approaches consist in

tracking orders of a vibration signal under non-stationary conditions. The first cate-

gory is based on the time-frequency representation. A well-known technique in this
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category is the short time Fourier transform which supposes that the signal is sta-

tionary in a short time interval. And there is unanimity that the short time Fourier

transform suffers from its time-frequency resolution limitation [1, 2]. The second one

is the computed order tracking. This latter consists of re-sampling the non-stationary

raw signal from time domain to angle domain in order to avoid the effects of speed

variation. Computed order tracking is suitable for low speed variations [3]. For high

speed variations, the computed order tracking method leads to a bad estimation of the

envelope [4, 5]. It also has an impact on the re-sampled signal [6]. The last category

uses adaptive estimators. The Kalman estimator is one of these kind of estimators

which can be used for order tracking. This approach is based on the representation of

the vibration signal in a state space model. For this purpose, Vold et al. proposed the

Vold-Kalman estimator [7, 8]. This approach, from the first to the second generation

of the Vold Kalman estimator, has known some important improvements.

However, the drawback of this tool is still the difficulty in correctly choosing the

two parameters that influence the accuracy of the estimation. These parameters are:

the covariance matrix of the measurement noise and the covariance matrix of the

state noise. In the 1970, for the time invariant-model, Mehra [9] introduced a corre-

lation method that produces unbiased and consistent estimates of these covariances.

In [10], a new auto-covariance least-squares method is proposed which improves

that of Mehra [9]. Few works have been devoted to the time variant-model. In this

instance, Mohamed and Schwarz [11] have been one of the first authors to propose

a tuning method. It is based on the innovation process and the residual error estima-

tion. This method is modified by Almagbile et al. [12] for a problem related to the

inertial navigation systems/global positioning systems. These approaches estimate

the covariances of the disturbance signals using a sliding window. For application to

the vibration signal, we remark that the positiveness of the covariance matrix of the

state noise is not always guaranteed.

In the context above, we propose a new approach to tune the covariance matrix of

the state noise. This one is based on the residual error estimation. The outline of the

paper is as follows. The Sect. 2 presents the basics of the Vold-Kalman estimator.

In the Sect. 3, we expose our new approach and the Sect. 4 presents simulations and

comparative study with that of [12]. Conclusions are given in the Sect. 5.

2 The Vold-Kalman Estimator

The gearbox vibration signal can be modeled by the following equation

y(t) =
M∑

i=1
Ai(t) cos(𝜃i(t) + 𝜙i(t)) + v(t) (1)

where Ai is the amplitude of the ith order, 𝜙i is the phase of the ith order, v is the

measurement noise assumed to be centered, white and Gaussian and 𝜃i is the instan-

taneous angular displacement. It is calculated using the following equation
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𝜃i(t) = 2𝜋Oi ∫
t

0
fr(u)du (2)

where Oi is the value of the ith order, fr is the instantaneous rotating frequency. Thus,

the discrete form of the equation can be expressed as

𝜃i(k) = 2𝜋Oi

k∑

j=1

fr(j)
fs

(3)

where fs is the sampling frequency.

The Vold-Kalman estimator is a well known tool to process the vibration signal. And

our goal is to evaluate the unknown amplitude and phase of some specific orders

of interest using this tool. For this purpose, we construct the state equation and the

measurement equation. These latter represent the basic equation of the Vold-Kalman

estimator [8].

2.1 The Measurement Equation

The Eq. (1), in discrete domain, leads to

y(k) =
M∑

i=1

[
cos(𝜃i(k)) − sin(𝜃i(k))

] [ai,c(k)
ai,s(k)

]
+ v(k) (4)

where ai,c = Ai cos(𝜙i), ai,s = Ai sin(𝜙i) and v(k) is the discrete form of the measure-

ment noise. Its covariance matrix is Rk.

Let put ai(k) =
[
ai,c
ai,s

]
and Bi(k) =

[
cos(𝜃i(k)) − sin(𝜃i(k))

]
. Therefore, the Eq. (4)

can be rewritten as

y(k) =
⎡
⎢
⎢
⎢⎣

M−times
⏞⏞⏞

0 ⋯ 0 B1(k) ⋯ BM(k)
⎤
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

a1(k − 1)
⋮

aM(k − 1)
a1(k)
⋮

aM(k)

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

+ v(k) (5)

and symbolized by

yk = Hkxk + vk (6)
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where Hk =
⎡
⎢
⎢
⎢⎣

M−times
⏞⏞⏞

0 ⋯ 0 B1(k) ⋯ BM(k)
⎤
⎥
⎥
⎥⎦

is the measurement matrix and

xk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

a1(k − 1)
⋮

aM(k − 1)
a1(k)
⋮

aM(k)

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

is the state variable.

The Eq. (6) represents the measurement equation of the Vold-Kalman estimator.

2.2 The State Equation

To estimate the components of the vector xk, we use a Vold-Kalman constraint. It

consists to model each component of the state variable by a smooth polynomial [7].

In general, this polynomial is of degree two and 2 − times differentiable. This approx-

imation in time domain is

d2ai(t)
dt2

= wi(t) (7)

where wi is the ith state noise. In discrete time domain, the last equation becomes

ai(k + 1) − 2ai(k) + ai(k − 1) = wi(k) (8)

The matrix form of the Eq. (8) yields to

[
ai(k)

ai(k + 1)

]
=
[
0 0
−1 2

] [
ai(k − 1)
ai(k)

]
+
[

0
wi(k)

]
(9)

To track all the M orders components, we generalize the previous equation and we

obtain this one

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

a1(k)
⋮

aM(k)
a1(k + 1)

⋮
aM(k + 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0 ⋯ 0 1 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 0 ⋯ 1
−1 ⋯ 0 2 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ −1 0 ⋯ 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

a1(k − 1)
⋮

aM(k − 1)
a1(k)
⋮

aM(k)

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0
⋮
0

w1(k)
⋮

wM(k)

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

(10)
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The symbolic form of the state equation is

xk+1 = Fxk + wk (11)

where w is the state noise with an unknown covariance matrix Qk Having a priori

knowledge of Rk and Qk, the algorithm to estimate the state variable can be imple-

mented as follows

Pk+1|k = FPkFT + Qk (12)

Kk+1 = Pk+1|kHT
k+1[Hk+1Pk+1|kHT

k+1 + Rk]−1 (13)

x̂k+1 = Fx̂k + Kk+1[yk+1 − Hk+1Fx̂k] (14)

Pk+1 = (I − Kk+1Hk+1)Pk+1|k (15)

where x̂k is the estimatio of xk, Kk is the Kalman gain, Pk = E[(xk − x̂k)(xk − x̂k)T ] is

the updated covariance matrix of estimation error and Pk+1|k is the predicted covari-

ance matrix of estimation error using only the information available at time k.

[∙]T stands for transpose symbol. To compute this algorithm we need also the initial

value of the state estimation x̂1 and the initial updated covariance matrix of estima-

tion error P1.

3 The Tuning of the Vold-Kalman Estimator

The proper choice of covariance matrices Rk and Qk highly determines the accuracy

of the estimation. In general, these parameters are arbitrary fixed. The estimation of

the parameter Rk is done using an usual adaptive approach presented in [11, 12]. The

main practical issue is the setting of Qk. The new adaptive approach to estimate Qk
is established below.

From the Eq. (15), we remark that we can estimate the state noise at instant k as

followed

ŵk = Kk[yk − HkFx̂k] (16)

We show that the covariance matrix for each sample can be written

Q̂k = KkHkP̂kHT
k K

T
k + KkR̂kKT

k (17)

where P̂k = E[(x̂k − Fx̂k−1)(x̂k − Fx̂k−1)T ] and R̂k = [v̂kv̂Tk ] with v̂k = yk − Hkx̂k. We

assume that the residual (x̂k − Fx̂k−1) is uncorrelated from the estimated of the mea-

surement noise v̂k.
According to Mohamed and Schwarz [11] and Ali et al. [12], Rk can be estimated

using innovation process

Ik = yk − HkFx̂k (18)
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and then R̂k is computed as follows

R̂k = CI + HkPk|k−1HT
k (19)

where CI is the variance of innovation process. It is computed using a window of

length L and equal to

CI =
1
L

L∑

i=1
Ik−iITk−i (20)

4 Numerical Example

To evaluate the accuracy of the new tuning approach for the Vold-Kalman estimator,

we use the synthetic signal (see Fig. 1) described by the following equation

y(t) =
3∑

i=1
Ai(t) cos(2𝜋Oi ∫

t

0
fr(u)du) + v(t) (21)

where fr is the instantaneous frequency linearly increasing from 0 to 50 Hz in 5
secondes, Oi contains the value of orders and v is a centered, white and Gaussian

noise.

The signal is composed of three orders presented in the Table 1. Figure 2 displays

the rpm-frequency spectrum using the conventional windowing Fourier transform

that characterizes three orders.

The initialization of the parameters of the estimator is as follows:

∙ The initial modeling error is Q = 10−6I.
∙ The initial covariance matrix of the measurement noise is R = 1.

Fig. 1 Synthetic signal



A New Approach to Tune the Vold-Kalman Estimator for Order Tracking 17

Table 1 The synthetic signal’s amplitude of orders

Order number 1 4 9
Amplitude Linearly increasing

from 0 to 10

Linearly increasing

from 3 to 13

Fixed at 10

Fig. 2 Illustration of the rpm-frequency spectrum

Fig. 3 a Estimation of the amplitude of the first order b Zoom on the estimation

∙ The initial value of the estimation is x̂1 = [ 0 ,… , 0
⏟⏞⏟⏞⏟

12−times

]

∙ The initial covariance matrix of estimation error is P1 = 10−3I.

Here, the amplitudes of three orders are estimated by using the adaptive tuning

approach of [12] and the one presented in this paper. On the Figs. 3, 4 and 5, we

remark that we can quickly track the true amplitude of orders. The amplitude in red

line (proposed method) is closer to the original amplitude than the amplitude in blue
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Fig. 4 a Estimation of the amplitude of the second order b Zoom on the estimation

Fig. 5 a Estimation of the amplitude of the third order b Zoom on the estimation

line (Ali et al. method). For the constant amplitude, the estimation provides by the

method of Ali et al. is very noisy and biaised. It confirms the effectiveness of the

proposed method when dealing with a non-stationary signal.

To accurately evaluate the performance of each method, we use the criterion based

on the output signal to noise ratio given by

SNRout = 10log10

∑N
k=1(Hkxk)2

∑N
k=1[Hk(xk − x̂k)]2

(22)

where N is the number of samples. In the Table 2, we observe that the estimation is

improved at least by 5 dB when the input SNR = 5 dB and by 11.71 dB when the

input SNR = 15 dB using the proposed method.
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Table 2 Performance comparison of Ali et al. and the proposed method

SNRin(dB) SNRout

Ali et al. method Proposed method

15 28.8776 40.4928
10 22.2278 33.4668
5 19.2005 24.8501

Fig. 6 a Kalman gain using the two methods of estimation, b Estimation of Q(7, 7) using the

proposed method and c Estimation of Q(7, 7) using Ali et al. method [12]

The Fig. 6c represents the estimation of Qk(7, 7) using the method in [12]. We

remark that the estimation is almost constant. In the other side, on the Fig. 6b, the

Qk(7, 7) values decrease and change with the same frequency as that of the vibra-

tion signal. We observe the same behavior in the Kalman gain estimation (Fig. 6a).

The Kalman gain has a constant amplitude by using the method of [12] (blue line)

whereas it is amplitude is more small and converging toward zero (red line). This

allows to the estimator to adapt it self and to provide a smallest estimation error.

5 Conclusion

In this paper, a new method has been introduced to estimate recursively the covari-

ance matrices for the Vold-Kalman estimator. It is based on the residual estimation

error. A new formula to calculate the covariance matrix of the state noise has been

established. This approach allows to the estimator to adapt itself to the signal vari-

ations. It also ensures the positiveness of the covariance matrices. And finally, a

numerical implementation has been made to prove the effectiveness of the method

over the previous method reported here.



20 A. Assoumane et al.

References

1. Bandhopadhyay, D. K., & Grifths, D. (1995). Methods for analyzing order spectra, SAE paper,

No. 951273.

2. Pan, M. C., & Chen, J. X. (2003). Transmission noise identification using two-dimensional

dynamic signal analysis. Journal of Sound and Vibration, 262(1), 117140.

3. Bonnardot, F. (2004). Comparaison entre les analyses angulaire et temporelle des signaux

vibratoires de machines tournantes. Etude du concept de cyclostationnarit floue (Doctoral dis-

sertation, Institut National Polytechnique de Grenoble-INPG), 25–56.

4. Cheng, W., Gao, R. X., Wang, J., Wang, T., Wen, W., & Li, J. (2014). Envelope deformation in

computed order tracking and error in order analysis. Mechanical Systems and Signal Process-
ing, 48(1), 92–102.

5. Fyfe, K. R., & Munck, E. D. S. (1997). Analysis of computed order tracking. Mechanical
Systems and Signal Processing, 11(2), 187–205.

6. El Badaoui, M., & Bonnardot, F. (2014). Impact of the non-uniform angular sampling on

mechanical signals. Mechanical Systems and Signal Processing, 44(1), 199–210.

7. Vold, H., Mains, M., & Blough, J. (1997). Theoretical foundations for high performance order

tracking with the Vold-Kalman tracking filter. SAE Technical Paper, No. 972007.

8. Vold, H., & Leuridan, J. (1993). High resolution order tracking at extreme slew rates, using

Kalman tracking lter, SAE paper, No. 931288.

9. Mehra, R. (1970). On the identification of variances and adaptive Kalman filtering. IEEE
Transactions on Automatic Control, 15(2), 175–184.

10. Odelson, B. J., Rajamani, M. R., & Rawlings, J. B. (2006). A new autocovariance least-squares

method for estimating noise covariances. Automatica, 42(2), 303–308.

11. Mohamed, A. H., & Schwarz, K. P. (1999). Adaptive Kalman filtering for INS/GPS. Journal
of Geodesy, 73(4), 193–203.

12. Almagbile, A., Wang, J., & Ding, W. (2010). Evaluating the performances of adaptive Kalman

filter methods in GPS/INS integration. Journal of Global Positioning Systems, 9(1), 33–40.



Estimation of Cyclic Cumulants
of Machinery Vibration Signals
in Non-stationary Operation

J. Roussel, A. Assoumane, C. Capdessus and E. Sekko

Abstract Cyclic statistics have been proved to be a powerful tool for the study of
rotating machinery vibration signals. Indeed, such signals usually exhibit cyclo-
stationary features related to the shaft speed and to the geometry of the components.
Cyclostationarity can be studied at order one (periodic deterministic components) or
order 2 and more. Cyclic statistics at order N comprise a pure Nth order cyclo-
stationary part and a contribution from orders 1 to N − 1. It may be interesting to
study pure cyclostationarity at order N, i.e. to remove the influence of smaller
orders. This can be done by computing cyclic cumulants instead of cyclic moments.
In order to compute 2nd order cumulants of the vibration signal, one must remove
from the signal the 1st order cyclostationary components, that is to say the deter-
ministic periodic components. Some classical approaches have been proposed,
based on synchronized averaging or Fourier transform. But some limitations appear
when the vibration signal comprises components tied to different rotation fre-
quencies (for instance in the case of gears) or under variable speed. The method that
we propose in order to extract these periodic components is based on a biquad filter
bank. Biquad filters have been extensively used in audio processing and allow
building band-pass or notch filter banks at low computational cost. We show how
such filters can be used to remove the 1st order cyclic components from the signal.
An extension to variable speed operation is proposed by having the filters central
frequency follow the variations of the rotation frequency. The technique is applied
to simulated signals as well as real life signals.
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1 Introduction

The vibrations of rotating machinery usually exhibit periodicities tied to the rotation
speed. Depending on the machinery there can be either periodic deterministic
components or repetitive ones, that are not strictly periodic but whose statistics are
periodic. These two kinds of signals can be classified within the frame of cyclo-
stationarity. Deterministic periodic components are described as first order cyclo-
stationary signals, whereas random repetitive ones correspond to second or higher
order cyclostationarity. So far this classification has served as a base for many
analysis, processing and diagnosis methods. One point of interest is that of signals
which comprise both a deterministic component and a random one at the same
cyclostationary frequency. This mixture is described as impure cyclostationarity [1,
4, 5]. Separating these two contributions can lead to a refined diagnosis, either by
allowing the separation of vibrations produced by two different parts of the system
or by giving some more accurate information about the vibrations produced by one
specific part of the system. Several techniques have been proposed in order to
estimate and extract the deterministic periodic components, the best known being
synchronized averaging [6]. This was shown by [2] to be a filtering technique and
extended to a wider variety of filters. But these cannot be applied without prior
synchronized sampling.

Here we propose a new technique based on the use of a biquadratic filter banks.
Biquadratic filters (usually called biquad filters) are commonly used in the audio
processing framework [8], mainly to build equalizers that allow enhancing or
reducing some frequency bands or removing some periodic components. Our
proposal is to use this last property to extract the periodic components from a
cyclostationary signal, in order to keep only its random part, i.e. the so called higher
order pure cyclostationary component. A notch filter bank can be built in order to
remove all periodic components without prior synchronized resampling. In case the
machinery comprises several shafts rotating at different frequencies, the filter bank
can be designed so that all periodic components are removed whatever rotation
speed they are related to. Furthermore, provided an encoder signal is available, the
filters can be made to follow the speed variations by adapting the filters coefficients.

In Sect. 2 the concept of pure cyclostationarity will be introduced as well as
some analysis tool that allows characterizing it. In Sect. 3 biquadratic filters will be
presented and the proposed method for the extraction of first order cyclostationary
components will be described. In the same section some simulations will be made
to evaluate the performances of the proposed technique. In Sect. 4 the proposed
method will be applied to real life toothed gearing vibrations. In Sect. 5 we will
draw a conclusion and some perspectives.
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2 Problem Formulation

In this section, the main properties of cyclostationary signals will be recalled. Pure
and impure second order cyclosationary signals will be defined. Spectral coherence
will be introduced as an efficient tool for measuring the signal cyclostationarity.
Some simulations will be presented in order to illustrate these notions.

2.1 Cyclostationarity

A signal s tð Þ is said to be cyclostationary at frequency α0 if its temporal statistical
moments are periodic over time at frequency α0. The signal is first order cyclo-
stationary at frequency α0 if its statistic mean is periodic at frequency α0, that is to
say:

M tð Þ=E s tð Þf g=E s t+ nT0ð Þf g ð1Þ

where Efg stands for the statistical averaging, T0 = 1 ̸α0 and n can be any integer
value.

The signal is second order cyclostationary at frequency α0 if its autocorrelation
function is periodic over time at frequency α0, that is to say:

Rs t, τð Þ=E s t+
τ

2

� �
s t−

τ

2

� �n o
=Rs t+ nT0, τð Þ ð2Þ

where τ stands for the time lag and the other parameters are defined as for Eq. (1).

2.2 Pure Versus Impure Second Order Cyclostationarity

The nth order moment of a signal comprises both a pure nth order contribution and
contributions from all moments from order 1 to n − 1 [7]. It may be interesting to
exclude these inferior orders contributions and to calculate the pure nth order
contribution which is called the nth order cumulant of the signal. In what follows
we will limit our study to second order moments and cumulants. A signal is said to
be purely second order cyclosationary if its second order temporal moment, that is
to say the autocorrelation function, is periodic over time and does not comprise any
contribution from the first order moment, that is to say the mean. This condition is
fulfilled whenever the signal is zero mean. A typical example of an impure second
order cyclostationary signal is a signal described by Eq. (3) with a tð Þ a random
centered stationary process and a ̄ a constant non zero value:
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s tð Þ= a ̄+ a tð Þð Þcos 2πf0tð Þ ð3Þ

The autocorrelation function of this signal is given by:

Rs t, τð Þ= Ra τð Þ+ a ̄2
� � 1

2
cos 2π2f0tð Þ+ cos 2πf0τð Þð Þ ð4Þ

With Ra τð Þ the autocorrelation function of the random process a tð Þ. It clearly
comprises a part that comes from the non zero first order moment, i.e.
E s tð Þf g= a ̄cos 2πf0tð Þ.

In order to estimate the autocorrelation of the pure cyclostationary component of
the signal, that is to say its second order cumulant Cs t, τð Þ, one must first remove
from the signal its periodic mean, and thus compute:

Cs t, τð Þ=E s t+
τ

2

� �
−E s t+

τ

2

� �n o� �
s t−

τ

2

� �
−E s t−

τ

2

� �n o� �n o
ð5Þ

The second order cumulant of the signal described by Eq. (3) is:

Cs t, τð Þ= Ra τð Þ
2

cos 2π2f0tð Þ+cos 2πf0τð Þð Þ ð6Þ

In order to characterize second order cyclostationarity we propose to compute
spectral correlation, which provides a normalized measure of cyclostationarity.

2.3 Spectral Coherence

Applying Fourier transform to the autocorrelation function of s tð Þ both over t and τ
results in the so called spectral correlation function, denoted here by
SCs α, fð Þ=E S f + α

2

� �
S* f − α

2

� �� �
, with S(f) the Fourier transform of s(t). SCs α, fð Þ

is the frequential 2nd order moment of the signal. It depends on the spectral
frequency f obtained from the time lag τ, and the cyclic frequency α obtained from
the time t. Spectral correlation exhibits spectral lines over α at frequency α0 if the
signal comprises a component that is cyclostationary at this frequency. Spectral
coherence is a normalized version of spectral correlation, given by:

SCohs α, fð Þ= E S f + α
2

� �
S* f − α

2

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E S f + α

2

� �
S* f + α

2

� �� �
E S f − α

2

� �
S* f − α

2

� �� �q ð7Þ

This parameter is comprised between 0 and 1. Theoretically, it reaches zero for
completely uncorrelated components S f + α

2

� �
and S f − α

2

� �
and reaches one for

completely correlated ones. A high spectral correlation value at frequency α0
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reveals cyclostationary components at this frequency. As an example spectral
coherence is applied to the test signal described by Eq. (8).

s tð Þ= a1̄ + a1 tð Þð Þe2πjf1t + a2̄ + a2 tð Þð Þe2πjf2t ð8Þ

with j the square root of −1, a1̄ and a2̄ real constant values and a1 tð Þ and a2 tð Þ
random centered Gaussian processes. Reduced frequencies f1 = 0.0789 and
f2 = 0.2023. The spectral coherence is computed for the only cyclic frequency
α0 = f2 − f1. In case the two components are correlated, and the signal is thus
cyclostationary at the cyclic frequency α0 the spectral coherence should reach 1 at

the spectral frequency f1 + f2ð Þ
2 = 0.1406.

Three cases are examined (see Fig. 1):

• Case 1: a ̄1 = a2̄ = 0 and a1 tð Þ and a2 tð Þ are not correlated (s tð Þ stationary).
• Case 2: a1̄ = a2̄ = 0 and a1 tð Þ= a2 tð Þ (s tð Þ purely 2nd order cyclostationary at

frequency α0 = f2 − f1).
• Case 3: a1̄ = a2̄ = 1 and a1 tð Þ and a2 tð Þ not correlated (impure cyclostationarity

at frequency α0 = f2 − f1).

In case 1, the signal is stationary and the spectral coherence is approximately
zero. In case 2, the signal is purely second order stationary at frequency α0 = f2 − f1
and the spectral coherence reaches 1 at spectral frequency f1 + f2ð Þ

2 . In case 3, though
there is no pure cyclostationarity at order 2, the spectral coherence almost reaches 1
due to the first order contribution.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1
Case 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

Sp
ec

tra
l c

oh
er

en
ce

 a
t f

re
qu

en
cy

 f2
-f1

Case 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Reduced frequency

0

0.5

1
Case 3

Fig. 1 Spectral coherence of the signal given by Eq. (7) computed at α0 = f2 − f1 for cases 1, 2
and 3
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3 Proposed Method

In order to separate the first order and pure second order contributions to the cyclic
moments, we propose to apply a filter bank to the signal prior to the 2nd order
moment computation. This comes to computing the 2nd order cumulant of the
signal. In order for the filters to follow the speed variations, they must be efficient
while requiring few coefficients and their stability must be ensured whatever their
central frequencies variations. We chose to apply biquad notch filters, which fulfill
these requirements. Indeed, only five coefficients are required, and the poles are
ensured to be inside the unit circle provided that the bandwidth of the filter is small
relatively to its central frequency, which is the case in our application.

3.1 Biquad Filters

Biquad filters are recursive linear digital filters with 2 poles and 2 zeros. Their z
transfer function can be expressed as:

H zð Þ= b0 + b1z− 1 + b2z− 2

a0 + a1z− 1 + a2z− 2 ð9Þ

with b0 b1 b2½ � and a0 a1 a2½ � respectively the non-recursive and recursive
coefficients of the filter [3].

These filters are commonly used in audio processing in order to enhance or
remove periodic components or frequency bands. Their implementation is easy and
any filter bank can be built from such second order cells. Since our goal is to
remove from the signal deterministic periodic components, the filter bank will be
built from cancelling second order cells, i.e. notch filters.

Given the central frequency of the filter f0, its bandwidth BW (in octaves) and the
sampling frequency fs, the coefficients of the notch filter are given by:

b0 = 1 b1 = − 2cos ω0ð Þ b2 = 1
a0 = 1+ α a1 = − 2cos ω0ð Þ a2 = 1− α

	
ð10Þ

with:

ω0 = 2πf0 ̸fs
α= sin ω0ð Þ ̸ 2Qð Þ

Q= 1

2 ⋅ sinh log 2ð Þ ⋅BW ⋅ ω0
2 ⋅ sin ω0ð Þ

� �

8>><
>>:

ð11Þ
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If the bandwidth Δf is given in Hz, the equivalent in octaves is calculated
through:

BW =
log 1+ 2Δf

2f0 −Δf

� �
log 2ð Þ ð12Þ

In all that follows, the bandwith of the filters will be fixed from the duration T of
the signal: Δf =2 ̸T .

3.2 Extraction of the First Order Cyclostationary
Component

Here the filtering is applied to a signal defined according Eq. (8) case 3, i.e.
a1̄ = a2̄ = 1 and a1 tð Þ and a2 tð Þ uncorrelated Gaussian random processes with
f1 = 0.0789 and f2 = 0.2023 in reduced frequency and the signal is generated over
65536 samples. Such a signal exhibits only impure cyclostationarity at frequency
α0 = f2 − f1. Two notch filters with bandwidth Δf =2 ̸T are successively applied to
that signal at frequencies f1 and f2 in order to remove the first order cyclostationary
contribution a1̄e2πjf1t + a2̄e2πjf2t.

Spectral coherence is computed on the raw signal (case 1), on the filtered signal
(case 2) and on the residual part, i.e. the original signal minus the filtered one (case
3). The spectral coherence of case 2 thus comes to a normalized 2nd order fre-
quential cumulant of the signal and since this signal comprises no 2nd order pure
cyclostationarity, that cumulant is approximately zero. Whereas the spectral
coherence of the residual part, i.e. the deterministic part of the signal, reaches 1 due
to the first order contribution. All the following computations are performed on the
second half of the signal not to take into account the transient response of the filters
(Fig. 2).

In order to check that the first order component has properly been removed from
the signal, the mean square error normalized by the signal power is computed first
between the filtered signal and the random part of the original signal (i.e. the pure
cyclostationary one a1 tð Þe2πjf1t + a2 tð Þe2πjf2t) and second between the residual and
the deterministic part of the signal a ̄1e2πjf1t + a2̄e2πjf2t. These two errors are
respectively MSErandom = −30.75 dB and MSEdeterministic = − 30.79 dB. These very
good estimation results confirm our hypothesis that the deterministic component is
to be eradicated with a filter whose bandwidth corresponds to one FFT channel. The
part of the random component falling in that very channel probably explains for the
estimation error of both components.
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3.3 Extension to Variable Speed Operation

The technique is now applied to the same synthetic signal as in Sect. 3.2 but both
the frequencies f1 and f2 and the amplitudes of the corresponding components are
varying with time: f1 = 0.789 ⋅ fv and f2 = 2.023 ⋅ fv with fv =0.1+ 0.02 ⋅ t and the
amplitudes of the two components are multiplied by a factor ranging from 1 to 1.2
through the whole duration of the signal. The two notch filters are adapted so that
their central frequencies follow respectively the variations of f1 and f2 while their
bandwidth stays equal to Δf =4 ̸T . This bandwidth was chosen from a set of
experiments. The theoretical study of the behavior of the filters is still ongoing. The
same two errors as in Sect. 3.2 are computed and they are respectively equal to
MSErandom = − 22.49 dB and MSEdeterministic = − 25.62 dB. Unlike the constant
speed case, the estimation error is probably due not only to the part of the random
component falling in the filter bandwidth but also to a degraded deterministic
component estimate, which can explain for the difference observed between
MSErandom and MSEdeterministic.

4 Application to Real Life Signals

The technique was applied to real life signals recorded on the GOTIX test bench of
the GIPSA-LAB (available at http://www.gipsa-lab.grenoble-inp.fr/projet/gotix/
presentation.html). The device comprises 2 motors shafts linked by a gear train
enclosed in a gear box. The gear train is a 57/15 multiplier, with parallel straight
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Fig. 2 Spectral coherence of the signal given by Eq. (7) computed at α0 = f2 − f1 for cases 1
(before filtering), 2 (after filtering) and 3 (residual)
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teeth. The acquisition is performed on 20 synchronous channels, at 25 kHz sam-
pling frequency. Two encoder signals are available, for the two different shafts.
These encoder signals are sampled at 100 kHz. Several recordings were performed
with different operating conditions. The signal that was chosen for our application
was recorded under a 172 Nm loading torque from an accelerometer located on the
bearing number 1, on the leading shaft, that corresponds to the 57 toothed wheel.
The file name is “14-5 s-172.e02”.

The rotation frequencies of the two shafts were estimated from the encoder
signals. The leading shaft rotates at approximately 12.32 rotations per second. The
variations around this mean value do not exceed 1.54 × 10− 2 rotations per second.
The other shaft rotates at approximately 46.8 rotations per second. The variations
around this mean value do not exceed 0.11 rotations per second. Though these
variations are small relatively to the shaft speed, they produce a non-negligible
modulation of the highest harmonics of the rotation frequencies on the spectrum.
For that reason, the filter banks were built to follow the frequency variations.

Two notch filter banks were successively applied to the accelerometer signal
with bandwidth Δf =8 ̸T where T = 2.048 s is the duration of the processed
signal. The spectra of the original signal and of the filtered one are shown on Fig. 3.
They were computed over the second half of the signals, not to take into account the
transient part of the filters response. It can be observed that most of the spectral
lines have been reduced. In order to check whether the two harmonic sets tied to the
two rotation frequencies have been suppressed some markers were added at all
harmonic positions (Fig. 4). Blue diamonds indicate harmonics of the leading shaft
rotation frequency on the raw signal while red diamonds indicate the same har-
monics on the filtered signal. In the same way black diamonds and green ones
indicate harmonics of the other shaft rotation frequency respectively on the raw and
filtered signals.

Two zooms are presented on Fig. 4. One on a medium frequency band and the
other one on a high frequency band. As can be observed, all the harmonics of the
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Fig. 3 Spectrum of the accelerometer signal before and after filtering
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rotation frequencies have been removed, even at very high frequencies, thanks to
the fact that the filters were following the rotation frequencies variations. Inter-
estingly some spectral lines remain on the spectrum, that do not belong to any of the
two harmonic sets.

Since the proposed technique does not require prior angular resampling, the two
harmonic sets could be removed by two filter banks following the rotation fre-
quencies applied directly to the original signal.

5 Conclusion

In this paper we proposed a new technique for the extraction of the periodic
deterministic components from a vibration signal. This technique is based on simple
order two filters and does not require prior angular resampling, contrary to classical
techniques such as synchronized averaging or comb filter. It can be applied on the
same signal in order to extract different sets of harmonics linked to different rotation
frequencies. We showed that this technique allows extracting the first order
cyclostationary components from a signal in order to compute its second order
cumulants. It was shown on simulated signals that the extraction is efficient as well
in stationary operation as in non-stationary operation (variable speed and ampli-
tude). The technique was eventually applied to a real life gear signal. Two filter
banks following the two rotation frequencies allowed extract all the harmonics tied
to these rotation frequencies up to the highest part of the spectrum. Further
investigations are been done to explore the possibilities of this technique for early
diagnosis or defect characterization.
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30 J. Roussel et al.



Acknowledgements The authors gratefully acknowledge the GIPSA-LAB for sharing the gear
vibration signals recorded on the GOTIX test bench.

References

1. Antoni, J., et al. (2004). Cyclostationary modelling of rotating machine vibration signals.
Mechanical Systems and Signal Processing, 18, 1285–1314.

2. Braun, S. (2010). The synchronous (time domain) average revisited. Mechanical Systems and
Signal Processing, 25, 1087–1102.

3. Bristow-Johnson, R. (2016). Cookbook formulae for audio EQ biquad filter coefficients.
Retrieved July 2016 http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt.

4. Capdessus, C. et al. (1994). Cyclostationarity: A New Signal Processing Tool for Vibration
Analysis and Diagnostics. In Proceedings of 1994 International Gearing Conference,
Newcastle-upon-Tyne (pp. 142–148).

5. Capdessus, C., et al. (2000). Cyclostationary processes: Application in gear faults early
diagnosis. Mechanical Systems and Signal Processing, 14(3), 371–385.

6. Mark, W. D. (2015). Time-synchronous-averaging of gear-meshing-vibration transducer
responses for elimination of harmonic contributions from the mating gear and the gear pair.
Mechanical Systems and Signal Processing, 62–63, 21–29.

7. Mendel, J. M. (1991). Tutorial on higher-order statistics (Spectra) in signal processing and
system theory: Theoretical results and some applications. Proceedings of the IEEE, 79(3),
278–305.

8. Smith J. O. (2007). Introduction to Digital Filters: with Audio Applications. W3 K Publishing.

Estimation of Cyclic Cumulants of Machinery Vibration Signals … 31

http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt


Simplified Dynamic Model of a Wind
Turbine Shaft Line Operating
in Non-stationary Conditions Applied
to the Analysis of IAS as a Machinery
Surveillance Tool

Jose L. Gomez, Ilyes Khelf, Adeline Bourdon, Hugo André
and Didier Rémond

Abstract Instantaneous Angular Speed (IAS) has been shown to be an alternative
signal to detect bearing faults in geared systems. Detection of the presence of
bearing faults in rotating systems requires understanding of the transfer way
between the defect and its manifestation in the measured signal. This step is mainly
performed by the development of numerical models describing the couplings
between the defects and the rest of the device. To the authors’ knowledge, the
majority of the models in the literature are lump parameter models, with no regard
between the dynamic of the bearing and the rotational degree of freedom of the
shaft. The influence that the dynamics of a faulted bearing has over the rotating
shaft leading to IAS variations has been presented in a previous work. This
influence has been introduced by means of a roller bearing model which dynamics,
modified by the defect, introduces torque perturbations to the shaft. The aim of this
paper is to couple the faulted bearing model to a multiple gear stage simplified wind
turbine transmission. The model is built with a classic finite element approach and
is suitable for the test of non-stationary simulations. First results show bearing
faults are detectable in different locations of the geared system by the measurement
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of IAS. Even if experimental validation have not been yet performed, numerical
results appear very promising to deepen the understanding of the IAS variation
phenomena.

Keywords Bearing default modelling ⋅ Gear modelling ⋅ Non-stationary
machines ⋅ Instantaneous angular speed

1 Introduction

Condition monitoring has become a common practice when reliability and avail-
ability of machines are critical. Techniques for processing and analysis of signals
measuring the vibratory behavior of the machine are in constant development, with
the objective of detecting defects in rotating parts as early as possible. Wind tur-
bines are a good example of machines needing for surveillance technology
improvement. The total gear ratio of these machines are often more than 1:100. This
consideration added to non-stationary operation, leads to high level of complexity
when using radial vibration techniques.

Instantaneous Angular Speed (IAS) has been shown to be an alternative signal to
detect bearing faults in mechanical systems [5]. Different work has been focus on
the development and test of the IAS signal as a condition monitoring tool [1]. Being
modelling of physical phenomena a fundamental feature allowing the compre-
hension, design and prediction of the behavior of mechanical systems, some work
have been also dedicated to the analysis of dynamics leading to small speed vari-
ation in rotational systems [2]. Expression of the equations in the angle domain
becomes natural to simulate non-stationary conditions by managing simulation
steps through angular sampling and by taking into account the rotating degrees of
freedom of the device of interest. In a recent work [3], a roller bearing model
describing how the dynamics of a bearing leads to IAS variations have been pre-
sented. The presence of a defect affects the bearing races and rolling elements
interaction, changing the IAS’ response signature.

The aim of this paper is to present a simplified model of a wind turbine shaft line
with a multi stage gear transmission. Different bearings have been modeled with
two different approaches. The main bearing (MB), which support the rotor weight,
has been simplified by being modeled as a deep groove ball bearing [3], while the
rest of the bearings have been represented by means of the nonlinear Palgrem’s
formulation [4]. The Gear stages are modeled with a classic approach based on their
geometrical matrices leading to stiffness and damping teeth interaction matrices.
A brief description of the model approach and construction follows.
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2 General Modelling Elements

2.1 General Approach

The model is built with a classic Finite Element Method approach. Let {X} be the
generalized displacement vector; [M], [C] and [K] the real matrices of mass, stiff-
ness and damping and {Fext(t)} the vector representing the external forces.

The shafts are discretized in beam elements considering three displacements and
three rotations. The supports are modeled by punctual lumped elements connected
by localized dampers and springs. The objective is then, solving the generalized
system of dynamic equations to obtain the IAS variations of the nodes representing
the shaft.

2.2 The Roller Bearing Model

Roller bearings are modeled by connecting forces linking the flexible supports with
the shafts (See Fig. 1). Two approaches for the estimation of theses connecting
forces are used. The former is considered as an extension of the one developed by
Sawalhi and Randal [6] and it is completely described in [3], where consideration of
the rolling resistance phenomena as well as the rotational DOF of the inner race
(IR), permits the coupling of radial and tangential forces leading to IAS perturba-
tions as it’s described in Fig. 2. The second approach is the one described by
Palgrem’s formulation [4] where a global average nonlinear stiffness is considered
meaning that the effect of loading distribution over the roller bearings is not
included.

The forces are then translated onto the inner and outer races as two resultant
forces, and a torque (if the former approach is used), that introduce the IAS vari-
ations (See Fig. 2).

Shaft
Roller Bearing

Connecting Forces

Support

IRN

ORN: Outer race node
IRN: Inner race node

ORN

Fig. 1 Bearing connecting
forces [3]
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2.3 Modelling the Gear Coupling

A similar approach involving connecting forces is used for the modeling of the
gears. Forces are obtained along the line of action by the following equation:

Fgea
� �

= Kgea
� �

⋅ Xgea
� � ð1Þ

where vectors {Fgea} and {Xgea} are the gears connecting forces and the general-
ized displacements of the nodes representing the interacting gears. Matrix [Kgea]
represents the gear stiffness and is estimated as:

Kgea
� �

=Ko ⋅ G½ � ð2Þ

The constant Ko represents the average stiffness of the teeth in contact and is
estimated using the ISO 6336 standard. The gear geometric matrix [G] is a com-
bination of gear characteristics (base diameters, helix angle, and gear pressure
angle) and the displacements of the contact point of the teeth referenced to the FE
nodes where the gears are attached. These displacements are equivalent to the
squeezing of the teeth in contact. This approach has been widely used. Interested
readers will find the entire formulation developed by [7]. Figure 3 shows a scheme
of the approach. Once the geometrical matrix is obtained, gear forces can be cal-
culated by means of Eq. 2.

An interesting fact is that, at the authors’ knowledge, the chosen approach to
describe the gears coupling has never been used including the system’s rotational
rigid modes, meaning that the shafts and therefore the gears, have free rotational
movement (along Z axis on Fig. 3).

Notice that for this work, gears are considered perfect, meaning that no error
transmission has been introduced. However, modelling the gear coupling as
external forces allows, if desired, an easy introduction of nonlinear stiffness and

x y

Fxj

Fyj

Inner race

Outer race

Tzj
x y

Inner race

Outer race

Fig. 2 Rolling element forces translated into the IR [3]
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reduce computer time by avoiding the calculation of the entire system’s stiffness
matrix at each iteration step of the resolution. Only Ko has to be replaced by the
chosen nonlinear law.

2.4 Model Assembly and Resolution

The mechanical system is then assembled into the following differential system of
equations:

M½ �. X ̈
� �

+ C½ �. X ̇
� �

+ ½K� Xf g= FextðtÞf g+ FbeaðtÞf g+ FgeaðtÞ
� � ð3Þ

where {Fbea} is the vector containing the resultant forces of each bearing on the
system, {Fgea} represents the vector containing the forces modelling the set of gears
and {Fext(t)} is the vector containing the external forces and moments. Each
component of the force vectors has to be located following the finite element
connectivity arrangement.

Resolution of equations is performed with Matlab’s nonlinear ODE solver. To
achieve this, the system of n differential equations of order 2 is rearranged as a
system of 2n differential equations of order 1. Then, the system is transformed into
the angular domain which means that time is expressed as a function of the angular
DOF θ. The system of equations becomes an angular one:

dQ ̃ðθÞ
dθ = 1

ω ̃ðθÞ ⋅ S½ �− 1 ⋅ A½ � ⋅ Q̃ðθÞ+ B½ � ⋅ Uf g� �
dt
dθ =

1
ω ̃ðθÞ

(
ð4Þ

where:

Q̃ðθÞ� �
2n =

x ̃f gn
x ̃̇f gn

( )
ð5Þ

Fig. 3 Gears connecting forces
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And:

Uf g2n =
0f gn

Fextf gn + Fgear
� �

n + FbeaNf gn

� 	
ð6Þ

The symbol “∼” stands for angular variable. Matrix [S] contains the inertial part
of the bearing forces (taking into account rolling elements inertia and acceleration)
while the vector {FbeaN} contains the non-inertial forces from bearings. Matrices
[A] and [B] contain an arrangement of the matrices of mass, stiffness and damping
of the system. The complete development of the equations can be found in [3].

3 Simplified Wind Turbine Model Description

The simplified wind turbine model is inspired on a 2 MW Senvion MM82 equipped
with a Renk’s gearbox. The nominal speed of the generator for 2 MW is
1800 RPM. The gearbox ratio is 1:105.5. A kinematic scheme of the shaft line is
shown in Fig. 4.

Fig. 4 Wind turbine scheme
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The gearbox has three stages. The first stage is a planetary transmission with
fixed satellites. Due to the complexity of the machine kinematics several choices
were made to simplify the system but keeping it as close as possible to the real
parameters. Figure 5 shows a scheme of the simplified model.

Between the simplifications we stand out the following: the planetary trans-
mission is modeled by an equivalent simple gear stage. Each one of the three
transmission ratios are equal to the real ones. The Bearing A or main bearing
(MB) is an skf 240/630 double row spherical roller bearing with an angle Ball Pass
Frequency on the Outer race (BPFO) of 12.75 event per revolution (ev/rev). It was
modelled with the approach of [3] as a deep groove ball bearing, meaning that no
axial effects are taken into account. The bearings B, C and D, are the same as in the
real wind turbine and were modeled with the Palgrem’s formulation, meaning that
the dynamics of load distribution over the rolling elements under the load zone is
not taken into account, therefore, the only bearing adding perturbations related to
the BPFO is the MB. The housing of the MB was reduced from its finite element
model performed on ANSYS to a 4 DOF accounting for X and Y displacements.

The real gearbox is supported on by vibration pads. We supposed the housing
rigid and resting over two DOF flexible supports accounting for X and Y dis-
placements. The load and inertia of the rotor is lumped onto the node 1. Only the
complete low speed shaft (LSS) and the high speed shaft (HSS) of the gearbox were
discretized on FE. The intermediate shafts and gears were lumped onto nodes 8 and
9 respectively. These nodes are supported by the same flexible elements of the
transmission bearings. Node 14 stands for the lumped generator shaft which is
linked to the gearbox through a flexible coupling.

Finally, Mz1 is the torque introduced by the wind through the rotor and Mz2 is
the electromagnetic torque induced by the generator.

z
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Mz1

5 71 2 4 6

11 1210

3

13

Mz2

8

9

Ky

Cy

14

A B

C

D

Fig. 5 Simplified wind turbine shaft line scheme
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4 Test of the Model and Results

The wind torque over the rotor, the electromagnetic torque from the generator and
the mechanical loses permitting to reach the steady state were set up for the model
to respond within the linear range of the real wind turbine which is between 1100
and 1800 RPM of the HSS, which is equivalent to 125–750 kW of power
generation.

Stationary and nonstationary runs were made. Here, we show only the nonsta-
tionary one which was performed by means of a linear external torque variation, to
obtain a HSS speed varying from 1500–1800 RPM within 50 revolutions of the
LSS. These simulations were performed for healthy bearings and in presence of a
bearing defect located in the outer race of the MB in the gearbox sided row and
aligned with the rotor’s weight. The defect has 150 microns of depth and its length
is 10% of the angular distance between two rolling elements.

Figure 6 shows the non-stationary angular speed response of the nodes 7 and 14
for the healthy bearing simulation. Theses nodes represent usual points of encoder
installation for IAS measurement.
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Fig. 6 Nonstationary angular speed response. Nodes 7 and 14. Healthy MB
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Figure 7 shows that IAS variations may be observed on the angular speed
response in presence of the bearing defect when observing only around one shaft
revolution.

Figure 8 shows Fast Fourier Transforms (FFT) of the IAS responses for nodes 7
and 14 for healthy and faulted bearing. For the healthy bearing we managed to see
only the response of the node 14 which is much greater in amplitude along the
spectral span. The fundamental frequency of the BPFO is predominant over the
harmonics. Readers should know that this kind of response is rarely observed from
experimental measurements on healthy bearings due to the low level of energy and
the usual noise within this kind of signal.

We observed also that for the mechanical parameters chosen the IAS phenomena
is amplified by the gears coupling.

In the case of the faulted bearing, the FFT treatment shows that the energy of the
simulated IAS is amplified making it around ten times greater. The nature of a
bearing defect introduces impulsive perturbations increasing the level of the BPFO
harmonics. Specifically, for the node 7, the 5th and 6th harmonics have more than a
hundred times more amplitude than the fundamental frequency.

Authors had verified that the response is strongly affected by the modal response
of the shafts, the supports and the bearings. This means that directly tuning the
simplified model with experimental measurements is not possible. However, the
built phenomenological model allows to analyze the impact on the system response
of the different mechanical parameters, the nonstationary loads and different fault
levels, in different roller bearings. This applies not only for IAS observation but
also for radial acceleration analysis.

Another interested fact that is not shown in this paper for sake of saving space is
that the gears interaction, which is along the tangential pressure line (see Fig. 3) is a
second source of coupling of tangential forces with the radial ones. This means that
even neglecting the rolling resistance phenomena, the gear interaction introduces
IAS perturbations by coupling the bearing forces with the tangential gear forces,
which is translated in torque variations.
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Fig. 7 Zoom of the nonstationary angular speed response. Nodes 7. Faulted MB
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5 Conclusion

A simplified wind turbine shaft model was built, able to simulate the IAS phe-
nomena introduced by the dynamics of the roller bearings in presence of defects and
nonstationary operating conditions. The IAS phenomena was observed along all the
modeled shafts. A MB localized OR defect was introduced. The presence of the
defect increases substantially the energy of the IAS phenomena.

Further work will be performed using the current model to test a classification
method based in Artificial Intelligence to test IAS fault indicators.

Acknowledgements Authors would like to thank Maia Eolis, LaMCoS, and France national
research and technology association (ANRT) for funding this research.
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Current Signal Analysis of an Induction
Machine with a Defective Rolling Bearing

Aroua Fourati, Adeline Bourdon, Didier Rémond, Nabih Feki,
Fakher Chaari and Mohamed Haddar

Abstract With the ultimate goal of rotating machinery diagnosis using Motor
Current Signal Analysis (MCSA), this paper provides a coupled electro-magnetic-
mechanical model of a rotating shaft supported by rolling bearings and driven by a
three-phase squirreled cage motor. The modeling is based on the hypothesis that a
bearing defect causes torque and then Instantaneous Angular Speed (IAS) variations
associated to air-gap eccentricity of the induction machine rotor. Dynamic analysis
of the multiphysic system highlights the sub-systems interactions, especially,
angular periodicities and frequency modulations. The global model can be char-
acterized by a unique set of non-linear state equations which are solved iteratively
by an angle-step scheme while considering the angle-time relation. The major
interest of presenting this model is that it allows to decrypt the transfer path from a
small localized bearing defect until its manifestation on electrical signals. Analysis
of bearing defects were performed by applying Fourier Transform on current
per-phase signals.
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1 Introduction

MCSA method has been widely used in the domain of diagnosis of industrial
equipments. Many investigations proved its efficiency to detect defects in
mechanical devices linked to the corresponding motor especially in the case of
rotating components such as gears and bearings [1]. Most of those investigations
have used signal processing tools in order to prove the capacity of the methods to
extract the presence of the localized defect from required signals [2]. However, in
order to evaluate the efficiency of proposed method, it is required to understand the
information path from the defect geometry to modification in electrical signal. By
answering this question, the performance about the reliability of the method to the
information about the presence and the size of the defect can be established. This is
the main motivation for a model that represents precisely the multiphysic interac-
tions between the different sub-systems involved in the transfer path. Starting by
representing electro-magnetic behavior of an induction machine, several models
were proposed [3]. However those investigations remain away from representing
precisely small perturbations caused by the defect.

In [4], an electro-mechanical model of an induction machine coupled to a geared
system was presented. This model was based on Permeance Network Model. Even
if this model provides a good representation of the electro-magnetic-mechanical
interactions, it is still not sufficient enough for exhibiting the effect of the periodicity
of the rotating machinery geometry added to its inability to represent non-stationary
operating conditions. In order to overcome these limitations, this model was cou-
pled to angular approach in [5].

On the other hand, an intrusive model that represents the dynamic behavior a
rolling bearing was well described in [6]. This model has proved, by estimating the
efforts applied in each rolling element of the bearing, that the dynamic behavior of
the bearing presents IAS fluctuations. In the presence of defect, the latter induces
some additional IAS perturbations which are related to the geometry of the bearing,
the geometry of the defect and its localization.

In this research work, we will investigate a model of an electro-magnetic-
mechanical model of an induction machine coupled to a rotating shaft supported by
rolling bearings. The electro-magnetic model of the induction machine is well
adapted to adequate speed fluctuations that can be caused by the bearing dynamics
and possibly the presence of a localized defect. This adaptation is insured by
adopting an angular description of the motor and considering the angular period-
icities of the motor geometry. This model has then been coupled to rolling bearing
model and the methodology of electro-magnetic-mechanical coupling is well
detailed. To validate the capacity of the global model, a realistic geometry of the
defect is introduced and investigations are conducted by using Fourier Transform
on the simulated stator per-phase current. Time and angular periodicities induced by
the system interactions are particularly highlighted.
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2 Electro-Magnetic-Mechanical Modeling

The proposed multiphysic model represents a system of a rotating shaft supported
by rolling bearings and driven by a squirreled cage induction motor as shown in
Fig. 1. The corresponding dynamic system is numerically simulated by combining:
(i) a mechanical dynamic model of a rotating shaft and rolling bearings that takes
into account variations of the IAS and (ii) an electro-magnetic model of an
induction machine represented by a Permeances Network Model in order to con-
sider small magnetic flux variations in the air-gap.

In the modelling, we consider a flexible model of the shaft discretized on four
finite elements and five nodes. Six degrees of freedom are considered for each node
(three displacements and three rotations). Displacements of the shaft nodes are used
to compute the eccentricity at nodes where the bearing are located. Those values
will be considered in the computing of the bearing efforts.

The rotating movement of the shaft is ensured by the electro-magnetic torque
Tem produced by the induction machine. Radial forces Fr and resistive torque Tr are
applied at different nodes of the shaft. Radial forces and resistive torque are pro-
duced by external sources of excitation to the proposed system.

During the shaft movement, we consider that rolling bearings are applying
external forces Frlt . These forces are calculated between each stator node and shaft
node representative of each bearing. We represent the bearings inner races by two
nodes located on the shaft and we consider that the outer race of the bearings as
fixed on the stator of the induction machine.

Two types of models are used to represent the dynamic behavior of the rolling
bearings. The first rolling bearing model is based on the model developed in [6].
This model is very well adapted to the proposed multiphysic system as it is rep-
resented using angular description in order to calculate forces applied in each
rolling element. In the same time it takes into consideration small IAS variations
produced by the presence of the defect as described in the reference. This first
model is adapted for introducing mechanical perturbations induced by the defect.
The second rolling bearing is modelled using a simple Palmgren model. This choice
has been made in order to simplify the investigation of the results since efforts
resulting from the bearing are considered as constant during the system motion.

Fig. 1 View of the induction motor and shaft supported by rolling bearings: the multiphysic
interactions
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This system can be represented by a set of differential equations as shown in
Eq. (1): The first equation represents the electro-magnetic behavior of the induction
machine, the second equation corresponds to the mechanical model of the shaft and
supports, where the efforts from the rolling bearings, possibly with defects, are
introduced as additional forces. The third equation is the angle-time relation that
allows switching from time to angle domains.

ðL+GðθÞÞ ⋅ωðθÞ ⋅ dIðtðθÞÞ
dθ + ðR+ωðθÞ ⋅ dGðθÞ

dθ Þ ⋅ IðtðθÞÞ=VðtðθÞÞ

ωðθÞ ⋅ dQðtðθÞÞ
dθ +

0 − Id
M− 1K M− 1C

� �
⋅QðtðθÞÞ= 0

M− 1

� �
⋅ Frðt) + Trðt) + FrltðθÞ +Temðt, θÞð Þ

dt
dθ =

1
ωðθÞ

8>>>><
>>>>:

ð1Þ

In this equation, I is the generalized vector of stator-phases and rotor currents, V
is the stator and rotor voltage vector. L and R are respectively real, constant matrices
of inductances and resistances. G is the transformation matrix that describes links of
fluxes in the stator and rotor to currents in the stator and rotor. ω is the IAS of the
rotor. θ and t are respectively angular displacement and time variables.

Q=
χ
χ ̇

� �
is the mechanical state vector

Fig. 2 The coupling methodology
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Fig. 3 Time and angular characteristic frequencies of the multiphysic system for three different
operating conditions defined in e, a and f: rotation in time domain and angular domain,
respectively b and g: air-gap permeances, c and h: stator-phase currents, d and i: Defect
perturbation
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where χ is the generalized displacement vector. M, C and K are respectively
constant matrices of mass, stiffness and damping. Id is the identity matrix.

Being associated to the angular approach, the proposed model is suitable for
investigations with constant and varying conditions. In this paper, we are focalizing
only on investigations with constant operating conditions.

The global model of electro-magnetic-mechanical coupling is schematized in the
Fig. 2.

Figure 3 presents the angular and time variations of the multiphysic parameters
which are involved in the electro-magnetic and the mechanical sub-systems inter-
actions. Various operating conditions are shown as illustrated by three IAS levels.

Where ns and nr are respectively the number of stator teeth and the number of
rotor teeth. Pij is the air-gap permeance of the magnetic branch relating the ‘i’th
stator tooth to the ‘j’th rotor tooth.

One can notice the presence of different characteristic frequencies corresponding
to dynamics of the global system. The first frequency is related to the fact that we are
dealing with a rotating machinery. It is equal to one event per revolution. A second
type of characteristic frequencies is related to the induction machine geometry, in
particular, to the stator and rotor slotting as a result of angularly varying air-gap
permeances as shown in the angular representation of adjacent stator and rotor teeth
air-gap permeances. Those values conserve their periodicity for the different oper-
ating conditions when represented in the angular description. However, this char-
acteristic is hidden when described in time representation under non-stationary
conditions. A third source of angularly periodic frequency is produced by the rolling
bearing, possibly including defects, as represented by the Ball Pass Frequency on
Outer Ring (BPFO) frequency. This frequency represents the same angular char-
acteristic in an angular representation as the permeance variations. The fourth source
of periodicity is related to the fundamental frequency of the per-phase stator current
and it is produced by the electrical power supply of the induction machine. This
frequency is constant in time description, whereas, it loses its periodic characteristics
in an angular representation for non-stationary conditions.

In this research work, we are interested in this diversity of characteristic fre-
quencies. The objective is to decrypt the interactions between those values repre-
sentative of the multiphysic sub-systems.

3 Results and Discussion

The model presented in the previous section was used to simulation a three-phase
squirreled induction machine representing 24 stator teeth and 30 rotor bars. The
motor is fed by a 50 Hz power supply. The mechanical model is represented by a
rotating shaft supported by a master rolling bearing characterized by a BPFO =
4.076 event/revolution. In addition, a defect on the outer race was introduced in the
bearing model. It is parametrically defined to represent a realistic outer ring
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localized defect. In (Table 1), the different characteristic frequencies of the global
system are presented.

Simulations were performed to investigate the influence of a localized outer race
defect on the current signal using Fourier Transform. Simulations were performed
for stationary operating conditions for 100 revolutions of the rotor. The macro-
scopic rotation speed of the shaft is ω=101 rad/s. The FFT are estimated without
windowing and presented in logarithmic scale to emphasize on small contributions
as those produced by the defect. As shown in the Fig. 2, stator current and IAS are
model outputs. In addition, in each iteration, the information about time and rota-
tion angle were conserved. Accordingly, current and speed FFT were performed in
time and angular domains.

What is important to show in those representations are the frequency modula-
tions induced by the multiphysic interactions and the time and angular depending
frequencies while ensuring the capacity of the proposed model to detect realistic
defects.

In Fig. 4, the Fourier Transform of the first-phase stator current in the angular
domain scaled in event per revolution. The spectrum are performed for a healthy

Table 1 Multiphysic characteristic frequencies

Domain Frequency Description Value [Hz] Value [evt/rev]

Electric fph Stator phases 48.23 3
fs Power supply 50 3.11

Magnetic fst Stator teeth 385.85 24
fsh Rotor bars 482.31 30

Mechanic fr Rotation 16.07 1
fd = BPFO Bearing defect 65.53 4.076
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Fig. 4 Angular FT of the first-phase stator current for a healthy system and a system with a
defective rolling bearing
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system and for a system with an outer race localized defect. They show the mod-
ulation of characteristic frequencies related to the induction machine. (Those fre-
quencies are: 33.11, 26.89, 25.89, 27.89, 32.11 and 34.11 evt/rev, they correspond
to: fsh ± fs ± k.fr evt/rev where k = 0, 1. Other characteristic frequencies related to
the power supply are: 2.11, 3.11 and 4.11 evt/rev. These frequencies correspond to
fs ± k.fr where k = 0, 1. As the model chosen to represent the bearing dynamic
takes into consideration the presence the load sharing between rolling elements, the
presence of the BPFO in the spectra is normal. However, when a defect exists on
the bearing outer race, the contribution of this frequency is much more intense. By
zooming the spectrum of the stator current with defect as shown in Fig. 5, we can
explicit the frequencies related to the defect such as: 5.189, 7.189, 9.267, 11.33
evt/rev…. Those values correspond to: fs + k1 . fd ± k2 . fr where k1 is an integer
number and k2 = 0, 1.

Figure 6 shows the FT of the first-phase stator current in the time domain, and in
Fig. 7, a zoom view of the FT is exhibited in order to explicit the contribution of the
frequencies relative to the defect. The purpose from such investigation is to high-
light angular and time modulations produced by the electrical-magnetic-mechanical
interactions in order to emphasize the complementarity of the time and angular
representations for diagnosis and phenomena comprehension. Either in the time or
in angle representations, characteristic frequencies related to the induction machine
and to the bearing defect are exhibited. However, the value of time-dependent
frequency; mainly the current frequency, remains constant only in the time repre-
sentation. We remark also that values of angular-dependent frequencies; mainly
slots harmonic frequency, rotation frequency and bearing defect frequency, remain
constant only when represented versus the angular representation.
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Fig. 5 Zoom view of the angular FT of the first-phase stator current for a system with a defective
rolling bearing
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To conclude, in the case of a system representing simultaneously angular and
time periodicities, inducing angular and time frequency modulations, instigations of
the angular and the time spectrum are simultaneously needed.
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rolling bearing
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4 Conclusion

In this paper, an electro-magnetic-mechanical model of a rotating shaft supported
by rolling bearing and driven by a squirreled cage induction motor was presented.
The model was described using an angular description in order to emphasize the
angularly periodic character of the rotating system. Such a representation has
allowed us to dissociate periodicities related to time from those related to angle.
This consideration highlighted angular and time frequency modulations produced
by the interactions of the multiphysic sub-systems. In this model, it was introduced
a rolling bearing model that takes into account variations of efforts generated by the
rolling elements passing specially in the case of a defective bearing. Simulated
results have demonstrated the capacity of the model to detect defects using stator
current signal and highlighted frequency modulations produced by the presence of
the faulty rotating component. Further development can be realized in the case of
non-stationary operating conditions, and by introducing further sources of time
or/and angular periodicities to the model.
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Fault Detection in Gears Using Stochastic
Resonance

Clement Uchechukwu Mba, Stefano Marchesiello, Alessandro Fasana
and Luigi Garibaldi

Abstract Investigations carried out so far on the application of Stochastic Reso-
nance (SR) to mechanical system faults indicate that SR shows great promise as an
advanced vibration-based condition-monitoring tool. However, majority of these
studies only focus on faulty systems and thus, fail to adequately treat healthy
systems. It is a well-known fact that some methodologies for fault detection give off
false alarms when applied to a healthy system. With a view to addressing this
problem, efforts are continuously made to either modify these methodologies or
develop other methodologies that are more advanced. In addition to experimentally
validating the use of SR as a vibration based condition-monitoring procedure, this
paper attempts to address the issue of false alarms associated with SR and exper-
imental data complexity by applying SR to pre-processed signals and raw signals,
and comparing their results. The pre-processed signal could be either a residual
signal, which is obtained by removing selected frequencies from the Time Syn-
chronous Average (TSA) signal, or filtered signal, which is acquired by passing the
raw signal through a high-pass filter with proper cut-off frequency. Furthermore, it
is shown that kurtosis and other statistical features can be used as fault indicators
when SR is applied to a signal.
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1 Introduction

Maintenance is periodically performed on machineries as part of cost saving and
safety measures. There is no doubt that vibration based condition monitoring plays
a key part in maintenance which is why numerous techniques for performing
vibration based condition monitoring exist, some of which are quite new.

Stochastic Resonance (SR) has only been used recently for fault detection in
mechanical systems. Its uniqueness lies in its ability to capitalize on the noise that is
inherent in a system [1]. Moreover it has a simple equation that is quite easy to
apply. But the downside to SR is that there is no clear theory for the selection of SR
parameters although there are different methods currently in use. Additionally, SR
computing time takes a while especially for large samples of vibration signal.
Nevertheless, researches that have been conducted so far on the application of SR to
mechanical systems have shown promising results [2–5] and thus, the application of
SR remains an area of significant interest. Marchesiello et al. [2] used SR to
enhance fault detection in bearings and also presented a method for the selection of
SR parameters. By using numerical simulations, Mba et al. [3] showed that SR can
be used for fault detection in spur gears. Leng et al. [4] used SR for the diagnosis of
electromotor faults and metal cutting process. Lei et al. [5] applied SR to fault
identification in a planetary gearbox by using an ant colony algorithm to optimize
the parameters of SR. While all the researches mentioned present interesting results,
there is still limited research on how well SR works when applied to healthy
mechanical systems. Majority of available studies only focus on faulty systems.

The main aim of using SR in this paper on a real life gearbox is to validate the
numerical simulation results in [3] as this would help to establish the suitability of
SR as a diagnostic tool. Additionally, adequate attention is given to the application
of SR on vibration signals from a healthy gearbox. Also, a short assessment of the
most common diagnostic tools for gearbox condition monitoring is done with their
results compared. The idea is to show that SR has the potential to act as an amplifier
not only for kurtosis, but also for some of the other gearbox diagnostic tools.
Furthermore, the effect of SR is shown in both time and frequency domain for
numerical simulations and experimental data.

2 Brief Description and Application of Stochastic
Resonance

SR is a non-linear time domain method whose dynamical behaviour is described by
the Brownian motion equation of particles:

dx
dt

= −
dUðxÞ
dx

+ sðtÞ+ nðtÞ ð1Þ
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where UðxÞ is the potential function, sðtÞ is the input signal and nðtÞ= ffiffiffiffiffiffi
2D

p
ε is the

input noise with D being the noise intensity and ε the Gaussian noise. UðxÞ is given
as

UðxÞ= −
1
2
ax2 +

1
4
bx4 ð2Þ

Accordingly, Eq. (2) can be rewritten as

dx
dt

= ax− bx3 + sðtÞ+ nðtÞ ð3Þ

a and b are the non-linear system parameters that are responsible for SR
occurrence and they can be adjusted in such a way that the full effect of SR is
obtained. Hence whether SR occurs depends on a and b. The height of the potential
barrier ΔU, shows the following relationship between the non-linear system
parameters a and b.

ΔU =
a2

4b
ð4Þ

Equation 3 is quite suitable for small parameter systems, i.e. amplitude and
frequency of the input signal ≪ 1 and noise intensity D ≪ 1. But realistic systems
are usually large parameter systems, i.e. amplitude and frequency of the input
signal ≫ 1 and noise intensity D ≫ 1. Because of this, large parameter systems are
subjected to pre-processing techniques like scale normalization, modulation,
re-scaling frequency, etc. [5] in order to make them meet the requirements of small
parameter systems. Like the previous work, re-scaling frequency is used in this
paper to ensure that the gearbox system meets the requirements needed for the
functionality of SR. Furthermore, the input signal of the SR system is normalized
with a standard deviation of 0.07. This helps to ensure that a and b can be tuned
within a defined range to obtain the best results. These ranges are a∈ ½0.1, 1� and
b∈ ½1, 11�.

With a view to showing the effect of SR as a possible amplifier, Fig. 1 shows the
changes that statistical features for gearbox condition undergo for both SR and
non-SR signals as the fault severity progresses from 1 to 4 on the x axis with 1
being the healthy case, 2 being a small fault case, 3 being a medium fault case and 4
being a large fault case. Figure 1a shows the changes that occur when the statistical
indicators are applied directly to either the raw signal, its TSA, residual or differ-
ence signal and Fig. 1b shows the changes that occur when the statistical indicators
are applied to the output of the SR system after the raw signal is passed through the
SR system. As can be seen with some of the indicators, SR tends to amplify the
absolute changes that occur in all or some stages of fault growth. This is particularly
true for the kurtosis, crest factor, FM0, FM4, M6A, NB4, M8A, ENA4 and energy
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operator [6–8]. In general, the kurtosis and FM0 provide the clearest indication of
these changes; however, the overall amplification is greater in the kurtosis than in
any of the other indicators. This seems to imply that kurtosis might be the most
fitting indicator for SR in the time domain.

2.1 Numerical Simulations and Analyses

The dynamic response of a single stage reduction gearbox with varying fault
severities is evaluated as described in [3] with the addition of a pulse generator. The
transmission path, which is simulated as the time response of an SDOF dynamic
system to an arbitrary input, is taken into consideration. In addition, a Gaussian
noise is added to the acceleration signal obtained from the transmission path to
make the obtained acceleration signal as realistic as possible. The addition of
Gaussian noise to the acceleration signal leads to different realizations of a
“modified acceleration signal.” In this paper, the same realization of modified
acceleration signal is used for all analyses conducted.

Figure 2 shows the obtained results when the frequency spectra is computed for
the time domain results with and without SR with a driving shaft speed of 1248

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Fault severity

N
or

m
al

iz
ed

 In
di

ca
to

r v
al

ue
s

Non-SR Signal

ENA4
FM0
FM4
M6A
M8A
NA4
NB4
Kurtosis
RMS
Crest Factor
Energyoperator

1 2 3 4
0

0.2

0.4

0.6

0.8

1

SR Signal

Fault severity

Fig. 1 Comparison of the changes in the most common gearbox fault diagnosis statistical
features. On the x axis, 1 = healthy case, 2 = small fault case, 3 = medium fault case and
4 = large fault case a non-SR Signal b SR Signal

58 C.U. Mba et al.



revolutions per minute (rpm), and tooth meshing frequency of 478 Hz. The
magenta lines in the figures show where the sidebands are supposed to be theo-
retically. As expected, the sideband amplitudes of the non-SR signal reduce as the
fault severity reduces.
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Fig. 2 Vibration spectrum of a single stage reduction 1248 rpm gearbox a healthy case b fault
reduced by 90% c fault reduced by 50% d reference fault
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In the healthy case of Fig. 2a, there is no amplification of sidebands in the SR
signal. However, a few more spikes can be seen in the SR signal when compared to
the non-SR signal. In Fig. 2b and c, the effect of SR on the modified acceleration
signal is not very obvious in the frequency domain unlike the time domain results in
[3]. The effect of SR is quite evident in Fig. 2d as there are clear indications of
amplification of the sidebands in the SR signal especially after the meshing
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Fig. 2 (continued)
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frequency. The sideband amplitudes are more distinct in the non-SR signals than
the SR signals, which appear noisy at best. In the figures, it seems easier to dif-
ferentiate the healthy gear from the faulty gear by looking at the non-SR signal
which could bring one to the conclusion that the effect of SR on gear data is not
very pronounced in the frequency domain (Fig. 3).

2.2 Experimental Results and Analyses

The experimental data used for validating the numerical results is obtained from
PHM dataset 2009 [9] where a double stage reduction gearbox with different fault
severities is run at different speeds with both high and low loads. The schematic of
the gearbox is shown in Fig. 2. There is a completely healthy case, another case
where there is a chipped gear tooth and another case where there is a broken gear
tooth. In addition, the runs are repeated twice for each load and speed. Here, our
analysis focuses on the first-run data with an input shaft speed of 30 Hz and high
load as well as data from channel 2 and the spur gear setup. Furthermore, SR is
applied to the healthy case, chipped tooth case and the broken tooth case with the
results given below.

Figures 4, 5 and 6 show the vibration spectra obtained for the spur gearbox with
its corresponding SR on the right hand side of the plot and non-SR signals on the
left hand side of the plot. Each figure has an upper section corresponding to the
spectrum for the lower meshing frequency range and a lower section corresponding
to the spectrum for the upper meshing frequency range. The red and magenta lines
represent the theoretical position of the sidebands around their corresponding
fundamental frequencies.

Fig. 3 Schematic diagram of a double stage reduction gearbox [9]
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In the healthy case of Fig. 4, there is not a lot of difference between the non-SR
and SR signal in the lower meshing frequency range, nevertheless, there is a huge
amplification of sidebands in the higher meshing frequency range. In Fig. 5, the SR
signal appears noisy in the lower meshing frequency range while there is an
amplification of eccentric gear sidebands in the higher meshing frequency range.
Comparing the non-SR signal and SR signal of Fig. 6, there is no obvious differ-
ence between them, however, the sidebands due to the broken gear appear to be
somewhat more observable in the higher meshing frequency range of the SR signal.
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Fig. 4 Non-SR and SR vibration spectrum of a 1800 rpm double stage reduction spur gearbox—
healthy tooth case a lower meshing frequency range b upper meshing frequency range
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Fig. 5 Non-SR and SR vibration spectrum of a 1800 rpm double stage reduction spur gearbox—
chipped tooth case a lower meshing frequency range b upper meshing frequency range

62 C.U. Mba et al.



In an overall sense, there always seems to be amplification in the SR signals with
the amplifications in the higher meshing frequency range looking more noticeable
and noisy. This also applies to the healthy signals, which could be because of all the
frequencies contained in the raw signal. The amplification of sidebands in the
healthy signals appears to be more apparent in the experimental case than the
numerical case. It is a well-known fact that experimental data have more noise,
vibration and complexity and as a result, they could be more difficult to analyse
properly. Thus, it might be imperative to always pre-process experimental data
signals before applying SR in order to obtain the best results.

3 Applying Stochastic Resonance to Residual Signals

The residual signal is determined by removing the meshing frequencies and the
shaft frequencies along with their harmonics from the original time synchronous
averaged signal [6–8].

r= xðtÞ− xrðtÞ ð5Þ

where r is the residual signal, xðtÞ is the original TSA and xrðtÞ is the signal
containing the meshing frequencies, shaft frequencies and their harmonics. When
the first order sidebands are removed from the residual signal, a difference signal is
formed.

d= r− ðfm±ωiÞ, i=1 ð6Þ
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Fig. 6 Non-SR and SR vibration spectrum of a 1800 rpm double stage reduction spur gearbox—
broken tooth case a lower meshing frequency range b upper meshing frequency range
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where d is the difference signal, fm is the signal meshing frequency and ω is the
shaft frequency. Both the residual and difference signal were proposed in order to
better observe the changes that occur in a vibration signal [6].

In our computation, the frequencies mentioned are removed from the exact
realization of non-SR modified acceleration signals that are shown in Fig. 2 to
obtain the non-SR signals shown in Fig. 7. Clearly, the sidebands are more evident
in the signals and it is easier to understand them.

All the amplitudes in Fig. 7 are displayed in dB scale for more clarity. The SR
and non-SR signals of Fig. 7a are almost the same, which means that false alarms
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Fig. 7 Residual signal vibration spectrum of a single stage reduction 1248 rpm gearbox a healthy
case b fault reduced by 90% c fault reduced by 50% d reference fault
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are almost non-existent in this scenario. In Fig. 7b, the sidebands in the SR signal
are amplified randomly while in Fig. 7c, the amplification is done after 400 Hz. In
Fig. 7d, the amplitude of the sidebands relative to that of the fundamental frequency
is higher in the SR signal than in the non-SR signal.

When the same procedure is applied to the experimental data of the spur gear
setup, the results obtained agree well with the numerical results as seen in Figs. 8, 9
and 10. In the healthy case, both the SR and non-SR signals are similar just like the
numerical simulation result.
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Fig. 7 (continued)
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The frequency spikes are evident in the SR signal of Fig. 9 especially in the
higher meshing frequency range. The spikes that are present in the lower meshing
frequency range are most likely due to the eccentric gear which are not as con-
spicuous as the spikes in the higher meshing frequency range which are most likely
due to the chipped gear. In Fig. 10 where there is an eccentric gear and a gear with
broken tooth, the frequency spikes are very evident in both the lower and upper
meshing frequency range. The frequency spikes in the lower meshing frequency
range are due to the eccentric and broken tooth gears while the spikes in the upper
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Fig. 8 Non-SR and SR residual signal vibration spectrum of a 1800 rpm double stage reduction
spur gearbox—healthy tooth case a lower meshing frequency range b upper meshing frequency
range
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Fig. 9 Non-SR and SR residual signal vibration spectrum of a 1800 rpm double stage reduction
spur gearbox—chipped tooth case a lower meshing frequency range b upper meshing frequency
range
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meshing frequency range are most likely as a result of the harmonics of the spikes
in the lower meshing frequency range. It should be noted that the frequency spacing
of the non-SR signal is not regular while that of the SR signals is regular and spaced
at 6 Hz corresponding to the speed of the output shaft.

4 Applying Stochastic Resonance to High-Pass
Filtered Signals

In the time domain, the SR output of the experimental data of the healthy gears
gives a high kurtosis. This is not the case for the numerical simulations, which gives
a low kurtosis when SR is applied to the healthy gear signal. As indicated earlier,
the most reasonable explanation for this phenomenon is that experimental data has
more vibration, noise and complexity that make it difficult to properly examine
them. In this section, a high-pass Butterworth filter with a proper cut-off frequency
is used to make the data to be analysed “less complex.” The cut-off frequency of the
filter is selected in such a way that the kurtosis of the filtered signal is slightly less
than the kurtosis of the original signal using the healthy case as reference. This is
depicted schematically in Fig. 11.
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Fig. 10 Non-SR and SR residual signal vibration spectrum of a 1800 rpm double stage reduction
spur gearbox—broken tooth case a lower meshing frequency range b upper meshing frequency
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Fig. 11 Schematic diagram showing a possible way of choosing the high-pass filter cut-off
frequency
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The raw signal in Fig. 11 is a healthy signal, which was used as a reference
because SR tends to always amplify the numerical value of the kurtosis and we are
trying to keep the initial kurtosis as low as possible. kh is the kurtosis of the healthy
signal and kf is the kurtosis of the filtered signal. The value of the cut-off frequency
of the filter that coincides with kf about 90% of kh is selected in this case. It should
be noted that the primary goal here is to contain false alarms in the time domain.

Using this procedure, 0.216 is selected as the normalized cut-off frequency of the
high-pass Butterworth filter. The first column of Fig. 12 displays the raw signals,
the second column displays the SR output without filtering and the third column
displays the SR output after filtering. The green line in the second and third col-
umns correspond to the negative well of the symmetric double well potential of the
SR dynamic system, which is defined as −

ffiffia
b

p
while the red line in both columns

correspond to the positive well of the symmetric double well potential of the SR
dynamic system and is defined as

ffiffia
b

p
. In Fig. 12a, the kurtosis of the SR output in

the third column is much lower than the kurtosis of the SR output in the second
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column. In the third column of Fig. 12b and c, the kurtosis of the SR output is more
amplified when compared with the second column of the same figures. These
results demonstrate that false alarms in the time domain can be contained in SR
output when the raw signal is filtered before passing it through the SR dynamic
system.

5 Conclusions

There are many vibration-based condition-monitoring techniques amongst which,
SR stands out in the sense that it can exploit system noise positively. In addition to
amplifying the kurtosis for faulty gears in the time domain, it can also act as an
amplifier for other fault detecting statistical features. Although few researches have
been done on applying SR to mechanical problems, much of the already done
research focuses on faulty cases. In this paper, more attention is given to the effect
of SR on data from healthy gearboxes. Analyses conducted in the frequency domain
tend to imply that the effect of SR on gearbox acceleration signals is neither clear
nor well pronounced. In the time domain on the other hand, while there are no
problems when SR is applied directly to data from numerical simulations, mis-
leading results can be obtained when SR is applied directly to experimental data.
Based on the complexity of realistic data, which seems to affect SR results, a
plausible solution would be to pre-treat data in order to reduce its complexity before
applying SR. Two strategies are taken to solve this problem in this work. The first
tactic involves computation of the residual signal by removing some defined fre-
quencies from the TSA. The second approach involves applying a high-pass filter
with a proper cut-off frequency to the original signal. The results obtained when SR
is applied to the residual signal and filtered signal, rather than the raw signal looks
promising as can be seen in the latter part of this paper.
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The Impact Estimation of Damping
Foundations in Dynamics of the Rotor
System in Non-stationary States

Andrzej Grządziela, Marcin Kluczyk and Paweł Chwin

Abstract The paper presents results of researches conducted on test bed of rotor
system. The aim of research was to show how resonant frequency and amplitude
might be changed by damping washers. Article presents an example of approach to
the problem conducted in laboratory conditions, the results of which can be easily
transferred on board of a ship or vessel.

Keywords Rotor system ⋅ Deceleration ⋅ Resonance ⋅ Damping

1 Introduction

High angular speed of unbalanced rotating masses causes forces transferred through
the bearing to the foundation of machine. The amplitudes of vibrations connected
with that forces become higher as far as the damping factor of foundation is getting
worst. The paper contains the description of the active-passive experiment. The
research stand consists of a foundation, spring washers, dampers, rotor system with
two bearings and two masses and an electric motor with a speed controller.

Due to utilization of power inverter a smooth adjustment of acceleration and
deceleration of rotor system (within 0–1480 rpm) was possible. The main aim of
this work was to create characteristics of non-stationary state enable the selection
and evaluation of damping elements. On the basis of the results of measurements
set of resonant frequencies in the spectra of vibration amplitudes was determined.
Another objective of the research was the methodology of selection of damping
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pads for the object of research, which has not been known all the data to determine
the dynamic characteristics. Such situation often occurs during the repairs and
maintenance process of rotating parts in the shipbuilding industry. The study was
performed using the procedure of order tracking. The adopted methodology allows
recognition of resonance frequencies in the process of acceleration and deceleration
of the machine. It is essential for the proper calculation and selection of damping
pads for rotating machines.

Rotating machines produce repetitive vibrations and acoustic signals connected
with rotational speed. These relationships are not always obvious with standard
dynamic signal analysis (for example FFT) and especially in this cases the order
analysis is very useful. Order analysis becoming a commonly used technique for
analysis of vibrations generated in machines, where many vibrations are related to
machine RPMs.

The FFT process transforms time domain data to the frequency domain, creating
a spectrum. Periodic signals in the time domain appear as peaks in the frequency
domain. In order analysis the FFT transforms the revolution domain data into an
order spectrum. Signals that are periodic in the revolution domain appear as peaks
in the order domain. For example, in rotor with 10 blades without any unbalance
and misalignment the peaks connected with blade passing frequency will appear as
10 order in the order spectrum.

In order analysis normally a signal from tachometer probe is used as a tracking
reference. It allows a measurement to be related to the revolutions of a rotating
element in the machinery. In the order analysis spectral elements that are constant
with frequency, for example resonance peaks are well visualized, this is the reason
why order analysis is often first step in a trouble-shooting scheme, in order to
investigate whether a vibration problem is resonances or other reasons [6].

2 Object and Methodology of Researches

Researches was conducted on Schenck rotor system laboratory stand. It is com-
bined of electrical motor coupled with set of two discs mounted on a solid shaft
placed on two bearings—Fig. 1. Entire construction is attached to steel frame.

1 2

Fig. 1 Laboratory station Schenck, left figure—the photography and the right—spatial model
with number of bearings
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Metal discs have premade holes to be able to install additional masses to implement
unbalance to the system.

Schenck rotor system is propelled with asynchronous three-phase motor
AEG AM 56KY4. The power inlet was based on block of assembled
capacitive-inductive reactance creating 3-phase electrical connection from 1-phase
electrical line (230 V/50 Hz) by allowing phase shift for two additional phases
(120° and 240°). After proper consideration of AEG motor it was replaced by
existing power supply with ABB power inverter type ACS150-01E-02A4-2
(0.37 kW). The power feed was based on block of assembled capacitors creating
3-phase electrical connection from 1-phase electrical line (230 V/50 Hz) by
allowing phase shift for two additional phases (120° and 240°). The negative
outcome of such array was lack of possibility of any adjustments nor control.

The study used the process of deceleration of the rotor system, which in both
variants of the experiment (with/without dampers) allowed unforced (free) vibration
analysis. The adopted model of research has provided no interactions unexpected,
external forces and torques, the effects of which could affect the results of the
experiment. This approach to research, along with the possibility of variable speed
has allowed to define the experiment as passive—active type.

3 Diagnostics Methodology

The aim of passive-active experiment is to observe the input signals with simul-
taneous measurement of the quality of state without the possibility of interference in
their values (Fig. 2). It is possible to conduct the passive-active experiment during
normal operation of machine [9].

The identification of dynamic parameters in mechanical systems is important for
improving model-based control as well as for performing realistic dynamic simu-
lations. Generally, when identification techniques are applied only a subset of
so-called base parameters can be identified. In order to evaluate the forward
dynamics response, an approach for obtaining the forward dynamics in terms of the
relevant parameters is also proposed. To assess the impact on unbalance and

Z

ROB
wyu y

Fig. 2 Passive-active
experiment S—control, u—
forced control inputs OB—
object of researches, ZE—
external inputs, y—outputs, R
—processing, wy—the result
of the experiment [9]
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damping value of measured vibrations, a series of measurements was performed,
containing measurements:

• without any additional mass on cylinders and without any additional damping,
• without additional mass and with damping unit,
• with additional mass (causing unbalance), and without any additional damping,
• with additional mass (causing unbalance) and with damping unit.

The algorithm of the researches is presented on the Fig. 3.
Measurements was conducted during the run down of rotor system. Such

approach allows to measure only the resonance of the rotor system without influ-
ence of current frequency and impact of power torque.

Exceeding acceptable unbalanced on rotors increases vibration energy. The
consequence may be the excitation of resonant vibration and dynamic load growth.
During operation rotors are subject to the occurrence of vibration in planes of bent,
torsional and longitudinal. Working rotor should therefore be considered as a
system of vibrating twist-bend-split.

In practice, most industrial and laboratory measured values are change in size
over time. This variation is the base of criterion for the distribution of measure-
ments: for static and dynamic measurements. In static measurements value do not
change with time or variation of the measured value accuracy, but it does not affect
the result. Dynamic measurement is made when the aim of the measurement is
quantitative illustration of the time variation of the measured value. The result of a
dynamic measurement is representation of the time course of the measured value.
The outcome may be a plot of the measured value as a function of time, the
so-called drawn directly by an analog recorder or within pairs of numbers
½t, x ⋅ ðtÞ� ⋅ if g, where i is the number of time point, t is time and x ⋅ ðtÞ is the

instantaneous value of the measurement.
During measurements on laboratory test bed there were used two accelerometers

type B&K 4514 B, tacho probe type MM024 and measurement frontend type
3650-B-120. Sampling frequency of 8192 Hz has been used.

Fig. 3 The algorithm of the researches
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4 Results of Researches and Comments

As a result of measurements time signals of accelerations had been obtained. With
use of Pulse software platform signals were analyzed in frequency and order
domain. At first stage frequency spectrum of accelerations has been calculated and
then the order spectrum with 30 orders. Sample of obtained results has been pre-
sented on Figs. 4, 5, 6, 7. All results were collected in Table 1. Location of bearing
in rotor system was presented on Fig. 1. On presented pictures it is clearly visible
that in frequency spectrum it is possible to find resonance but it is no so obvious as
on order spectrum.

Fig. 4 Comparison of spectrogram of acceleration obtained on object without additional mass
without dampers (left figure) and with dampers (right figure)

Fig. 5 Comparison of order spectrum of acceleration obtained on object without additional mass
without dampers (left figure) and with dampers (right figure)—bearing no. 1

Fig. 6 Comparison of spectrogram of acceleration obtained on object without additional mass
without dampers (left figure) and with dampers (right figure)—bearing no. 2
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Calculated resonant frequency of a part of rotor system located between the
bearings is 282 Hz. It was not possible to calculate the exactly resonant frequency
of all rotor system due to the fact that authors has not exact technical data of
electrical engine. On the other hand it was not necessary because it is clearly visible
on vibration characteristic presented above. Estimated resonant frequency of rotor
system without any additional mass and extra dampers as presented in Table 1 is
230 Hz. Analyzing the results of researches it is evident that use of damping
washers change the vibration characteristic of rotor system. First resonant frequency
of rotor system has decrease with frequency and amplitude. More over range of
resonance had became more narrow. On the other hand at frequency around 400 Hz
new resonance has occurred. It also visible that in domain of orders it is easier to
find a resonance than in frequency domain.

Next step of researches was calculation of damping factor of damping elements
used during measurements. To do this it was necessary to weight the rotor system
and Vibrochoc unit.

Rotor systemweight: MRS =11.130 kg

DoubleVibrochoc unit weight: MVibro =1.288 kg

Fig. 7 Comparison of order spectrum of acceleration obtained on object without additional mass
without dampers (left figure) and with dampers (right figure)—bearing no. 2

Table 1 Results of vibration analysis

Bearing 1 Bearing 2 Δf
(Hz)Frequency

(Hz)
Amplitude
(mm/s2)

Frequency
(Hz)

Amplitude
(mm/s2)

Without additional mass and
without dampers

230 172 230 112 43

Without additional mass and
with dampers

187 86 187 95

With additional mass and
without dampers

233 180 233 168 57

With additional mass and with
dampers

196 67 196 77
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Next a series of various mass was placed on double Vibrochoc unit and its
displacement was measured. Table 2 presents measurements on Vibrochoc unit.

Further results calculated from the measured values using formulas for:

∙ displacement Δxi = xi − xi+1j j ð1Þ

where index is number of next measurements i = 1, 2, 3…12, number of conducted
measurements was 13.

∙ static force: Fi =mi ⋅ g, ð2Þ

where g is gravitational acceleration equal: g=9, 81 m
s2

∙ spring constant: ki =
Fi

Δxi
ð3Þ

Finally with calculated values it was possible to create spring characteristic
chart—Fig. 8.

To calculate damping factor of Vibrochoc which is combination of spring and
damping elements it is necessary to conduct some equation transformation. The
resonant frequency of rotor system without damping is described by the Eq. (4):

fk =

ffiffiffi
k
m

q
2π

ð4Þ

Table 2 Deflection of
damping elements related to
loaded mass

x (m) m (kg)

0.00494 0
0.00488 1.344
0.00481 1.773
0.00470 2.467
0.00466 2.801
0.00462 3.137
0.00455 3.543
0.00444 4.001
0.00437 4.546
0.00423 5.14
0.00415 5.81
0.00408 6.741

0.00401 7.533
0.00400 8.842
0.00398 12.232
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where: fk—the resonant frequency of the stiffness, without damping, k—stiffness,
m—mass.

If the resonant frequency of system with stiffness and damping fkc is (5)

fkc =
ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− c2

4m2ω2
n

q
2π

ð5Þ

where: ωn =2πfk—natural frequency (without damping), c—damping factor then it
could be written:

Δf = fk − fkc =

ffiffiffi
k
m

q
2π

−
ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− c2

4m2ω2
n

q
2π

=

ffiffiffiffi
k
m

r
−ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

c2

4m2ω2
n

s
=

ffiffiffiffi
k
m

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n −

c2

4m2

r

ð6Þ

where: Δf—the frequency difference
Comparing the equation parties were obtained:

ω2
n −

c2

4m2 > 0⇔ 4m2ω2
n − c2 > 0 ð7Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n −

c2

4m2

r
=

ffiffiffiffi
k
m

r
−Δf ⇔ω2

n −
c2

4m2 =
k
m

− 2

ffiffiffiffi
k
m

r
Δf − ðΔf Þ2 ð8Þ

Thus:

c2 = 4m2ω2
n − 4mk+8Δf

ffiffiffi
k

p
− 4m2ðΔf Þ2 ð9Þ

c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m22πf 2k − 4mk+8Δf

ffiffiffi
k

p
+4m2ðΔf Þ2

q
ð10Þ
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After substitution of data into Eq. (10) a results of damping in case of rotor
without additional unbalance was calculated c = 704.4 kg/s, and in case when on
rotor had been attached with additional mass m = 0.013 kg. When rotor system
was unbalanced calculated value of damping factor is c = 502.4 kg/s.

5 Conclusion

The presented results of researches show a significant influence of damping to the
resonance of rotor system. That influence is connected both with frequency of
resonance as well as the maximum amplitude. It should be emphasized that this is
the changing of the parameters of resonance of the entire system by introducing
additional damping. The resonant frequency of the rotor remains unchanged,
however, recorded resonance throughout whole system differs considerably. It is
also proven the usefulness of tracking orders in determining the resonance fre-
quencies. The presented algorithm calculations and measurements can be used in
engine compartments of marine vessels. A significant number of adjacent rotating
machines often causes local resonances in the ship’s power plant. Applications up
the proper damping pads may be one of the effective ways of detuning working
devices in the engine compartment and solve the problem of resonance.
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Knife Diagnostics with Clustering
Techniques and Support Vector Machines

Achraf Lahrache, Marco Cocconcelli and Riccardo Rubini

Abstract This paper is about analysis of experimental data, verifying the applicabil-

ity of signal analysis techniques for condition monitoring of a packaging machine.

In particular, the activity focuses on the cutting process that divides a continuous

flow of packaging paper into single packages. The cutting process is made by a steel

knife driven by a hydraulic system. Actually the knives are frequently substituted,

causing frequent stops of the machine and consequent lost production costs. The aim

of this paper is developing a diagnostic procedure to assess the wear condition of the

blades, reducing the stops for maintenance. The packaging machine was sensorized

with pressure sensor that monitors the hydraulic system driving the blade. Process-

ing of the pressure data comprises three main steps: the selection of scalar quantities

that could be indicative of the health state of the knife. A clustering analysis to setup

a threshold between healthy and faulted knives. Finally, a Support Vector Machine

(SVM) model to classify the health state of knife during its lifetime.

Keywords Knife diagnostics ⋅ K-means ⋅ Features selection ⋅ Support vector

machines

1 Introduction

Diagnostics is an important activity which is increasing its worth in industrial

strategy planning. The supposed possibility of monitoring the health status of a

complete although complex manufacturing line, would enable the reduction of man-

ufacturing costs. In fact diagnostics allows to plan the replacement of specific

machinery’s components to avoid sudden and unexpected downtime. It can sug-

gest replacement of the parts only if the component is really damaged, decreasing

the maintenance costs [1, 2]. There are three main maintenance strategies in litera-
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ture [3]: the run-to-break, the time-based preventive maintenance and the condition-

based maintenance (CBM). In the first strategy the machines run until they broke

down and it is suggested only when components are not critical and could be replaced

easily and cheaply. The preventive maintenance is done at regular intervals which are

shorter than the expected time between failures. Most industries use this strategy to

avoid production downtime. The CBM is the most challenging, since it predicts the

failure of the component through regular condition monitoring of specific parame-

ters. Among the others, vibration analysis is probably the most used technique for

obtaining information about internal conditions of the machine [3], as proved by the

huge literature available [4]. Unfortunately the use of vibration signal is not always

possible and the CBM must take into account other type of input sensors. The lack of

a specific literature can be overcome by the use of more general methodologies [5],

e.g. expert systems or clustering techniques. In this paper those methodologies are

applied to the diagnostics of a specific component in a packaging machine. Among

several functions, the focus of the paper is on the cutting process that divides a con-

tinuous flow of packaging paper into single packages. The cutting process is made

by a steel blade driven by a hydraulic system, in particular two small cylinders pull

the knife outside its frame, allowing the cut of the package. At the end of the cut the

pressure is dropped and the knife goes back in its frame thanks to a spring placed on

the bottom part of the knife. The cutting process is driven by a PLC without any kind

of closed loop control. This working condition requires a sharp blade, otherwise it

will cause a rip of the paper instead of clear cut. The packaging machine was sen-

sorized with pressure sensor that monitors the hydraulic system driving the blade.

The paper is structured as follows: Sect. 2 briefly describes the expected pressure

signal in the working conditions. Section 3 details the scalar parameters describing

the working conditions of the knives. Sections 4 and 5 describe and show results of

the proposed methodology. Conclusions close the paper.

2 Experimental Setup

A pressure sensor has been chosen and inserted in the hydraulic system that drives

the knife. The setup is free from moving cables and could be mounted on the machine

without drawbacks on the working conditions. The data acquisition is done with a

PCB pressure sensor. Preview tests have been done to assess the differences in the

pressure signal with or without the presence of the paper material. Results are shown

in Fig. 1, but without the y-axis values due to an NDA with the customer.

As shown in Fig. 1 we can divide the knife’s cycle in four parts:

1. No Pressure [0–12 ms]: The valve is just opened and the pressure is near to 0

bar, because the oil from the pump has not reached any obstacle yet.

2. Over-Pressure [12–37 ms]: For both signals (with and without paper) the pres-

sure starts to increase due to a resistance in the hydraulic circuit. Is important to
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Fig. 1 Pressure signal

difference: with paper (red)

and without paper (blue)

see that in this step the two signals are different. In fact the presence of paper

increases the pressure higher than the case without it.

3. Under-Pressure [37–60 ms]: The brake of paper seems to reduce the pressure

signal to a lower value than the case without it. Probably there is a return of elastic

energy due to the first deformation of the paper.

4. Final pressure [60–80 ms]: In this last step both signals are equal, because pres-

sure values are only defined by the spring action that is the same for both cases.

The effect of paper is shown by the oscillation of pressure signal at the middle

of the cycle, so the step 2 and 3 can be a good reference to monitoring the knives’

damage.

Typical pressure signal is characterized by:

∙ sampling frequency (Fs = 20 kHz),

∙ acquisition time (T = 0.13 s),

∙ number of samples (N = 2600 points).

The acquisition system starts to acquire when the PLC sends an acknowledge to the

valve and stops acquiring after a 0.13 s.

According to the maintenance policy the customer company has to keep an his-

torical list of all the technical operations, like the substitution of a faulted knife.

The list reports the code of the repaired machine, the date of substitution, the name

of the customer, the number of knives replaced and the total running hours of the

machine. The list allows identifying complete lives of the knives, and separating the

corresponding data from the historical. It must be noted that an operator updates the

list manually. It cannot be excluded that rarely some knives changes are not logged.

Moreover the choice of the replacing time is based on the opinion of the single tech-

nician only, who looks at the production, by visual inspection, and decides that the

knives are damaged and have to be replaced. Finally both knives are often replaced

at the same time to avoid a second stop of the production to substitute the other knife.

So a complete life of the knife does not means a complete useful life of the knife,

which can be replaced even if it is still working well.
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3 Data Analysis

Since no previous analysis was available, the choice of the physical parameters for

data analysis is arbitrary, either in the type or in the number. In a preliminary stage

several parameters could be suggested. Afterwards the number of these parameters

will be reduced, according to some rules that will be defined later in the paper. The

choice of preliminary dataset is done on two different domains: time domain and

frequency domain.

3.1 Time Domain Parameters

The pressure signal in Fig. 1 has been originally described with 16 scalar parame-

ters, such as the maxima, the kurtosis values, the main percentiles, etc. A preliminary

analysis has been done by means of the Pearson product-moment correlation coef-

ficients [6], as a measure of the degree of linear dependence between two variables.

Parameters with high Pearson coefficient has been removed since the information

carried was linearly dependent. Just two parameters have been considered at last:

1. The third quartile of all sampled points (Q3), whose trend over time is shown in

Fig. 2.

2. The time interval between the start of acquisition and the maxima of the derivative

of pressure signal when it is going to achieve the maximum (It_der_max). The

trend is shown in Fig. 3.

Another data processing technique used is the Empirical Mode Decomposi-

tion (EMD). It is a procedure to decompose a signal into a series of components

with specific characteristics. The mathematical background could be found in [7].

These components are called Intrinsic Mode Functions (IMFs). The sum of all these

Fig. 2 Trend of the third quartile (Q3) over time
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Fig. 3 Trend of the It_der_max parameter over time

Fig. 4 Trend of the It_min_imf over time

components is equal to the original signal, i.e. it works in time-domain as a decompo-

sition. It was developed to study non-stationary signals and the extracted components

have a frequency content decreasing from the first one to the last [8]. Since we are

interested into high frequency components rather than lower ones, the first two IMF

are considered and added together. The main pro of the EMD is that resulting IMFs

have a zero mean value that makes the identification of the local minima/maxima

easier. In particular the phase of the second minima, labeled It_min_imf , has been

taken as third parameter in time domain. The trend of the It_min_imf over time is

shown in Fig. 4.
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3.2 Frequency Domain Parameters

Since the cutting process induces hammer‘s effects in the oil pressure, with visi-

ble harmonics, the choice of some physical parameters from the frequency domain

seems promising. All the spectra of the available signals have been taken into account

in the preliminary study. Subsequently the spectra components were reduced to the

first 20 harmonics of cyclic frequency, i.e. the frequency of the cutting process.

Finally the comparison of the trend of the amplitudes of these harmonics, with ref-

erence to different lives of the knife, leads to identify just 4 components:

1. A3: amplitude of the 3rd spectrum component,

2. A4: amplitude of the 4th spectrum component,

3. A5: amplitude of the 5th spectrum component,

4. A6: amplitude of the 6th spectrum component.

Fig. 5 shows the trend of the amplitude harmonics.

A list of dates of the knives’ replacement was available. The trend of the phys-

ical parameters over time was compared with that list, in order to assess the sensi-

tivity of the parameters. An example is given in Fig. 2, where the dates of knives’

replacement overlay the signal. Figures 2, 3, 4 and 5 show the trend of the third

quartile, the It_der_max parameter, the It_min_imf parameter, and the third to sixth

harmonics respectively. The trend of these parameters clearly highlights discontinu-

ity corresponding to a precise time instant (the replacement of the knife). The trend

Fig. 5 Trend of the amplitude of the third to sixth harmonics
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could be different, e.g. the A3 parameter has a higher value after the replacement that

decreases during the lifetime of the knives, while the A5 parameter has an opposite

behavior. It must be noticed that the behavior of the parameters is not relevant by

itself, the key point is that the trend must have a discontinuity before and after the

replacement, since it means the parameter is sensitive to the health state of the knife.

Indeed the logarithmic behavior of all the data in Figs. 2, 3, 4 and 5 makes difficult

to assess the deterioration of the knife over time, since the trend tends to be flat as

the wear increases. An ideal behavior would be the exponential one, increasing the

output value over time, but unfortunately none of the tested parameters exhibited that

trend.

4 Clustering Analysis

Clustering analysis orders a set of data in terms of similarity among the elements of

the dataset. A vector of seven components, the physical parameters identified in the

previous section, substitutes each element of the dataset. Clustering analysis should

highlight if the ensemble of the chosen parameters changes according to the life of

the knife. The data available for this analysis has divided into four dataset, covering

from July 2014 to February 2015. Each dataset refers to a specific knife available:

two packaging machines mounting two knives each. The resulting complete lives

collected are 16. A complete life is given by the data when the technical engineer

substituted the knife in the ordinary maintenance.

The clustering analysis has been done by means of K-means algorithm. The K-

means algorithm distributes the data in K clusters, minimizing the variance inside

each cluster. This algorithm needs as input the number of clusters (N), the metrics

to measure the similarity among data elements (Distance), the input matrix (X) each

column lists the dataset for all the observations. The output of the cluster has two

elements: the cluster’s number for each observation (Idx), i.e. the labeling of data

into a specific cluster; a vector giving an information (a number between -1 and +1)

about the quality of the clustering for each data (Silhouette) [9].

The standard Euclidean distance is used as metrics and the number of clusters is

chosen to be 10 (N = 10). Result for one of the chosen input parameters (It_der_max)

is shown in Fig. 6. The ten colors gradually change one each other from the beginning

of the life (left part of the figure) to the end (right part of the picture). The clustering

could recognize the health status of the knife and could assign a proper label to it.

In particular the clusters bounded with a new/good knife is in red color, while the

cluster bounded to old knife is in green (cluster 1), yellow and violet (clusters 8–10).

The x points are the centroids of each cluster. It seems that the progression of the

wear of the knives is fast at the beginning and then decreases. This behavior is in

accordance with the trends of physical parameters (logarithmic trend).
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Fig. 6 K-means clustering of the It_der_max values with N = 10

5 Classification by SVM

The Support Vector Machines (SVM) belong to the algorithms of machine learning.

In particular they are a class of supervised algorithms, which means it requires a

training step where both healthy and faulty cases are needed. Supervised machine

learning tools are very useful when a lot of historical data are available for train-

ing, and a physical and detailed model of the system is not necessary. In this paper

the aim of SVM is to assess the faulted state of the knife. Among the 16 lives of

knives available for the training and test, 11 lives are used in the training part, the

remaining 5 lives in the test. Support vector machines try to define a separation plane

(or hyper-plane) between two groups. The exact dimension of this plane depends on

the dimension of the input array [10]. As described in the previous sections, the

array used is made of 7 scalar values, i.e. the separation surface becomes a 7 dimen-

sion hyper-plane. Support vector machines are able to separate two groups at a time,

while the clustering technique classified data into 10 different clusters in the previ-

ous section. As a consequence, data reduction is necessary before using the SVM,

and could be done using the results of clustering algorithms.

In particular the ten clusters resulting from the previous step are divided into

two classes only: the first 6 clusters are labeled as healthy, while the remaining 4

are labeled as faulted. The initial clustering into 10 clusters gives to the customer a

degree of freedom more, that is the possibility to move the threshold according to

experimental results. Figure 6 shows the classification of the data before this clus-

tering reduction, while Fig. 7 shows the final classification into two classes only for

one of the input parameter (It_der_max).

Finally Fig. 8 compares the classification of the SVM for test data with the classi-

fication provided by the K-means clustering. The percentage of success for the SVM

is equal to 99.34%. It must be noted that test data are not taken into account during

the training phase.
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Fig. 7 Classification between health and faulted knives

Fig. 8 Difference between predicted observation and pre-elaborated with k-means

6 Conclusions

This paper details a condition monitoring procedure to assess the health status of

a cutting blade. The knife is driven by a hydraulic circuit whose pressure is mea-

sured by an acquisition system. The methodology involves the use of both clustering

and Support Vector Machines. Pre-processing of the data is necessary to reduce the

number of scalar quantities used to describe the status of the system. In particular the

Pearson product-moment correlation coefficient is used to measure of the degree of

linear dependence between two variables. The clustering of the remaining quantities

allows to identify the most significant thresholds to recognize a class from another.

Finally The availability of acquired data makes advisable to use supervised expert

systems like SVM to classify the incoming signal. A rate of 99% of success in the

testing makes the proposed methodology promising.
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Stable Distributions and Fractal
Diagnostic Models of Vibration Signals
of Rotating Systems

Andrzej Puchalski and Iwona Komorska

Abstract The main objective of the presented work is improving the knowledge of
non-linear effects in vibrodiagnostics of rotating machinery components using
multifractal analysis. The modeling is based on the data-driven approach, in which
probabilistic models can be constructed to capture the structure of the time series.
These models allow the identification of deviations from the training data during the
monitoring of the system. The paper proposes the feature vector, being the
data-driven empirical diagnostic model, of mechanical vibrations in the vehicle
powertrain. Dynamic analysis of wearing and/or defects of complex rotating sys-
tems confirms the presence of non-linear, non-stationary and multiscale properties.
The recorded time series exhibits the impulse-like nature and fluctuations. Proba-
bility distributions often deviate from the Gaussian distribution and exhibit heavy
tails. Both broad density functions, typical for stable distributions, and long-term
correlations are two important sources of multifractality. Analyses of fluctuations of
the recorded vibration time series were carried out utilising the dependence between
selected parameters of alpha-stable distributions and measures of singularity
spectra.

Keywords Vibrodiagnostics ⋅ Multifractality ⋅ Stable distributions ⋅ Vehicle
gearbox ⋅ Data-driven approach

1 Introduction

Linear stochastic models of Gaussian processes for decades were the dominant
paradigm in the time series analysis, in particular for the model based vibrodiag-
nostics. Mostly conventional methods from the time-frequency domain such as the
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short-term Fourier transform, Wigner–Ville distribution, wavelet transform,
envelope analysis were applied in procedures of feature selection of signals, for
which an assumption of stationary operating conditions cannot be made. The
automatic control and diagnostics of more and more complex systems, consisting of
many non-linearly interacting components which cannot be split into simpler ones
without tampering with the dynamical properties, requires precise non-linear
models [2, 3, 10, 13].

Data-driven approach is a useful method, in which a probabilistic model can be
constructed to capture the structure of the time series. These models allow the
identification of deviations from the training data during the monitoring of the
system. Many methods based on statistical analysis were developed due to the
classic statistical signal processing theory. However, there are several reasons for
using alpha-stable distribution (ASD) to describe complex rotating systems. In the
Generalized Central Limit Theorem (GCLT) the stable distributions are postulated
as the only possible non-trivial limit of distributions of normalized sums of inde-
pendent and identically distributed random variables [21]. The alpha–stable model
was applied in the aerospace gas-turbine engine monitoring [26], bearing fault
detection [28], heavy duty gearbox damage detection [29] and wind power forecast
[5]. Analysis of the database signals of mechanical vibrations of complex rotating
systems confirms the presence of not only non-linear and non-stationary properties
but the scaling properties and long-term correlations. The time series fluctuations
are often followed by a power law with a fractal dimension, at least asymptotically.
Fractal and multifractal scaling behaviour was reported in many time series gen-
erated by complex systems. The self-affine time series or time series exhibiting
self-affinity after the integration, describe multifractal dimensions D, corresponding
to the Hurst exponents H [7]. Methods of the detrended fluctuation analyses (DFA)
[22] and its multifractal version (MF-DFA) [9], can be used as means of estimating
the Hurst exponent. The MF-DFA allowing investigations of the observed signals
with regard to their multifractality, assures more stable approach to the multifractal
formalism than the previously applied method of the wavelet transform of maxi-
mum module (WTMM) [1]. The ways of vibrodiagnostics of different rotating
systems by means of the features vector formed of the vibrations signals fluctuation
function were proposed and verified in study [18, 19]. Diagnostic features for
modelling health conditions of gearboxes and bearings on the bases of parameters
of the multifractal spectrum of vibrations signals were defined in papers [15, 16].
The multifractality of bearings vibration signals was also used in the diagnostic
method encompassing a signal decomposition into several intrinsic scale compo-
nents [17]. Health conditions of the vehicle valve system using statistical vibration
measures were examined in [23–25].

Both, broad probability density functions (PDF) for the values of the time series
and different long-term correlations of the small and large fluctuations, are two
important sources of multifractality [8]. In the method for rolling bearings diagnosis
based on feature fusion the advantages of MF-DFA and ASD were applied, to
achieve an intelligent monitoring [27]. The problem of modulation recognition of
signals in the ASD noise using multifractal spectrum was discussed in [30].
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In this paper the authors present the results of time signals analysis of
mechanical vibrations in the vehicle powertrain. Selected parameters of stable
distributions and measures of singularity spectra in constructing diagnostic models
are proposed and verified. In Sect. 2, the alpha-stable distribution and multifractal
method theories in data modelling of impulse-like nature and long-term correlated
signals and simulation studies are discussed. Section 3 covers the results of time
signals investigations of mechanical vibrations in the vehicle powertrain. The
conclusions are presented in Sect. 4.

2 Alpha-Stable Distribution and Multifractal Method
in Data Modeling. Simulation Study

The recorded time series of complex rotating systems exhibit the impulse-like
nature and fluctuations. Probability distributions often deviate from the Gaussian
distribution and exhibit heavy tails. ASD family received interest due to its success
in modelling data, which are too impulsive to accept the normal distribution. The
lack of closed formulas for densities and distribution functions for all but a few
stable distributions Gaussian, Cauchy and Levy were a major problem in using
stable distributions in technical diagnostics. There are now reliable computer pro-
grams to compute stable densities, distribution functions and parameters [20]. With
these programs, it is possible to apply stable models in a variety of practical
problems. The alpha-stable distribution is described by its characteristic function:

φðtÞ= exp jδt− γ tj jα 1+ jβsignðtÞωðt, αÞ½ �f g ð1Þ

where

ωðt, αÞ= − tan απ
2 if α≠ 1

2
π log tj j if α=1

�
ð2Þ

Data modeling using stable distributions require four parameters to their full
description. These parameters are as follows:

• stability index alpha α∈ ð0, 2�;
• a skewness parameter β∈ ½− 1, 1�;
• a scale parameter γ >0;
• a location parameter δ∈R

Index α describes impulsive character of distribution and thickness of distribu-
tion tail. For α=2; 1 and 0, 5 the Gaussian; Cauchy and Levy distributions can be
modeled, respectively. For α<2 the decay distribution follows a power-laws.
Skewness parameter β=0 implies that the distribution is symmetric. Negative or
positive β implies that the distribution is skewed to the left or to the right
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respectively. The parameters γ and δ are similar to the variance and the mean of a
normal distribution. Time series of simulated alpha-stable signals are shown in
Fig. 1. Figure 2 shows effect of a stability index on stable distribution.

The relationship between the parameters of stable distributions and the multi-
fractal spectra indicates the possibility of using both methods in modelling the
diagnostic signals of complex rotating systems.

Due to a relatively simple way, suitable for the numerical implementation, the
results presented in the paper are based on the box dimension [6, 14]. As the box
fractal dimension D of the time series the curve dimension—being the diagram of
the considered signal—was assumed. When L is a minimal number of sets coin-
ciding with the given time series and s is the scale, then L≈1 ̸sD. The time series
multifractal dimensions D, corresponds to the Hurst exponents H, according to the
dependency: D=2−H. To determine the Hurst exponent of the recorded data the
MF-DFA method was used. The procedure based on the elimination of the trend of
the tested time series was performed, leading to the power-law relation of the
fluctuation function FqðsÞ:

FqðsÞ= 1
2Ns

∑
2Ns

i=1
F2ðs, vÞ� �q

2

� �1
q

∼ sHðqÞ ð3Þ

where H(q) is generalised Hurst exponent of the order equal to q.
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Fig. 1 Time series of simulated alpha-stable signals: alpha, beta = 0, gamma = 20, delta = 0
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The exponent H(q) is a decreasing function. For negative values of the q order,
the generalised Hurst exponent describes scaling properties in segments of a low
fluctuation level, while when the positive values of the q order are considered,
segments of high variances are shaping the fluctuation function. Knowledge of the
generalised Hurst exponent allows to determine the multiscaling exponent
τðqÞ= qHðqÞ− 1 of local scaling, represented by the singularity (Hölder) exponent
h= d

dq τðqÞ and singularity spectra f ðhÞ, related to the multiscaling exponent via the
Legendre transform:

f ðhÞ= qh− τðqÞ ð4Þ

Spectra of the simulated alpha-stable, symmetric time series shown in Fig. 3, can
be treated as multifractal dimensions f ðhÞ related to singularities h representing
local scaling in various places of the time series. The following values are used as
parameters of the experimental diagnostic model:

• multifractality level, representing heterogeneity of the observed signal,
Δ= hmax − hmin, where hmax and hmin are singularities corresponding to the
maximum and the minimum fluctuation of the observed signal, respectively;

Fig. 2 PDF and right tail PDF of simulated alpha-stable signals

Fig. 3 Multifractal spectra of
simulated alpha-stable signals
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• dimensions span of the singularities subsets Δf = f ðhmaxÞ− f ðhminÞ;
• singularity of the maximum dimension, i.e. the most often met the time series

singularity h0: f ðh0Þ=max f ðhÞf g.

3 Case Study of Time Signals of Mechanical Vibrations
in the Vehicle Powertrain

Signals of accelerations of mechanical vibrations originated from the monitoring of
the vehicle powertrain were recorded during investigations [11, 12]. Successive
measurements performed in equal time intervals, during road tests of the vehicle
with S.I. engine 1.4 l represented values in the experimental data set. Experiments
generated, after the angular resampling, time series consisting of 20 rotations of the
crank shaft. Each time series of vibrations accelerations during 1 work cycle of the
engine contained 3600 signal samples in the determined for the test work condi-
tions. Apart from the signal of the acceleration of vertical vibrations of the main
gearbox housing, voltage from the sensor of the crankshaft position and voltage
from the sensor of the throttle position were also recorded. Accelerations of vi-
bration signals of the powertrain were processed by means of the Bruel and Kjaer
sensors type IEPE No. 4514. Signals were recorded by means of the portable data
recording device, Bruel and Kjaer PULSE type 3560E with the sampling frequency
of 65,536 Hz.

Tests were performed for no-fault and fault states of the gearbox. The analysis
presented in the paper include several maintenance states: the gearbox in good
condition—G1, the gearbox with a casual teeth wear—G2, the gearbox just before a
failure—G3 and the gearbox after a repair—G4. Averaged empirical and theoretical
probability density functions of gearbox vibration signals and their right tails in the
tested maintenance states, are shown in Figs. 4 and 5, respectively.

During the goodness-of fit tests the conformity with the null hypothesis—as-
suming the normal distribution—was rejected. A divergence of empirical distri-
butions with the normal distribution was increasing along with the fault degree of
the gearbox. The verification of matching the alpha-stable model of empirical
distributions was performed by means of the Anderson-Darling test at the signifi-
cance level 0.05, after the preliminary graphical assessment. There are several
methods and algorithms of estimating the index and parameters of alpha-stable
distributions on the basis of experimental data [4]. The quantile method and the
maximum likelihood method were applied in investigations. The results are pre-
sented in Table 1.

Successive diagnostic features were obtained due to the transformation of signals
from the time domain to the singularity domain. Multifractal spectra in a similar
fashion as probability distributions of the tested gearbox signals differ in placements
and in shapes (Fig. 6). Defined spectrum parameters are presented in Table 2.

96 A. Puchalski and I. Komorska



Parameters of stable distributions and measures of singularity spectra were chosen
as diagnostic features allowing to classify the simulated maintenance states of the
tested powertrain.

The reduction of the feature vector dimension was performed by means of the
principal components analysis. The classification was carried out by using
3-dimensional index of defects detection of coordinates corresponding to features:
stability index—α, scale parameter—γ and multifractality level—Δ. In each
maintenance state a series of 100 experiments was performed. Categorising of the
tested state to the proper class as well as the classification quality analysis was done
by means of the nearest neighbours method. The cross-validation technique was
applied for the accuracy assessing. The classification accuracy was assessed on the
ratio of the properly classified experimental results to their total number. All tested
maintenance states were divided with 100% accuracy of the classification.

G3 G4

G1 G2

Fig. 4 PDF of gearbox vibration signals in tested maintenance states
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G1 G2

G3 G4

Fig. 5 Right tail PDF of gearbox vibration signal in tested maintenance states

Table 1 Averaged
parameters of alpha-stable
distributions of gearbox
vibration signals in tested
maintenance states

Good Initial
wear

Before
damage

After
repair

α 1.99129 1.90413 0.778433 1.988468
β −0.03625 −0.23442 −0.01019 0.141268

γ 11.9267 11.83018 34.76653 10.51743
δ −0.46014 −0.05146 1.944857 0.041069

Fig. 6 Singularity spectra of
gearbox vibration signals in
tested maintenance states
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4 Conclusion

The diagnostics method of wearing and/or defects of complex rotating systems,
based on the stable distribution and fractal model of the signal of mechanical
vibrations, is presented in the paper. The study of the vehicle gearbox confirmed
non-Gaussian, heavy-tailed character of mechanical vibrations signals in the tested
powertrain, during the defect increasing. Utilising the dependence between
parameters of alpha-stable distributions and multifractal spectra signals the analysis
of fluctuations of the recorded time series was also carried out. The feature vector,
being the data-driven empirical diagnostic model, was separated and verified.

The proposed procedure of selection and classification can be realised within the
vehicle on-board diagnostic system in the determined operating conditions. The
currently continued research is focused on building experimental, non-linear
diagnostic models and classification algorithms of the most often occurring
mechanical defects in the vehicle powertrains.
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Selection of Suitable Method for Speed
Recovery from Vibration Signal

Adam Jabłoński, Kajetan Dziedziech and Ziemowit Dworakowski

Abstract Typically, if order analysis of vibration signal is expected, a speed sensor

(phase marker) or an encoder are installed on the shaft. However, in some practical

scenarios, the speed information recorded in parallel to the vibration signal acqui-

sition is not available; yet, it is still required. In this case, one is forced to use a

raw vibration signal to extract the information about so-called instantaneous phase

or instantaneous frequency of a selected component, and—if required—scale to a

selected shaft. In recent years, few different techniques for speed recovery have been

proposed, each one with different assumptions and each implementing more or less

complexed mathematical apparatus. The current paper proposes a guidance how to

select a suitable method on the basis of the visual deduction about signal character-

istics with the implication on selection of the easiest and most automatized method

sufficient for analysed case.

Keywords Condition monitoring ⋅ Speed recovery

1 Introduction

Vibration signals are nowadays broadly employed for the purpose of diagnostics of

rotary machinery [1]. Most of the state-of-the-art methods (e.g. time-synchronous

averaging, order analysis) require, however, either a constant speed during measure-

ments [2–4] or precise speed reference [5]. Satisfying the former condition is chal-

lenging in many practical cases, as many machines operate under variable loads,

which causes fluctuactions of the instantaneous speed. Latter case requires usage of

tachometers, which in some cases are impossible to mount.

It is possible to overcome these issues by recovery of speed information from a

vibrational signal itself. There are multiple approaches to perform this task. Early

contributions to the area were summarized e.g. in a general review by Boshash
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[6, 7]. Recently, numerous other approaches of speed tracking were proposed.

Milloz et al. used for this purpose time-frequency distributions segmentation [8, 9].

Time-frequency approach was employed also by Zimroz et al. [10]. Several of speed-

tracking algorihms were compared in papers by Coats et al. [11] and Urbanek et al.

[12].

Recently, another approach was proposed by Urbanek et al. [13]. It is a two-step

procedure that involves angular spectrogram-based resampling of a vibration signal

and then frequency demodulation in one selected narrow band that contain selected

component of the signal.

The aim of this paper is to present the range of application of method based on

classical frequency spectrum and time-frequency spectrum. The organization of the

paper is as follows: Sect. 2 provides scope of selected state-of-the-art literature-based

solutions. Section 3 presents performance of the methods on example of numerical

data. Section 4 presents performance of the methods on example of experimental

data. Finally, the last chapter summarizes this paper.

2 Description of the Methods

Two methods have been selected for the comparison. First method, allows only low

speed fluctuations [14] and is referred to as Method A, second method tracks the

amplitude in time-frequency plane and enables large speed fluctuations [13] and is

referred to as Method B.

Method A is the easiest in implementation, as it does not require advanced sig-

nal processing techniques. Time domain signal is transformed to frequency domain

signal with use of the Fast Fourier Transform (FFT). After selection of appropri-

ate Region of Interest (ROI), band-pass filtration is applied followed by the Inverse

Fast Fourier Transform (IFFT) to obtain filtered time-domain signal. On the basis of

filtered signal, Hilbert transform is calculated to obtain analytic signal from which

instantaneous phase and frequency could be obtained. For the purpose of the clear

presentation of results, obtained instantaneous frequency is smooth with moving

average filter in this article.

Method B is currently state-of-the-art method for speed signal reconstruction. At

first, modulus of Short-Time Fourier Transform (STFT) is calculated to obtain time-

frequency distribution of the vibration signal. Semi-automatic ridge extraction algo-

rithm is used for rough instantaneous frequency estimation. This algorithm requires

selection of the starting point of the ridge. Once the rough instantaneous frequency

is obtained, vibrations signal is resampled to angular domain, followed by Fourier

transformation to order domain, where the band pass filtration in vicinity of the 1st

order is calculated. With use of the inverse Fourier transform, signal is transformed

back to angular domain, followed by resampling to time domain. On the basis of

filtered signal, Hilbert transform is calculated to obtain analytic signal, from which

instantaneous phase and frequency are obtained [13].
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Fig. 1 Schematic workflow of method A and method B

Both methods are schematically presented in Fig. 1.

For the comparison purposes the percentage error functions are going to be cal-

culated in following manner

PE =
Extracted − Reference

Reference
∗ 100 (1)

where Extracted are the results of the above mentioned methods.

3 Numerical Example

For the purpose of the numerical comparison of the both methods, simple signal was

created composed of fundamental signal with one harmonic (i.e. 2nd order) and two

sub-harmonics signals (i.e.
1∕2 and

1∕4 orders), additionally white noise was added.

Signal was sampled at frequency Fs = 1000 [Hz], and total time of the signal was

T = 20 [s]. Rotational speed signal was created as a sine signal with period Tp =
10 [s], with mean speed Speedmean = 180 [RPM] and peak-to-peak speed variation

SpeedPP = 40 [RPM]. Created vibration signal (black curve) and rotational speed

signal (green curve) are given in Fig. 2a, b respectively.

For the Method A, the modulus of the FFT presented in Fig. 3a reveals the fre-

quency range in which energy of a single component oscillations are located in vicin-

ity of the frequency f = 180Hz. Selected band is presented in this figure as red curve

overlaying the original black curve. Selected range was set to be f = 150 ÷ 210Hz.

For the Method B, the modulus of the STFT presented in Fig. 3b reveals the direct

relation between the vibration signal behaviour in time-frequency plane, with the

speed evolution shown in Fig. 2b. The STFT have been calculated in limited fre-

quency range of f = 0 ÷ 500Hz, with the window length w = 1 s. Selected ridge is

presented in Fig. 3b, as a set of blue dots selected by the semi-automatic ridge extrac-

tion algorithm.
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Fig. 2 a Created vibration signal; b rotational speed signal
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Fig. 3 a Amplitude-frequency spectrum of original signal (black curve) and selected part for

Method A (red curve); b short-time fourier transform of acquired signal (colour-map) and selected

ridge for Method B (blue curve)

On the basis of selected frequency band and rough ridge representing rough rota-

tional velocity, the calculation procedures described in Sect. 2, finally lead to the

rotational speeds as shown in Fig. 4a. For the quantitative comparison percentage

error functions were calculated as shown in Fig. 4b. The quantitative analysis have

shown that the mean percentage error in both cases is at the level of 0.1%.
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Fig. 4 a Rotational speed signals: reference signal (green curve), obtained with Method A (red
curve) and obtained with Method B (blue curve); b percentage error of signals: obtained with

Method A (red curve) and obtained with Method B (blue curve)

4 Experimental Example

Internal combustion engine was used for the experimental comparison of the both

methods. Accelerometer was placed on the engine, whereas the speed sensor was

located on the main shaft. Signal acquisition time was in total T = 12.5 s at sampling

frequency Fs = 25 kHz. Acquired vibration signal is presented in Fig. 5a, whereas

rotational speed signal is presented in Fig. 5b.
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Fig. 5 a Acquired vibration signal; b rotational speed signal
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Fig. 6 a Amplitude-frequency spectrum of original signal (black curve) and selected part for

Method A (red curve); b short-time fourier transform of acquired signal (colour-map) and selected

ridge for Method B (blue curve)

For the Method A, the modulus of the FFT presented in Fig. 6a reveals the fre-

quency range in which energy of a single component oscillations are located in vicin-

ity of the frequency f = 50Hz. Selected band is presented in this figure as red curve

overlaying the original black curve. Selected range was set to be f = 33 ÷ 67Hz.

For the Method B, the modulus of the STFT presented in Fig. 6b reveals the direct

relation between the vibration signal behaviour in time-frequency plane, with the

speed evolution shown in Fig. 5b. The STFT have been calculated in limited fre-

quency range of f = 0 ÷ 150Hz, with the window length w = 0.5 s. Selected ridge

is presented in Fig. 6b, as a set of blue dots selected by the semi-automatic ridge

extraction algorithm.

On the basis of selected frequency band and rough ridge representing rough rota-

tional velocity, the calculation procedures described in Sect. 2, finally lead to the

rotational speeds as shown in Fig. 7a. For the quantitative comparison percentage

error functions were calculated as shown in Fig. 7b. The quantitative analysis have

shown that percentage error in case of the Method A rising up to 13%, where as

the percentage error for the Method B is oscillating in the range of mean value of

1 ÷ 1.5%. The reason for such a strange behaviour in case of the Method A is the

fact that there is harmonic of order 1.5 that overlaps the same frequency region as

the 1st order, and this is impossible to separate these frequency components in the

frequency domain.
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Fig. 7 a Rotational speed signals: reference signal (green curve), obtained with Method A (red
curve) and obtained with Method B (blue curve); b percentage error of signals: obtained with

Method A (red curve) and obtained with Method B (blue curve)

5 Conclusions

In the paper two state-of-the-art methods were presented and compared. For the case

of the numerical example, both methods were able to correctly identify the rotational

speed within the percentage error at level of 0.1%.

For the case of the experimental example, the signal was very similar to the one

from the numerical case, and the procedure for selection of the frequency band was

the same for the case of the Method A as presented in Fig. 6a, unfortunately due

to the low amplitude frequency components shown in Fig. 6b, e.g. at time t = 6 s

and frequency f = 60Hz, it is clearly visible that these components overlap with the

components of the ridge that was actually being tracked with the semi-automatic

algorithm.

It is authors conclusion that in all cases of the rotational speed recovery, modulus

of the STFT should be calculated to check for the overlapping of the components,

because it may not be visible at all in the modulus of the FFT.
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How to Build a Vibration Monitoring
System on Your Own?

Adam Jabłoński, Michał Żegleń, Wojciech Staszewski, Piotr Czop
and Tomasz Barszcz

Abstract With the ultimate goal of cost reduction of condition monitoring, this
paper illustrates how simple data acquisition and processing systems could be
designed and realized taking advantage of latest cheap, yet powerful electronic
elements. The discussed designs are based on recently popular STM32 and Rasp-
berry Pi boards, and analog MEMS accelerometers. The final prototype design
shown in the paper is developed on the F401re version of the STM family, which is
working on ARM M4 Cortex processor, and the ADXL001-70 MEMS
accelerometer from Analog Devices Ltd. The entire design has been develop using
a standard notebook with Windows 10 operating system. The major interest of
presenting this design is that in wide range of conditions, the self-made system
developed from scratch with elements, price of which does not exceed 15 USD, is
capable of generating a frequency spectrum equally significant to a spectrum
generated by a full-scale, costly commercial condition monitoring system.

Keywords Condition monitoring system ⋅ Data acquisition ⋅ MEMS

1 Introduction

A vibration monitoring system may play a very important role in getting out the
maximum potential of machinery by minimizing its downtime. It has been shown in
the literature, for instance in [1–3] the maintenance that bases on condition moni-
toring systems (CMS) in compare to traditional, scheduled or corrective mainte-
nance, more accurately fits in many aspects only with few disadvantages. The design
and installation cost of condition monitoring system is unfortunately substantial in
comparison to other maintenance approaches; therefore, usually it is only used for a
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huge machinery which downtime is extremely expensive. In that case, the longer the
CMS is running, it provides benefits outshining the costs. In this paper, the authors
try to make an attempt to evaluate the possibility of creation the CMS based on cheap
electronic parts in order to provide some its benefits for much lower price. The entire
purpose is to show some potential for more affordable option for constructing a
simple data logger and viewer, which might be eventually turned into a basic CMS.

2 The Use of Vibrational Signals

Nowadays, in the age that is highly industrialized, the purpose of monitoring the
conditions of an engineering systems has become an issue that requires great
affection. Especially with the combination of well-known Internet communication
methods and the expert knowledge of engineers. The on-site condition monitoring
techniques that used to gather the measurement data have been investigated many
times for several decades [4]. Usually when considering the process of mainte-
nance, which could be right now defined as passive condition monitoring system.
Along with the progress of this technology, three main philosophies have been
established, i.e., breakdown, preventive (or scheduled), and predictive maintenance.
The advantages that have been offered by the application of predictive maintenance
techniques have in a past few years led to the increase in the development of a vast
number of methods for condition monitoring/fault-diagnostic systems [5]. The
modern diagnostic systems used for machinery monitoring consist of four main
parts (see Fig. 1): (i) data acquisition, (ii) monitoring system, (iii) diagnostic sys-
tem, (iv) safety system. The following subchapters describe them in details.

2.1 Data-Logger and Data Viewer

Establishing the vibration monitoring system may be a very expensive task, but
what if such a system is only needed for just measurements of data? Development
of entire automatic structure responsible for the monitoring and maintenance is
therefore unnecessary. In such a case, there is a need for a device that may be
attached to the machine permanently or just for a limited period of time and gather
the measurement data. Nowadays, in order to achieve such a setup, it is necessary to
buy an expensive measurement cards and sensors or portable vibration analyzers.
The presented approach shows the possibility of creating small, cheap, socket or
battery powered measurement system based on commonly existing electronic parts.

For the sake of troubleshooting there might be a need to visualize the state of
technical condition of the machine at the moment of the measurement. In order to
achieve that it is necessary to build the live data transmission system. The on-line
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connection to the machine allows to visualize the actual condition, which is nec-
essary in order to make a decision if the failure occurs. Moreover, display of a raw,
live vibration data is not enough. There is a need to introduce a visualization
software that will enable user the tools that are necessary for a full diagnosis, such
as spectrum figures, order analysis and cursors.

2.2 Protection System and Monitoring System

The process of automatic supervision of machines state is realized mostly by limit
checking (or threshold checking) of some variables that have been established as
crucial, e.g. force, speed, pressure, liquid level, and temperature. Usually the alarms
are raised when the limit value for a specific parameter is exceeded [3]. This process
enables the introduction of automatic protection system, which in the moment of
failure detection (exceeding the threshold value) will power down the machine in
order to prevent from further damage.

For a number of machines, the systems that only realize the protection process
are not enough. Some of the most precious information regarding the detection and
development of a failure can be found at very early stage of this progress. Precise
monitoring of such an evolution enables to plan maintenance accordingly, which
may save a crucial downtime of machinery as well as protect other components
from failure.

Fig. 1 Scheme of modern condition monitoring system
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2.3 Diagnostic System

After detection of possible failure, mostly the diagnostic staff is responsible for
taking further actions in order to verify the condition of the machinery. It may
require further data acquisition in order to gather data that might be necessary in
order to make appropriate decision regarding machines’ condition. Nowadays, the
new methods of modern systems theory show that use of the mathematical process
and signal models, identification and estimation methods can provide better, more
accurate and faster available information regarding machine condition. With use of
these modern methods it is possible to establish new, advanced methods of fault
detection and diagnosis in order to detect even small faults that occur quite early
and to diagnose their origins in order to settle the primary cause [1]. This is also
called condition monitoring. The goals of these methods are mainly: (i) increase of
reliability and availability, (ii) improvement of safety, (iii) detection and diagnosis
of faults, (iv) process condition-based maintenance and repair.

The Sects. 2.1–2.3 shortly describe the abilities and authorities of each part of a
system. The authors want to show the possibilities of development of a project,
which may lead into creation of a basic, but fully functional condition monitoring
system. For different implementations, the actual configuration of systems may
differ, enabling the end user to choose which system should be employed during the
installation. It shows the modularity of considered solutions.

3 MEMS—The New Possibilities and Advantages

The Condition Monitoring Systems are usually setups for the high cost and huge
size machines where the implementation and deployment of continuous monitoring
may provide significantly lower service cost and drastically decrease maintenance
time. Low cost MEMS-based accelerometer solutions such as presented in this
paper, could be the solution for smaller machines. The Micro Electro-Mechanical
System (MEMS) based Condition Monitoring Systems have reduced the installa-
tion cost per each node from $1000’s to $100’s [6]. The MEMS based sensors offer
the capability to interconnect various interfaces used nowadays in the industrial
applications, simplifying implementation for considered system and enabling its
further development.

There are plenty of attributes of MEMS technology—such as size, weight,
power, cost and high levels of functionality—are already compelling [7], but their
presence on the market has been restricted by relatively low level of performance in
terms of noise density and resonant frequencies. High frequency MEMS
accelerometers have been available on the market since few years, offering resonant
frequencies as high as 22 kHz and Full Scale Ranges up to ±500 g—unfortunately
with the presence of high noise levels. Contrarily, available low noise MEMS
sensors have low resonant frequency operation, used for some Condition
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Monitoring Systems, where its application requires very low frequency operation,
which of course limits the possibilities of diagnostic evaluation [8].

The investment and further development in MEMS process technology has
advanced to the point where the improvements in performance obtained via tech-
nological development are enough to make MEMS a new available option for a
wider range of CMS applications. MEMS sensors are nowadays also tolerant to the
shock conditions, with stable sensitivity after subjecting to 1000’s g of shock, or
vibration to 10’s of kHz. The accelerometers with embedded signal conditioning
generally offer a full electro-static self- test of the moving element and signal
conditioning circuits.

4 Low-Cost Own-Made Condition Monitoring System

For many years in order to achieve very accurate measurement of vibration signals
of individual components of the machine in the industrial conditions, the mainte-
nance engineers were obligated to use very expensive equipment. These appliances
frequently exceed the budget for the maintenance process; therefore, only for a
limited number cases such solutions are used. That is why the authors came to a
conclusion that there is an enormous market to create low-cost architecture of
data-acquisition device that could work in the industrial environment. The authors
have been listening requirements and requests from companies and truly understood
the need for this kind of cheap and accurate device. At the beginning, it was
necessary to focus primarily on the selection of appropriate architecture of
data-acquisition device. Microprocessor STM32 caught authors’ attention during
the long process of selection the main heart and brain of whole system. STM32
exceeds many different solutions and microcontrollers due to its powerful tools,
embedded possibilities and obviously very low price. The research was based on
STM32 version F401re which is working on ARM M4 Cortex and the maximum
system core clock is 84 MHz which seems to be fine for own-made systems. The
key features of ARM Cortex M4 are presented in Table 1.

One of the advantages of STM32 is presence of Direct Memory Access (DMA).
DMA allows hardware to use Random-Access Memory (RAM) omitting Central
Processing Unit (CPU). Moreover, DMA has the task of relieving processor from
sending data. In considered case it allows for very accurate collection of samples
from accelerometer without losing any data from entire measurement as well as

Table 1 ARM Cortex M4
features

Parameters

Up to 96 Kbyte of SRAM
1.7–3.6 V application supply and I/Os
Power consumption of run mode: 146 μA/MHz
1 × 12 bit, 2.4 MSPS A/D Converter

General-purpose DMA, up to 10 timers, RTC
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sending data from buffers to SD Card. However, the selection of microcontroller
was not the only problem which was faced. The accelerometers have analog outputs
so it was necessary to choose a suitable Analog to Digital Converter (ADC).
Fortunately, STM32 has embedded ADC converter which parameters seemed to fit
the requirements of the proposed approach. A 12-bit analog-to-digital converter
which shares up to 16 external channels can perform conversion in the single-shot
or scan mode. The embedded ADC can be served by the DMA controller. To
synchronize A/D conversion the ADC can be triggered by any timer.

For frequency of ADC = 30 MHz and sampling time of 3, the ADC cycles in
single mode. It is possible to get even two millions of samples per second which is
an amazing result. Furthermore, in triple mode it is possible get event six million of
samples. Besides, while making research the authors used also the external A/D
converter in order to verify the functionality of STM build-in ADC. For that pur-
pose, the MCP 3202 ADC from Microchip company was chosen. It is dual channel
12-bit A/D converter with SPI Serial Interface.

It is worth mentioning that the MCP3202 A/D and embedded A/D in STM32 use
successive approximation method. This method provides the accuracy that fits the
needs as well as satisfying processing speed and has also low power consumption.

4.1 Possible Architectures

From the beginning of the project, the authors have been struggling in order to
choose appropriate base for the own-made, low-cost condition monitoring system.
Figure 2 shows two exemplary solutions: CMS based on STM32 (described in
details in this paper) and CMS based on well-known platform called Raspberry Pi
2. Both of them differ from each other when it comes to parameters, data carriers,
ADC converters and price.

Fig. 2 Two exemplary solutions for the base of low-cost system

116 A. Jabłoński et al.



While considering the Raspberry Pi 2 as a base for the project, the authors had in
mind functionality of that board that is available right out of the box. Such a system
could be easily adapted for different purposes:

• Build-in SD card reader that supports up to 32GBs SD card enables to read and
store lots of measurement samples without the need of exchanging the card or
sending data to a computer,

• Build-in USB ports enable ease of development of wireless data transmission
solution with use for instance a USB WIFI network extension card,

• Built-in Ethernet port allows to send measurement data directly to the host
computer.

Similarly, a solution that is based on STM32 allows modularity, however each
additional component requires further development. Figure 3 presents exemplary
builds based on architecture using STM32. For both considered solutions, it is
possible to power the system from an external power source (for instance phone

Fig. 3 Functionality of STM32 based solution
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charger), from a computer (USB port is necessary) and from the battery—in the
case of Raspberry Pi 2 it should be a power bank that supports 5 V 500 mA output
and in case of STM32 four R6 (AA) batteries.

5 Experimental Verification of Data Acquisition

In order to verify the presented idea, a prototype board was created to check the
operation of developed solution that is presented in the Fig. 3. An exemplary code
was written on STM32F401re which was responsible for getting samples from
MEMS accelerometer with the frequency of 10 kHz. Table 2 presents parameters
of chosen accelerometer.

5.1 Noise Measurements

The first method utilizes the internal Analog-to-Digital Converter that is present on
STM32 board. The ADC was triggered by an internal timer and data from ADC
was managed by DMA in Double Buffer Mode. This was a precaution for the sake
of making sure that not even one sample is lost during measurement and data saving
process. The results are presented in the Fig. 4 (top left).

The second method utilizes the internal Analog-to-Digital Converter that is
present on STM32 board and triggered by an internal timer. In this method DMA
was omitted for the sake of making sure that its mechanism is not influencing the
level on noise present in the measurement. The results are presented in the Fig. 4
(top right).

The third method utilizes the external Analog-to-Digital Converter that chosen in
order to verify the results using two different converters. The ADC was triggered by
an internal timer. In this method DMA was omitted for the sake of making sure that
its mechanism is not influencing the level on noise present in the measurement. As
well as verifying if ADCs are capable to manage 10 kHz measurement without
software boost—DMA. The results are presented in the Fig. 4 (bottom).

Table 2 The parameters of
chosen MEMS accelerometer

ADXL001-70

Bandwidth (kHz) 22
Wideband range (g) ±70

Noise ðμg ̸
ffiffiffiffiffiffi

Hz
p Þ 4000

Sensitivity (mV/g) 16
Power consumption (mA) 2.5
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5.2 Results

In order to verify obtained results, the test case has been established based on a
measurement of a simple domestic fan with an office clip attached to one of its
blades serving as an imbalance. Two configurations have been used in order to
gather measurement data: (i) the professional ACQ unit “Vibmonitor” equipped
with 24bit ADC and industrial piezoelectric accelerometer IMI 61A02 (Fig. 5 top
left), (ii) proposed system with 12bit ADC and ADXL001-70 MEMS accelerometer
(Fig. 5 bottom left). To point out, the main imbalance component is well preserved
in MEMS measurement (Fig. 5). However, the representation of higher components
is worse than in case of piezoelectric accelerometer (used in a professional system
—Fig. 5 right-blue), because of additional damping since the latest development of
MEMS sensors is available only as a raw electronic board; therefore, in order to
preserve high spectral bandwidth, it is necessary to develop a housing with rela-
tively slow damping. This task is beyond the scope of this paper.

Fig. 4 Results obtained from MEMS accelerometer using all three methods
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6 Summary

The conducted study on the use of low cost MEMS-based accelerometer solutions
for the purpose of building cheap condition monitoring system show different
currently possible architectures of own-made condition monitoring system, suitable
for different scenarios as well as a guidance for practical realizations. The presented
exemplary realization could be the solution for smaller machines, for which the cost
of CMS installation would exceed the budget for maintenance. The Micro
Electro-Mechanical System based Condition Monitoring Systems would allow to
reduce the installation cost per each monitoring node by the factor of 10. The
authors have shown a concept in which the powerful tool of STM32 is used,
including DMA and external ADC for better performance and results.

References

1. Blanke, M., Kinnaert, M., Lunze, J., & Staroswiecki, M. (2006). Diagnosis and fault tolerant
control (2nd ed.). Berlin: Springer.

2. Hameed, Z., Ahn, S. H., & Cho, Y. M. (2010). Practical aspects of a condition monitoring
system for a wind turbine with emphasis on its design, system architecture, testing and
installation. Renewable Energy, 5(5), 879–894. doi:10.1016/.renene.2009.10.031.

3. Isermann, R. (2011). Fault-diagnosis applications. London: Blackwell.
4. Pan, M., Sas, P., & Van Brussel, H. (1996). Nonstationary time-frequency analysis for machine

condition monitoring. doi:10.1109/TFSA.1996.550096.
5. Wang, W., Tse, P. W., & Lee, J. (2007). Remote machine maintenance system through Internet

and mobile communication. International Journal of Advanced Manufacturing Technology,
31, 783–789. doi:10.1007/s00170-005-0236-1.

6. Albarbar, A., Badri, A., Jyoti, K., & Starr, S. (2008). Performance evaluation of MEMS
accelerometers. Measurement, 42, 790–795. doi:10.1016/j.measurement.2008.12.002.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-2

-1

0

1

2
A

m
pl

itu
de

 (g
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-2

-1

0

1

2

A
m

pl
itu

de
 (g

)

Time (s)

0 50 100 150 200 250
0

0.5

1

1.5

A
m

pl
itu

de
 (g

)

Frequency (Hz)

Fig. 5 Results obtained from the proposed solution and the professional system: left-top and right
blue: IMI 61A02, left-bottom and right-red: ADXL001-70

120 A. Jabłoński et al.

http://dx.doi.org/10.1016/.renene.2009.10.031
http://dx.doi.org/10.1109/TFSA.1996.550096
http://dx.doi.org/10.1007/s00170-005-0236-1
http://dx.doi.org/10.1016/j.measurement.2008.12.002


7. Nagel, D. J., & Zaghloul, M. E. (2001). MEMS: Micro technology, mega impact. IEEE
Circuits and Devices Magazine, 17(2). doi:10.1109/101.920875.

8. Ratcliffe, C., Heider, D., Crane, R., Krauthauser, C., Yoon, M. K., & Gillespie, J. W. (2007).
Investigation into the use of low cost MEMS accelerometers for vibration based damage
detection. Composite Structures, 82, 61–70. doi:10.1016/j.compstruct.2006.11.012.

How to Build a Vibration Monitoring System on Your Own? 121

http://dx.doi.org/10.1109/101.920875
http://dx.doi.org/10.1016/j.compstruct.2006.11.012


Optimization of Calculations for Wireless
Condition Monitoring Systems

Kajetan Dziedziech, Adam Jabłoński and Tomasz Barszcz

Abstract Health Indicator for machine health monitoring are generally well-

established. Regardless of the type of the Condition Monitoring System (stationary,

remote, wireless) and the system’s manufacturer, the most commonly applied Health

Indicators include wideband estimators (peak-to-peak, Root Mean Square, kurto-

sis, crest factor, velocity Root Mean Square), narrowband estimators (speed har-

monics, gear meshing frequencies, rolling-element bearing characteristic frequen-

cies), and simple spectral bands corresponding to a group of machine elements, e.g.

100–2000 Hz for gearboxes. In order to improve the reliability of Health Indicators,

stationary Condition Monitoring System implement averaging and advanced data

acquisition logic. In order to detect faults in very early stage, Condition Monitor-

ing System implement resampling, order analysis, Deterministic Random Separa-

tion, and for instance auxiliary visualization. However, in case of wireless Condition

Monitoring System without a speed sensor, improvement might concern only three

aspect, namely hardware realization, data transmission, and power savings, where the

latter one might be decomposed into data transfer power consumption, data acqui-

sition power consumption, and data analysis power consumption. The current paper

illustrates few recent ideas on how to minimize the power consumptions for data

analysis. As it will be shown, it is possible to reduce the computational cycles by

more than 60% comparing to stationary Condition Monitoring System while losing

acceptable level of the quality of calculated Health Indicators.
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1 Introduction

As a consequence of non-perfect conversion of electrical or chemical (fuel) energy

to desired work, any rotary machinery emits sound and vibration, and as a conse-

quence due to the heat energy dissipation increases temperature. All of these physical

phenomena can be quantitatively measured and converted into meaningful, physical

quantities. The temperature is the easiest indicator to interpret, because it is a simple

scalar value. Since typically, permissible operating temperatures of some mechan-

ical elements are given by a manufacturer, it is a convenient “overall” diagnostic

indicator. From a definition, vibrations refer to oscillatory movement, so the primary

vibrations are displacement values. However, due to some scientific versus econom-

ical trade-off, typical vibrations are measured as “acceleration of motion”, and are

given as a fraction of [g] units. Still, the most widely used indicator, namely the

“velocity RMS” is given as the “velocity of vibrations”. The last signal, the sound,

is an acoustic wave, which is this part of vibrations, which is not counterbalanced by

machine foundations. Although sound bandwidth is theoretically unlimited (just like

in case of any other value), it is accepted that the sound is constrained to a human

hearing sense, which is about 20 Hz–15 kHz (numbers might vary).

In the current paper, the widely used vibrations signals are taken into account as

a source of information of machine technical condition. The Health Indicators (HI),

also called “signatures”, “features”, or diagnostic estimators are scalar results [1] of

some processing of signal, e.g. statistical, filter-based or various customized [2].

From practical point of view, processing of vibration signals is like playing hide-

and-seek. Regardless the used processing technique, the idea is always the same, i.e.

to define such HI that would:

∙ detect a fault with a highest rate of reliability,

∙ detect a fault the earliest,

∙ identify the faulty component most accurately,

∙ approximate the Remaining Useful Life (RUL) most accurately.

From signal processing point-of-view, the requirement No. 1 calls for baseband

signal analysis, where all signal components are present, i.e. no part is filtered out.

On the other hand, requirements No. 2 and No. 3 aim in tracking narrowband, phase-

locked frequency components or narrowband envelope characteristic components. In

case of wireless hardware, which typically does not support phase markers, the scope

of offered HIs includes broadband time domain estimators, narrowband frequency

estimators, envelope estimators, and velocity-based estimators. The paper proposes

some novel methods of reduction of number of calculations in the process of calcu-

lation of these HIs [3], which is irrelative for power-supplied data acquisition units,

but is a true added value for wireless equipment, where power consumption is of

upmost importance [4, 5]. In case of the wireless condition monitoring which are

battery powered it is crucial to have the shortest calculations possible for the exten-

sion of the battery life-time.
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Chapter 2 covers the classical way of calculating of the selected HIs. Chapter 3

discusses fast calculations algorithms that could be implemented into the wireless

Condition Monitoring System (CMS) in terms of energy optimisation. Finally, the

last chapter summarizes this paper.

2 Health Indicators

This section describes the most commonly used HIs in wireless condition monitor-

ing.

2.1 Peak-to-Peak

The peak-to-peak value xpeak of the time sequence is simply a difference between the

maximum and minimum values encountered in the given signal [6].

xmax = max x (1)

xmin = min x (2)

xpeak = xmax − xmin (3)

2.2 Root Mean Square Value

The Root Mean Square (RMS) value xRMS stands for a “root mean square” value.

The name of the indicator explain the process of its calculation (reading from left to

right). For a discrete signal, RMS is given as [6]

xRMS =

√
√
√
√1

n

n
∑

i=1
x2i (4)

The basic idea of using the RMS value as a diagnostic criterion is the fact, that

any sort of failure generates additional vibrations, which increase the total energy of

the system. The RMS value is an indicator of the average energy of the signal; thus,

it may be used as a failure detection indication.

http://dx.doi.org/10.1007/978-3-319-61927-9_2
http://dx.doi.org/10.1007/978-3-319-61927-9_3
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2.3 Crest Factor

The crest factor is simply the ratio of the peak value of the signal to the RMS value

given as [6]

C =
xpeak
xRMS

(5)

It gives the idea how much of impacting is occurring in the vibration signal.

Impacting is associated with the roller bearing and gear tooth failures.

2.4 Kurtosis

The kurtosis of the signal is defined as the measure of the “tailedness” of the signal.

It is calculated according to the following equation

K = 1
n
𝜇4

𝜎4 (6)

where 𝜇4 is fourth moment about the mean and 𝜎 is the standard deviation.

2.5 Velocity Root Mean Square Value

The VRMS value xVRMS stands for a “velocity root-mean-square”. The name of the

indicator explains the process of its calculation (read from right to left) of the veloc-

ity signal. Most commonly used sensor for condition monitoring is accelerometer.

Therefore it is expected at first to integrate the signal from acceleration to velocity

xvel0 =
xacc0
Fs

(7)

xveln = xveln−1 +
xaccn
Fs

(8)

Following step is the band-pass filtration in range of f = 10 ÷ 1000Hz, as this is

required by most of the vibrodiagnostic standards. This filtration is easily achieved

by the Fast Fourier Transform (FFT) combined with the selection of frequency bins

that corresponds to the given frequency range and Inverse Fast Fourier Transform

(IFFT).

X(𝜔) = ∫
∞

−∞
x(t)e−2𝜋j𝜔tdt (9)
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where 𝜔 is the frequency variable, j is a complex value operator. For the filtration a

new variable should be considered as

Y(𝜔) =

{

2X(𝜔) , if 10 ≤ 𝜔 ≤ 1000

0 , otherwise
(10)

where Y(𝜔) is filtered signal to range of f = 10 ÷ 1000Hz given in frequency domain,

multiplication by 2 is required to compensate for the negative frequencies. Following

step considers the IFFT operation given as

y(t) = ∫
∞

−∞
Y(𝜔)e2𝜋j𝜔td𝜔 (11)

where y(t) is filtered signal given in time domain. Last step considers the calculation

of RMS of obtained signal as

VRMS =

√
√
√
√1

n

n
∑

i=1
y2i (12)

2.6 “Band Limited” Energy

Spectrum analysis is performed using a FFT. It is assumed that spectrum will be

grouped into several “Band Limited” Energy (BLE), i.e. energy will be integrated

over given frequency bands. Different frequency bands will be related to differ-

ent phenomena’s, i.e. low frequency bands are related to, e.g. misalignment and/or

unbalance, medium frequency bands are related to higher orders of operation, e.g.

x2, x3, x4 etc., high frequency bands are related to, e.g. gear meshing frequencies.

At first FFT is calculated in the same manner as in Eq. (9). Energy content is

integrated over given frequency ranges, for BEC1 it is given as

BEC1 =
𝜔=30
∑

𝜔=0
2X(𝜔) (13)

2.7 Envelope Root Mean Square

Envelope RMS calculation requires at first computation of FFT given as

X(𝜔) = ∫
∞

−∞
x(t)e−2𝜋j𝜔tdt (14)
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Following, filtration of appropriate band of interest should be done as

Y(𝜔) =

{

2X(𝜔) , if 4000 ≤ 𝜔 ≤ 10000

0 , otherwise
(15)

Once the signal is filtrated, IFFT should be calculated following the formula given

as

y(t) = ∫
∞

−∞
Y(𝜔)e2𝜋j𝜔td𝜔 (16)

For the resulting function envelope should be calculated as

yenv(t) = |y(t)| (17)

Finally, envelope RMS can be calculated as

ERMS =

√
√
√
√1

n

n
∑

i=1
y2envi (18)

3 Fast Calculation Algorithms

This section describes fast calculation algorithms that could be implemented in wire-

less condition monitoring for energy efficient calculations.

3.1 Multiplication Order Considerations

It is in common sense to recalculate the measured discretized values to the physical

values at the beginning of the entire signal processing, to remain in the physical

world units as

XPU = (XDV − XSO) ∗ ADtEC ∗ BEtPC (19)

where XPU are the values of measured signal in Physical Units (PU), XDV are the

values of measured signal in Discretized Values (DV), XSO is the Systems Offset

(SO), that has to be subtracted to obtain measured signal with negative values, ADtEC
is the Digital to Electric Coefficient (DtEC), that has to be used to obtain values in

electrical units, BEtPC is the Electric to Physical Coefficient (EtPC), that have to be

used to obtain values in physical units.
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Apart of above mention recalculations, it is always a good practice to remove

the DC constant from the signal for the purpose of the further signal processing, as

time-domain based methods are sensitive to DC offsets

Xmean =
1
n

n
∑

i=1
XPUi

(20)

XPU0M = XPU − Xmean (21)

where XPU0M is the finally obtained measured signal in Physical Units with 0 Mean

(PU0M), which should be used in further calculations.

All of the abovementioned calculations are very simple and fast, but they do con-

sume power. In order to obtained the finally measured signal PU0M, a list of oper-

ations that have to be conducted for every measured sample (we assume the n sam-

ples).

∙ Subtract the System Offset (n subtraction operations)

∙ Multiply by the Digital to Electric Coefficient (n multiplication operations)

∙ Multiply by the Electric to Physical Coefficient (n multiplication operations)

∙ Calculate the mean value (n addition operations)

∙ Subtract the mean value (n subtraction operations)

In total 5n operations have to be conducted, before actual signal processing. The

proposition is to conduct signal processing on values with minimal preprocessing,

and apply the appropriate coefficients after the signal processing. The proposed min-

imal preprocessing is as follows

Xmean =
1
n

n
∑

i=1
XDVi

(22)

XDV0M = XDV − Xmean (23)

whereXDV0M is the measured signal in Discretized Values with 0 Mean (DV0M). The

list of operations that have to be conducted for every measured sample (we assume

the n samples)

∙ Calculate the mean value (n addition operations)

∙ Subtract the mean value (n subtraction operations)

In total 2n operations. After the signal processing correction coefficients have to

be applied to a trend value, so in fact to a single sample. So it could be assumed

that this results in reduction from 5n operations to 2n operations in preprocessing

stage—reduction of 60% of operations.
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After careful analysis it has been found that the application of the scaling coeffi-

cients should be done for the following trends:

∙ Peak-to-peak,

∙ RMS,

∙ Velocity RMS,

∙ BEC.

There is no need to apply the scaling coefficients for the following trends:

∙ Kurtosis,

∙ Crest factor.

3.2 Application of Parseval’s Theorem for Envelope RMS
Calculation

Classical calculation of envelope RMS assumes one FFT and one IFFT as shown in

Sect. 2.7, which are very time consuming. Alternative way of calculation of envelope

RMS could be achieved by application of Parseval’s theorem given as

n
∑

i=1
|xi|2 =

1
n

n
∑

k=1
|Xk|

2
(24)

where xi is envelope signal given in discrete time domain, Xk is FFT of a envelope

signal. Considering the equation for the RMS as

xRMS =

√
√
√
√1

n

n
∑

i=1
x2i (25)

Having this assumption made, RMS can be calculated directly from the frequency

domain as

xRMS =

√
√
√
√ 1

n2

n
∑

i=1
|Xk|

2 (26)

In this manner calculation of envelope RMS could be done without a need to

go back to the time domain via IFFT. Such a simplification can save almost 50% of

calculation time of envelope RMS, as the FFT and IFFT are the most time consuming

operations in this scheme.
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3.3 Velocity RMS Calculation

Classical calculation of velocity RMS is done at first by numerical integration as

shown in Sect. 2.5. This integration requires n operations. An alternative version

assumes the integration in frequency domain as follows

Xvel(𝜔) =
Xacc(𝜔)
2𝜋𝜔

(27)

In this manner a fraction of operations are needed to be done. Nowadays CMS

analyse bandwidth of Bw = 10 kHz, this means that the sampling frequency is at

least Fs = 20 kHz. Since there is a need for the analysis of the frequency range

10 ÷ 1000Hz, this means a rough reduction of required operations for the numer-

ical integration of 20 times.

4 Conclusions

In this article fast calculation algorithms for calculation of classical Health Indicators

have been presented. It has been shown that such operations could save more than

50% of calculation time of certain operations, without any impact on the obtained

results by performing calculations in different domains and applying constant coef-

ficients on estimated indicators rather than on to raw data.
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Supervised Classification Methods
in Condition Monitoring of Rolling
Element Bearings

Paweł Różak, Jakub Zieliński, Piotr Czop, Adam Jabłoński,
Tomasz Barszcz and Michał Mareczek

Abstract Operational vibrational diagnostics is crucial for providing the reliability
of mid and large scale combustion engine applications (e.g. railway, automotive
heavy vehicles or electric generators). This work reports study presenting appli-
cation of supervised learning and classification methods based on pattern recog-
nition using different classifiers (e.g. logistic regression, k-nearest neighbor or
normal density) in order to detect early warning diagnostic symptoms of mal-
functioned rolling element bearings (REBs) in the presence of background distur-
bances from combustion diesel engine. The REB’s malfunction type classification
is based on time domain (RMS, peak to peak, Crest factor) as well as frequency
domain signal processing methods like envelope analysis or modulation intensity
distribution (MID) which allows to neglect the influence of background noise
representing by non-stationary operating conditions and possible structural modi-
fications (e.g. maintenance activities or parts replacing). The proposed data clas-
sification methods are compared and validated by using experimental measurements
conducted on a dedicated combustion engine test bench for wide range of rotational
speed and different levels of REB’s radial load.
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1 Introduction

Operational vibrational diagnostics is important for mid and large scale combustion
engine applications, especially those ones coupled to mechanical load (railway and
automotive heavy vehicles) or electrical load (electric generator) where gearboxes
and rolling element bearings (REBs) play a vital role. REBs account for a relatively
large percentage of all machinery breakdowns, typically the failure results in a
costly repair and unplanned downtime. The aim of this paper is to develop
supervised data classification method in order to detect early warning diagnostic
symptoms of malfunctioned rolling element bearings (REBs). The method is
intended for bearing analysis in the presence of background disturbing signals from
other machine components such as combustion engine. The disturbing signals
mostly have harmonic- and impulse-like disturbing mechanism with a period of a
fraction of the engine rotational speed. Thus high-frequency demodulation tech-
niques are required to provide robust diagnostic symptoms. REBs diagnostics in
presence of background disturbances was widely reported by Randall and Antoni
[1] who provides a comprehensive tutorial regarding rolling element bearing
diagnostics in particular in the presence of strong masking signals from other
machine components such as gears [2]. Sawalhi and Randall [3] described the
combined gear bearing dynamic model to present bearing-gear interactions and
study the extended bearing faults [4].

The paper has two parts. The first reviews and proposes diagnostic indicators to
detect the bearing failure mode in advance [5‚ 6]. The second validates a few
proposed supervised methods used to classify REB conditions based on proposed
time and frequency domain diagnostic indicators. Time-domain indicators are
straightforward (broadband) signal estimates such as Root-Mean-Square (RMS),
Peak-To-Peak (PP) measures. Frequency-domain indicators are amplitude of fre-
quency components determined based on geometrical parameters of analyzed REBs
based on vibration signals, i.e. Ball-Pass Frequency of Outer race (BPFO),
Ball-Pass Frequency of Inner race (BPFI), Ball Spin Frequency (BSF) and Fun-
damental Train Frequency (FTF) [7]. Narrowband Envelope Analysis (NEA),
Modulation Intensity Distribution (MID), and Integrated Modulation Intensity
Distribution (IMID) methods [8] can be used to demodulate frequency component
in order to improve signal-noise-ratio in the presence of background disturbances
and complex malfunction resulting in a single or multiple amplitude-frequency-
phase modulation effect. This paper applies widely used supervised classification
methods, i.e. nearest neighbor and nearest mean classifiers, logistic regression,
linear and quadratic discriminant analyses and radial basis function neural network
[9‚ 10]. These methods proved their effectiveness in various engineering and, in
particular, condition monitoring applications, as pointed throughout the article.
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Their advantages can be found in relatively simple application and low computation
time, thus it can be assumed that they can be directly applied in state-of-the-art
Condition Monitoring Systems (CMS).

2 Supervised Classification Methods

Supervised classification is performed based on the relationship between the input
explanatory independent vector of features and the dependent class or cluster. Each
explanatory observation should be labeled with the corresponding class. Such
training set can be used for teaching of a selected method until the relation between
inputs and category is established. The obtained pattern is then used for the unseen
testing data. The labels are not known to classifier until the verification stage, when
the obtained results are compared with the actual indications. One of the most
commonly used supervised classifier is a k-nearest neighbor (k-NN) one [11, 12].
An interesting approach is normal density-based linear classifier, also called linear
discriminant analysis (LDA). It can be used to describe a linear combination of
explanatory data that are most suitable for distinguishing of two or more categories
of objects [13]. Similar to LDA, for the quadratic discriminant analysis (QDA) it is
assumed that the observation vector is normally distributed for each category. The
difference between the two methods can be found for covariance, which are sup-
posed to be different. For QDA the classification is made using the likelihood ratio
that calculates probability that a given observation belongs to particular class [14].
An interesting approach is radial basis function neural network (NN). The network
is similar as for classical neural network and the inputs are formed using
explanatory variables. At the input of each neuron, the distance between the neuron
and the input vector is obtained. The outputs are calculated as weighted sum of the
hidden layers and the unity bias. Most commonly, the basis function is the Gaussian
bell one [15]. The neural networks were used for bearings diagnostics in [16], while
in [17] the authors compared radial basis functions-based NN with
back-propagation networks, showing their superiority based on the fast training
time.

3 Engine Test Bench

Universal engine test bench (Fig. 1) was used in order to conduct REBs vibration
measurements under variable load conditions. It consists of three main components:
diesel engine (2) which is started by starting motor (1), electromagnetic brake
(6) providing load on engine output shaft supported by tested REB (5). The engine
has the following parameters: 4 cylinder, 16 valves, 90 HP (66 kW) at 4000 RPM
(rotations per minute) and 200 Nm at 1750 RPM. A hydraulic actuator (7) applies
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radial load (0–7.7 kN) to the REB housing that corresponds to 0–2 MPa hydraulic
pressure supplying the actuator (Fig. 2). Rotational speed is measured by inductive
sensor (3) which is activated once per shaft by marker attached to the engine
flywheel (4).

The accelerometer (PCB 338B34; 10 mV/g; 10 kHz) is screwed (M6) to the
bearing housing in vertical or horizontal direction as shown in Fig. 2.

A single row and deep groove ball bearing was used (FŁT 6024; Φinn = 120
mm; Φout = 180 mm). Vibrational data acquisition was conducted with a sampling
rate of 25 kHz, while RPM was recorded with additional low-frequency data
acquisition system. Figures 2 and 3 (left) shows bearing mounting and loading
system. Vibrational measurements were conducted for 1.9, 3.8 and 7.7 kN load
conditions with combination of the following rotational speeds: 2, 2.5, 3, 3.5, 4 and
5 kRPM. Engine torque was maintained at constant value of 50 Nm by electro-
magnetic brake. Load and speed combination measurements were recorded for
further vibrational analysis. Two identical REBs (FŁT 6024) were installed and
measured. The former was tested in poor lubrication conditions while the latter in
proper lubrication conditions. Tested REBs were measured in reference and failure
mode conditions. The failure was applied by slightly drilled inner race defect (a
longitudinal scratch parallel to bearing axis) Fig. 3 (right).

Fig. 1 Schematic representation of measurement setup

Fig. 2 Hydraulic system applying radial load
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4 Diagnostic Indicators

Amplitudes of REB frequency components BPFO, BPFI, BSF and FTF can be used
as diagnostic indicators (i.e. symptoms of the failure). Early warning REB diag-
nostic symptoms can be obtained using time- and frequency domain analysis based
on raw, filtered and demodulated signals [7]. NEA, MID and IMID methods [8]
using demodulation techniques allow to reduce the influence of background dis-
turbances, e.g. periodic impacts which are amplified by resonances of bearing,
sensors, structure etc. Averaged NEA method was used to compare reference and
malfunctioned bearing conditions. Figure 4 shows NEA plots averaged for 50 s of
measurement and demodulation band from 8250 to 9750 Hz.

Averaged NEA method provides results which indicate REB malfunctions in
both cases of poor and proper lubrication (growth of 1st and 2nd harmonic of
BPFI). MID method is used in order to demodulate raw vibrational signal using
spectral correlation method, however other approach can also be considered such as

Fig. 3 Bearing loading system (left) and location of the bearing defect (right)

Fig. 4 Averaged NEA method results for REB proper lubrication a reference and b defected case
(2000 RPM/1.9 kN load) and REB poor lubrication c reference and d defected case (2000
RPM/3.8 kN load)
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spectral coherence, RMS, or kurtosis. MID method requires to assume the fre-
quency component to be analyzed (e.g. BPFI) and the modulation band range.
Mathematical notation of MID/IMID methods with use of Product of Spectral
Correlation (PSC) and Spectral Correlation (SC) is as follows:

MIDPSC
Δf ðf , αÞ= SCα

x f +
α

2

� �
* SCα

x f −
α

2

� �
ð1Þ

SCα
x ðf Þ= limΔf→ 0 limΔt→∞

1
Δt

ZΔt
2

− Δt
2

Δf ⋅X 1
Δf

t, f +
α

2

� �
⋅X*

1
Δf

t, f −
α

2

� �
ð2Þ

X 1
Δf
ðt, f Þ≜

Zt+ 1
2Δf

t− 1
2Δf

xðtÞe− j2Πftdt ð3Þ

IMIDf2
f1ðα,Δf Þ=

Zf2

f1

MIDΔf ðf , αÞdf ð4Þ

where:
t—time, carrier frequency, α—cyclic frequency (e.g. ± BPFI), X 1

Δf
—Envelope

Complex Function of signal in range ⟨f − Δf
2 ; f + Δf

2 ⟩.
The MID analysis shows significantly greater modulation intensity distribution

of BPFI frequency component α in function of carrier frequency for the poorly and
properly lubricated REB as shown in Figs. 5 and 6.

MID method can be extended to IMID method in order to facilitate vibration
analysis by means of computing a sum of signal energy in frequency component
domain for all or chosen carrier frequency range. The IMID graph in Fig. 7 con-
firms that a higher energy peak occurs around BPFI frequency component for
defected REB in both cases of poor and proper lubrication. The BPFI frequency
component exhibits frequency deviation (3.8 kN at 2000 RPM) resulting from RPM
variation (i.e. error) during measurement.

IMID method has advantage compared to NEA method since it does not require
to assume the demodulation frequency band which is unknown a priori and might
be related to structural resonances. MID, IMID, NEA methods are used further in
this paper to obtain the early warning diagnostic indicators which allow to apply
supervised learning and classification methods in order to evaluate normal and
deteriorated REBs operating conditions.
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5 Supervised Learning and Classification Process

This section reports selective results obtained for REB subjected to radial load of
3.8 kN corresponding to 1 MPa hydraulic pressure in the actuator (Fig. 2). Engine
rotating speed was set to 3000 RPM. The measured vibration data sets were divided
into learning (60%) and testing part (40%) required by supervised learning and
classification methods implemented based on Matlab Toolbox for Pattern Recog-
nition [18]. Following data processing steps were applied: (i) defining and choosing

Fig. 5 MID map for REB proper lubrication in a reference (left) and defected (right) case

Fig. 6 MID map for REB poor lubrication in a reference (left) and defected (right) case
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diagnostics indicators, (ii) determining learning and testing data sets, (iii) random-
izing data sets, (iv) conducting learning process, (v) conducting validation process,
and (vi) determining classification accuracy. Vibration data were a priori grouped
into three REB condition categories (i.e. data clusters) namely: reference, poor
lubricated and faulty (defected reference). Data processing parameters are presented
in Table 1, while classification results in Table 2.

The parameter Diagnostic Symptom (DS) (Table 1) described the method to be
used in order to determine the diagnostic indicator, i.e. RMS (Root Mean Square),

Fig. 7 IMID method results for properly (left) and poorly (right) lubricated REB

Table 1 Diagnostic strategies and their configuration parameters

Method DS DSEG
(s)

MB
(Hz)

DM
(Hz)

Unit Diagnostic strategy
1 2 3 4 5 6 7

Time domain RMS 100 N/A N/A m/s2 X
PTP 100 N/A N/A m/s2 X
CF 100 N/A N/A – X

Direct
frequency
domain

BPFI 100 ±5 N/A m/s2/
Hz

X X X

BPFO 100 ±5 N/A m/s2/
Hz

X X X

FTF 100 ±5 N/A m/s2/
Hz

X X X

Frequency
domain NEA

BPFI 100 ±5 8250–
9750

m/s2/
Hz

X X X

BPFO 100 ±5 8250–
9750

m/s2/
Hz

X X X

FTF 100 ±5 8250–
9750

m/s2/
Hz

X X X

Frequency
domain IMID

BPFI 100 N/A BPFI*–
1E4

(m/s2)4/
Hz4

X X X

*Given frequency plus range of analysis 15 Hz (e.g. BPFI* = BPFI + 15 Hz)
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PTP (Peak To Peak), CF (Crest Factor) and BPFO, BPFI, BSF, FTF, briefly
explained in Sect. 1. The first harmonic is only considered regarding all frequency
components. The parameter Data Segment (DSEG) (Table 1) defines the length of
an elementary vibration data segment represented in time-domain, which is used
further to compute time and frequency based diagnostic indicators (i.e. symptoms).
The parameter Mean Band (MB) defines a frequency tolerance range used to
compute diagnostic indicators. This tolerance band is required to compensate
inaccurate tracking of characteristic frequencies (i.e. BPFO, BPFI, BSF and FTF)
due to engine rotating speed variations (i.e. speed measurements and control errors).
The parameter Demodulation Band (DB) (Table 1) defines the frequency range
used to demodulate the low-frequency vibration content. The category Diagnostic
Strategy informs which diagnostic indicators were involved in particular strategies
(Table 1).

Performed learning and classification process showed that time-domain analysis
applying diagnostic strategy no. 1 (Table 1) with use of basic (naive) diagnostic
indicators (e.g. RPM, PP) provided very good separation of tested REBs condition
categories (Table 2; Fig. 8).

Similar results were achieved using direct frequency domain (Table 1) diag-
nostic indicators (e.g. BPFI, BPFO). Diagnostic indicators were significantly sen-
sitive to varying operational conditions (poor-good lubrication) or change in the
measurement setup (REB ass- and dissembling; test bench reconfiguration) instead
of indicating a specific simulated failure mode (i.e. drilled scratch in the bearing
inner race). Thus, time and direct frequency domain methods allow only to observe
a drift of mean and bearing-to-bearing variance.

On the other hand, NEA, MID, and IMID methods allow to overcome the
limitation resulted from masking the failure mode conditions, for example by
operational conditions. NEA method provides very good separation (Fig. 9) using

Table 2 Diagnostic strategies classification results (accuracy expressed in percentage scale)

Diagnostic
strategy no.

Learning and classification method
Logistic
regression
classifier

k-nearest
neighbour
classifier

Normal
densities
based linear
classifier

Normal
densities
based
quadratic
classifier

Normal
densities
based
classifier

Neural
network
classifier

1 100.00 100.00 98.64 99.32 94.56 100.00
2 97.96 99.32 97.28 100.00 100.00 100.00
3 98.64 86.39 94.56 95.92 96.60 93.88
4 98.64 97.96 99.32 100.00 100.00 91.16
5 95.56 98.89 97.78 100.00 100.00 100.00
6 100.0 97.78 94.44 98.89 100.00 98.89
7 96.67 100.00 97.78 95.56 100.00 86.67
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diagnostic strategy no. 3–4 (Table 2). NEA method distinguishes failure modes
from reference conditions based on BPFI frequency component.

IMID method improves REB condition categories separation compared to NEA
method (Figs. 10 and 11) using diagnostic strategy no. 7 (Table 2).

Fig. 8 Classification results (strategy no. 1, neural network classifier)

Fig. 9 Classification results (strategy no. 3, normal densities based quadratic classifier)
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6 Conclusion

This paper reports only fragmented results to demonstrate the proposed data clas-
sification approach in order to diagnose REBs in the presence of background dis-
turbing signals from other machine components such as combustion engine. The
method is intended for automatized monitoring and diagnostics based on embedded

Fig. 10 Classification results (strategy no. 7, logistic regression classifier)

Fig. 11 Classification results in 3D plot (strategy no. 7, logistic regression classifier)
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computers installed at vehicles (e.g. train, bus) or industrial installations (e.g.
engine-generator tandem). The project scope covers statistical analysis including
vibration data acquired for REB subjected to radial load in the range 1.9–7.7 kN
(equivalent hydraulic load 0.5–2 MPa), stationary/non-stationary bearing operation
at a few engine rotating speeds (2, 2.5, 3, 3.5, 4 and 5 kRPM), single/multiple
bearing elements failures, different operating conditions (lubrication) and 10–20
REBs. Such comprehensive analysis allows to have more elaborated conclusions
regarding repeatability and reproducibility of the proposed method.

Supervised learning and classification process feasibility study showed that
using advance data processing methods (i.e. NEA, MID, IMID) important diag-
nostics information can be recovered using single-stage demodulation process and
then use in robust data classification process. It was also shown that time and direct
frequency methods allow to recognize correct REB condition categories. However
these method do not allow to diagnose root cause of a failure mode since all the
diagnostic indicators increases values. Automatized monitoring and diagnostics
solutions should be more selective regarding particular diagnostic indicators and
this is achievable using advance diagnostic indicators within NEA, MID, and IMID
demodulation-based methods. Experimental tests showed clearly advantages of
these methods and correct sensitivity to a priori applied bearing faults (e.g. inner
race drilled scratch). This allows to neglect the influence of background noise
representing by non-stationary operating conditions and possible structural modi-
fication (e.g. maintenance activates resulting in machine re-assembling or part
replacing with new ones).

Future improvements concern higher accuracy of RPM measurements and
application of unsupervised classification methods [19], while Design of Experi-
ment (DOE) allows to conduct principal Component Analysis (PCA).
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Empirical Signal Decomposition
Methods as a Tool of Early Detection
of Bearing Fault

Jacek Dybała and Jakub Komoda

Abstract In recent years proactive diagnostic strategies have gained more signif-
icance. Due to the need of reduction of production costs, machine downtime must
be held at the lowest possible limits. This forces maintenance services to predict
possible failures and plan repairs in advance. Rolling bearing faults are among the
major reasons for breakdown of industrial machinery and bearing diagnosing is one
of the most important topics in machine condition monitoring. Vibration signals
offer great opportunity to provide reliable information about machine condition.
However, in complex industrial environments the vibration signal of the rolling
bearing may be covered or concealed by other vibration sources, such as gears. In
case of masking the informative bearing signal by machine noise, extraction of
useful diagnostic information from vibration signals becomes very difficult. The
following paper presents two rolling bearing diagnosing approaches enabling early
detection of rolling bearing faults at the low-energy stage of their development. By
using empirical signal decomposition methods a raw vibration signal is divided into
two parts: an informative bearing signal and a signal emitted from other machinery
elements. For further bearing fault-related feature extraction from the informative
bearing signal, the spectral analysis of the empirically determined local amplitude is
applied. To test the operational effectiveness of the developed signal decomposition
methods, raw vibration signals generated by complex mechanical systems
employed in the industry are used. The test results show that the developed methods
allow early identification of bearing fault in case of masking the informative bearing
signal by signals derived from other sources.
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1 Introduction

One of the key components of almost every technical application are
rolling-element bearings, also known as rolling bearings. A catastrophic bearing
damage often results in damage of a more expensive machine part (e.g. shaft, gear)
and therefore the key issue of bearing diagnostics is the detection of their failure at
the earliest possible point. Vibro-monitoring, due to bearing construction and
characteristic of its work (interaction of rolling elements and raceways) allows
recognizing a possible failure at an early stage when a bearing fault is a small pit or
a spall [1–3]. Unfortunately, it often happens in industrial applications that the
signals generated by different sources of vibration can disturb each other. Usually, a
low-energy bearing vibration signal is recorded by an accelerometer installed on the
bearing housing, which also records high-energy vibration signals generated by
different machinery elements (e.g. by gears). Because many vibration diagnostic
techniques are effective only at later stages of damage development, when the
signal generated by the faulty component is an energy-significant part of analyzed
vibration [4, 5], there is a need to use special methods of signal processing enabling
separation of the vibration signal into parts generated by gears and by rolling
bearings.

There is a number of techniques applied to separate bearing signals from
background signals which mask it [3, 6–13]. In most cases, the effectiveness of
some techniques depends, essentially, on adequate values of a given technique’s
parameters (e.g. convergence factor, filter order), which have to be determined in an
empirical study. Moreover, some methods, such as e.g. Empirical Mode Decom-
position, are quite complicated in use and time-consuming, which makes it prob-
lematic to conduct as a real-time or near-to-real time analysis [14–17]. For these
reasons, such methods cannot present useful tools for industrial application and
online monitoring.

The following paper presents two approaches for rolling bearing diagnostics.
The authors propose two robust and fast empirical signal decomposition methods,
which decompose a vibration signal into low-frequency (deterministic) and
high-frequency (nondeterministic) parts. By using such methods a raw complex
vibration signal of a machine is decomposed into parts generated by gears and by
rolling bearings. For further bearing fault-related feature extraction from the iso-
lated low-energy bearing vibration signal, the spectral analysis of the empirically
determined local amplitude is used. The efficacy of the developed methods was
verified on the basis of analysis of two real vibration signals generated by complex
mechanical system employed in the industry, including vibration data of damaged
and undamaged bearings.
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2 Empirical Signal Decomposition Methods

This article presents two signal decomposition methods, which decompose any
signal into low-frequency and high-frequency parts. According to this approach,
each signal x(t) can be represented as the sum of two signal parts: low-frequency d
(t) and high-frequency n(t):

xðtÞ= dðtÞ+ nðtÞ ð1Þ

The key issue in the presented approach is to determine the low-frequency
component of the signal. Empirical Mean-based Signal Decomposition method
(EMSD) determines this signal part using the technique introduced in Empirical
Mode Decomposition method—the empirical determination of signal envelopes
[18]. According to the devised EMSD method, the signal decomposition algorithm
consists of the following steps:

Step 1: Identify all local extremes (maxima and minima) of the signal x(t).
Step 2: Connect all local maxima (respectively minima) with a line known as the

empirically determined upper envelope Emax(t) (respectively the lower
envelope Emin(t)). Local maxima (minima) are connected with a line by
using piecewise cubic interpolation (Piecewise Cubic Hermite Interpolat-
ing Polynomials—PCHIP).

Step 3: Construct the mean of empirically determined upper and lower envelope
(the low-frequency signal component) d(t) = 0.5(Emin(t) + Emax(t)).

Step 4: Define the high-frequency signal component as n(t) = x(t) − d(t).

Median-based Signal Decomposition method (MSD) determines the
low-frequency component of the signal using the technique called median filtering.
Median filtering is a well-known method in the area of image processing [19–21].
The median filter is a nonlinear digital filtering technique, often used to remove
noise from an image. The authors propose the use of the median filter to execute the
diagnostic-oriented decomposition of a one-dimensional vibration signal to extract
a diagnostically useful component of the signal. According to the MSD method, the
signal decomposition algorithm consists of the following steps:

Step 1: Take as the low-frequency signal component d(t) the result of median
filtering of the one-dimensional signal x(t).

Step 2: Define the high-frequency signal component as n(t) = x(t) − d(t).

The key issue in median filtering is to determine a size of a filter window. The
used value of the filter window size was determined empirically (selection criterion
was to maximize the value of kurtosis of the high-frequency signal component).

Figure 1 presents the waveform of the simulated signal and the waveforms of the
high-frequency and low-frequency signal components determined by the EMSD
and MSD method.
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3 Application of Proposed Diagnostic Approaches

3.1 Machine and Experiment Description

Mining machines represent a special class of machines—complex structure,
high-power with time-varying load. The investigated object was a drive unit for a
belt conveyor working in the mining company (Fig. 2). The drive unit consists of
an electric motor, a coupling and a two-stage gearbox, that are connected with a
pulley. The pulley consists of a shaft, two bearings and the coating covered by
rubber (to increase friction between the pulley coating and the belt). Between the
gearbox and the pulley a rigid coupling is used.

The aim of the diagnostic experiment was to evaluate the technical condition of
the pulley bearing based on the analysis of acquired vibration signal. An
accelerometer has been mounted using a screw on each pulley bearing housing.
Two vibration signals generated by the drive unit, including vibration data of
damaged and undamaged bearings, are used in this diagnostic experiment. For each
measurement, the signal was acquired with the following parameters: sampling
frequency fs = 19,200 Hz, duration T = 2.5 s. Based on the bearing geometry and
the shaft rotational speed, the characteristic defect frequencies of rolling bearings
were calculated, namely: fFTF = 0.51 Hz, fBSF = 4.45 Hz, fBFF = 8.90 Hz,
fBPFO = 12.34 Hz, fBPFI = 16.06 Hz.

Unfortunately, due to rigid connection between gearbox and pulley, a serious
participation of gearbox vibration in acquired vibration signal has been noticed.
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Fig. 1 Results of signal decomposition by the EMSD method (left) and by the MSD method
(right)

150 J. Dybała and J. Komoda



High-energy vibration signals generated by the gearbox completely mask the signal
of interest—a low-energy bearing vibration signal.

Kurtosis analysis of the raw vibration signals does not deliver any diagnostic
information. The kurtosis values of the raw vibration signals (respectively 3.44 and
3.10) are similar and their low level does not indicate any bearing fault.

Amplitude spectra and amplitude spectra of Hilbert-transform-based envelopes
of acquired vibration signals (mean values were removed from the envelopes) are
presented in Fig. 3. It can be observed that the spectral analysis of raw vibration
signals also does not provide useful diagnostic information about the technical
condition of the pulley bearings.

3.2 Decomposing of Vibration Signals

Figure 4 presents the waveforms of the vibration signals and the waveforms of the
high-frequency signal components determined by the EMSD and MSD method.

3.3 Fault-Related Analysis of High-Frequency Signal
Components

The kurtosis values of the high-frequency signal components are significantly
different in the case of the undamaged and the damaged bearing (respectively, 16.16
and 34.70 for the EMSD method, 9.05 and 70.21 for the MSD method). High
kurtosis value of the high-frequency signal component indicates that in this case

gearbox

pulley

electric motor

bearing
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coupling

coupling

Fig. 2 Scheme of the drive unit for the belt conveyor
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Fig. 3 Amplitude spectra (top left—undamaged bearing, top right—damaged bearing) and
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bearing) of vibration signals
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some bearing fault occurs. Unfortunately, the precise nature of the fault cannot be
defined by the kurtosis analysis and it is necessary to use more sophisticated
diagnostic methods.

In order to perform a fault-related analysis, the spectral analysis of the empiri-
cally determined local amplitude of a signal is used. The empirically determined
local amplitude of the signal is defined as:

aðtÞ=0.5 ⋅ EUðtÞ−ELðtÞð Þ ð2Þ

where EU(t) is the empirically determined upper envelope of the signal and EL(t) is
the empirically determined lower envelope of the signal. In order to conduct the
spectral analysis, mean value was removed from the empirically determined local
amplitude. Amplitude spectra of the empirically determined local amplitudes of the
high-frequency signal components are presented in Fig. 5.

The detection of high-amplitude spectral components of the empirically deter-
mined local amplitude indicates that some bearing fault occurs. The basic frequency
of those spectral components equals 12.68 Hz and corresponds (with 3% tolerance)
to Ball Pass Frequency Outer Race (fBPFO). The meaningful coincidence between
these frequencies enables, with high probability, the identification of this defect as
the bearing outer race defect.

0 100 200 300
0

0.005

0.01

0.015
EMSD method (damaged)

[m
/s

2 ]

0 100 200 300
0

0.005

0.01

0.015
EMSD method (undamaged)

[m
/s

2 ]

0 100 200 300
0

0.005

0.01

0.015
MSD method (undamaged)

[m
/s

2 ]

f [Hz]
0 100 200 300

0

0.005

0.01

0.015
MSD method (damaged)

[m
/s

2 ]
f [Hz]

Harmonic Cursor = 12.68 Hz

Harmonic Cursor = 12.68 Hz

Fig. 5 Amplitude spectra of the empirically determined local amplitudes of the high-frequency
signal components determined by the EMSD method (top left—undamaged bearing, top right—
damaged bearing) and by the MSD method (bottom left—undamaged bearing, bottom right—
damaged bearing)
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4 Conclusion

This paper presents two approaches for rolling bearing diagnostics based on two
robust and fast empirical signal decomposition methods. It has been shown that the
developed methods enable extraction of that part of a signal from a raw vibration
signal of a complex machine, which is generated by the rolling bearing. The
analysis of the extracted low-energy bearing vibration signals is a two-stage process
that involves the kurtosis analysis and the spectral analysis of the empirically
determined local amplitude of this signal’s part. The bearing fault was detected
through kurtosis analysis of the extracted signal’s part even when the bearing
vibration signal was completely masked by machine noise. The exact nature of the
bearing fault was determined by the spectral analysis of the empirically defined
local amplitude of the extracted bearing vibration signal. Discovering
high-amplitude spectral components of the empirically determined local amplitude
allowed for identification of the defect, because the basic frequency of those
spectral components was typical for the defined bearing fault.

The conducted experiment showed that the proposed methods of the bearing
vibration signal extraction are very useful and important from the diagnostic point
of view. They make it possible to detect damage at early stages of its development,
when the signal generated by the faulty component is not an energy-significant part
of a recorded and analyzed vibration. The methods have also great practical
importance, as much of the rotating machinery is composed of a few shafts coupled
by gears, and shafts are mounted on rolling bearings. In such a case, a bearing
vibration signal can be completely masked by a gear vibration signal and vibro-
diagnostics of bearings becomes problematic.

Further research will concern the attempts to implement developed methods in
commercial machine condition monitoring systems. In addition, work will be
undertaken on the development of adaptive median filtering, which enables, among
others, adaptive determination of the filter window size.
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Using Vibroacoustic Signals in Evaluation
of Knocking Combustion in a Dual Fuel
Engine

Krzysztof Szczurowski, Stanisław Radkowski, Łukasz Zieliński
and Damian Walczak

Abstract Current development of automotive domain heading towards the ever
decreasing pollution emission as well as using the alternative fuels resulted in
analysis of the possibilities to power the combustion engines with combinations of
several fuels. The multi-fuel engines designed in such a way can use the advantages
of specific fuel. The most popular trend uses self-ignition engines to operate on the
fluid fuels such as the diesel oil or its mixtures, and on the gaseous fuel such as
CNG or LPG. In Poland, because of the extensive network of LPG stations, the
interest in adapting vehicles to this type of fuelling increases. This is particularly
vital for heavy and large goods vehicles, in the case of which the fuel saving
possibility of a few to a dozen or so percent is very interesting. Using gaseous fuels
in engines with the self-ignition results in the occurrence of the previously unknown
phenomena. Such a phenomenon is, among others, the knocking combustion, the
cause for which is the premature ignition of the air-fuel mixture most frequently
occurring in the area of the top dead centre. The knocking combustion is charac-
terized by a faster increase in pressure as compared to normal combustion, and it is
a detrimental phenomenon to the engine operation, especially before the top dead
centre. The growth speed of the combustion pressure can be correlated with the
manner of combustion, which is also evident in the vibroacoustic signal, whose
characteristics will undergo changes alongside the combustion speed. The analysis
of the remaining work parameters influencing the vibroacoustic signal will enable
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determining the moments of the knocking combustion occurrence and will thus
allow for optimization of the gaseous fuel dose, which directly influences the
pollution emission as well as the economical aspect.

Keywords Knocking ⋅ CI ⋅ Model ⋅ Dual fuel

1 Introduction

In relation to the increasingly popular use of alternative fuels employed to power
combustion engines [1] and tightened requirements connected with exhaust emis-
sions of engines with compression-ignition, the works are being carried out on
making use of engines with compression-ignition as engines with multi-fuel
powering and using the diesel oil dose as an impulse igniting the other fuel supplied
in a gaseous form to the intake manifold. The most frequently used fuels are LPG
[2, 3] and CNG [4]. These fuels are characterized with considerable resistance to
self-ignition, defined by the octane number, and hence, for example LPG has the
octane number dependent upon the composition and amounting to over 100 and
CNG- to over 110 [5].

Using two fuels to power a combustion engine allows for utilizing the advan-
tages of both fuels and obtaining a higher engine efficiency than in the case of one
fuel [6]. An important factor motivating to more intensive search for unconven-
tional fuels is an ecological aspect. In Poland, LPG (Liquified Petroleum Gas) i.e.
the liquid gas, a mixture of propane and butane, is most popular because of the of
cost reduction of consuming fuel. Vehicle use is the operational cost that consists of
maintenance costs as well. LPG is produced as a by-product of petroleum refining
or from natural deposits.

Commercially used control of the dual-fuel supply, diesel + LPG, is an emu-
lation of a signal from the accelerator pedal (APP—Accelerator Pedal Position) [7],
and adding a share of LPG in place of the reduced diesel oil dose. In the common
rail system engines, emulation influences the pressure in the common rail. The
maps of the gas injection size are created, depending on the engine rotational speed
and position of the accelerator pedal. This was the simplest way of adjusting the
LPG dose to the diesel oil dose, so as to obtain the proper engine operation and the
LPG addition size of about 20%, relative to the whole diesel oil dose.

Such a share size was determined on the basis of tests conducted by many
subjects dealing with this area of interest [8, 9]. It would be advisable to increase
this share, unfortunately, feeding gaseous fuel through the intake valve results in
creation of the fuel-air mixture in the cylinder during compression, instead of just
air present there so far. During compression of the mixture, the phenomena take
place which have been known so far only from engines with spark ignition, for
example knocking combustion [10].
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Addition of a gaseous LPG fuel in place of a 20% dose of diesel oil, with similar
calorific value of both fuels kept, allows to observe a greater increase in pressure
values resulting from a different character of the LPG fuel combustion process,
increasing torque and power relative to the 100% dose of diesel oil without addition
of LPG. The increase rates are big enough to influence significantly the speed of the
pressure growth, therefore they need to be controlled in order to avoid engine
damage.

However, this method of dose adjustment is not sufficient to maximize the LPG
dose and achieving the most optimized composition of diesel oil + LPG. The best
way to control the dose in a dual-fuel engine is developing the system creating the
dual-fuel dose adjusted to current conditions of engine work (load, rotational speed,
temperature in the intake and exhaust systems, and in many others). Such an
approach will enable also the indirect consideration of a difference in composition
of a summer and winter LPG fuel.

In the case of vibroacoustic tests of the engines powered with the diesel oil +
LPG mixture, rapid pressure changes caused by knocking combustion play an
important role. To make it possible to take them into consideration in the created
models, a description of the phenomenon occurring during knocking combustion
should be developed. Because of the significantly random character of the ther-
modynamic phenomena taking place during knocking combustion, developing the
models satisfying the expectations thermodynamic-wise has not been possible yet.

In the presented scheme, the effects of knocking combustion in the form of rapid
pressure changes spreading in the combustion chamber came into focus. At the
moment of ignition a wave is created, which propagates the air/fuel mixture causing
local pressure changes that could be responsible for generation of subsequent
self-ignition outbreaks. The proper compilation of created pressure impulses gen-
erating the fast-extinguished waves can enable the description of the phenomenon,
complying with the model requirements with vibroacoustic tests.

2 Model

During the compression stroke, a fast pressure and temperature increase takes place,
which can result in ignition of the fuel-air mixture, that will cause a rapid increase
in pressure and will cause the occurrence of the acoustic wave propagating in the
cylinder. From the perspective of developing mathematical models for the occur-
ring phenomena, such an impulse can be developed using the Dirac’s delta func-
tion. The theoretical description of this phenomenon (1) as well as its graphic
representation (Fig. 1a) are commonly known.

δðxÞ +∞, x=0
0, x≠ 0

�
ð1Þ
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As is a well-known fact, a property of the Dirac delta function is the normalized
area under the curve, which is shown in relationship 2.

Z+∞

−∞

δðxÞdx=1 ð2Þ

To fulfil the condition of relationship 1, the amplitude tending to infinity, the
time tending to 0 must be ensured, unfortunately, in the case of combusting the
mixture, and hence the pressure increase, the time, even though very short, does not
tend to 0. Because of this, using the property illustrated by relationship 2, the
decision was taken to describe the excitation as a Gaussian function, which also
meets the requirements from relationship 2, and is described by relationship 3.

σaðxÞ= 1
a

ffiffiffi
π

p e− x2 ̸a2 ; gdzie a→ 0 ð3Þ

It is shown in Fig. 1b.
Observation of a propagating wave and of the other pressure changes takes place

at one point with the use of a pressure sensor, so-called engine indicating. With
such an approach, the wave created by the knocking ignition will be visible as a
fast-fading response to the impulse excitation described by relationship 4 and is
shown in Fig. 2a.

yðtÞ=Ae− atsin ω1 * tð Þ. ð4Þ

where:

a, ω1 Model parameters.

Analyzing the curve of pressure changes in the combustion chamber requires
taking into consideration a few additional variables, such as: a change in volume
caused by the moving piston or a propagating wave in the chamber which will
cause a local pressure growth higher than the compression pressure, which can
result in subsequent knocking ignition instances. In such a case, a model consisting

0 1 2-2 -1 0 1 2-2 -1

(a) (b)

Fig. 1 The dirac delta function: a theoretical plot, b curve used as a curve of the pressure growth
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of several impulses occurring with a delay caused by a propagating pressure wave
should be considered. Figure 2b shows the curve of the response to such an
excitation. Figure 3 presents combustion pressure changes compared with the
model.

The curve illustrating the pressure inside the combustion chamber of an engine
with compression ignition with dual-fuel supply is shown in Fig. 4 with the phe-
nomenon of knocking combustion taken into account. The figure shows the pres-
sure curves for the 30% LPG share (this level of an LPG participation ensures the
occurrence of knocking combustion) and various engine loads.
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3 Measurements

In order to verify the suggested approach, the measurement results were used. The
investigation was conducted in a series of tests: acceleration, during operation with
the constant load and constant rotational velocity. They were carried out on the
chassis dynamometer at the Automotive Industry Institute. During the tests, the
head vibrations (the B&K and knock sensors), the excess oxygen ratio (λ), the air
temperatures in the intake and exhaust manifolds, fuel doses, amount of air, pres-
sure in the intake manifold, pressure inside the combustion chamber (PSG), rota-
tional velocity, engine load, torque, were registered among other parameters.

During the tests, the LabVIEW software was used to register all measured
signals. For the registration of vibrations, the knock sensor was used (Bosch 0 261
231 004), whereas for the registration of accelerations—a three-axis vibration
sensor (B&K, 4504 type). The signals were sampled with the frequency of
51.2 kHz, and every measurement lasted 5 s. The NI 9234 measurement cards were
used for the measurements. The whole vehicle located on the chassis dynamometer
is shown in the last picture of this chapter. The tests were performed for different
LPG shares and for various rotational velocities.

The engine of the tested vehicle was adapted to the dual-fuel operation by means
of mounting an additional LPG installation with injectors located in the intake
manifold tubes. The gas is injected sequentially, supplying all cylinders one by one.

As a result of the conducted experiment, the curves of pressure changes in the
combustion chamber were obtained. The signals were processed to enable levelling
out the influence of disturbances, and next, they were compared while maintaining
certain parameters unchanged. Below, (Fig. 4) the pressure curves are shown for
the 30% LPG share; this participation value was selected because, as ensued from
the data presented earlier, it would ensure the occurrence of the knocking com-
bustion phenomenon during combustion of the fuel-air mixture.

In order to determine the occurrence of the knocking combustion phenomenon, a
notion of intensity of knocking combustion was used, defined in the works of [11,
12]. To check the speed of the combustion pressure increase, the curves of pressure
increase for diesel oil only (Fig. 5) and with the share of 30% LPG (Fig. 6).
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As can be seen in Fig. 7, after the parameters were selected, the model precisely
reflects the pressure changes taking place during the occurrence of knocking
combustion. The greatest importance, deciding about the occurrence of knocking
combustion and its maximal amplitude of the pressure changes during the mixture
combustion, has not the LPG fuel share in the dose but physically its absolute
quantity located in the combustion chamber during the compression stroke. Among
visible discrepancies, other dynamic phenomena taking place during operation of
the piston-crankshaft assembly and therefore in the space over the piston during its
motion in the work-stroke, also should be taken into consideration.

It should be kept in mind that with the use of the piston-crankshaft assembly, the
measured cylinder is coupled with other cylinders, where similar phenomena take
place, only shifted in time, and the shift depends on the engine’s rotational velocity.

Comparison of the pressure change signals with the measured vibration signals
(Figs. 7 and 8) allows for an observation that the proportion of changes is main-
tained, i.e. the pressure changes occurring during knocking combustion are trans-
ferred proportionally on the excited amplitude of vibration accelerations. This
should allow for determination of the intensity of the pressure increase on the basis
of the measured amplitude of vibration accelerations.
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4 Conclusion

Using the description of the phenomenon of wave propagation, induced by the
uncontrolled ignition inside the engine’s combustion chamber, makes it possible to
prepare the description of the knocking combustion phenomenon, illustrating the
dynamic pressure changes influencing the system’s dynamic behavior. Such a
description of the knocking combustion phenomenon can be used to build models
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describing the system’s dynamics, particularly in vibration-noise tests of dual-fuel
engines with compression-ignition. This kind of description will enable taking into
consideration this phenomenon while creating the limits determining the operation
conditions for the tested engine, as well as allowing for mineralization of its
influence on the environment through vibrations and noise.
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Hybrid Scheme for Wind Turbine Condition
Monitoring Based on Instantaneous Angular
Speed and Pattern Recognition

Ilyes Khelf, Jose L. Gomez, Adeline Bourdon, Hugo Andre
and Didier Remond

Abstract Wind turbines are designed to operate under varying conditions of speed

and load. These rough operational conditions undermine conventional monitoring

techniques and lead to unexpected failures of mechanical components. This work

comes within the framework of wind turbine on-line condition monitoring. For this

purpose, a particular attention was given to Instantaneous Angular Speed (IAS)

emerging as a viable alternative to vibration analysis, especially in non station-

ary conditions. In this work, IAS signals were recorded from extensive measure-

ment campaigns on different operating wind turbines. Suitable processing techniques

have been specifically developed and allowed to analyze signals in healthy condition

and in the presence of different bearing faults. Based on the latter, a huge number

of expected relevant indicators was extracted. Different configurations of features

transformation, selection and classification tools were tested. An optimized hybrid

scheme has been designed. This approach allowed an optimal exploitation of IAS

information and the construction of an effective tool for wind turbine condition mon-

itoring.

Keywords Condition monitoring ⋅ Instantaneous angular speed ⋅ Wind turbine ⋅
Feature selection ⋅ Pattern recognition

1 Introduction

Nowadays, wind is considered as one of the most attractive alternative energy solu-

tions. Wind turbine energy production market is getting bigger and optimal use of

available resources becomes important. To get the most of wind energy sources,

intensive attention of turbine component operation condition should be taken [1].
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Wind turbines belong to a specific category of rotating machines. They operate in

non-stationary conditions undermining conventional monitoring techniques [2].

In recent years, Instantaneous Angular Speed (IAS) emerged as an alternative

condition monitoring tool, tailored to machines operation monitoring in non-

stationary conditions. This technique has proven effective where promising results

and developments were seen and discussed in previously published papers [3–7].

The extraction of relevant information from IAS Signal is a critical aspect of an

efficient condition monitoring. This information may be represented in a set of indi-

cators extracted from the signals [8]. Mainly, two approaches are seen in literature to

optimize the construction of indicator sets. The former, based on the selection of a

number of indicators from the entire set [9]. The second is about the transformation

of indicators from one space to another [10, 11].

For the evaluation of indicators sets relevance, pattern recognition tools could be

used as objective assessors. In fact, the classifier accuracy depends greatly on the

quality of indicators composing their input vector, and their ability to distinguish the

different operating conditions.

In this paper, a hybrid scheme for condition monitoring of operating wind turbines

is introduced. Firstly, descriptions of the performed experiments and the exploited

data sources are presented. Then, an attention was taken on indicators construc-

tion and processing techniques, within these techniques, standardization and Prin-

cipal Component Analysis (PCA) were used for the indicator transformation, while

Genetic Algorithms (GA) and selection filters have been tested for the indicator

selection. Radial Basis Function neural networks (RBF) were subsequently built and

the classification results used to assess the relevance of the constructed indicators

sets.

2 Materials and Methods

2.1 Experimental Procedure

A judicious instrumentation allowed MAIA EOLIS to collect information on their

wind turbine condition over long periods. In this paper data collected on two different

machines is used. Both machines have the same transmission kinematic shaft line.

The wind turbine set up is presented in Fig. 1. Two encoders were installed on the

wind turbine drive train (three stages gear box), mounted on the High Speed Shaft

(HSS) and on the Low Speed Shaft (LSS). In this paper only the HSS signals are

studied.

Mainly, two different bearing defects were observed (Bearing A: Spalling in the

inner and the outer rings and Bearing B: Spalling in the outer ring, Fig. 1), one on

each machine. The two defective bearings are both installed on the HSS, on different

locations.
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Fig. 1 Wind Turbine Set-up

In this work, we seek for the construction of specific monitoring tools for each

element of the machine. Therefore, for monitoring bearing (A), we have consid-

ered: signals from the faulted bearing (A), signals from a healthy machine, and, to

enhance the robustness of the tool, a set of signals presenting other defects affecting

the machine.

2.2 IAS Signal

The Elapse time method is used in this work for the processing of encoder signals

and the construction of IAS [2]. The rotating speed 𝜔i is estimated for each rising

edge of the encoder signal i by counting the pulses delivered by a high frequency

clock, respecting Eq. 1

𝜔i =
60
R

⋅
fc

N + 𝜖

(1)

where R denotes the resolution of the encoder; fc the counter frequency; N is the

entire number of pulses delivered by the High frequency clock between two rising

edges of the encoder; 𝜖 an uncertainty term that globally includes the geometrical,

electrical and quantification measurement errors.

An apodization window is then applied to the IAS signal to prevent from the

broadband effect induced by the macroscopic trend of the angular speed [6]. An

adapted Fourier Transform can also be applied to the construction of an Angular

Frequency Spectrum in order to emphasize cyclic periodicities. Figure 2 shows in

(a) an extracted IAS signal, and in (b) two Angular Frequency Spectra, one with

(red) and one without (blue) the presence of bearing defects, focused around the

characteristic frequency (Bearing BPFO: Ball Pass Frequency Outer (Outer ring)).
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Fig. 2 a IAS Signal b IAS Spectra

3 Construction of the Databases

In this work, the monitoring process is only focused on the bearing A (see Fig. 1)

installed on the first Wind Turbine (WT1), the bearing B defect condition is consid-

ered as the third condition.

3.1 Indicators Extraction

As the monitoring process presented in this work focuses only on a bearing (A)

defect, specific indicators were extracted from IAS signals and order spectra at char-

acteristic angular frequencies. Globally four kinds of indicators were extracted:

∙ Defect Frequencies Amplitude level: The amplitude level at the characteristic

frequencies.

∙ Band RMS: the Root Mean Square of energetic frequency bands.

∙ Ratio: Different ratios(amplitude/amplitude and amplitude/band).

∙ Scalar: Scalar indicators extracted from the raw signal.
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Besides raw indicators extraction, two indicator transformation procedures were

done:

∙ Standardization procedure according to rotational speed, which allows moderating

the effects of speed and load variation on indicators amplitudes [5].

∙ Principal Components Analysis creates uncorrelated indicators in a low dimen-

sional representation [10].

3.2 Indicator Selection

Indicator selection allows finding from a complete set of indicators those that are

most relevant and that can separate the best operating conditions.

Indicator selection can be undertaken in two approaches (Filter and Wrapper),

according to their dependence or independence on the desired application. In the fil-

ter approach, we seek an individual evaluation of indicators based on some relevance

measures. By contrast Wrapper approach seek a global evaluation of indicator sets

based on classifier accuracy [9, 12].

3.2.1 ReliefF Filter

ReliefF seeks an estimation of indicator quality based on the distance between near-

est neighbors. For this purpose, given a randomly selected example A from a data

set S with k indicators, ReliefF searches the data set to its nearest neighbors: one of

the same class, called the nearest hit H, and others from different classes, called the

nearest miss M. It updates the quality estimation W[INI] for all indicators IN based

on the values of difference function Diff () to X, H and M, on m iterations.

Diff
(
A, I1, I2

)
=

|||value
(
A, I1

)
− value

(
A, I2

)|||
min (A) − max (A)

(2)

and for P(c) the prior probability of the class and 1 − P(class(r)) represents the

sum of probabilities for the misses classes we have: W[INI] = W[INI] −
∑k

j=1 Diff
(A,Ri,Hj)∕(m.k)

+
∑

C≢cl(Ri)
[ P(C))
1 − P(class(Ri))

k∑

j=1
Diff (A,Ri,Mj(C))]∕(m.k) (3)
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3.2.2 Information Gain

The information gain criterion measures the difference between two probability dis-

tributions. It was intensively adopted for feature selection in decision tree construc-

tion [9]. After selection, we keep only indicators with maximal information gain.

3.2.3 Chi-2

The Chi-2 statistic quantifies the dependence between an indicator IN and a class cl

by measuring their chi-squared statistics with respect to the classes. For the case of

numeric indicators, it proceeds by a discretization of each indicator on a number of

iterations. On each one, the discretized intervals are merged according to the values

of the obtained 𝜒
2

(Eq. 4). Indicators with the greatest number of intervals have the

highest rank.

𝜒
2 =

2∑

i=1

k∑

j=1

(
Aij − Eij

)2

Eij
(4)

where k is the number of classes, Aij the number of examples in the ith interval, jth
class; and Eij the expected frequency of Aij.

3.2.4 Genetic Algorithm

Belonging to the evolutionary algorithms class, Genetic algorithms (GA) are derived

from genetics and natural evolutionary mechanisms. These algorithms are partic-

ularly suitable for the combinatorial problems optimization “NP-Hard problems”.

Those latters require a computing time growing exponentially with the problem com-

plexity [12].

GA are based on the natural evolution and selection, and survival of the fittest

ideas. The genetic algorithm represents a solution to the problem as a chromosome.

It then creates a population of possible solutions and applies genetic operators such

as mutation and crossover to find the fittest solution. In this work the GA seeks the

selection of input vector (composed of relevant indicators) allowing the best classi-

fication performances and pursues the following steps:

First population generation In this step is proposed a generation of the first chro-

mosome population. In each chromosome, a set of indicators is constructed ran-

domly. The population is composed of 100 chromosomes

Evaluation The performance of each input vector is based on RBF classification

accuracy on a fixed validation set.

Selection The steady-state selection is used. In every generation, few chromo-

somes are selected (the 50 fittest ones) to create children. Subsequently, the worst

chromosomes are removed and replaced randomly with newly created ones.
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Evolution Operators: Crossover it applies on two different chromosomes. As a

result, it produces new chromosomes formed from genes of both parents for the

next generation. In this work, a cross at a random point strategy was applied.

Mutation it applies to an individual by modifying one or more genes, chosen

randomly from the population. The percentage of mutation is set to 1%.

Stopping Criterion The algorithm stops at one of the following criteria:

∙ Maximum number of iterations = 200.

∙ 50% of the population of chromosomes is similar to the first gene.

3.3 Radial Basis Function Neural Network

In this work Radial Basis Function Network (RBF) is utilized as a classification tool.

RBF network is a feed forward neural network type with three layers: one input layer,

one hidden layer “RBF layer” and one output layer. Each layer is fully connected to

the next. Each neuron in the hidden layer is described by a Gaussian law centered on

a point of the input space. For a given input x, the output of the neuron in the hidden

layer is the amplitude of the Gaussian at that point.

The output of the network is a linear combination of the outputs of neurons in the

hidden layer adjusted by the weight of their respective connections. The response

depends on the distance function between the input vector x, the vector prototype

(center) and the size of the influence field [10].

4 Results and Discussion

In this work, we seek the optimal use of IAS information for wind turbine condition

monitoring. In this way, a hybrid scheme (Fig. 3) was designed combining indicators

transformation, selection and classification tools.

∙ Firstly, a stratified extraction of signals was done in order to get the same ratio of

signals (100) in each class (Healthy condition; Bearing A defect and other defects).

∙ Then, an indicator extraction was performed on IAS signal and spectra, where 76

raw indicators (RI) were extracted from each signal.

∙ A Parametric Standardization Process was applied, then on the raw indicators,

creating a new set composed of 76 standardized indicators (SI).

∙ Principal Component Analysis was applied and 30 Principal Components (PC)

were added to the database.

∙ All extracted and transformed indicators were then mixed in one database (MI).

∙ Classification experiment was done based on MI in order to asses indicator trans-

formation procedures

∙ Indicator selection procedure was applied on MI, where different approaches were

tested in order to pull out only relevant indicators from the whole set.
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Fig. 3 Hybrid Scheme for wind turbine condition monitoring

– Firstly, one stage selection based on each of Genetic Algorithms and selection

filters (Chi2; GI and ReliefF) approaches.

– Then, a two stages approach was constructed, where the first stage is based on

filter approach in order to get a reduced set of relevant indicators followed by a

GA seeking the best combination.

∙ The effectiveness of each scheme was evaluated based on RBF classification accu-

racy (66% of the data used for training and 33% for test). The obtained results are

resumed in the Table 1.
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Table 1 Performances evaluation

Indicators number Accuracy (%)

Raw indicators 76 83

Indicator

transformation

182 93

One stage GA 91 94

Indicator selection Chi-2 17 94

GI 17 94

ReliefF 32 94

Multi stage Chi-2 11 95

Indicator selection GI 12 95

ReliefF 14 97

Indicator transformation improved the classifier accuracy from 83% on Raw Indi-

cators Dataset to 93% on the mixed database. However, the dimension of input vector

became huge (183 Indicators).

One stage Indicator selection improved slightly the latter accuracy, where GA and

Filter based approaches gave the same results (94%). Nevertheless, GI and CHI2 used

only 17 indicators to reach it where ReliefF used 32 indicators and GA based used

91 indicators.

The main problem using the GA approach is the high risk to quickly converge on

a local optimum (which seems to be the case in this application). On the other hand,

filter approaches don’t consider redundancy between indicators, which is considered

as a disturbing phenomenon on classifier performances.

The Multi-Stage Scheme improved more significantly performances in terms of

Accuracy and indicators number. The best results were obtained using the combina-

tion ReliefF filter-GA, where 97% accuracy was reached using only 14 indicators.

GA approach was more effective dealing with reduced datasets, where the risk of

falling on local optimum is lower. Also, the use of a filter approach as prepossessing

technique guarantee to have only relevant indicators on the reduced set.

The projection of three indicators among the selected ones can be seen in Fig. 4

and demonstrate their effectiveness to separate the different classes.

A closer look at the input vector composition can be seen in Fig. 5, where a repar-

tition of the indicators composing it is drawn according to their originating databases.

Half of the indicators are Standardized ones (proving the effectiveness of the stan-

dardization giving more relevant indicators). Only one Principal Component was

pulled out on the selected input vector. The construction of each Principal Compo-

nent requires the computation of the whole set of indicators which seems incompat-

ible with such an industrial application. The low number of retained PCs does not

encourage to proceed in this way.
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Fig. 4 Selected indicators representation

Fig. 5 Selected input vector

composition

5 Conclusion

In this work, wind turbine condition monitoring issue was tackled, where IAS signals

were proposed as an alternative information source to conventional analysis. Specif-

ically developed processing techniques were applied to IAS raw signal and allowed

the monitoring of two industrial wind turbines during healthy and defective periods.

From each measured IAS signal, a huge number of representative indicators can be

extracted. To get the most from the available information, numerous indicator trans-

formation and selection approaches were experimented, and hybrid Scheme based

on a multi stage indicator selection designed.

The proposed scheme based on the combination ReliefF selection Filter and

Genetic algorithm avoids falling into local optimum and indicator redundancy prob-

lems and allow us to get the most relevant indicators and the highest classification

accuracy. Furthermore, the proposed approach gave an objective assessment of trans-

formation procedures where standardization process demonstrated its effectiveness.

In this paper, only IAS information was used. In future works, a closer look to other

information sources will be taken, where indicator selection presents an attractive

solution to information fusion.
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Fault Diagnostic of Machines Under Variable
Speed Operating Conditions Using Order
Tracking and Novelty Detection
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Abstract Condition-Based Monitoring (CBM) of rotating machinery is becoming

increasingly important because it allows improving the machine performance. Nev-

ertheless, most of the real-world machinery operate unique pieces, which are not

suitable for inducing faults, and thus making unfeasible to collect useful data from

undamaged machine conditions. To this end, novelty detection (ND) had been devel-

oped, modeling the normal state to detect machine faults. Therefore, the extraction

of a representative feature set must be carried out accurately to represent the target

class under different machine states. However, there can be several operating con-

ditions that reflect the dynamic behavior of the machinery, often resulting in non-

stationary signals. To improve the stochastic description of non-stationary operating

conditions, we propose a CBM methodology that relies on a set of the time-varying

narrow-band features that are extracted from the order tracking approach, aiming to

encode the time-varying behavior of the acquired vibration signals. With the goal

of modeling the target machine condition, the key point here is conceiving the order

components like dynamic features, and then, estimating several statistical and sim-

ilarity parameters for those features to characterize each narrow-band component.

Afterward, the multi-dimensional outlier detection problem is solved using both

distance- and distribution-based data description classifiers. The ND scheme is tested

on test-rig databases holding different types of machine faults when the machine

operates under variable speed. As a result, the proposed methodology improves the

classification rates compared with the state-of-the-art features and allows character-

izing the machine state under its actual operating conditions.
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1 Introduction

Nowadays, condition monitoring of rotating machinery is becoming increasingly

important for the industry because it allows reducing accidental damages and improv-

ing the machine performance at the same time. Nevertheless, most of the real-world

machinery operate unique pieces, which are not suitable for inducing faults, making

unfeasible to collect useful data from damaged machine conditions. Therefore, train-

ing datasets are unbalanced, presenting enough information just about normal class.

Regarding this matter, the novelty detection techniques had been developed that aim

at inferring or modeling the undiscovered or missing data.

According to the extensive review in [7], the novelty detection methods (also

termed one-class classifiers OCC) can be constructed using generative or discrim-

inative models. Nonetheless, extraction of a representative feature set must be car-

ried out accurately to provide robust performance on test data. To this end, feature

extraction achieves a trade-off that maximizes the exclusion of novel samples while

minimizes the exclusion of known samples.

For training of Condition-based Monitoring (CBM) systems, the vibration analy-

sis is more frequently used because of its low cost and high performance usually

provided [8]. Furthermore, a set of statistical features has been already proposed

for extracting a set of discriminating features from vibration signals [4, 5, 11].

Nonetheless, several machine operations often lead to non-stationary signals due to

the dynamic behavior of the machinery excitations, resulting in time-varying oper-

ating conditions. Therefore, the development of signal analysis methods suited to

extracting the time-varying features from non-stationary signals has become increas-

ingly relevant for machinery fault diagnosis [2]. To obtain valuable information from

non-stationary signals, several principles of feature extraction have been suggested

for diagnosis of machinery health conditions [13]. Where it is possible to high-

light linear time-varying decompositions (harmonic analysis [1, 3], time-frequency

analysis [12], non-linear time-varying decompositions) empirical mode analysis [6],

among others.

In this work is introduced a CBM methodology for non-stationary operating con-

ditions that relies on a set of the time-varying narrow-band features extracted from

order tracking approach so-called Square Root Cubature Kalman Filter (SRCKF_OT)

[1], aiming to encode the non-stationary behavior of the acquired vibration signals.

The key point here is conceiving the order components like dynamic features, and

then, estimating several statistical parameters over those features to carry out the

dimension reduction of the input training set as discussed in [6]. Another approach to

adequately characterize each narrow-band component is employing similarity mea-

sures as is presented in [9]. Mainly, the multi-dimensional outlier detection prob-

lem is solved using two different data description classifiers, including the Sup-
port Vector Data Description (SVDD) and Gaussian Distribution One-Class Clas-
sifier (GDOCC) [10], as OCC methods that assume a spherical boundary and a

Gaussian model of the boundary, respectively. To validate the proposed methodol-

ogy, two datasets obtained on a test-rig are used, where the first one includes undam-
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aged, unbalanced and misaligned instances under speed-varying machine conditions

(coast-down), and the second one comprises bearing faults under coast-down operat-

ing machine condition. The obtained results show the advantage of using order com-

ponents as features because it provides an interesting interpretation of the machine

condition.

2 Order/Spectal Components as Features

With the purpose of separating the information of spectral sub-bands, the filter bank

methods (FBM) decompose bandwidth-limited signals into a set of narrow-band

components. Thus, a given signal y(t) ∈ ℝ(T) that has a finite bandwidth 𝛥F (with

F = [0, fs∕2], being fs the sampling frequency) is decomposed into K ∈ ℝ+
narrow-

band components x = {xk(t)∶k ∈ K} so that each one has a bandwidth 𝛥Fk such that

Fk⊆F.

In that sense, the order tracking model (OT) proposed in [1] decomposes the sig-

nal y(t) in a set of order components xk(t) ∈ ℝ(T) such that:

y(t) =
K∑

k=1
xk(t),∀t∈ T (1)

where each order component is xk(t) = ak(t) cos(k𝜔(t) + 𝜑k(t)), being ak(t) the order

amplitude, k𝜔(t) the k-th harmonic of the fundamental rotational frequency 𝜔(t)
and 𝜑k(t) the order phase. It is worth noting that depending on the amount of K
order components extracted, it is feasible that xk(t) could be associated with a mono-

component signal, i.e. the spectral information is contained in a singular frequency

k𝜔(t), but considering that in the most of cases K is lower than the actual harmonics

in y(t), each xk(t) has a limited-bandwidth 𝛥Fk.

Due to the narrow-band components comprises much information about the

machine condition, it is necessary to estimate a set of features that may be fed into

the classification scheme. In that sense, two different type of features is computed

from each order component including the statistical and similarity characteristics.

The former case it is related to well-known statistical features as root-mean-square

(RMS), Standard Deviation (STD), and Kurtosis (KURT).

Regarding with the last type of features, it is computed a similarity measure

between the input signal y(t) and each extracted k-the narrow-band component,

xk(t) ∈ ℝ(T), quantifying their mutual statistical dependence. To this end, it is

measured the statistical dependence through the cross-correlation spectral density
(CCSD) between {y(t), xk(t)} that depicts the distribution of signal content over the

frequency domain, defined as below:
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Syxk
(𝜔) =

|||||||
∫
T

∫
T

y(𝜏)xk(t + 𝜏)d𝜏 exp(−j𝜔t)dt
|||||||

2

(2)

where 𝜔 = 2𝜋f . Derived from the spectral measure in (2), it could be consider

the following generalizing values of mutual statistical dependence:

∙ Pearson’s correlation coefficient (PCC), 𝜌y,xk
∈ ℝ[−1, 1], that is a straightforward

way to quantify the linear relationship of dependence as below:

𝜌y,xk
= 

{
Syxk

(𝜔) ∶ ∀𝜔∈Fk
}
∕𝜎y𝜎xk

(3)

where 𝜎
2
𝜉
= (2𝜋)−1 ∫Fk

|S
𝜉
(𝜔)|2d𝜔 is the variance. Note that both y(t) and xk(t)

are assumed zero-mean values.

∙ Cumulative spectral density index (CSDI) introduced as follows:

𝜚y,xk
= 

⎧
⎪
⎨
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𝜔

∫
−∞

Syxk
(�̃�)d�̃� ∶ ∀𝜔 ∈ Fk

⎫
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⎬
⎪⎭

, 𝜚y,xk
∈ ℝ+

(4)

It is worth noting that the higher the values of 𝜌y,xk
and 𝜚y,xk

, the higher statistical

association between variables. More details about the similarity measures could be

found in [9].

3 Experimental Setup

The proposed methodology is based on a traditional pattern recognition process,

where OCC algorithms are trained with a feature set Z ∈ ℝN×p
, such that the goal

is detecting if any fault exists or not. Here, three distinct ways to build the feature

sets are considered: (i) p = 24 statistic features from the raw signal y(t) (discussed

in [4, 11]); (ii) a singular statistical features (p = K) from each order component

xk(t) such as standard deviation (OT-STD), root mean square (OT-RMS) and kurto-

sis (OT-KURT), due to those statistics provided basic information about the physical

nature of each narrow-band component; and (iii) the similarity measures (OT-CCSD,

OT-CSDI and OT-PCC) computed between xk(t) and y(t) (i.e. p = K), aiming to

encode the relevant spectral information that each dynamic feature enclosed. In con-

sequence, 8 feature sets are individually tested and fed into the OCC algorithms. It

is worth noting that order decomposition could obtain a different amount of orders,

and hence, to accomplish a square feature matrix Z, it is needed to fix the p features

according to the minimum number of decomposed components K.
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Fig. 1 Experimental test rig (left): (1) Motor driven, (2) Rigid coupling, (3) Drilling wheels, (4)

Bearing housing. Sensors location: (a) Accelerometers and (b) Microphones. The simulated BPFO,

BPFI and BSF defects (right)

For the classification stage, a 20-fold cross-validation and 75% of target objects

to training the algorithms aiming to reduce the overtraining, inasmuch the number

of observations is very low. The tuning of free parameters both SVDD and GDOCC

are founded by grid search, in particular, the former case is 𝜎 ∈ [1, 100000] using a

logarithmic scale, and the last case uses the regularization of Σ given by Σ̃ = (1 −
𝛽)Σ + 𝛽Ip, being 𝛽 ∈ [0.05, 1] and Ip the identity matrix of dimension p.

The methodology is tested using two different experiments obtained in a test

rig from Universidad Nacional de Colombia (shown in Fig. 2): (i) a dataset that

comprises unbalance and misalignment damages under coast-down operating con-

ditions. And, (ii) a dataset including bearing faults such as inner race (BPFI), outer

race (BPFO) and ball bearing (BSF) defects, under coast-down operating condition.

The mechanical system is displayed in Fig. 1a, and consists of a shaft driven by a

1.5HP DC electric motor able to reach 1720 rpm through the equipped rigid cou-

pling. Drilling wells are designed to create either static or dynamic unbalance prob-

lems. The test rig has two bearings "HTH-UC206" where the different faults are

simulated, and the damages are introduced on the bearing located at shaft end by a

crack on the surface of interest with a motor tool (Fig. 1b).

3.1 Identification of Shaft Faults

In this experiment, just the "ACC102" accelerometer placed near the machine is

employed, which has a measurement range of 0 − 10 kHz and 100mV/g of sensitiv-

ity. The"National Instruments USB-6009" data acquisition card acquires

vibration recordings at 20 kHz sampling frequency.
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Fig. 2 An exemplary of signals under coast-down operating conditions. Each type of signal is

presented in time domain (top) and its time-frequency representation (bottom)

The data set holds the following types of acquired outliers regarding the con-

sidered machine states: (i) a static unbalance generated by a mass of 0.5 gr located

on the drilled wheel closer to the rigid coupling. And (ii) an angular misalignment

caused by a horizontal and vertical displacements of 0.3 and 0.7µm, respectively.

The data collection also includes an undamaged condition that is assumed as the

target class. The recordings are measured under coast-down operating conditions,

where each signal contains three phases: (i) maximum speed (1800 rpm), (ii) turn-

ing motor off, and (iii) steady–state regime (see Fig. 2). The working phases are not

synchronized, that is, the decreasing may begin at different times within each record-

ing. As a result, 20 recordings were acquired for undamaged and unbalance classes,

whereas for misalignment were 8. Taking into account that the maximum spectral

information is around 1.2 kHz each recording is downsampled to 4 kHz to reduce the

computational cost, yielding a recording length of L = 20000 samples in 5 s.

To extract the order components, the number of harmonics showed in Fig. 3 are

computed using a local maxima estimation algorithm (discussed in [1]), and then,

are introduced to the SRCKF_OT algorithm to estimate the OT features. For the sake

of estimate the order components, the amount of harmonics of each observation is

around K = 11, K = 8 and K = 11 for undamaged, unbalance and misalignment,

respectively. Since the number of harmonics depends on the spectral information of

the signal. Besides, the covariances of the OT algorithm are heuristically fixed to
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Fig. 3 Orders estimated from coast-down regime using maximum harmonics algorithm
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Table 1 Performance results in (%) of faults associated to shaft under coast-down regime

Feature set GDOCC SVDD

prec rec f1 prec rec f1
SFS 86 ± 5,6 92 ± 11 89 ± 6.6 100 ± 0 86 ± 22 91 ± 16
OT-STD 100 ± 0 96 ± 8.2 98 ± 4.6 100 ± 0 93 ± 9.8 96 ± 5.4
OT-RMS 100 ± 0 96 ± 8.2 98 ± 4.6 100 ± 0 89 ± 15 93 ± 9.3
OT-KURT 14 ± 2.6 88 ± 12 24 ± 2.9 33 ± 4.9 79 ± 19 47 ± 8.2

OT-CSDI 83 ± 29 95 ± 14 84 ± 22 100 ± 0 88 ± 14 93 ± 8.2
OT-CCSD 88 ± 26 96 ± 14 88 ± 22 100 ± 0 88 ± 15 93 ± 9.2
OT-PCC 100 ± 0 81 ± 17 89 ± 10 99 ± 5.6 67 ± 25 77 ± 19

qa
i = 10−4, qf = 10−8 and r = 10−8, which may present changes of 10±1, avoiding

performing the complete searching.

When the classification scheme is applied, the OT-STD and OT-RMS achieve the

best performance again, both using the GDOCC (with 𝛽 = {0.45, 0.8}) and SVDD

(with 𝜎 = {9000, 8500}) classifiers. In Table 1, it is observed that GDOCC over-

comes to SVDD, but the last increases the performance (over 90%) when the similar-

ity measures are employed. This fact implies that SVDD has a better generalization

capability than GDOCC and offers more feature set options to characterize the con-

sidered faults. The possibility of working with a major set of distinct features allows

assessing relevant information that provides different physical interpretations.

3.2 Identification of Bearing Faults

The goal of this experiment is validating the proposed methodology to detect bearing

faults. The database holds 20 vibration recordings lasting 5 s at 25.6 kHz sampling

rate, and it is just used the signals collected in the horizontal plane. Here, the coast-

down operating condition implies that the machine works at maximum speed (around

∼30Hz) at the beginning of each signal, and then, the electromotor is turned off

decreasing the speed to zero. An exemplary of each machine condition is displayed

in the top part of the Fig. 4.

A visual inspection from the raw signals allows determining that the signal har-

monics decrease proportionally to the speed change, which may be clearly observed

in the undamaged case Fig. 4c. Nonetheless, when the bearing faults are introduced

a cyclo-non-stationary behavior emerges, causing AM-FM modulations that depend

on the variable speed. That particular condition has been studied when the analyzed

signal is mono-component, but in this type of vibration signals the spectral content

is multi-component. In that sense, the signal is treated as angle cyclostationary, and

the SRCKF_OT approach could be employed. Therefore, a signal pre-conditioning is

carried out to alleviate the variable speed effects on the signal, applying the following
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Fig. 4 Exemplary of bearing fault signals from the machine under coast-down operating condition,

both raw signal (top) and its resampled version (bottom)

two-steps approach: (i) Instantaneous speed estimation using the SRCKF_OT over

the first 5th order components, because in the most of the cases, those components

are stationary. And (ii) an angle-order domain transformation by Computed Order

Tracking (COT), using the estimated IF. In the concrete case of the bearing fault sig-

nals used in this experiment, the resampling method is performed with 64 samples

per revolution, obtaining the angle-order map displayed on the bottom part of the

Fig. 4. As a result of the signal pre-conditioning, the obtained order-normalized sig-

nals ŷi(t) are shown in Fig. 4-(right), where it is possible to observe that both time and

angle domain signals are similar, but several differences are found from the visual

inspection of the time-frequency representations. Firstly, the coast-down behavior

was removed causing that the order components appear closer to a limited spectral

band, and obtaining more separability among them. Secondly, the amplitude of the

order components close to shaft speed (low orders) decreases and apparently they

are not constant through the angle axis, yet the STFT scaling generates this visual

effect. So lastly, the cyclic order components at the interval of [300, 450]Hz (i.e.,

[10, 15]th orders) preserve its structure but under constant speed. Nonetheless, those

components give a false sensation that the speed is increased, because of the spectral

information at the time interval of [2, 3] s is of a higher order than between [0, 2] s.

Afterwards, the set of harmonics 𝛤 is calculated from the Fourier transform of

each observation 𝔉{ŷ(𝜃)}, obtaining the narrow-band components x̂i,k(𝜃). Figure 5

displays the order spectra of the considered faults and the order components to

be tracked, where it is possible to see that there exist order components with sig-

nificant amplitude above at 10th order for the faulty instances. As a result, K =
{21, 19, 21, 18} are the number of harmonics that are included into the SRCKF_OT

algorithm for undamaged, BPFO, BPFI and BSF, respectively. In this case, the

covariance parameters are heuristically fixed as qa
i = 10−4, qf = 10−5 and r = 10−9

for all machine states, having deviations of 101 and 10−1 for qa
i and qf

i , respectively.
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Fig. 5 Orders estimated from bearing fault signals after COT is applied, when the machine oper-

ates under a dynamic regime, and its respective spectrum

Table 2 Performance results in (%) of bearing faults under non-stationary regime

Feature set GDOCC SVDD

prec rec f1 prec rec f1
SFS 100 ± 0 83 ± 23 89 ± 16 75 ± 6.4 85 ± 18 79 ± 13

OT-STD 100 ± 0 87 ± 17 92 ± 10 100 ± 0 72 ± 22 82 ± 16
OT-RMS 100 ± 0 92 ± 15 95 ± 8.9 100 ± 0 75 ± 21 84 ± 15
OT-KURT 23 ± 6.9 87 ± 25 35 ± 8.8 20 ± 4.4 75 ± 21 32 ± 7.3

OT-CSDI 78 ± 16 73 ± 26 73 ± 17 71 ± 10 78 ± 25 73 ± 16

OT-CCSD 92 ± 13 75 ± 26 79 ± 17 67 ± 15 80 ± 25 71 ± 17

OT-PCC 54 ± 22 73 ± 26 56 ± 12 38 ± 8.8 70 ± 21 47 ± 9.4

As regards traditional OCC scheme, the 7 feature sets computed from the x̂i,k(𝜃)
and the SFS set are each one fed into both classifier algorithms, obtaining the out-

comes exposed in Table 2. Consequently, it is observed that OT-RMS and OT-STD

achieve a performance rate above 90 and 80%, overcoming the other feature sets

using both GDOCC and SVDD, respectively. Nonetheless, when the GDOCC is

employed, the classical features reaches a relevant performance due to that the pre-

cision is 100% and all false positives are rejected.
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4 Conclusion

The presented methodology in this work provides an alternative way to characterize

non-stationary vibration signals using an order tracking algorithm and novelty detec-

tion. In general, the signal must be enhanced and analyzed by frequency bands due to

the narrow-spectral response that describes each considered fault. In that sense, the

proposed dynamic features based on OT decomposition performs a satisfactory sig-

nal characterization, because it preserves the signal properties comprised in a band-

limited frequency. Different methods to comprise the order component information

allow inferring that the similarity measures overcome the statistic features because

it takes into account the spectral information of each band compared with the com-

plete signal. In consequence, the CBM system provides better interpretability about

the identified outliers.
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Bearing Fault Identification Based on Blind
Extraction of Cyclostationary Signals Using
Order Tracking

O. Cardona-Morales, E.F. Sierra-Alonso and G. Castellanos-Dominguez

Abstract Mostly, a vibration signal from rotating machines comprises stationary

and non-stationary components, whose description should be as accurate as possi-

ble to infer the internal and external forces that affect the system behavior. Moreover,

either component can provide diverse but relevant information about the machine

health. Thus, bearing faults foster the non-stationary component that is character-

ized by time-varying statistical moments, periodically changing through the time

(or cyclostationary signals). Therefore, the problem to detect a bearing fault signal

is usually addressed to separate the deterministic and the stochastic components of

the vibration signal to make clear the damage characteristics. To this end, we present

the novel order tracking (OT) method that decomposes the non-stationary vibration

signal into narrow-band spectral components, aiming to enhance the cyclostationary

characteristics. Moreover, a similarity measure is computed between the envelopes

of the raw signal and each component, allowing to quantify the cyclic behavior of

signal components. Since the proposed method acts as a narrow-band filter, a com-

parison with the spectral kurtosis (SK) is performed using a rolling element bearing

dataset that includes an inner race, outer race, and rolling element defects. Specifi-

cally, the Case Western Reserve University data is carried out aiming to improve the

diagnosis of bearing failures that are categorized in a recent work using the bench-

mark methods. As a result, the proposed blind extraction method allows capturing

the cyclostationary behavior hidden in the signal and improves the identification of

the bearing faults when the signal is noisy.

Keywords Cyclostationary vibration signals ⋅ Order tracking ⋅ Blind signal

extraction
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1 Introduction

The vibration signal from rotating machines, in most of the cases, comprises station-

ary and non-stationary components that describe the different processes occurring

inside the machine. In the concrete case of the stationary components, these appear

if the machine is running at steady-state regime where the speed and load are not

time-varying. Nonetheless, when bearing faults arise, non-stationary processes also

appears, whose statistical characteristics vary periodically with time depending on

some period and are called cyclostationary processes [3, 8]. The bearing failure fre-

quency governs the cyclic behavior, which may be generated by defects of the inner

race, outer race, rolling elements and the cage (holding rolling elements together).

Those frequencies are commonly known as cyclic frequencies generating AM mod-

ulations of the shaft speed [4, 10].

In practice, one of the most used methods is the classical envelope spectrum of the

raw signal because of its simplicity is preferred in the industry. Other methods consist

of analyzing the time-frequency response of the signal to identify and characterize

the frequency band where the fault occurs, being employed techniques like the Short-

Time Fourier Transform [9, 10]. Nonetheless, the problem to detect a bearing fault

signal had been addressed to separate the deterministic and the stochastic parts of

the signal, extracting a signal of interest that exhibits the damage characteristics [5].

On this matter, the synchronous averaging explained in [3] is validated in real-world

signals and modified versions presented in [1] allow introducing speed fluctuations

by a resampling into the angle domain. In spite of the multiple methods that could

be applied to detect bearing faults, one of the most popular is based on the spectral

kurtosis, which was formalized by [2], and provides an accurate frequency band

where the modulation exist. On the other hand, there are the approaches based on

the cyclic spectrum [4] where the representation of the data in a cycle frequency-

frequency domain allows observing precisely the effect of the different modulations

that are present in the signal.

In this work, the order tracking (OT) model proposed in [6] is used as a decom-

position approach where each order component is defined as a particular case of the

cyclic autocorrelation and cyclic power spectrum. Since the proposed method acts

as a narrow-band filter, a comparison with the spectral kurtosis is performed using

bearing faults under steady-state. The experiment is based on the recent benchmark

study presented in [12], where the recordings of the Case Western Reserve Univer-

sity are labeled as diagnosable, partially diagnosable, and not diagnosable, providing

the conditions to use that dataset.

2 Order Tracking Model as Cyclostationary Process

A signal is cyclostationary (CS) of order p (in the wide sense) if and only if it is

possible finding some pth-order nonlinear transformation of the signal that will gen-

erate finite-strength additive sine-wave components [7]. In that sense, a CS process
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is a stochastic process that exhibits some hidden periodicities in its statistical struc-

ture and encompasses a subclass of non-stationary signals with an inherent cyclic

behavior [2].

In consequence, the essence of the difference between stationary and cyclostation-

ary or almost cyclostationary processes is that the latter exhibit spectral correlation.

Furthermore, this spectral correlation is completely and conveniently characterized

by the cyclic power spectrum {S𝛼y} or equivalently by the cyclic autocorrelations

{R𝛼

y}.
From the OT model discussed in [6], the vibration signal y(t) = x1,k(t) = ak(t) cos

(2𝜋kfrt + 𝜙(t)) could be expressed in the quadrature-amplitude-modulation (QAM)

form [7]:

x1,k(t) = u(t) cos(2𝜋kfrt) + v(t) sin(2𝜋kfrt), (1)

for any value of fr and k = 1, provided u(t) and v(t) can be calculated by using the

standard trigonometric identity as follows:

u(t) = x1(t) cos(2𝜋frt) + x2(t) sin(2𝜋frt)
v(t) = x2(t) cos(2𝜋frt) − x1(t) sin(2𝜋frt),

(2)

being x2(t) the Hilbert transform of x1(t). In this case, if x1(t) is bandlimited to

f ∈(fr − B, fr + B), then u(t) and v(t) are bandlimited to f ∈(−B,B), and hence, if

B < fr, u(t) and v(t) are uniquely determined by x1(t) and x2(t). Besides, it can be

shown that for any process x1(t), (1) and (2) yield a unique definition of envelope

magnitude, for which

a(t) = [u2(t) + v2(t)]1∕2

𝜙(t) = tan−1
[
v(t)
u(t)

]
.

(3)

This QAM representation, called Rice’s representation, is valid regardless of the

probabilistic model for x1(t). That is, x1(t) can be stationary, cyclostationary, almost

cyclostationary, or more generally non-stationary. To this end, in [7] a complete

study of the correlation and spectral properties is presented, including the cyclic

correlations and cyclic spectra, for x1(t) and its in-phase and quadrature components

u(t) and v(t).
Specifically, let consider the process u(t) as a Linear Periodically Time-Variant

(LPTV) transformation of the two-dimensional vector of processes {x1(t), x2(t)}, for

which the vector of impulse-response functions, that specify the LPTV transforma-

tion, h(t + 𝜏, t) =
∑∞

n=−∞ gn(𝜏)ei2𝜋nt∕T is periodic in t for each 𝜏, where {gn(𝜏)} are

a set of Fourier coefficients. The representation of the impulse-response functions

both in-phase and quadrature components is as follows:

h(t, z) = {cos(2𝜋frt)𝛿(t − z), sin(2𝜋frt)𝛿(t − z)}, (4)
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Therefore, the LPTV transformation, u(t), in terms of cyclic autocorrelation, is as

follows

R𝛼

u (𝜏) =
1
2

[
R𝛼

x1
(𝜏) + R𝛼

x2
(𝜏)

]
cos(2𝜋fr𝜏) +

1
2

[
R𝛼

x2x1
(𝜏) − R𝛼

x1x2
(𝜏)

]
sin(2𝜋fr𝜏)

+ 1
4

∑
n=−1,1

{[
R𝛼+2nfr
x1

(𝜏) − R𝛼+2nfr
x2

(𝜏)
]
+ ni

[
R𝛼+2nfr
x2x1

(𝜏) + R𝛼+2nfr
x1x2

(𝜏)
]} (5)

and the Fourier transformation of R𝛼

u(𝜏) allows to obtain the cyclic power spec-

trum as

S𝛼u (f ) =
1
4

∑
n=−1,1

{[
S𝛼x2 (f + nfr) + S𝛼x1 (f + nfr)

]
+ ni

[
S𝛼x2x1 (f + nfr) − S𝛼x1x2 (f + nfr)

]}

+ 1
4

∑
n=−1,1

{[
S𝛼+2nfrx1

(f ) − S𝛼+2nfrx2
(f )

]
+ ni

[
S𝛼+2nfrx2x1

(f ) + S𝛼+2nfrx1x2
(f )

]}
.

(6)

Equations (5) and (6) reveal that the set of cyclic autocorrelations and the set of

cyclic spectra are each self-determinant characteristics under an LPTV transforma-

tion. Since the only features of the excitation that determine the cyclic autocorre-

lations (cyclic spectra) of the response are cyclic autocorrelations (cyclic spectra)

of the excitation [7]. As a consequence, it is possible to infer that the order compo-

nents obtained using the oscillatory model from [6] could include cyclostationary

information.

3 Experimental Setup

To demonstrate the capability of the SRCKF_OT model as a blind cyclostationary

signal extraction method, a set of rolling element bearing signals is used. In the

concrete case of localized bearing faults, its modeling may be carried out as a cyclo-

stationary process taking into account that the possible defects are governed by a

cyclic frequency [11]. In particular, each cyclic frequency may be approximated by

the geometrical properties of the rolling element bearings and the shaft rotational

speed fr of the machine. A graphical description of the experimental setup is shown

in Fig. 1, where both methodologies discussed in this work are displayed: the pro-

posed SRCKF_OT model and the spectral kurtosis. The selection of the most repre-

sentative component obtained with the OT algorithm, it is carried out by the corre-

lation index between the envelope signal of y(t) and the envelope signal provided by

each order xk(t). The obtained measure could be understood as a cyclic correlation

that measures the similarity between each narrow-band decomposition and the raw

signal.

The experiment is performed using selected recordings from the public dataset

provided by Case Western Reserve University (CWRU). Considering the labels

defined in [12], the challenge in this experiment is centered in validating the capa-

bility of the proposed approach in data not diagnosable for each particular bearing

fault. The signals employed correspond with drive-end (DE) at 12 kHz of a sampling
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Spectral Kurtosis

Bearing fault frequencyOrder selectionBlind Signal Extraction

OT-SRCKF Envelope
Correlation -BPFO

- BPFI

-BSF
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Hilbert transform

y(t)

{xk(t)}
x2
1,k + x2

2,k

Fig. 1 Experimental diagram for BSE using the proposed SRCKF_OT model

frequency, and the labels could be Y1, Y2, P1, P2, N1, and N2. The capital letter indi-

cates if the bearing fault is clearly (Y), partial (P) or not (N) diagnosable, and the

number provides a grade of difficulty. Regarding with the bearing faults, the theoret-

ical bearing fault frequencies are BPFI = 5.415fr, BPFO = 3.585fr, BSF = 2.357fr,
and FTF = 2.357fr which were calculated based on the kinematic information pro-

vided by the bearing manufacturer. Therefore, a set of cursors is located into the

envelope spectrum to inspect the spectral components that match with the bearing

fault frequencies. In that sense, each bearing failure is analyzed using both the pro-

posed scheme and the SK as a filter.

3.1 Inner Race Fault—BPFI

From the set of bearing faults on inner race, there was chosen the recording DE171,

which was labeled in [12] as P1. Analyzed bearing fault signal is shown in Fig. 2,

where the time domain representation (a) displays a one-second signal segment, and

it is observed the record DE171 presents an impulsive pattern that is not constant
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Fig. 2 Recording DE171 in time domain (a), frequency domain (b), and the envelope correlation

indexes (c)
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through time. When the frequency domain is inspected (b), it is possible to see that

the spectrum of DE171 presents harmonics entirely different amongst themselves,

and it just exhibits a pattern similar to wide-banded noise, hiding any characteristic

of the inner race defect.

Afterward, a set of harmonics is used to compute the proposed OT decomposition.

The harmonics are disposed of regarding orders normalizing each one concerning

the shaft speed, in Fig. 2b. As a result, a total of 34 order components are obtained,

noting that the 1 st order is added to set a reference associated to the shaft speed,

and the harmonics displayed are the most representatives from the author’s point of

view.

In Fig. 2c, the envelope correlation indexes between the obtained xk(t) order com-

ponents and the raw signal y(t) for both recordings are shown. The covariance para-

meters used to carry out the SRCKF_OT algorithm were qai = 10−4, qf = 10−11, and

r = 10−12, for the vibration signal analyzed in this experiment. It is observed that,

assuming a threshold of 0.5, if the envelope correlation works as an indicator of

cyclostationary processes, the highest order component correlated with the signal

may exhibit the fault condition.

From a visual inspection in Fig. 3, it is clearly diagnosable the inner race defect

because the BPFI frequency is perceptible with high amplitude, and there are mul-

tiple sidebands spaced at BPFI ± fr. As a result, both approaches changes the cat-

egory from P1 to Y2, taking into account the groups defined in [12], because the

BPFI frequency is differentiable in amplitude from its sidebands and the shaft speed

harmonics. Furthermore, the signal in the time domain does not exhibit a periodic

impulsive behavior.
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Fig. 3 Identification of the BPFI frequencies on the envelope spectrum from DE171 using both

SK (left) and proposed SRCKF_OT (right) approaches
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Fig. 4 Recording DE198 in time domain (a), frequency domain (b), and the envelope correlation

indexes (c)

3.2 Outer Race Fault— BPFO

In this experiment, the DE198 was the bearing fault signal chosen which present an

outer race defect. That signal is analyzed because it is not diagnosable (N2) in accor-

dance with [12]. In fact, the signal in time domain shows appreciable differences,

since, from a visual inspection, the record DE198 is indistinguishable from noise

(Fig. 4a).

The displayed signal spectra (Fig. 4b) presents low amplitude spectral compo-

nents where the harmonic 114 th of 29.5Hz stands out, and there is no evidence of

the cyclic fault frequency. Nonetheless, in spite that the envelopes of the order com-

ponents obtained from the record DE198 are not highly correlated with the envelope

of the raw vibration signal, the components with higher correlation (119 and 114th)

describe a modulation processes that may be associated with the bearing fault (see

Fig. 4c). For the sake of obtaining the order components, the SRCKF_OT free para-

meters were heuristically fixed as qai = 10−4, qf = 10−11, and r = 10−12, and as a

result, 25 order components were extracted.

As regards the SK comparison, the filtered signal with SK (left side) and the

most relevant order component (right side) by the highest envelope correlation are

displayed in Fig. 5. The blind signals extracted from the record DE198 using both

approaches exhibit notable differences. In the case of SRCKF_OT, the 119th order

component gives the best signs of the outer race defect, which is characterized by a

low frequency modulation associated to low sidebands of the frequencies BPFO and

2BPFO (i.e. the frequenciesBPFO − fr,BPFO − 2fr,BPFO − 3fr, 2BPFO − 6fr, and

BPFO − 7fr). Besides, there is a spectral component that matches with BPFO, yet

its amplitude is small. In contrast, the filtered signal with SK in the time domain is

similar to wide-band noise, but the envelope spectrum shows that the third harmonic
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Fig. 5 Identification of the BPFO frequencies on the envelope spectrum from DE198 using both

SK (left) and proposed SRCKF_OT (right) approaches

of BPFO appears as well as some sidebands like BPFO − 3fr and 2BPFO + fr. In

conclusion, both methods exhibit some characteristics of the outer race fault, being

potentially diagnosable (P2) according to with the categories provided in [12].

3.3 Rolling Element Fault—BSF

In the case of rolling element defects, the BSE approaches are validated using the

recording DE225 (N1). In particular, when the failure becomes large enough to

allow movement of the shaft speed, the rolling element signal becomes modulated

with the machine speed, generating a sideband to BSF at ±FTF. Figure 6 shows

the analyzed record both in the time and frequency domains, where it is possible

to see that the impulsive behavior caused by the damage is a random process. This

process in the case of record DE225 is virtually indistinguishable from noise, yet

its spectrum shows a singular pattern of bearing faults at the frequency interval

[3.1 − 3.5] kHz, and a modulation process at 48.1th order with the sidebands spaced

at ±fr = 28.82Hz.

In Fig. 6c, the envelope correlation indexes computed between the order com-

ponents and the raw signal are displayed. For the sake of estimating the order

components, the covariances of SRCKF_OT were heuristically fixed as qai = 10−4,

qf = 10−11, and r = 10−12, and as a result, 30 order components were extracted from

DE225. Afterwards, from the comparison between filtered signals by using both SK

and SRCKF_OT (Fig. 7), it is possible to infer that the extracted signal using SK (left

part) is not diagnosable (N1) as rolling element fault because there are no frequen-
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Fig. 6 Recording DE225 in time domain (a), frequency domain (b), and the envelope correlation

indexes (c)
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Fig. 7 Identification of the BSF frequencies on the envelope spectrum from DE225 using both SK

(left) and proposed SRCKF_OT (right) approaches

cies that match with BSF neither FTF in the envelope spectrum. On the contrary,

the obtained component by SRCKF_OT scheme presents some characteristics of

this type of fault like the BSF frequency, its sidebands spaced ±FTF, and some low

amplitude harmonics of the FTF. Moreover, sidebands of the BSF spaced at ±fr, and

a dominant component associated with the shaft speed indicating that the outer race

fault is masked by that frequency. In consequence, the record DE225 is probably
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diagnosable (P1) using the proposed approach since the envelope spectrum shows

discrete components at the expected fault frequency but they are not dominant in the

spectrum.

4 Conclusion

In this work, an alternative method for performing blind cyclostationary signal

extraction is introduced by the SRCKF_OT approach. In that sense, the obtained

order components comprise relevant information about the bearing faults and the

modulation processes that occur in the vibration signal, which is very useful as a

vibration analysis tool when the process is cyclostationary. The comparison against

the SK allows showing that, in some cases, the proposed method can improve the

diagnostic of bearing faults. As a future work, it is considered an analysis of the

complete information provided by SRCKF_OT as well as the optimization of its

parameters, and the validation of the method in real-world applications.
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Rotating Machinery Diagnostics Based
on Fusion of Infrared and Vibration
Measurements

Sebastian Budzan, Dariusz Buchczik, Marek Pawełczyk
and Roman Wyżgolik

Abstract Systems for on-line vibration diagnostics of rotary machines requires the
installation of vibration sensors on practically each bearing. For a typical machine
there are at least a couple of bearings to be monitored and for many machines to be
monitored it generates considerable costs arising from the price of sensors, diag-
nostic modules, software and wiring. In this paper we discuss the possibility of
reduction in the number of vibration measurement points, with occasional inspec-
tion with IR (Infra-Red) camera, which globally could reduce the system costs
without compromising the quality of the machine diagnostic. A measurement stand
modeling operation of a simple machine driven by an electric motor and a typical
industrial vibration diagnostics system together with a thermal imaging camera
were used for this purpose. It allows controlled induction of various defects that
result in vibrations. Vibrations was measured with properly parameterized system
for on-line vibration diagnostic, separately for each bearing. The research involved
performing a few experiments, which modeled a typical defect in rotating machi-
nes: quasi static unbalance of the shaft, outer race defect of the bearing and cage
defect of the bearing. The fusion of obtained IR and vibration information was
discussed.
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1 Introduction

Rotating machinery plays very important role in industry, therefore the machine
conditioning and fault diagnostic is crucial to prevent unplanned breakdowns due to
the machine failure. The most popular technique for machine health conditioning is
vibration analysis, where signals are acquired from accelerometers mounted on
bearings [1]. In number of articles one can find modern approach to machine
vibration analysis, especially for bearing, e.g. with utilization of wavelets [2, 3].

Systems for on-line vibration diagnostics of machines requires the installation of
vibration sensors on practically each bearing mounted in the machine. For a typical
machine there are at least a couple of bearings to be monitored. It generates con-
siderable costs arising from the price of sensors, diagnostic modules, software and
wiring. Reduction in the number of vibration measurement points, with occasional
inspection of thermal imaging could reduce those costs without compromising the
quality of the machine diagnostic. The research conducted by the authors aimed to
verify this approach. A measurement stand modeling operation of a simple machine
driven by an electric motor and a typical industrial vibration diagnostics system
together with a thermal imaging camera were used for this purpose.

2 Experimental Setup

The measurement stand used during the tests is shown in Fig. 1. It allows controlled
induction of various defects that result in vibrations. The main types of defects that
may be generated include various types of unbalance of the shaft, the different types
of misalignment of the shaft and the rotor of the electric motor, damage to rolling
bearings of different nature.

Fig. 1 View of the measurement stand: 1 electric engine, 2 frequency inverter, 3 fuse, 4 control
panel, 5 encoder, 6 claw clutch, 7 main shaft, 8 left bearing, 9 right bearing, 10 stand frame, 11
safety cover
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The shaft is driven by an asynchronous electric engine of 0.37 kW and a
nominal rpm 2755. A frequency inverter type SV004iG5A-4 is used to control the
speed and direction of rotation. The main shaft is made of a steel rod of a diameter
of 30 mm and a length of 680 mm. Over its entire length at intervals 50 mm there
are arranged sets of four orthogonal M6 threaded holes for mounting weights
inducing unbalance. The connection of the motor to the main shaft is made by the
claw clutch. An elastic element placed between the teeth, allows compensation for
minor inaccuracies in the alignment of the shaft and an engine rotor.

The shaft is mounted on two single row self-aligning ball bearings type UCP206
which are embedded in cast iron housings. The upper surfaces of the housings are
aligned and equipped with a threaded hole UNF 10–32 for mounting vibration
sensors. The housings are screwed to the stand frame using threaded connections,
allowing them to move in the vertical and horizontal plane to adjust the misalign-
ment of the shaft. Screws M6x50, each weighing of 0.025 kg with mounted on the
end additional nut M10, serve as elements responsible for adjusting the unbalance of
the shaft. Prepared set of bolts is screwed into the main shaft into a suitable aperture.
The steel safety cover prevents accidental contact with rotating parts.

Industrial system for on-line vibration diagnostics of machines used during the
research was constructed using components manufactured by IFM Electronic. The
most important element of the system is a diagnostic module VSE100, whose
function is to measure and process signals from up to four vibration sensors. The
module allows to diagnose up to 20 diagnosis objects on the basis of the vibration
analysis in the frequency domain of up to 80 characteristic frequencies. Further-
more, it is possible to monitor in the time domain maximum acceleration and
effective velocity values according to the ISO 10816 standard. Built-in Ethernet
TCP/IP is used for communication with a PC or the OPC server. Analogue and
digital outputs allow the direct communication with e.g. PLC controller. The
memory of the history of events and trends in device includes up to 30,850 values
with time real stamp.

In the course of the research two capacitive MEMS accelerometers type VSA004
were used to measure the vibrations. Their output signal was sampled at 50 kS/s.
The sensors were mounted on the respective bearing housings using dedicated
mounting magnets. Measurement characteristics and methods of MEMS based
vibration sensors are presented in [4].

Parameterization of the system and reading of determined diagnostic values
performed using software Efector Octavis VES003 2.5. Parameterization was
accomplished on the basis of analysis of measurement stand construction, according
to the manufacturer’s instructions delivered by IFM Electronic [5] and without
interfering with the advanced settings for the respective functions.

Vibration diagnostics of measurement stand performed separately for the left and
right bearing using the following diagnosis values:

• For a diagnostic object of type unbalance there were determined acceleration
value based on FFT for the characteristic frequency equal to the frequency of
shaft rotation.
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• An diagnostic object of type rolling bearing there were determined acceleration
values on the basis of the analysis of the envelope of the acceleration data e-FFT
separately for the three characteristic frequencies associated with defects of the
outer race, inner race and rolling elements of the bearing. The characteristic
frequencies were selected on the basis of the bearing database which is part of
the Efector Octavis software.

• Furthermore determined the maximum acceleration a_peak and the effective
value of vibration velocity v_eff in the frequency range from 10 Hz up to 1 kHz
according to the ISO 10816.

In total, for each measuring point determined 6 diagnostic variables, which
yields 12 variables for the two bearings [5].

3 Measurement Results and Discussion

The research involved performing a few experiments, which modeled a typical
defect in rotating machines. The course of study included the following
configurations:

• Experiment 1. No artificially induced defects, the rotational speed of 900 rpm
• Experiment 2. No artificially induced defects, the rotational speed of 1500 rpm
• Experiment 3. Quazi-static unbalance of the shaft, two extra weights of

0.025 kg on both sides of the right bearing, the rotational speed of 900 rpm
• Experiment 4. Quazi-static unbalance of the shaft, two extra weights of

0.025 kg on both sides of the right bearing, the rotational speed of 1500 rpm
• Experiment 5. Outer race defect of the right bearing, a crosscut of width 1 mm

on the outer race, the rotational speed of 1500 rpm
• Experiment 6. Cage defect of the right bearing, fracture and deformation of the

cage, the rotational speed of 900 rpm

The results for the vibration diagnostics are presented in Table 1.
Infrared thermography as a non-contact and generally non-intrusive technique of

object temperature measurement can monitor all components of the machine by
observing temperature variations between different parts or one part in a time [6].

In course of the experiments there were investigated different parameters which
should provide some information about possible damage of the machine, e.g. average
and maximal temperature in the Region Of Interest (ROI), distribution of temperature
in the ROIs, including segmentation of the ROIs. Eventually all of the results eval-
uated with thermal camera have been connected with the vibration signals.

Thermal images used in this work have been captured using Wuhan-Guide
TP8 IR camera. The camera is equipped with a 384 × 288 pixel uncooled FPA
microbolometer, spectral range is 8–14 μm and thermal sensitivity 0.08 °C. The
time required for stable response of the camera is more than 75 min, other case
temperature error about 2 °C may occur [7].
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Each experiment performed during the research present different type of the
damage. Duration of each experiment has been set up to 35 min with 2 min step.

In Fig. 1 the visual image of the tested machine has been presented. Thermal
image in the stable state with two bearings in good condition (Experiment 1 and 2)
before start the motor (0 min) and after 35 min of continuous motor work have
been presented in the Fig. 2. As it can be seen the temperature on the left and right
bearings generally doesn’t differ from background, only the contours of the
vibration sensors mountings have been showed, but this is a result of the different
emissivity coefficient value, not the temperature change. On the right image the

Table 1 Diagnostic values determined in course of experiments

Sensor Unbalance
(mg)

Bearing
inner
(mg)

Bearing
outer
(mg)

Bearing
balls
(mg)

a_peak
(mg)

v_eff
(mm/s)

Experiment 1 Left 0.595 21.7 17.3 19.5 2240 0.86
900 rpm Right 0.034 13.2 11.8 10.6 1590 0.55
Experiment 2 Left 2.38 23.1 45.7 32.7 3790 2.53
1500 rpm Right 0.721 16.6 17.7 20.8 3570 1.56
Experiment 3 Left 1.37 15.4 15.7 9.54 2140 1.46
900 rpm Right 2.67 11.2 10.7 12.7 2040 2.67
Experiment 4 Left 10.5 27.8 37.9 27.9 4590 10.4
1500 rpm Right 2.31 22.3 21.5 18.6 3980 2.74
Experiment 5 Left 3.97 29 69.8 50.9 4920 4.01
1500 rpm Right 1.37 10.6 311 7.12 22300 4.99
Experiment 6 Left 0.261 15.3 21.6 15.2 1990 0.58
900 rpm Right 0.071 14.7 16.1 14.6 4720 0.51

Fig. 2 Thermal image of the machine taken in front view in 1 m distance at time 0 min (left), at
35 min from motor start (right)

Rotating Machinery Diagnostics Based on Fusion … 207



temperature of the left bearing increases dramatically to 30.9 °C from the starting
20.3 °C. That is a consequence of motor and shaft impact like in case of right
bearing, where the temperature changes also from about 20.1 °C to about 29 °C.
However there can be seen one problem regarding to the many typical situations in
industry, e.g. right bearing is visible only in a part of them, because in front of the
bearing we can see one of the screws which are used to mount the bearing case to
the stand.

Thus, usage only of the average temperature without knowledge about other
objects in the scene, which can impact the temperature of the examined object, may
be the cause of incorrect diagnostic result (Fig. 3). In similar situations the usage of
the maximum temperature values and distribution of the temperature in some
interesting regions of the thermal image can solve the problem.

The unbalance near to the right bearing was a first type of investigated damage
(Experiment 3 and 4). Based only on the temperature values presented in Fig. 4 we
can determine that the left and right bearing temperature increases at constant speed.
Obviously the temperature of the left bearing is still higher than the right bearing,
what is the consequence of motor and clutch impact.

On the other hand, when the distribution of the temperature is taken into account,
there can be found one difference to the normal state in which the temperature are
higher around the bearings. When the unbalance was investigated, the temperature
on the shaft surface near to the right bearing increased especially in first 2 min
(Fig. 5 left) in contrast to situation in normal state (Fig. 5 right). In our opinion this
is the result of unbalance produced near the right bearing.

Fig. 3 Changes of the
bearings temperature in time
for 900 rpm motor speed

Fig. 4 Changes of the
bearings temperature in time
for 900 rpm motor speed
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In the case of unbalance near the right bearing the vibration diagnostic system
registered a significant increase in the diagnosis values of unbalance and v_eff on
both bearings for the speed of 900 and 1500 rpm. Regardless of the rotational speed
the diagnosis value of unbalance or v_eff with a use of one sensor on any bearing is
sufficient for the detection of shaft unbalance. Thermal imaging analysis of the
bearing temperature leads to the false conclusion that the damage was near the left
bearing. Only a comparison of the temperature distribution on the shaft relative to
the good condition may indicate that unbalance arises near the right bearing.

The second investigated typical damage of bearings (Experiment 5) is the outer
race fault. This type of the damage can be recognized using thermal images without
any problems, even when the temperature values are taken in long period of time
(Fig. 6). In comparison to the normal state there is higher value of the right bearing
temperature immediate after the motor was started. The difference to the temper-
ature of left bearing decreases with a time, but in a first 35 min it has higher value.
The outer race fault impact only right bearing. The same result has been evaluated
after analyzing the thermal images and the distribution of temperature (Fig. 7).
Thermal images of this fault show that the comparison between temperatures of the
different parts of machine enable correct fault recognition.

In case of the outer race defect there was a significant increase in the diagnosis
values of unbalance, outer race, a_peak and v_eff. When the sensor is mounted on
the faulty bearing, there was 20-fold increase in the value of outer race and more
than sixfold increase in peak.

Fig. 5 Changes of the bearings temperature (left bearing−right bearing) in normal state (left),
unbalance (right) for 2 min after motor starts

Fig. 6 Changes of the
bearings temperature for outer
race damage of the right
bearing
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The rise in the same diagnosis values is approximately 1.5 and 1.3 times for the
second bearing. Using only one vibration sensor may result in the lack of failure
detection. As a result, there is no cause for the use of the IR camera to detect the
location of the defect. There is no conclusion even if the camera is applied.

Third type of the fault (Experiment 6) is connected with the bearing cage
damage. Based only on the temperature values this type of fault can be recognize
with high probability. Generally, the temperature of the right bearing is higher than
for left bearing, similarly for the outer race damage, but in this case the right bearing
temperature increases in time dramatically in comparison to the left bearing, even if
we take into account that the left bearing is influenced by the motor (Fig. 8).

In Fig. 9 four segmented thermal images have been presented. For all of them
the distribution of temperature will slowly increase on the left bearing, opposite to
the right bearing where the temperature changes rapidly.

In case of the bearing cage defect the vibration diagnostics showed increase in
value of peak in the signal measured exclusively on the faulty bearing. Conse-
quently, the use of only one vibration sensor can result in not detecting the defect.

A custom parameterization of the diagnostic enables detection of the failure with
the use of a sensor mounted on a good bearing. In such a case the measurement
based on e-FFT data for the characteristic frequency 0.4 of shaft rotation frequency
may be used. The difference between the e-FFT spectra for the good and faulty
bearing for this case is shown in Fig. 10.

Images recorded by the IR camera clearly shows an increase in temperature of
the defected bearing, enabling the correct location of the fault.

Fig. 7 Thermal images (left bearing−right bearing) of outer race fault (left) and normal state
(right) for 30 min

Fig. 8 Changes of the
bearings temperature for cage
damage of the right bearing
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4 Conclusion

The studies conducted on the described measurement stand does not give a clear
resolve as to whether it is possible to reduce the number of vibration sensors with
the additional use of thermal camera to the correct location of the fault.

In case of defects of type unbalance and outer race it is possible to reduce the
number of sensors, however, the picture obtained from the thermal camera does not
indicate the fault.

While in the case of the bearing cage defects, the standard parameterized
vibration diagnostic system using one sensor mounted on the good bearing does not
detect failure, while the thermal image indicates the fault and its location. But in
case when the IR is used for temperature measurement, the operator has to take
under consideration that the time required for stable response of the camera can be
longer than 1 h from power. In other case the error can exceed 2 °C.

Fig. 9 Thermal images (left bearing−right bearing) for 2 and 4 (top), 20 and 30 (bottom) min of
the bearings temperature for bearing cage damage
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Fig. 10 Comparison of e-FFT spectra for good bearing (left) and bearing with cage defect (right)
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Calibration of Accelerometers Using
Multisinusoidal Excitation

Dariusz Buchczik and Marek Pawełczyk

Abstract Vibrational diagnostics of machines is usually based on use of
accelerometers. Their calibration is required in order to obtain reliable results. This
paper presents method for calibration of accelerometers using a multisinusoidal
excitation. There is also proposed a procedure for estimating uncertainty of the
obtained characteristics. The routine is based on an analysis of signals in the fre-
quency domain using evaluation of cross power spectral density between the signals
from the calibrated and standard accelerometer and evaluation of power spectral
density of the signal from the standard accelerometer. The procedure allows to
determine the nominal sensitivity, amplitude-frequency characteristics and estimate
their uncertainties. The experiments were performed using a piezoelectric sensor
PCB 338B35, and a sensor based on ADXL 202 capacitive accelerometer con-
structed at Silesian University of Technology. Results of this study show that the
proposed method can be successfully used. The main advantage of the routine is a
very short duration of the measurement experiment. Values of estimated relative
uncertainties reach several percent. The procedure can be applied when it is nec-
essary to quickly check the sensor characteristics, for example in the field for
periodical maintenance of sensors mounted on the machine.
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1 Introduction

The method of calibration of accelerometers using uncommon excitation wave-
forms is not described in detail in the standards. In contrast to the method of
comparison with the standard, which uses the effective values of the signals, the
proposed method is based on an analysis of output signals of a standard
accelerometer and a calibrated accelerometer in the frequency domain [1]. Fre-
quency characteristics of the accelerometers are determined using evaluation of
cross power spectral density between the signals from the calibrated and standard
accelerometer and evaluation of power spectral density of the signal from the
standard accelerometer. Although, the calibration based on periodic, random and
impulsive excitation is also presented in [2, 3], the uncertainty estimation of cali-
bration results exclusively for random excitation is proposed in [4].

2 Procedure of Calibration

Latest ISO 16063-21 [5] standard describes the method of comparison with the
standard but does not describe exactly procedure for calibration using waveforms
other than sine wave. The possibility of a calibration based on random and mul-
tisinusiodal excitation is merely mentioned without a detailed description of this
procedure.

According to the ISO 16063-21 standard suggested value of the relative
expanded uncertainty of calibration shall not be larger than 2% in the frequency
range from 0.4 Hz up to 1000 Hz, 4% for the range from 1 kHz up to 2 kHz or 6%
in the range of 2–10 kHz.

Calibration based on comparison with the standard involves the use of the signal
from the reference accelerometer u(i) and the accelerometer under test y(i). The
signals are sampled with a period Tp and have a length of N samples. Next, the
signals are split into L segments, each with a length of Np samples in order to
perform an averaging operation in the course of further calculations. The
amplitude-frequency characteristic and the phase-frequency characteristic for each
of the L segments are calculated from formulas:

Hn Ω′m′

� �
=

S
N̂p
uy jΩ′m′

� �
S
N̂p
uu jΩ′m′

� �Qr

�����
�����, ð1Þ

φn Ω′m′

� �
= arg

S
N̂p
uy jΩ′m′

� �
S
N̂p
uu jΩ′m′

� �Qr

" #
+φr, ð2Þ
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where: S
N̂p
uy jΩ′m′

� �
is cross-power spectral density estimate between signals from

reference and calibrated accelerometers, S ̂Npuu jΩ′m′

� �
is power spectral density

estimate of signals from reference accelerometer, Qr is nominal sensitivity of ref-
erence accelerometer, φr is phase shift of reference accelerometer.

Eventually, there are determined the averaged amplitude-frequency and
phase-frequency characteristic according to:

HðΩ′m′Þ= 1
L
∑
L

n=1
Hn jΩ′m′

� �
, ð3Þ

φðΩ′m′Þ= 1
L
∑
L

n=1
φn jΩ′m′

� �
. ð4Þ

The multisinusoidal signal used for calibration is a sum of k sinusoidal signals
that are periodic in time window of length N samples:

x ið Þ= ∑
K

k=1
Ak sin ωkTpi+ϕk

� �
, ð5Þ

where: ωkTp ∈ 2πm
N ;m=1, 2, . . . , N

2

� �
.

An example of the multisinusoidal waveform signal and its power spectral
density is shown in Fig. 1. The power spectral density estimate of the multisinu-
soidal signal is expressed by the relation:

SNxx ωmð Þ=
TpN
4 A2

k for Ωm∈ ωkTp, 2π −ωkTp
� �

0 for Ωm∉ ωkTp, 2π −ωkTp
� ��

, ð6Þ

for m = 0, 1, …, N − 1.

Fig. 1 Time waveform (left) and power spectral density (right) of exemplary multisinusoidal
signal
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3 Estimation of Uncertainty

Estimation of the uncertainty type A is based on a statistical analysis of series of
measurements. The best estimate of the expected (true) value of the measured
quantity is the arithmetic mean of a series of measurements.

Estimation for the amplitude-frequency characteristic is possible due to the
averaging of the characteristic on the basis of L values (number of segments).
Uncertainty type A can be estimated only for particular relative frequency Ω′m′ of
the characteristic [4]. The true value of the characteristic is calculated according to
(3) and (4).

Corrected sample standard deviation for the relative frequency Ω′m′ equals:

σH Ω0
m0ð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L− 1
∑
L

n=1
Hn Ω0

m0� �
−HnðΩ0

m0 Þ
h i 2

s
. ð7Þ

Standard uncertainty type A for the relative frequency Ω′m′ is computed as:

uA = σ
H Ω0

m0ð Þ =
σH Ω0

m0ð Þffiffiffi
L

p . ð8Þ

Consequently, relative standard uncertainty type A is given by:

uoA =
σ
H Ω0

m0ð Þ
H Ω′m′

� � . ð9Þ

The final result of the estimation is a set of uncertainties type A consisting of the
uncertainties of averaged values, calculated according to (8) and (9), for all relative
frequencies Ω′m′.

Estimation of the uncertainty type B refers to the calculation of uncertainty by
means other than the statistical analysis of series of measurements. The standard
uncertainty type B is determined by analysis based on all available information
(accuracy specification of measurement instruments, results of previous calibration,
etc.). Taking into account maximum permissible errors Δgi of all instruments on the
test stand, the uncertainty type B of the test stand is calculated from the formula:

uB =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i Δ

2
gi

q
ffiffiffi
3

p . ð10Þ

Relative standard uncertainty type B equals:
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uoB =

ffiffiffiffiffiffiffiffiffiffiffiffi
∑i δ

2
gi

q
ffiffiffi
3

p . ð11Þ

Combined standard uncertainty taking into account the uncertainty of type A and
B is determined from the equation:

uC =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2A + u2B

q
. ð12Þ

Eventually, expanded uncertainty is the product of coverage factor kα and the
combined standard uncertainty:

U = kαuC. ð13Þ

The value of the coverage factor kα is determined by the dominant uncertainty.
For a small series of measurements, where the number segments L < 10, the
coverage factor is determined from the t-distribution for a confidence level of 95%
and a degree of freedom v = L − 1.

In the case of a larger number of segments L ≥ 10 coverage factor is determined
based on the normal distribution. Usually the confidence level of 95% is assumed,
that results in kα = 2.

4 Test Stand

The test stand applied in the research is very similar to the typical measurement
system dedicated to calibration of accelerometers using the method of comparison
with the standard [5, 6]. The system is based on electromagnetic vibration exciter
whose parameters limits frequency and amplitude range of the calibration. Instead
of the voltmeter which measures the effective voltage of output signals from the
accelerometers a DAQ board is used, which allows measurement of the waveform
at a certain sampling rate for further data processing in the frequency domain.

The equipment includes also a reference piezoelectric accelerometer type
BK 8305S, a measuring amplifier type BK 2525 and a vibration exciter type
BK 4809. The PXI platform from National Instruments equipped with a M-series
DAQ board type PXI 6251 is used for waveform generation, measurement and data
processing. The PXI system runs on Windows XP and Microsoft Office allows
preparation of the reports. Access to the network facilitates the data transfer.
A scheme of the system is shown in Fig. 2.

The total standard uncertainty type B of the test stand is uoB = 4.2%. The
dominant source of uncertainty type B is the error of multisinusoidal signal
amplitude. Appropriate value of the amplitude is difficult to adjust due to
non-linearity of the vibration exciter and power amplifier.
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The complex processing of the measurement data required to develop appro-
priate applications. Dedicated software written in LabView environment handle
measurement and recording of measurement data, execute calculations and display
resulting graphs, waveforms and parameters. The program has been written
according to the producer-consumer design pattern. The main application consists
of several subroutines (subVIs) performing designated tasks.

5 Experimental Results

Studies on the calibration procedure were performed using two types of
accelerometers. The first one is a single-axis piezoelectric sensor type PCB 338B35
and the second sensor, constructed in the Institute of Electronics of Silesian
University of Technology, is based on a dual-axis capacitive accelerometer type
ADXL 202.

The construction of the ADXL 202 based sensor is optimized for measurement of
relatively small acceleration in the low frequency range. It is equipped with a simple
low pass filter, which narrows the frequency band to 200 Hz. The construction of
sensors and their use for biomedical measurements are described in [6, 7].

5.1 Calibration of Piezoelectric Accelerometer

The multisinusoidal signal, used during the calibration is composed of frequencies
of 10, 12.5, 16, 20, 25, 31.5, 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 400, 500,
630, 800, 1000, 1250, 1600, 2000, 2500 Hz (according to ISO 266) and acceler-
ations of 3, 4, 5, 6, 7 m/s2. The sampling frequency of acceleration signals was
6 kHz, and the number of segments used to average characteristics was L = 10.

PXI platform +
 DAQ board

Power amplifier

Vibration
 exciter

Reference 
accelerometer 

Measuring
amplifier

Accelerometer
 under test Triaxial mounting 

adaptor

Fig. 2 Diagram of the
measurement system for
calibration of accelerometers
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The resulting sensitivity characteristic of the piezoelectric accelerometer is
shown in Fig. 3. Its amplitude-frequency characteristic for the acceleration of
7 m/s2 is shown in Fig. 4. The reference sensitivity of the accelerometer for fre-
quency 160 Hz is 10.29 mV/(m/s2) (20.25 dB) with the expanded uncertainty of
1.34 mV/(m/s2). The largest deviation from the nominal sensitivity in the frequency
range of the sensor is 47% at a frequency of 20 Hz (5.18 mV/(m/s2)).

The curve of the sensitivity characteristic is very irregular, there are visible large
deviations from the nominal value. The reason for this phenomenon is the previ-
ously mentioned error of amplitude setting for a particular frequency component of
the multisinusoidal signal.

Fig. 3 Sensitivity
characteristic of the PCB
338B35 piezoelectric
accelerometer determined in
course of the research

Fig. 4 Resulting
amplitude-frequency
characteristic of the PCB
338B35 piezoelectric
accelerometer
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5.2 Calibration of Capacitive Accelerometer

The calibration of the capacitive accelerometer was accomplished using frequency
component of 10, 12.5, 16, 20, 25, 31.5, 40, 50, 63, 80, 100, 125, 160, 200, 250,
315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000 Hz (according
to ISO 266) and accelerations of 4, 5, 6, 7, 8 m/s2. Sampling frequency was 12 kHz
and number of segments was L = 10.

The sensitivity characteristic and amplitude-frequency characteristic for the
acceleration of 7 m/s2 are shown in Fig. 5 and Fig. 6, respectively. The capacitive
accelerometer has higher reference sensitivity (for frequency 160 Hz) with com-
parison to the piezoelectric one which is 27.64 mV/(m/s2) (27.64 dB) with the
expanded uncertainty of 3.12 mV/(m/s2). The maximum deviation from the nom-
inal sensitivity in the frequency range limited by low-pass filter to 200 Hz is 14% at
a frequency of 31.5 Hz.

Fig. 5 Sensitivity
characteristic of the sensor
based on ADXL 202
capacitive accelerometer
determined in course of the
research

Fig. 6 Resulting
Amplitude-frequency
characteristic of the sensor
based on ADXL 202
capacitive accelerometer
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The sensitivity characteristic is approximately flat up to the frequency of
200 Hz. Further sensitivity rapidly decreases as a result of the low pass filter
operation.

The results obtained for the examined accelerometers in the course of the
experimentation are summarized in Table 1.

6 Conclusions

Results of this study show that the method of calibration using multisinusoidal
excitation can be successfully used to calibrate both piezoelectric and capacitive
accelerometers, however, the uncertainty of the results is relatively large. The
procedure allows to determine the nominal sensitivity for the reference frequency,
amplitude-frequency and phase-frequency characteristics as well as estimation of
the uncertainty of the results.

The most important advantage of the method based on multisinusoidal excitation
with comparison to the classic method based on the sinusoidal excitation is very
short duration of the measurement experiment. Usually it does not exceed a few
seconds.

Values of uncertainty estimated during the calibration procedure for frequency
reference are far larger than the ISO 16063-21 standard describes and they reach
several percent. The method can be successfully applied when it is necessary to
quickly check the accelerometer characteristics and large uncertainty of the results
is acceptable, for example, in the field for the periodic maintenance of the sensors
mounted on the object.

An important factor influencing the outcomes of the calibration are a number of
sections used in averaging of the characteristics and the number of recorded sam-
ples. Further work on the optimal selection of these parameters can lead to a
reduction in the uncertainty of the parameters and improving the designated
characteristics.

Acknowledgements The research reported in this paper was co-financed by the National Centre
for Research and Development, Poland, under Applied Research Programme, project no.
PBS3/B3/28/2015.

Table 1 Parameters of the calibrated accelerometers determined in course of experiments

Nominal sensitivity
(mV/(m/s2))

Maximum deviation in
frequency range (%)

Piezoelectric accelerometer PCB
338B35

10.29 ± 1.34 47

Capacitive accelerometer based
on ADXL 202

27.64 ± 3.12 14
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Operational Condition Monitoring
of Wind Turbines Using Cointegration
Method

Phong B. Dao, Wieslaw J. Staszewski and Tadeusz Uhl

Abstract This paper presents a cointegration-based method for condition moni-
toring and fault detection of wind turbines. The proposed method is based on the
residual-based control chart approach. The main idea is that cointegration is a
property of some sets of nonstationary time series where a linear combination of the
nonstationary series can produce a stationary residual. Then the stationarity of
cointegration residuals can be used in a control chart as a potentially effective
damage feature. The method is validated using the experimental data acquired from
a wind turbine drivetrain with a nominal power of 2 MW under varying environ-
mental and operational conditions. Two known abnormal problems of the wind
turbine are used to illustrate the fault detection ability of the method. A cointegra-
tion-based procedure is performed on six process parameters of the wind turbine
where data trends have nonlinear characteristics. Analysis of cointegration residuals
—obtained from cointegration process of wind turbine data—is used for operational
condition monitoring and fault/abnormal detection. The results show that the pro-
posed method can effectively monitor the wind turbine and reliably detect abnormal
problems.
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1 Introduction

It is well known that unexpected failures of turbine components—such as gear-
boxes, generators, rotors—can lead to costly repair and often months of machine
unavailability, thereby increasing operation costs and subsequently cost of energy.
Therefore condition monitoring (CM) and fault diagnosis of wind turbines (WTs),
in particular at the early stage of fault occurrence, is an important problem in wind
turbine engineering [1].

Many CM techniques were developed to diagnose abnormalities of WTs, as
reviewed in [2, 3]. These include: vibration analysis, oil monitoring, acoustic
emission, ultrasonic testing, strain measurement, radiographic inspection, and
thermography. Another solution—based on the analysis of Supervisory Control
And Data Acquisition (SCADA) data—has been employed in [1, 4–8]. This
technique is cost-efficient, readily available, and is beneficial for identifying
abnormal components since only key operational parameters need to be tracked [1,
6]. Monitoring of trends and removal of undesired trends from these parameters is
one of the most important problems when SCADA approaches are used. Various
methods have been developed for data trend analysis. Recent years have attracted
numerous applications based on the cointegration approach, which was originally
developed in the field of Econometrics in the late 1980s [9, 10]. The major idea
used in these investigations is based on the concept of stationarity. In a simplified
description, nonstationary processes are cointegrated if a linear combination of
these processes leads to a stationary process. When cointegration is used for
damage detection, monitored variables are cointegrated to create a stationary
residual whose stationarity represents normal condition. Then any departure from
stationarity can indicate that monitored processes or structures are no longer
operating under normal condition. The cointegration approach has been success-
fully employed as a reliable tool for dealing with the problem of operational and/or
environmental variability in Process Engineering [11] and Structural Health Mon-
itoring [12–16, 18, 19].

The current paper builds upon previous investigations on the cointegration
method for data trend analysis, process monitoring and structural damage detection.
The main goal is to present a new SCADA data analysis approach—based on
cointegration method—for condition monitoring of WTs. SCADA data from a WT
drivetrain with a nominal power of 2 MW were used to validate the method. The
results show that the proposed method can effectively monitor the wind turbine and
reliably detect abnormal problems.
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2 Condition Monitoring of Wind Turbines
Using SCADA Data

Previous research on the use of SCADA data for condition monitoring and fault
diagnosis of WTs has established considerable achievements, as reported in [1, 4–
8]. However, there exists two major problems with respect to SCADA-based
approaches, as discussed in the literature.

1. Wind turbine SCADA data are generally collected, averaged and stored at
10-min intervals (i.e. low-sampling rate), as illustrated in [4–8].
Although SCADA signals are acquired at low-sampling rate, a variety of pro-
cess parameters from different components of a WT are usually recorded con-
tinuously in a period of months under varying operating conditions; and when it
comes to a wind farm with hundreds of WTs then the SCADA database
obtained is diversified and intensive.

2. SCADA data not only depend on the health condition of a WT, but also vary
over wide ranges under varying operating conditions [4–8]. In other words, a
serious fault can lead to the change of SCADA data, however the change of
SCADA data does not necessarily mean a fault [6]. Besides effects of variable
operational conditions, changes in ambient environment conditions (e.g. wind
speed, ambient temperature and humidity) also influence on WT SCADA data.
Therefore it is hard to detect exactly and reliably an incipient fault from raw
SCADA data if without an appropriate data analysis tool [6].

Recent studies on condition monitoring and fault diagnosis of WTs have been
focusing on solving these two problems. Concerning the first problem, due to the
great number of WTs to be monitored and the large amount of low-sampling rate
SCADA signals to be analysed, human intervention in data interpretation and
analysis should be avoided [7]. Consequently, most solutions—taking advantage of
Artificial Intelligence techniques—have been proposed and used to analyse
SCADA data. The most advanced systems using this approach are Neural Network
(NN) algorithms and Adaptive Neuro-Fuzzy Interference Systems (ANFIS).
However, it is well known that NN-based and ANFIS-based algorithms are com-
plicated and require long training period and excessive computation time. With
respect to the second problem, each WT requires intelligent CM techniques that can
be fully adapted to varying operating conditions. Unfortunately such technique has
not been fully achieved today [6]. Therefore the main objective of the work pre-
sented in this paper is to develop a proper SCADA data analysis/processing
method—based on cointegration technique—that can automatically interpret and
analyse a large amount of low-sampling rate SCADA data, and additionally, is able
to deal with undesired effects of environmental and operational variability in data
used for condition monitoring and fault detection of wind turbines.
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3 Cointegration Analysis—Theoretical Background

In mathematics the concept of stationarity can be introduced using time series
analysis. A given time series yt can be presented in the form of the first-order
Auto-Regressive ARð1Þ process [20], which is defined as

yt =ϕyt− 1 + εt ð1Þ

where εt is an independent Gaussian white noise process with zero mean, i.e.
εt ∼ IWN 0, σ2ð Þ. Then three different time series can be distinguished for different
values of coefficient ϕ [20]. These are: (1) stationary time series ϕj j<1ð Þ;
(2) nonstationary time series ϕ>1ð Þ; and (3) random walk ϕ=1ð Þ.

Any time series yt that exhibits the form of random walk without a trend is
considered as an integrated series of order 1, denoted Ið1Þ [21]. For such a series
Eq. (1) yields

Δyt = yt − yt− 1 = εt ð2Þ

Equation (2) shows that, the first difference of yt, i.e. yt − yt− 1, is just a sta-
tionary white noise process εt. In other words, a nonstationary Ið1Þ time series
becomes a stationary Ið0Þ time series after the first difference. By analogy, a
nonstationary Ið2Þ time series would require differencing twice to induce a sta-
tionary Ið0Þ time series.

Next, the concept of cointegration can be introduced using a vector Yt of Ið1Þ
time series defined as Yt = ðy1t, y2t, . . . , yntÞT . This vector is linearly cointegrated if
there exists a vector β= ðβ1, β2, . . . , βnÞT such that

βTYt = β1y1t + β2y2t +⋯+ βnynt ∼ Ið0Þ ð3Þ

In other words, the nonstationary Ið1Þ time series in Yt are linearly cointegrated
if there exists (at least) a linear combination of them that is stationary, i.e. having
the Ið0Þ status. This linear combination, denoted as βTYt, is referred to as a
cointegration residual or a long-run equilibrium relationship between time series
[21]. The vector β is called a cointegrating vector. The action of creating the
cointegration residual ut = βTYt

� �
is considered as the action of projecting the

vector Yt on the cointegrating vector β.
In essence, testing for cointegration is testing for the existence of long-run

equilibriums (or stationary linear combinations) among all elements of Yt. Such
tests have two important requirements [21]. Firstly, any analysed time series must
exhibit at least a common trend. Secondly, the analysed time series must have the
same degree of nonstationarity.

226 P.B. Dao et al.



In general, the cointegration test consists of two steps:

1. The first step is to determine the existence of cointegration relationships and the
number of linearly independent cointegrating vectors among multivariate
(nonstationary) time series and to form the cointegration residuals.

2. The second step is to perform unit root tests on the cointegration residuals found
to determine if they are stationary series (i.e. testing for stationarity).

For the first step, the Johansen’s cointegration method [10] has been widely
used. It is a sequential procedure based on maximum likelihood techniques, which
basically is a combination of cointegration and error correction models in a Vector
Error Correction Model. For the second step, the augmented Dickey-Fuller
(ADF) test [22] is the most popular unit root test. The ADF test checks the null
hypothesis that a time series is nonstationary against the alternative hypothesis that
it is stationary, assuming that the dynamics in the data have an Auto-Regressive
Moving Average (ARMA) structure.

4 Cointegration-Based Approach to Condition Monitoring
of Wind Turbines Using SCADA Data

Cointegration technique has been successfully applied to compensate for environ-
mental and/or operational variability in various damage detection and condition
monitoring applications when data are linearly or nonlinearly related and
environmental-operational variability trends are linear or nonlinear, as presented in
[11–16, 18, 19]. In the current work, the cointegration approach is employed for
on-line condition monitoring of wind turbines using SCADA data and analysing
nonlinear relations (or trends) between process/operational parameters of wind
turbines.

The cointegration-based procedure involves two stages:

1. Off-line stage: calculate (or estimate) cointegrating vectors using SCADA data
that are acquired from the monitored wind turbine under normal operating
conditions or modes (usually at the beginning of the WT’s lifetime when its
components are considered “healthy”);

2. On-line stage: calculate cointegration residuals used for continuous (on-line)
condition monitoring using the cointegrating vectors found and SCADA data
acquired from the monitored wind turbine under regular operating or working
phase (i.e. during electricity production phase).

The computation algorithm—performed in the off-line stage—can be considered
as an unsupervised learning process because it uses only SCADA data under
normal operating conditions to calculate cointegrating vectors. More specifically,
this off-line stage performs the maximum eigenvalue statistic method [10] for
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calculating cointegrating vectors using process parameters of the wind turbine
under a normal operating condition. The stationarity-based approach [17] is used in
this off-line stage to determine the optimal lag length(s) to be included in cointe-
gration analysis to calculate optimal cointegrating vectors. Next, the resulting
optimal cointegrating vectors are applied to SCADA data acquired from the
monitored wind turbine during the electricity production phase to create the coin-
tegration residuals used for condition monitoring.

In comparison with commonly used data-mining algorithms (e.g. neural net-
work, support vector machines) the cointegration-based algorithm is very simple
and requires much less computational resources. The calculation of cointegrating
vectors in the off-line stage takes only few seconds on a normal computer. For the
second stage, the calculation algorithm is basically performed through projecting
the SCADA data—acquired from the monitored WT under regular working phase
for producing electricity—on the resulting optimal cointegrating vectors. This is
done simply by multiplying a vector of time series variables by a cointegrating
vector to form a cointegration residual (described by Eq. (3)). This computation
process can be promptly executed in real-time manner on a computer-based con-
dition monitoring system, thereby providing a simple on-line condition monitoring
solution for wind turbines using SCADA data.

5 Experimental Wind Turbine Data

The wind turbine data used in this paper originate from a series of experimental
measurements for a WT drivetrain with a nominal power of 2 MW. SCADA data
collection and condition monitoring for the WT was performed at 10-min intervals
during thirty days in November 2012. The collected data were influenced by en-
vironmental conditions (e.g. wind speed, ambient temperature variations between
day and night, and air humidity). In addition, twelve process parameters were
monitored and recorded under varying operating conditions. As a result, 4320 data
samples were acquired for each process parameter under the effect of both envi-
ronmental and operational variability. Because wind speed is a key parameter in
wind energy systems [1, 6], the nonlinear relations between this parameter and
other ones were identified. It is observed that there is a common trend presenting in
these nonlinear relations—i.e. amplitudes of all four investigated process parame-
ters increase nonlinearly together with the increase of wind speed.

The work presented in this paper assumed that under the normal operating
condition the investigated wind turbine operated at wind speeds varying between 5
mps (or 11 mph) and 11 mps (or 25 mph). To illustrate the cointegration-based
approach presented in Sect. 4. Besides the task of continuous condition monitoring
for the WT, it is expected that the method can accurately and reliably detect two
known abnormal problems (denoted as “F1” and “F2”) and described below.
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1. F1 represents an abnormal operating state that occurred during a time interval
(80 min) between the data samples 410 and 418. This abnormal operation
happened when the wind speed was varying within the range [3.25–4.75] mps
(in other words, it varied below the lower limit 5 mps). Consequently, the
generator speed rapidly dropped off from 800 rpm to almost stationary state
(standstill), then suddenly increased up to more than 600 rpm and afterward
decreased to 0 rpm, and finally boosted up to the speed nearly 800 rpm. At the
same time, the generated power was quickly dropped down from 20 to 0 kW. It
is clear that this abnormal state of the WT should be continuously and accurately
monitored to guarantee its proper operating condition and avoid more serious
problems.

2. F2 represents a specific fault that occurred at the data sample 1230. This fault
happened when the generator speed and generated power as well as the gen-
erator voltage and generator current were suddenly dropped down to the zero
value, whereas at the same time, the wind speed was relatively stable around [5,
6] mps (i.e. it was varying within the normal operating condition). It was
assumed that this fault might be caused by a bearing failure or journal damage in
the gearbox. Therefore it is important to accurately detect this fault at the early
stage of its occurrence.

6 Experimental Results

SCADA data of the wind turbine—described in Sect. 5—were used to validate the
cointegration-based method presented in Sect. 4. Six process parameters of the
wind turbine were selected for this purpose. These are: wind speed, generator speed,
generated power, generator temperature (front part), generator current, and gearbox
temperature. This forms a six-variable cointegrated system.

Selected results of condition monitoring process and fault diagnosis (F1 and F2)
for the wind turbine using the 1st and 5th cointegration residuals are presented in
Fig. 1. The results are shown only for the first 1400 data samples. The pairs of dotted
horizontal lines indicate the upper and lower limits of the parameters under the
assumed normal operating condition. In order to make the results more clear and
readable, the 99.7% statistical confidence levels—with respect to the average of each
cointegration residual—were calculated as ν±3σ, where ν and σ are the mean and
standard deviation, respectively. Two pairs of red dotted horizontal lines indicate
these confidence intervals. The values of cointegration residuals between these two
confidence levels fall into the area representing that the wind turbine is still operating
in the normal condition. In contrast, abnormal problems or faults would occur
whenever the cointegration residual goes beyond the confidence levels. The results
in Fig. 1 show that the 1st cointegration residual successfully detected both F1 and
F2 while the 5th cointegration residual only detected the fault F2.
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In order to illustrate more specifically how cointegration residuals can be used
for condition monitoring and fault detection of the wind turbine, monitoring pro-
cesses of the fault F2 are enlarged and presented in Fig. 2. One can observe that
both cointegration residuals successfully detected the fault F2. However, it is easy
to notice that the first residual responded to the fault occurrence much faster than
the fifth one. By observing the plot results, the fault F2 was detected by the first
residual in the middle of the data samples 1230 and 1231 when the residual goes
beyond the confidence level indicated by the dotted horizontal line; while the fifth
residual identified the fault F2 at the data sample 1240 (not shown in Fig. 2).
Moreover, Fig. 2 shows that this fault really came to effect at the data sample 1232
after the generator speed and generated power as well as the generator voltage and
generator current were dropped down to the zero value, while the wind speed was
still equal to 5.7 mps (i.e. within the normal operating condition). A conclusion can
be drawn from these results is that the 1st cointegration residual predicted in
advance the occurrence of the fault F2.

It is necessary to note that the entire SCADA data (4320 data samples for each
process parameter) were used in the present work. However only a part of the dataset
—corresponding to the first 10 days of condition monitoring process (or in other
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Fig. 1 Monitoring process of the abnormal operation F1 and the fault F2
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words, the first 1400 data samples)—has been selected to present and discuss the
results in this paper. This is because of the fact that the selected period of time
contains interesting events of condition monitoring and fault diagnosis. In addition,
due to the maximum page limit so that only selected results are presented in the paper.

7 Conclusions

Condition monitoring and fault diagnosis of wind turbines—based on cointegration
analysis of SCADA data—has been addressed in this paper. An two-stage
cointegration-based procedure has been proposed to deal with this problem. The
method was tested in two case studies with known faults. Analysis of cointegration
residuals—obtained from cointegration process of wind turbine data—is used for
operational condition monitoring and automated fault/abnormal detection. The
results show that the proposed method can effectively monitor the wind turbine and
reliably detect abnormal problems.
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Fig. 2 Zoom in the monitoring process of the fault F2
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The method can automatically interpret and analyse a large amount of
low-sampling rate SCADA data and enables a transition from a singular process
parameter analysis to automatic interpretation and analysis of a large number of
process parameters. The proposed method has been motivated by the fact of its
simplicity and low computational cost in comparison to other commonly used
data-mining techniques such as Neural Network algorithms.

The work presented is a feasibility study. Therefore, further research work is
required to test the method to other wind turbine SCADA database. In addition, the
proposed methodology should be investigated for a large number of wind turbines
with different types of fault/abnormal components.
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Knocking Sounds in the Wind Turbine
Gearbox During Slowing Down—Case
Study

Tomasz Barszcz, Rafał Gawarkiewicz, Adam Jabłoński, Michał Sękal
and Michał Wasilczuk

Abstract In the gearbox of a wind turbine under investigation, a knocking sound
was noticed during coasting down of the machine. The noise was present in one of
several gearboxes of the same type and the search for the source of the sound was
undertaken. Gearbox manufacturer specialists after an inspection were pointing out
sources outside the gearbox—runner unbalance or generator, but the machine
owner ordered an additional research comprising vibration measurement and further
analyses. The analysis of the vibration signal was carried out with the use of
advanced signal analysis tools and the knocking vibration frequency was found to
be the same as the frequency of the intermediate shaft. A machine inspection which
was carried out pointed at a few potential sources of the sound, but did not
specifically determined its source.
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1 Introduction

In the gearbox of a wind turbine of 1.5 MW, a strong knocking sounds were
noticed during coasting of the machine. The noise was only present in one of
several gearboxes of the same type and since the gearbox was relatively new, a
search for the source of the sound was undertaken. Gearbox manufacturer spe-
cialists after a thorough visual inspection were pointing out sources outside the
gearbox—runner unbalance or generator. That was the reason why the machine
owner ordered an additional research comprising vibration measurement and further
signal processing analyses.

The analyzed wind turbine FUHRLAENDER MD77 equipped with a multi-
plicating gearbox, of a standard configuration, consisting of one planetary stage and
two parallel stages with helical gears—Fig. 1 [1].

2 Vibrodiagnostic Measurements and Data Analysis

2.1 Measurement Setup

The difficulty of the problem lied in the fact that the knocking sound could only be
noticed during a short time while the machine was slowing down, and acquiring
data at decreasing speed was one of the problems. The tests were carried out with

z5

z6

R
j

z4

3z
z2

1

z6

z7

Fig. 1 Fuhrlaender wind
turbine gearbox [1]
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the composite shaft connecting the gearbox and generator dismantled, so that there
was no vibration of the generator.

The measurements were performed with the VIBstudio system with the
VIBmonitor front-end with recording configuration. The system featured fully
simultaneous data acquisition of signals from all the inputs.

The measurement system was equipped in 7 vibration sensors of the type VIS-B
of 100 mV/g sensitivity and the phase marker. The vibration sensors were mounted
in radial and axial direction on the gearbox, according to section 5.4 of ISO 10816
norm (ISO [2]. The phase marker was installed on the high speed shaft (HSS), i.e. at
the output of the gearbox to the generator (Fig. 1 and Table 1).

2.2 Measurement Results and Data Analysis

The analysis of the vibration signal was carried out with the use of advanced signal
processing tools including high resolution speed tracking algorithm. The recovered
speed was next applied for accurate resampling of the vibration signal [3]. The
repetition frequency of the knocking phenomenon was found to be the same as the
frequency of the intermediate shaft (IMS) and not the sub-synchronous frequency
of the high speed shaft or the hypersynchronous frequency of the low speed shaft
(LSS), although these three frequencies were very close due to ratios of the gear.
The signal was best visible in the axial direction so there are hypotheses that it can
be attributed to the axial clearance in the tapered roller bearing system [4]. During
slowing down the power is transmitted in the opposite direction than during the
normal operation, and the directions of forces acting in the gearbox, including axial
force between the helical gears, change. After having defined the source of the
knocking sounds a visual inspection was planned.

After initial analysis of stored signal, the signal from the sensor mounted in the
axial direction in vicinity of the IMS was selected for further analysis. This signal
had the clearest impulses, which represented the knocking sound. The waveform of
the signal is presented in the Fig. 2.

Using the rotational speed of the high speed shaft the vibration signal was
resampled to the angle domain and then recalculated to the rotational speed of
intermediate speed shaft. Result of one coast down resampling is shown in the
Fig. 3.

Final verification was performed to check whether the investigated impacts are
tied to the IMS or maybe to 4th harmonic of the LSS or 1/4th harmonic of the HSS.

Table 1 Parameters of the
data acquisition

Parameters Value

Frequency 25 kHz
Resolution 24 bit
Time of acquisition >120 s
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The Fig. 4 presents consecutive revolutions of the IMS. The Fig. 5 presents on the
single plot zoomed part of the signal from the Fig. 4 with lines marking periods of:

• 1/4th of HSS, which rotational speed was 4.12 times faster than IMS (green),
• IMS (red),
• 4th harmonic of LSS, which rotational speed was 4.095 times slower than IMS

(black).

Visual analysis of several dozen revolutions is shown in Fig. 5—it is clear with
no doubt that the impacts, responsible for the knocking phenomenon are directly
related to the period of the intermediate shaft.

On the zoomed fragment (Fig. 5) it can be clearly seen that the vertical red lines
(IMS) ideally mark the consecutive impacts, while the other ones are out of phase.
It can be seen around the revolution no 47, when all three lines overlap and then
around the revolution 59, when the red line is still in phase, the black one is half a
revolution in advance and the green one is lagging half a revolution.

Fig. 2 Raw vibration signal waveform form the axial IMS sensor together with the rotational
speed signal. Four coast downs can be seen
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Fig. 3 One coast down signal resampled to the angle domain. The horizontal axis was scaled to
represent revolutions of the IMS
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Another interesting aspect is the energy of the vibration signal generated by
different shafts. Figure 6 presents order spectrum from a selected stationary part of
considered signal.

More precise analysis of all the drivetrain components allows to closer identify
the malfunction by means of novel methods [5, 6] or classical methods.

A classical order spectrum shows dominating harmonics of gear meshing at the
high speed shaft (HSS), namely 25th, 50th, and 75th orders. However, in case of
gear meshing at the intermediate stage (IMS), two symptoms are detected:

(a) the IMS meshing component is relatively high in reference to a typical wind
turbine spectral data,

(b) the odd harmonic of IMS are dominating.

0 10 20 30 40 50 60 70 80
-1.5

-1

-0.5

0

0.5

1

Revolutions [1]

Am
pl

itu
de

 [-
]

Fig. 4 Vibration signal resampled to the angle domain with IMS revolutions marked as vertical
lines
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Fig. 5 Zoomed fragment of the vibration signal from the Fig. 5 resampled to the angle domain
with three cycle families marked: 4th harmonic of LSS (black), IMS (red) and 1/4th of HSS
(green)
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Typically, the IMS meshing might be order of magnitude less than HSS
meshing. In Fig. 6, it is only two times smaller. Furthermore, the presence of
dominating odd harmonics might be caused by additional non-linearity of an object
due to improper technical condition.

3 Machine Inspection

The most important findings form the vibrodiagnostic analysis were occurrence of
the dominating noises with the frequency of IMS rotation, only during coast down
of the machine, and dominating vibrations with the frequency of HSS during the
steady state operation. That is why the IMS was analyzed with greater care.

As shown in Fig. 7, the bearing system of the IMS consists of a couple of taper
roller bearings of different contact angles located at the generator side (RH side in
the drawing) acting as a locating support and a cylindrical roller bearing, as a
non-locating bearing on the rotor side (LH side at Fig. 7). The use of locating
support is necessary in helical teeth gearboxes to accommodate axial loads gen-
erated at the teeth mesh. In all gears the direction of tooth forces changes when the
direction of power transmission changes, i.e. when the gear which was a driving
gear becomes a driven gear, or vice versa, then at first the circumferential clearance

Fig. 6 Order spectrum in the 0–85 order range in stationary operating conditions at about
1350 rpm
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is zeroed at one tooth flank and appears at the other side of the tooth. Such a
situation can happen during slowing down, or when the wind force suddenly
decreases. In such a case, the power is no more transmitted from the turbine rotor to
the generator, but the rotating inertia forces of the generator start to drive the whole
system for a shorter or longer period of time. Such condition is known in unloaded
car transmission and referred to as gear rattle phenomena [7]. Additionally, in a
helical gear there exists the axial component of the tooth force, which also changes
the direction in this time. Thus, the following possible sources of the noise can be
pointed out:

• Repeated circumferential backlash on both sides of the tooth;
• Repeated reciprocating axial movements of the shaft—possible within the range

of axial clearance in the pair of taper roller bearing;
• Failure of the bearing separator (cage) in either of the three IMS bearings.

An attempt was made to determine the reasons of the knocking sounds by the
inspection of the machine. During the inspection a visual assessment of the gears
was done revealing some faults of the teeth caused, either by overload or poor teeth
alignment (Fig. 8) and other traces of metal to metal contact between the teeth.

During the inspection axial and circumferential backlash was measured—the
circumferential was found to be equal to 0.4 mm, which can be considered normal.
The axial backlash was measured to be approximately 0.08 mm, which is over the
manufacturers recommendation of the zero backlash (see Fig. 7). During slow
rotation of the gears it was also noticed that in the unloaded zone the rolling

Fig. 7 Details of the design of IMS of the analyzed gearbox [10]
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elements are sliding instead of rolling, due to the clearances between them and the
races, which is another proof of insufficient preload of the pair of taper bearings.
Such sliding is considered as an important reason of premature failures of the
bearings [8]. With the change of the direction of the tooth forces causing repeated
deleting of the clearances knocking sound can be generated as circumferential
backlash is deleted on one side of the tooth and appears on the other side. Gear
rattle phenomena is known to occur in unloaded transmission systems of the cars at
a certain proportion of the stiffness and inertia of the system components [7]. It
seems worth pointing out that a very similar sound was generated when direction of
rotation of the shaft was changed manually.

For the acquired vibration signal sidebands have the frequency of approximately
2.0 Hz. These can be the frequencies generated by the bearing cage, but it was
impossible to find the data concerning characteristic frequencies of the bearings
used in this gearbox. As described in various case studies [9], cage failures fre-
quently generate unique effects, e.g. the FTF (fundamental train frequency) may not
be observed, but can modulate other frequencies, in some cases even depending on
the instantaneous axial load. Additionally a broken cage can change its shape only
at some operating or load conditions generating vibrations only at specific condi-
tions. Unfortunately, because of the need to keep machine in operational readiness
it was not possible to dismantle the bearings cover and make a visual inspection of
the taper bearing cages. The cylindrical roller bearing, at the upwind side is also

Fig. 8 Marks of contact between teeth on the IMS pinion [11]
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inaccessible for a direct visual inspection. Finally, the integrity of the bearing cages
was not checked.

4 Conclusion

The main conclusions of this research are:

• The knocking sound has a repetition rate of the IMS rotation period;
• Due to the advanced angle domain analysis of the vibration signal it was pos-

sible to prove that this frequency was different from very similar frequencies of
4th harmonic of the LSS and 1/4th of the HSS frequency;

• Further data analysis show sidebands, which are a sign of deteriorated state of
the tooth mesh in the IMS stage;

• Knocking sound was not noticed at steady state operations and energy of of the
IMS is lower than that of HSS vibrations of the IMS is lower than that of HSS
vibration;

• The fact that the knocking sound can only be noticed during coasting may be
attributed to the change of tooth force direction occurring in the time when the
power is transmitted in the opposite direction. Then, circumferential backlash is
deleted on one side of the tooth and appears on the other side and axial backlash
is deleted and the shaft moves with reciprocating movements axially. With any
irregularity of the rotational speed these effects can cause repeating knocking
sound. A similar sound was generated when direction of rotation of the shaft
was changed manually.

• Further visual analysis of the IMS bearings, both at downwind and upwind side
was recommended; for a cylindrical roller bearing at upwind side it is only
possible by endoscopy.
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Multifractals in Technical Diagnostics
General Concept

Damian Skupnik

Abstract In general there are three basic tasks of technical diagnostics, i.e. we want

to know in what technical state a considered object was in the past (1st), we want to

find out what is the state of the object right now (2nd), and finally what it will be

in the future, especially a far one (3rd). The paper presents general concept of using

multifractals theory to solving the third task mention earlier. The idea of multifrac-

tals was introduced by Benoit Mandelbrot who claimed that multifractal model was

more reliable type of financial theory than conventional financial models. According

to Mandelbrot and other researchers the advantage of multifractal theory consists in

better prediction of occurrence of low predictability and large impact phenomenons.

And to know beforehand about rising possibility of occurrence of these phenom-

enons is crucial just because of their large impact to the whole system. Nowadays

we can make pretty accurate diagnosis of the technical state of the considered object.

However it is based on the assumption that variation of features of diagnostics signals

can be modelled by random processes that follow rather “mild” or “slow” pattern of

randomness and to be fair this is almost always true. But such approach completely

neglects the presence of “wild” randomness and this can lead to the serious failures.

In Author’s opinion the idea of a fractal or a multifractal view of risk, ruin and reward

in financial theory can be used successfully in the context of technical diagnostics.

Perhaps thanks to it will be possible to prevent or to prepare for unknown unknowns,

i.e. for occurrence of low predictability and simultaneously very serious failures.

Keywords Technical diagnostics ⋅ Rare events ⋅ Multifractals

1 Introduction

For the so-called critical technical objects (e.g. of an airplane) it is necessary to

do something in order to avoid or to prepare for occurrence of rare events which

have a large impact (e.g. crash of an airplane). Dealing with rare events demands
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Fig. 1 Occurrence of a rare event

analysis in a relatively longer time scale. In classical data analysis the extremes, i.e.

phenomenons of low probability and large impact, are often just ignored. This means

that the forecasting model created without such data may be usefull but only in case

of events that happen relatively often. For the rare events, usage such a model may

lead to a serious failure what has been shown in the Fig. 1. As one can see, the history

of a process over a 1000 h does not tell anything about what is going to happen next.

Modern and complicated objects (e.g. an airplane) combine the interactions of

many elements (e.g. Boeing 747-400 has approximately 6 million parts [1]). Tech-

nical diagnostics of such complicated systems can be very difficult especially, if we

wanted to predict a technical state in the long time perspective. This difficulty is

caused mainly by the relation between limited description precision of dynamics

processes occuring in the considered object, and an error size of a forecast. The

smaller description precision and/or longer time perspective, the bigger error of a

forecast. Thus in practice we are not able to prepare of longterm forecasts.

Fortunately we do not have to predict values of the given variable. It should be

enough to foresee a risk of the rare event occurence and some tools to deal with this

problem were developed.

One of them is Extreme Value Theory (EVT) [2, 3]. EVT provides a confirmed

theoretical basis on which one can build statistical models describing extreme events

(predicting the size of the rare event), i.e. events that do not happen very often.

Research concerning EVT has shown possible ways of combining different risk fac-

tors.

The second interesting tool is undoubtly application of the multifractals idea intro-

duced by Mandelbrot [4]. Mandelbrot claimed that multifractal model was more
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reliable than conventional financial models. According to Mandelbrot and other

researchers (e.g. [5–9]) the advantage of multifractal theory in comparison to the tra-

ditional approach, is better prediction of occurence of phenomenons low predictabil-

ity and large impact.

As far as the author know, usage of multifractals theory in the context of techni-

cal diagnostics is not enough researched. There are some papers that deal with this

topic (e.g. [10]) but the number of them is very small. It seems strange because the

multifractals measures are successfully applied in many others domains, e.g.: agron-

omy, astronomy, ecology, geology, geochemistry, genetics, hydrology, meteorology,

biology, medicine, network traffic modelling, seismology, soil science, turbulence,

finance, etc.

This paper presents a general concept of using the multifractals theory to predic-

tion of rising risk of serious failure occurrence of the considered object especially

in a further future. It should be clearly stated that the author’s aim is not to prove

mathematically that diagnostics signals are fractals or multifractals. The aim is to

perceive a different, maybe fruitful, approach to the technical diagnostics.

2 Theory of Fractals and Multifractals in a Nutshell

2.1 What is a Fractal?

Formal definition of a fractal is not established. According to Falconer [11] a fractal

is a set that has all or the most of the following properties:

∙ its fractal dimension (defined in some way, e.g. (1)) is usually greater than its

topological dimension;

∙ it has some form of self-similarity either exact or approximate or statistical;

∙ it is defined in a very simple way, very often recursively;

∙ it is too irregular in order to be described in traditional geometrical language, both

locally and globally (fractal is often called as the geometry of roughness);

∙ its structure is detailed on arbitrarily small scales.

Figure 2 shows the process of generating of a fractal, called the Koch curve. Frac-

tal dimension Ds of the Koch curve equals in approximation 1.2619. The result can

be obtained by using formula (1)

Ds = −
logQ
log c

, (1)

where Q is the number of subsets (here Q = 4) of the initial set and c is the scalling

factor (here c = 1
3
).

Another example of a fractal is presented in the Fig. 3. It is the Weierstrass func-

tion known since 1872 (of course, the function was not called a fractal then). As one



248 D. Skupnik

Fig. 2 Generating a fractal—the Koch curve

Fig. 3 The Weierstrass function considered as a fractal

can see, the function exhibits self-similarity: every zoom (black circle) is similar to

the global plot.

It should be emphasized that self-similar object is not only invariant under dila-

tions, but also rotations. It means that the rescaling operators are the same in each

direction. If the rescaling operators are not the same in each direction then the object

is called self-affine.
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2.2 Fractal and Multifractal Processes

In fractals context the scaling factor c does not have to relate only to the geometric

objects and measures. It can also be applied to the processes changeable in time

because in the fractal analysis, time is flexible.

A random process X (t) that satisfies

X (ct)
d
= cHX (t) (2)

for some scalling exponent 0 < H < 1 and c ≥ 0, is called fractal (self-similar or

self-affine) process [8].

The exponent H, known as the Hurst exponent, measures the long-term depen-

dency of time series and their tendency to be cyclical. If [9]:

∙ 0 < H < 0.5 then the increments of the process are negatively correlated, so it is

an anti-persistent, i.e. the change will probably continue in the reverse direction;

∙ H = 0.5 then the process is in standard Brownian motion, so the observations are

not correlated;

∙ 0.5 < H < 1 then the increments of the process are positively correlated so the

process exhibits long-range dependence, i.e. the change will probably continue in

the same direction.

In some processes there are periods alternation of large changes with periods of

smaller changes. It is typically described as the fluctuation of “volatility” over time.

The theory of multifractals facilitates modelling of temporal heterogeneity in time

series by establishing more general scalling rule, i.e.

X (ct)
d
= M(c)X (t) (3)

where X and M are independent random functions and c ≥ 0. The scaling factorM(c)
is a random variable and, as one can see, its distribution does not depend on the time.

Process that satisfies (3) is called multifractal.

For the self-similar process (2) M(c) = cH , thus one can define the generalized

index H(c) as

H(c) = logc M(c). (4)

In consequence one can rewrite the relation (3) to the following form:

X (ct)
d
= cH(c)X (t) . (5)
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2.3 Example of a Multifractal Process

A multifractal process X (t) on a bounded interval [0,T] can be obtained by com-

pounding Brownian motion B (t) with a stochastic time deformation process 𝛩 (t)
[6], i.e.

X (t) ≡ B [𝛩 (t)] , (6)

wherein B (t) and 𝛩 (t) are independent.

Standard Brownian motion is one of the best known Levy processes and its mathe-

matical model is called the Wiener process. A single realization of a one-dimensional

Wiener process is presented in the Fig. 4.

The time deformation 𝛩 (t) (bending of time) is the cumulative distribution func-

tion of a multifractal measure 𝜇 defined on a bounded interval [0,T].
Multifractal measures are built by iterating a simple tranformation (a mathemat-

ical process called a multiplicative cascade). A simple example of such a measure

is the binomial measure called also the Bernoulli or Besicovitch measure [8]. The

idea of the binomial measure on the compact interval [0, 1] is presented below (on

the basis [6]; more pictorial description one can find, e.g. in [13]).

Let t0 and t1 are the two positive numbers, which here represent the amount of

time, and their sum is equal to 1. At stage k = 0, we start the construction with the

uniform probability measure 𝜇0 on [0, 1]. In the step k = 1, the measure 𝜇1 uniformly

spreads the value equal to t0 on the subinterval

[
0, 1

2

]
and the value equal to t1 on

Fig. 4 A one-dimensional Wiener process [12]
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[
1
2
, 1
]
. In step k = 2, the set

[
0, 1

2

]
is split into two subintervals,

[
0, 1

4

]
and

[
1
4
,

1
2

]
,

which respectively receive a fraction t0 and t1 of the total meassure 𝜇1

[
0, 1

2

]
. We

apply the same procedure to the dyadic set

[
1
2
, 1
]

and obtain:

𝜇2

[
0, 1

4

]
= t0t0, 𝜇2

[1
4
,

1
2

]
= t0t1, 𝜇2

[1
2
,

3
4

]
= t1t0, 𝜇2

[3
4
, 1
]
= t1t1.

Repeating of this procedure generates an infinite sequence of measures 𝜇k that

weakly converges to the binomial measure 𝜇.

One should notice that the binomial construction may be easily generalized by:

∙ splitting of the intervals into an arbitrary number b ≥ 2 of cells at each stage of

the cascade,

∙ randomizing the allocation of the value between subintervals.

Figure 5 ilustrates the density of the measure𝜇 obtained after k = 1, 4 and 10 steps

of the recursion (Fig. 5c shows the random density). As one can see the original area

is partitioned irregularly, with tall peaks (high concentration of time) and low valleys

(low concentration of time).

An example of the simulated multifractal process, obtained by means of the for-

mula (6), is presented in the Fig. 6 [6]. The example shows simulated price changes

(Fig. 6a) and the first differences of the prices (Fig. 6b). Analyzing the figure, one

(a)

(b)

(c)

Fig. 5 Binomial meassure (density function): a iteration k = 1 and t0 = 0.6, b iteration k = 4, c
iteration k = 10 with parameters b = 2, p = 0.5 and t0 = 0.6 (on the basis of [6])
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Fig. 6 Simulated multifractal process: a simulated price changes, b simulated the first differences

of the prices (on the basis of [6])

can notice that volatility is clustering at all time scales (temporal heterogenity) and

it is intermittent by large fluctuations (simulation of occurence of a rare event with

large impact to the system).

3 Concept of the Multifractals Application in Technical
Diagnostics

Taking into account theory of fractals and multifractals presented in a nutshell in

the Sect. 2, one can establish some necessary attributes which have to characterize

a technical process or diagnostic signal in order to consider them as a multifractal.

The basic features are listed below.

1. Increments in the examined process (signal) should be stationary and indepen-

dent, i.e. they should be statistically identical over different time intervals of the

same length (Levy process).

2. There are possible jumps with arbitrarily large value (i.e. variance is not finite;

again Levy process).

3. During progress of the examined process it should be noticeable the alternation

of periods of large changes with periods of smaller changes (significant changes

should have inclination to cluster and follow one another, although their direc-

tions not necessarily have to be the same).

4. Process (signal) is characterized by a long but finite memory (in such a case the

autoregressive model does not work well because it usually gives good results for

the short and the medium term).
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5. Process (signal) contains repeating patterns which may reveal as limited nonpe-

riodic cycles, generated by nonlinear, delayed effects.

If analyzed technical process or diagnostic signal has all or most of the attributes

listed above, then we ought to realize, that the process (signal) allows on occurence

of phenomenons low predictability and large impact. In consequence the process

(signal) should be considered as multifractal.

Application of ordinary methods for such cases is not the best idea because it

completely neglects the presence of “wild” randomness and it can lead to the serious

failures. Instead one should try to create a multifractal model of considered process

in order to simulate the possibility of occurence of rare and very serious events.

If analyzed technical process or diagnostic signal is considered as multifractal,

then one ought to think in terms of affordable risks instead of trying to make a long

term forecast, i.e. searching for the value of probability (belief) that an event will

occur.

In order to avoid risk we can prepare a list of the events with large impact to the

system and think about how to prepare for them and what early indicators one should

track. The advantage of such approach is that it simulates potential extreme events

and allows to determine the outcomes, if such extreme scenarios will occur. Thanks

to it one can establish not only what may happen but also what to do when it will

happen. Such knowledge may even turn some risks into opportunities.

4 Summary

In the author’s opinion usage of models built on the basis of the multifractal theory

may be fruitful in technical diagnostics domain. It should be emphasized that multi-

fractals measures are not only limited to specific fractal tools—for instance the Hurst

exponent which was presented in the Sect. 2.2. In fact there are many different meth-

ods and techniques based on the multifractals measures, e.g. in image processing for

the needs of medicine. These tools can be applied in some subdomains of technical

diagnostics without any special preparations.
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Complementary View on Multivariate Data
Structure Based on Kohonen’s SOM, Parallel
Coordinates and t-SNE Methods

Anna M. Bartkowiak and Radosław Zimroz

Abstract Nowadays, it is often required in modern condition monitoring

applications, to describe acquired signal by set of parameters. It directly leads to

mD diagnostic data. Before starting the proper analysis of the recorded data, it is

advisable to look at the data globally to get an idea what really they are representing.

Visualization of mD data is a challenging problem and probably it is not possible to

find an ideal method that could take into account all aspects in case of high dimen-

sional, nonlinear, redundant, etc., data. We propose to use for that goal jointly the

triplet multivariate visualization methods: Self-organizing maps, Parallel coordinate

plots and t-distributed Stochastic neighbor embedding. The methods use concepts of

Machine Learning, simple Geometry and Probabilistic Modeling for finding indices

of distances or similarities between the data vectors represented in the multivari-

ate data space as data points. The methods permit to visualize the data points in a

plane with possibly preserving their mutual between-point distances in the multidi-

mensional data space. The three proposed methods are complementary, and they are

supplementing each other. The considerations are illustrated using a data matrix X of

size (1000 × 15) containing gearbox diagnostic data structured into 4 (sub)groups.

Indeed, the three applied (unsupervised) methods permit to get an insight into the

15-dimensional data space and to state that data points belonging to different sub-

groups of X have different geometrical location. However, the employed methods

do not yield indications for reducing the dimensionality (number of variables) of the

considered data.

Keywords Vibration signal ⋅ Gearbox diagnostics ⋅ Visualization of multivariate

data
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1 Introduction

Data Science is today one of the hottest topics around. Data are collected everywhere.

It is preferred to have the data given as the real valued multivariate matrix X of

size (n × d), comprising in its rows sample vectors of measurements of d parameters

relevant in the given context. Each row of the matrix may be imagined also as a data

point in Rd
, the d-dimensional data space. The entire set of data points appears in Rd

as a multivariate data cloud.

Such approach is also often used in condition monitoring of machines. Using Data

Acquisition Systems one might get many diagnostic signals (multichannel system).

Obviously, when analyzing all data together we directly obtain mD (multidimen-

sional, alias multivariate) data. Another frequent case is when one considers one

complex signal, but due to its complexity, it is advised to use advanced parametriza-

tion of time series. Such description of raw time series leads to 1D vector or even

2D matrix. In this work we will play with vibrational data described by 15 features

(for each signal) obtained using spectral representation—by employing 3 methods

visualizing multivariate data.

In this paper we will consider gearbox diagnostics data used in [1, 2, 4]. For the

two investigated gearboxes we obtain two data matrices of size n1 × d and n2 × d
appropriately, where n1 and n2 denote the number of the data vectors obtained from

the two sets of recorded vibration signals. Putting the data for the two gearboxes

together we will obtain one common data matrix X of size n × d, where n = n1 + n2.

Our question is: Could we get insight into the d-dimensional data space Rd
and

see there the recorded data vectors as data-points in proper locations of that space?

Could we also learn visually, if the data clouds coming from the two monitored gear-

boxes are geometrically separated or mixed together? In principle, humans are not

capable to perceive data clouds in high-dimensional (d > 3) data space. However, on

the basis of mathematical reasoning, some principles of geometry were formalized.

Then, by applying specialistic multivariate (mD) visualization tools, humans may

learn about the shape of such multivariate data cloud, also about the homogeneity

or aberrancy of its elements and ways they cluster together. This is done usually by

performing projections of the data cloud into a 2-dimensional subspace, which can

seen by humans. Depending on the criterion used in the projection we may obtain a

diversified information on the shape and content of the data cloud.

We propose to apply for that purpose the following multivariate graphical visu-

alization algorithms:

∙ Self-Organizing Maps, proposed by Teuvo Kohonen [7, 10];

∙ Parallel Coordinate plots, launched by Alfred Inselberg [5, 6];

∙ t-SNE proposed and elaborated by van der Maaten and Hinton [9].

We advise to use these 3 visualization algorithms jointly, accordingly to the par-

adigm expressed by Arun K. Majumdar and John Sowa (2009):

Two paradigms are better than one, and multiple paradigms are even better.
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The jointly usage of the 3 visualizing algorithms will elucidate various geomet-

rical aspects of the analyzed data vectors, not obtainable when using only one of the

methods. The 3 methods taken jointly complement each other and permit us to get a

holistic imagination of our data when looking at them as data points residing in Rd
.

Description of the data. We will use in our demonstrations data containing infor-

mation about the condition state of two gearboxes, one in the healthy, the other in

the faulty state. The data were gathered by Bartelmus and Zimroz and are described

in our earlier works [1, 2, 12]. Generally, there are d = 15 parameters obtained from

a spectral analysis of the observed vibration segments. Additionally, each segment

has attached an external variable called zwe, which denotes external load of the

gearbox during measurement. The principle is: zwe <= 990 → heavy load, zwe >
990 → small∕no load.

We have sampled for our analysis from the data mentioned above 500 data vectors

characterizing the healthy gearbox, and 500 data vectors characterizing the faulty

gearbox. In such a way we obtained the sets B500 and A500 corresponding to the

healthy and the faulty gearbox appropriately. Taking into account the status of the

zwe variable, each of the sets B500 and A500 was further subdivided into two sub-

groups. It happened, that B500 contained 61 and A500 contained 66 data vectors

with small/no load.

Finally, the (n × d) = (1000 × 15) data matrix X was established for further analy-

sis. The matrix is structured into four groups:

group 1: healthy gearbox (B), heavy load, n1 = 439;

group 2: healthy gearbox (B), no/light load, n2 = 61;

group 3: faulty gearbox (A), no/light load, n3 = 66;

group 4: faulty gearbox (A), heavy load, n4 = 434.

In the following, we perform the visualization of the data matrix X using Koho-

nen’s self-organizing maps (Sect. 2), Parallel coordinate plots (Sect. 3) and t-SNE

(Sect. 4). Finally, Sect. 5 contains discussion of the results and final remarks.

2 Kohonen’s Self-Organizing Maps (SOMs)

Kohonen’s SOM partitions the data space Rd
into M disjoints regions (so called

Voronoi regions, VRs) and maps them to a regular (usually 2D) map (the SOM)

with possibly preserving the topology (neighborhoods) of the VRs. A typical SOM is

constructed as a regular net composed from adjacent squares or hexagons(see Fig. 1

depicting various maps with hexagonal structure). The SOM uses a neural network

model with M neurons [7, 10] which have a dual representation: in the (2D) map

space and in the data space Rd
. The network uses unsupervised learning with a sim-

ple computational form.

Say, the map is composed from M = m1 × m2 hexagons. Each hexagon contains

one neuron localized in the hexagon’s center (neuron’s reference address). The same
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0.678

1.19
U−matrixHits All(a) (b)

(c) (d)

Fig. 1 Kohonen’s hexagonal SOMs of size 22 × 7. a All data. Colored interior hexagons are pro-

portional to the number of data vectors residing in the corresponding Rd
Voronoi regions. b Graph

U-matrix showing the distances between codebook vectors located in the data space Rd
. c Only fre-

quency counts from groups no. 1 (green) and no. 4 (magenta) are shown. d Only frequency counts

from groups no. 2 (cyan) and no. 3 (red) are shown
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neuron no. (no. i, i = 1,… ,M) has its representation 𝐰i = [wi1,… ,wid] residing

in the data space Rd
and called vector of weights or codebook vector [7]. This fact

creates a one-to-one link between the given hexagon in the map and corresponding

VR in Rd
.

The structure of the map and its neural network is determined by the user. We

have chosen a hexagonal structure composed as a 22 × 7 lattice, which implies a

neural network with M = 154 neurons. The quality of the representation of the

n = 1000 multidimensional data points by the neuronal vectors {𝐰i} is measured by

two indices: the quantization error and the topological error. The quantization error
shows (in Rd

, for each VR) an averaged Euclidean distance of the data points to their

representative code-book vector. The topological error is defined as the percentage

of data points, for which the first and second best matching code-book vectors are not

adjacent neighbors in the map. For the maps exhibited in Fig. 1 the quality indices

amount: quant_err = 15.976, topol_err = 0.

The values of the weights {𝐰i} are obtained in the iterative way. They are ini-

tialized at random or as a regular grid in the PC (principal component) plane [10].

In subsequent iterations (k) a randomly chosen data vector 𝐱k is presented to the

network. Say, it happened that neuron no. c was the nearest to the presented data

point (‘was the winner’). The neuronal weights 𝐰i, i = 1,… ,M, are then updated

according to the rule:

𝐰i(k + 1) = 𝐰i(k) + 𝜂(k) ⋅ hi(c)(k) ⋅ [𝐱k − 𝐰i(k)], (1)

where 𝜂(k) denotes a learning constant, and hi(c)(k) is a constant proportional to the

distance of the i-th to the c-th neuron. The distance is evaluated from a gaussian-like

neighbor membership function 𝜑(i; c) defined in the map and centered at the c-th

neuron (hi(c)(k) attains largest value for i = c).

As a result of this training, the entire data set in Rd
is subdivided into M parts (the

VRs), with frequency counts n1, n2,… nM appropriately. Of course,
∑

i ni = 1000.

The obtained map is depicted in Fig. 1 as exhibit (a). The frequency counts ni of

the VRs are visualized as smaller sub-hexagons painted in olive color, with radiuses

proportional to
√
ni. For example, the frequency counts of the VRs linked with the

first row and last row of hexagons in exhibit (a) are: [14, 15, 16, 20, 16, 7, 2] and

[22, 5, 9, 8, 7, 4, 8] appropriately.

Exhibit (c) show the same map, however only for data from group 1 and group

4 (interior hexagons painted in green and magenta). Exhibit (d) shows the same for

group 2 (color cyan) and group 3 (color red). One may see that the groups are prac-

tically disjoint.

Could it be seen in the map, how large are the true code-book distances inRd
? This

problem can be solved by calculating the U-matrix [8, 10], that is shown in exhibit

(b) of Fig. 1. The corresponding distances in Rd
are shown (proportionally) by color.

We used gray colormap. Pure white color means small distances (min = 0.162) and

pure black color means very big distances (max = 1.19). Looking at that graph one

may state, that there is a black valley, which separates the data points into two parts

which are far apart. The upper part, covered by group 1, is more condensed.
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3 Parallel Coordinate Plots

The parallel coordinate plots [6] are constructed in a simple way: For a n × d data

matrix X one draws vertically in parallel d short line segments of equal length.

They correspond to the d observed variables. The j-th line segment is scaled by

having its minimum and maximum equal to the minimum and maximum of the j-th
(j = 1,… , d) observed variable. Next each data vector 𝐱i (i = 1,… , n) is marked as

horizontal line segment with its values xi1, xi2,… , xid marked in subsequent vertical

line segments. In such a way the global representation (profile) of 𝐱i is obtained (see

Figs. 2 and 3).

By drawing in one plot such horizontal representations for a number of data vec-

tors, one obtains not only their individual profiles, but also a holistic representation

of all of them depicted in the same place. This may easily serve for their comparison
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Fig. 2 Parallel. Comparison of zweB (group 2, color cyan) and zweA (group 3, red). The groups

are overlapping. To see them more distinctly, they are depicted twice. Top zweA over zweB. Bottom
zweB over zweA
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Fig. 3 Parallel coordinate plots. Comparison of group 1 (B-zwe, color green) and group 4 (A-zwe,

color red). The groups are overlapping. To see them more distinctly, they are depicted twice: g4

over over g1 (top) and g1 over g4 (bottom)

‘en bloc’. With a flexible software at hand, the method may serve for a variety of

diverse applications, as shown in [5, 11]. The method is limited by the number of

variables (d) and the number of compared data vectors (n): with increasing values of

d or n an overcrowding may occur, and the subsequently plotted line segments may

cover the previous ones.

Figure 2 depicts the smaller groups no. 2 (n2 = 61) and no. 3 (n3 = 64) obtained

from the two gearboxes when being without load or very small load. The upper

exhibit shows the case, when group 2 was plotted first, and group 3 was added last

(g3 over g2), and has overshadowed previous plotting. The lower exhibit shows the

reverse case: g2 over g3.
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Comparing the two exhibits it becomes obvious that group 3 has systematically

(except variable no. 2) larger values as group 2. One may also notice that group 2

has two or three data vectors with atypically large values in variables 1 and 2.

Figure 3 depicts the larger groups 1 (n1 = 439) and 4 (n4 = 434) obtained from

the two gearboxes being fully loaded. Figure 3 shows clearly that—except variable

no. 2—all other variables of group 4 dominate the respective values of group 1 (are

significantly larger).

4 t-SNE, t-Distributed Stochastic Neighbor Embedding

The t-SNE method [4, 9] projects the original data points 𝐱i, i = 1,… , n, (located in

Rd
) to a two-dimensional plane by constructing the correspondent projections 𝐲i, i =

1,… , 𝐲n, located in that plane. The projection plane is called ‘the map’. The aim is

to retain between the pairs 𝐲i, 𝐲j in the map the respective distances (similarities)

between the original data points 𝐱i, 𝐱j. The method can deal with high-dimensional

data located located in several low-dimensional manifolds, when seen from multiple

viewpoints.

The method works using a stochastic methodology. The Euclidean distances

between pairs of the respective data points are converted into conditional proba-

bilities that represent similarities between pairs. It is assumed [4, 9] that the high-

dimensional data points {𝐱i} are generated by a probability function with Gaussian

kernel centered at 𝐱i. For each j, (j ≠ i), the distance/neighborhood of 𝐱j to the point

𝐱i is computed as the conditional probability pj|i. Applying a symmetrization tech-

nique, the overall symmetric distribution P = {pij} modelling the affinities between

all the pairs of points 𝐱i and 𝐱j residing in Rd
is established.

An analogous distribution Q = {qij}, modelling the affinities between projection

points 𝐲i and 𝐲j in the map, is established too. However now, for reasons explained

in [9], the symmetrized conditional probabilities {qij} are assumed to follow the

Student-t distribution with one degree of freedom, which for this case is identic with

a Cauchy distribution:

qij =
(1 + ||𝐲i − 𝐲j||2)−1

∑
k≠i (1 + ||𝐲i − 𝐲k||2)−1

(2)

The probability distributions P and Q should be possibly similar. This can be

stated using the Kullback-Leibler divergence:

C =
∑

i
KL(P||Q) =

∑

i

∑

j
pijlog

pij
qij

. (3)
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Fig. 4 Depicting the four group gearbox data using t-SNE. Group 1 is separated from remaining

groups, in particular, is far away from group 4. Groups 2 and 3 (small load) are differentiated with

few data points in common

Minimizing the criterion C with respect to the sought values 𝐲j’s (accessible via

Eq. 2) we obtained the projections shown in Fig. 4. One may notice that the obtained

projection points reflect nearly perfectly the true data structure. Data points belong-

ing to different groups are practically separated.

5 Discussion of the Results and Conclusions

The three multivariate data visualization algorithms yielded interesting results about

the geometry and structure of the recorded data points (rows of the gearbox diagnos-

tics data X, obtained from the respective vibration signal) and their location in the

multivariate data space R15
. This was shown in different ways.

The SOM and t-SNE algorithms were able to recognize (and visualize) the geo-

metrical localization of the data points in the multivariate data space. It appeared,

that groups 1 and 4 are far apart separated by empty regions. Both methods show a

strong separation of group 1 from remaining groups. What concerns groups 2 and 3:

they are more close each other as groups 1 and 4; yet they reside in separate areas

with an interface of perhaps three points. One may really say, that SOM and t-SNE—

working with quite different principles—are complementary. The results yielded by
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them are topologically equivalent. Taken together they strengthen and consolidate

our imagination on the geometrical location of the analyzed data.

The second applied method (Parallel Coordinate plot) provided the details about

the contents of the groups. It shows directly values of variables characterizing the

data values. For example: the variables in group 4 have predominantly higher values

as variables in group 1, and this is the reason for their big separation in the data

space.

The calculations of SOM and t-SNE were performed using the free Matlab
SOM Toolbox [10] and the free Matlab function tsne ([9]). Both methods work

in an iterative way. The calculations of SOM were straightforward and repeatable,

due to starts from points in the PC plane. The calculations in tsne start from purely

random normal values of the map projections 𝐲i’s, they need also fine-tuning of sev-

eral parameters. This takes several (perhaps four) times more time as the SOM needs.

The obtained results are in majority topologically equivalent, yet we got several sim-

ulations with weird content. Summarizing, we like the t-SNE method for giving more

details on the geometry of the data points in Rd
, as for example the SOM does. Other

methods, like Principal Components and Non-negative Matrix Factorization, have

given—for the same data—results more squeezed and clumped together [2].

For Parallel Coordinate plots we have used own Matlab function para. It is safe

and quick, however only for moderate values of d (number of variables) and n (num-

ber of displayed data vectors).

Concerning the diagnostic issues, we come to the conclusions:

1. The data coming from the two gearboxes working under load differ significantly

by their geometrical location in the multivariate date space.

2. The data coming from the two gearboxes working without load reside in different

areas with a very small joint interface.

3. The results are based on 3 independent analyzes, which strengthens their faith-

fulness. They also confirm suggestions provided in [1] that it is better to diagnose

gearboxes under loaded than unloaded condition.

All the three elaborated methods look at the data globally as points in the d-

dimensional data space. A problem: Is it possible to get similar displays when work-

ing with a smaller number r (r < d) of the variables? In [3] it is shown that it is

possible to obtain an effective comparable diagnostics when working with a reduced

set of variables. It would be interesting to find out if this is true also when depicting

the reduced data using the proposed methods.
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Engine Diagnosis Based on Vibration
Analysis Using Different Fuel Blends

Jairo A. Grajales, Héctor F. Quintero, Carlos A. Romero
and Edison Henao

Abstract Fault diagnosis of an internal combustion engine is proposed herein by
means of vibration analysis; in order to show the reliability of it, this paper presents
a comparative study of normal and faulty scenarios. An engine test bench was used
to acquire the vibration signals. For this study, the fault considered on the bench
was misfire, which was induced by removing the spark plug wire of a cylinder. Fast
Fourier Transform was used to obtain the frequency domain of the signal as a
preliminary step to the subsequent identification process based on statistical char-
acteristics extraction. In order to validate previous works on misfire with pure
gasoline, measurements included tests performed with ethanol-gasoline fuel blends,
namely E30, E20 and commercially available E8 at three different speeds. A sim-
pler classification process was obtained with the extraction of several statistical
characteristics from several frequency bands, based on the excited frequency
components. The presence of three peaks (at 0.75, 1.25, and 1.5 of the combustion
frequency) in the vibration signal of the engine block in the transversal direction for
the induced misfire condition, provided differentiation between normal and faulty
conditions with all tested fuel blends. According to results, changes in the fuel mix
seem to have little impact on the performance and behavior of the engine vibration
signals.

Keywords Engine diagnosis ⋅ Vibration analysis ⋅ Frequency analysis

1 Introduction

Given the importance of internal combustion engines within the modern industry,
many manufacturing plants depend on predictive maintenance for these machines.
Due to its relevance, approaches like condition monitoring have gained growing
interest. The main measurement used for this purpose is cylinder pressure [1], since
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it shows a great deal of information concerning the internal combustion process.
However, it is an invasive and expensive procedure due to additional costs of
sensors and engine modifications.

In an attempt of finding more affordable options, the use of less specific type of
sensors has reported good performance in techniques such as angular speed mea-
surement [2], oil analysis [3], surface temperature and exhaust emissions. But, great
interest has been placed on the study of acceleration measurement using sensors,
such as accelerometers [4], acoustic sensors [5] and knock sensors [6], with sat-
isfactory results and widespread deployments in condition monitoring of rotating
machinery [7]. However, they have been found to present problems when using
conventional analysis methods for assessment in the particular conditions of
internal combustion engines, since the measured signals are non-stationary.

The identification of diverse causes to engine block vibration from single point
measuring in [6] was achieved based on short time Fourier transform on the signal,
collected with a commercial knock sensor. A determination of combustion
parameters by means of neural networks reported in [2] was supported on angular
velocity measuring. Both indicated and load torques were estimated in [8] using the
variations in motor speed. An assessment of the influence of the shape variations of
the piston bowl on the combustion process was given in [9], for this purpose
vibration data from the engine block was analyzed. According to [10], results from
studies with only gasoline in faulty operations, such as a misfire, reported changes
in the spectral composition of the vibratory signal of an engine and the presence of
peaks different from the combustion frequency.

Nevertheless, these researches did not take into account the influence of
alcohol-gasoline fuel blends on the vibration features. [11] used a chassis
dynamometer to report on engine performance at different speeds and loads of a
vehicle driven by fuel blends consisting of gasoline and alcohol derivatives like
ethanol and methanol (E5, E10, M5 and M10). Their results showed that
alcohol-gasoline blends increased brake specific fuel consumption and delayed
cylinder gas pressure.

The present study was conducted to assess the effects of using different blends of
gasoline and ethanol as fuel on the spectral composition of the vibration signal of
the engine, in the presence of a fault, in this case a simulated misfire on cylinder 4.
Additional sensors were used during the experiments to consolidate a robust
database. This work showed that the same characteristic frequencies and peaks
reported on pure gasoline are present on gasoline-ethanol blends of commercial fuel
(E8), E20 and E30, when testing under misfire conditions. And that some statistical
characteristics can be extracted from the frequency domain signals, on certain
frequency bands, to simplify the identification process. This article describes in
detail the experimental setup, test procedure and a comparative analysis of mea-
surements under normal conditions and induced misfire.

268 J.A. Grajales et al.



2 Experimental Setup

The experimental test bench for this study consisted of a four cylinder, four stroke
spark ignited internal combustion engine from a truck with a capacity of 2 l, and
mounted on a movable structure that allowed access to the components of the motor
as well as better control of temperatures and leaks which in turn simplified con-
dition monitoring.

Vibrations analyzed herein correspond to three different measured accelerations.
These accelerometers were installed on three different areas (the first one vertically
positioned at the top of the engine, the second one longitudinally positioned in
respect to the crankshaft axis and mounted close to cylinder one, and the last one
mounted in the middle of cylinders two and three with a normal direction to the
crankshaft axis). Respective data acquisition resorted to two equipments mounted
on a NI cDAQ 9174 four-slot chassis (NI 9232, 3 channel ±30 V analogue input
module and a NI 9234, 4 channel ±5 V analogue input module).

In order to determinate stable speeds of the engine for measurement and reliable
conditions for the running periods of testing, a preliminary test was run.

Since the test bench allowed easy access to the engine components, it was
possible to test two different operational conditions with no load. (1) Normal: with
four cylinders running and (2) Misfiring Piston: Induced misfire of a piston by
disconnecting the spark plug from cylinder four. The comparative analysis between
normal and faulty operations of the engine was based on an experimental testing
that focused on different variables of speed and fuel blend. Three fuels were used
during the tests:

(i) E8: Blend of gasoline with 8% ethanol.
(ii) E20: Blend of gasoline with 20% ethanol.
(iii) E30: Blend of gasoline with 30% ethanol.

Data was collected at three different speeds: 1500, 1700 and 2000 rpm, for each
condition, running on each fuel previously presented, and recording the data from
the eight instruments at the same time. Three sets of data were collected for each
condition on each constant speed. Making use of the available data acquisition
setup the sampling frequency was set to 51.2 kHz/channel, and measurements were
recorded for 2 s, for each set of data.

The process of differentiation between normal and faulty conditions was based
on data obtained from signals in time domain and frequency domain transformation
of the signal, namely full spectrum of acceleration vibrations and subsequent focus
on areas/zones of special interest due to the presence of excited frequencies. This
study also resorted to the extraction of the following eight statistical features
applied to all the data obtained from the aforementioned signals: Root mean square
(RMS), Arithmetical mean, Kurtosis, Standard deviation, Skewness, Energy,
Maximum value, Minimum value.
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3 Results

Measuring started after installing the pressure sensor on the engine, which was
previously heated and set up to maintain a stable operation. Firstly, the normal
condition was tested for the E8 fuel blend; three different measurements were taken
for each one of the speeds selected. Afterwards, misfire is induced by disconnecting
the spark plug of the fourth cylinder, and the measuring process is repeated for each
speed. After completing the tests for E8, remaining fuel was removed from the tank
before introducing the next fuel blend. The same measuring procedure described
above was repeated until obtaining complete data from the remaining fuel blends
(E20 and E30). Figure 1 depicts the measurements with the vertical accelerometer.

To analyze the signals in the frequency domain, the fast Fourier transform was
applied. With all these new signals, a comparison was performed to identify dif-
ferences in the frequency components of the signal in the different operating con-
ditions, and see if the differences are still present when the different fuels are used.
Frequency domain signals for the three fuel blends under both normal and faulty
conditions at 1500 rpm can be seen in Fig. 2. In the graphic, two tendencies are
recurrent in both conditions for all the fuel blends. Firstly, from 400 to 700 Hz,

Fig. 1 Vertical acceleration, normal operating conditions on three fuels, second axis, spark
detection

Fig. 2 Transversal acceleration, normal and fault operating conditions on three fuels, 1500 rpm

270 J.A. Grajales et al.



several smaller peaks can be seen, which may be resonant responses from the
supporting structure due to their repetitive presence in almost every measurement.
And secondly, the prominence of three particular peaks is recurrent: namely at 25,
50, and 100 Hz. As expected for the engine used, under normal conditions at
1500 rpm combustion frequency (CF) was reported at 50 Hz but oddly the peak at
25 Hz corresponding to revolution or speed frequency (RF) also appeared in CF
peak is the only one expected to appear and the peak at 100 Hz may be considered
its harmonic, hence the presence of RF peak should have stemmed from some
unbalance and differences in the support of the mounting.

From faulty conditions, the two tendencies described above kept taking place,
however a couple of new facts provided enough distinction between faulty and
normal conditions. Firstly, RF peak at 25 Hz is reported to be the highest. And
secondly, under faulty conditions there was a constant presence of another three
peaks at 37.5, 62.5 and 75 Hz. Such frequencies may also be considered as 0.5 CF,
0.75 CF, 1.25 CF and 1.5 CF respectively. It is worth of noting that these distinctive
and discrepant tendencies of normal and faulty conditions took place with all fuel
blends. Results with similar behaviors were obtained for tests run at 1700 and
2000 rpm.

Neither the longitudinal nor the vertical acceleration measurements reveal any
significant discrepancy between faulty and normal conditions. The results obtained
with vertical accelerometers reported in Fig. 3 are in accordance with [10]: On both
operational modes, CF peaks took place very clearly and the only differentiating
elements are minor increases of the small RF peaks for the instances of induced
misfire. Just like in the previous measurements, all the tested fuel blends repeatedly
shared tendencies.

Since the first comparisons based on frequency domain transformations revealed
that distinguishing elements between operating modes exhibited greater salience at
frequencies below each one of the CF peaks, the analysis of statistical characteristics
focused on such lower frequencies. The first frequency band selected for statistical

Fig. 3 Vertical acceleration, normal and fault operating conditions on three fuels, 1500 rpm
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characteristics extraction corresponded to the zone 0.6–0.9 CF. Analyzing this fre-
quency from transversal measurements, only one (minimum value) out of the eight
statistical properties did not report discrepancies that allowed to differentiate
between normal and faulty conditions. The constant tendency of the seven differ-
entiating properties was higher values under faulty conditions. Maximum values and
Standard Deviations were the ones that provided a better distinction, i.e. a greater
gap between values of the two conditions tested. Maximum values (Fig. 4) serve as
an example to illustrate the satisfactory distinction obtained by means of statistical
characteristics extraction from transversal acceleration measurements at the afore-
mentioned frequency band for all the speed and fuel blends variables of this study.

Further analysis on transversal acceleration at the wider frequency band 0–0.9
CF reported that five statistical characteristics (maximum value, RMS, mean value,
standard deviation and energy) allowed clear distinction between conditions for the
three fuel blends at 1500 and 1700 rpm, however differentiation didn’t took place at
all from measurements at 2000 rpm. The remaining three characteristics (Kurtosis,
Skewness, and Minimum value) exhibited inconsistency in their results, whether
they didn’t report differences whatsoever or only for isolated conditions.

Despite full spectrum readings of vertical vibrations reported an overall simi-
larity unpromising for signs of differentiating elements between operational modes,
the corresponding statistical characteristics surprisingly allowed some distinctions.
Maximum value was the only statistical characteristic capable of differentiating
normal and faulty conditions at the 0–0.9 CF frequency band from vertical vibra-
tions. Such a distinction was present for all the speed and fuel blends variables of
the study as shown on Fig. 5. It is plain to see that considerably lower maximum

Fig. 4 Transversal acceleration, normal and fault operating conditions on three fuels, maximum
value, 0.6–0.9 CF

Fig. 5 Vertical acceleration, normal and fault operating conditions on three fuels, maximum
value, 0–0.9 CF
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values took place in normal conditions in comparison to those for conditions with
induced misfire. None of the other statistical characteristics provided results as
reliable as those from maximum values to assist in the differentiation process
between operation conditions. Yet again, longitudinal vibrations signal didn’t yield
any statistical characteristic capable of providing constant and reliable distinction
between the operation modes tested herein.

Frequency domain analysis reported some excited frequencies during normal
operation, most of them correspond to the combustion frequency (CF) and its
harmonics, a foreseen fact due to typical characteristics of a spark ignited internal
combustion engine. The equipment used herein was a four-cylinder engine, whose
CF is known to be two times the revolution frequency (RF). The latter also
appeared in the analysis. As opposed to literature reporting the largest magnitudes
for CF peaks on normal conditions, normal conditions tested at 1500 rpm (Fig. 3)
revealed RF peaks to be the highest, which in turn can be explained with a test
bench problem stemmed from unbalance of the pieces. Specially, the inertia added
to the system by the dynamometer attached to the engine.

In parallel with the above analysis, the non-harmonic nature of readings from
faulty conditions was confirmed with the presence of 0.75, 1.25 and 1.5 CF peaks
for all the speed and fuel blend variables of the study, such peaks never appeared on
normal conditions measurements. That anharmonicity was also a foreseen fact due
to one idle cylinder leading to three combustions in a two cycle period.

This work extends the scope of previous studies by including different fuel
blends and thus more scenarios for assessment. Extra amount of oxygen provided
by the addition of ethanol changes the characteristics of the combustion process
particularly in respect to speed and power of the combustion. However, the same
excited frequencies reported in literature with only gasoline operations were also
found in the three ethanol-gasoline blends tested herein, despite that the carburetor
used was not the appropriate for the new conditions of the combustion.

4 Conclusions

A time frequency transformation was applied on three vibration signals (vertical,
transversal and longitudinal accelerations) from an internal-combustion,
spark-ignited engine; focusing on finding frequency components able to differen-
tiate normal from induced misfired condition. Induced misfire was achieved by
taking off spark plug number four. Besides the measurements at three different
speeds, the study also expands the research scope by including three
gasoline-ethanol fuel blends (E8, E20 and E30). Additional sensors were used for
future investigations.

The results herein coincided with the literature. The expected presence of three
peaks (referred to as 0.75, 1.25, and 1.5 CF) in the transversal vibration signal for
the induced misfire condition, provided differentiation between the two operation
conditions examined, in all tested fuel blends.
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A subsequent extraction of eight statistical characteristics was performed on the
signal in the time domain and on several frequency domain bands, aiming to
simplify the differentiation process. Seven of the eight statistical characteristics
extracted from transversal vibrations exploring the frequency band 0.6–0.9 CF,
provided a clear distinction between operational conditions for all the variables
tested.

In the case of vertical vibrations signals, the only statistical property capable of
distinguishing operational conditions for all the variables tested was the maximum
value in the frequency band 0–0.9 CF. Data from longitudinal vibrations only were
able to provide isolated distinctions between conditions since inconsistency was
reported throughout the variables of fuel blends and speed during the analysis.
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Application of Cepstrum Prewhitening
on Non-stationary Signals

L. Barbini, M. Eltabach and J.L. du Bois

Abstract In the field of vibration based condition monitoring a trusted symptom

of a defective bearing is the observation of peaks, at characteristic frequencies, in

the squared envelope spectrum (SES). If a machine is operating in a varying speed

regime the SES is computed on the order tracked signal, i.e. the signal resampled at

constant angular increments, and the SES can still be used for diagnostic. Despite

its versatility a common problem with the SES is that peaks from other sources of

vibrations, as for instance gears, can prevent the diagnosis of a defective bearing.

Therefore pre-processing techniques are applied to the vibrational signal before the

computation of the SES to enhance the signal from the bearings. Among these tech-

niques cepstral pre-whitening (CPW) has gained much attention offering a remark-

able capability of eliminating, in a blind way, both harmonics and modulation side-

bands of the unwanted components. In the case of a varying speed regime the usual

procedure consists of three steps: order track the signal, calculate the CPW, evaluate

the SES. In this paper on the contrary the CPW is applied before the step of order

tracking; therefore the proposed approach is: CPW the raw time signal, order track-

ing, evaluation of the SES. The remarkable observation is that for this approach the

cepstrum does not present peaks at characteristic quefrencies, being the raw signal

acquired in a varying speed regime. However this paper shows by means of numerical

simulations and analysis of experimental data, that with the proposed methodology

the masking components coming from the gears are suppressed and the signal from

the defective bearing is enhanced.
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1 Introduction

In a faulty bearing an impact occurs every time a rolling element hits a defect in the

raceway or a defective rolling element hits the raceway. The detection of the shock

generating from each impact is often a challenge due to the presence of other sources

of vibrations, in particular gears, masking the presence of the defect. Therefore signal

pre-processing methods have to be implemented before the evaluation of the widely

established diagnostic technique of the squared envelope spectrum (SES). Cepstrum

editing (CE) has been proposed as an efficient method for the suppression of gear

components from a vibrational signal [1] and it performs well when compared with

other techniques [2]. The working principle uses the fact that vibrations from gears

result in a series of peaks at constant distances in the frequency spectrum. Therefore

all these peaks can be eliminated suppressing, by means of a lifter, the corresponding

peak in the cepstrum. Sawalhi et al. [3] introduce the cepstral pre-whitening (CPW)

as a further application of the cepstrum for the removal of all the discrete components

from the spectrum, both vibrations from the gears and resonance effects.

When machines are operating at varying speed peaks corresponding to the vibra-

tions from gears are smeared in the frequency domain and the cepstrum does not

present significant peaks. In such cases the CPW is implemented in the order domain,

after the operation of order tracking (OT) [4, 5]. However changing to a rotation

angle basis smears the resonance frequencies excited by the impacts from the faulty

bearing. Recently [6, 7] has been suggested to enhance the signal from the bear-

ing directly in the time domain and to implement the OT only after this operation.

Borghesani et al. [6] propose to band-pass filter the non stationary signal and Ran-

dall et al. [7] compare the performances of the application of three common tech-

niques:spectral kurtosis for band selection, minimum entropy deconvolution and an

exponential lifter.

The paper follows these methodologies and shows that CPW can be applied

directly on time vibrational signals from machinery operating at varying speed con-

ditions, before the operation of OT. The paper is organised as follows: Sect. 3 presents

the proposed method, Sect. 2 evaluates its performance on a numerical simulation

and Sect. 3 on experimental data sets. Conclusions are presented in the final section.

2 Methods

In this paper two techniques will be used to pre-process, before the computation of

the squared envelope spectrum (SES), vibrational signals from machines operating

at varying speed. The two techniques are cepstral pre-whitening (CPW) and order

tracking (OT). CPW can be implemented without the computation of the cepstrum

[4], using only the Fourier transform:
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Fig. 1 Schemes of the two processing methods

xcpw = IFT
[
FT (x)
|FT (x)|

]
(1)

This operation is equivalent to setting to zero the real cepstrum and recombine it, in

the frequency domain, with the phase of the original signal. The result is a white

signal with a flat spectrum of amplitude one. OT is applied in the time domain

implementing a digital re-sampling of the signal synchronously with the shaft rota-

tion speed. In this paper the shaft rotation speed is considered to be provided by a

tachometer. The envelope for the computation of the SES is calculated as the absolute

value of the analytical representation of the full band signal. The SES is normalised

by means of the ratio: ̃SES[l] = SES[l]∕SES[0]. In the following the ̃ will be omit-

ted. The common procedure using such techniques consists of a first step of OT and

afterwards CPW the xOT signal [4, 5], as it is shown in Fig. 1a. However the reso-

nant frequencies excited by the impacts from a faulty bearing are constant or vary

more slowly than the operational speed of the machine. OT effectively produces a

sequence of impacts equally spaced in the time domain, but the resonant frequencies

excited by the impacts will be smeared [6] by the re-sampling. Therefore after OT

the dynamic information is lost and the application of CPW may result in unwanted

amplification of low signal to noise ratio bands [5].

To address this issue in this paper the CPW is applied directly on the non station-

ary signal and afterwards the OT is performed. The proposed approach is shown in

Fig. 1b. The central assumption is that the restriction of applying CPW only to sig-

nals showing periodic components in a spectrum can be relaxed. Equation 1 is more

generally effective and able for instance to enhance impacts masked by a strong non

stationary signal, as shown by a numerical simulation in the next section. This fol-

lows from the observation that Eq. 1 is equivalent to what has been called the phase

only signal [8] and used in [9] for detection of defects on surfaces.
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3 Numerical Investigation

The numerical simulation consists on the application of CPW to a signal constructed

as the superposition of a deterministic non stationary component and a sequence of

random impacts. Such signal does not show peaks in the cepstrum, nevertheless it

will be shown that CPW is still capable of enhancing the sequence of impacts. A

chirp signal with the frequency increasing linearly from 10 to 200 Hz and amplitude

1 [a.u.], is used for the deterministic non stationary component. The impacts have

mean occurrence frequency of 48.7 Hz plus a random jitter of 2%, in order to resem-

ble a random component coming from a defective bearing. The resonance frequency

is simulated in the band 2200–3000 Hz and the amplitude of the impacts is 0.1 [a.u.].

The signal is shown in Fig. 2a in black, the total length is 2 s and the sampling fre-

quency is 12.8 kHz, zoomed sections at different times are shown on the left and

right sides, in yellow is superimposed only the sequence of impulses. As expected

the real cepstrum of the simulated signal has no clear peaks, as shown in Fig. 3a. The

real cepstrum is calculated as the inverse Fourier transform of the logarithm of the

magnitude of the Fourier transform of the signal. The SES, shown in Fig. 3b, does

not present indications of the presence of impulses, being masked by the high energy

chirp. The signal after the operation of CPW is shown in blue in Fig. 2b, the chirp

is completely removed and the presence of the impacts is highly enhanced, for com-

parison in yellow it is shown the original sequence of impacts. The SES of the CPW

signal is shown in Fig. 3c where peaks are present at the expected mean occurrence

frequency of the impacts and the first harmonic.

Fig. 2 a Simulated non stationary signal. b Simulated non stationary signal after CPW. See legend

for description of signals
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Fig. 3 a Real cepstrum of the simulated non stationary signal comprising the two components,

b corresponding SES. c The SES of the CPW signal

4 Experimental Investigation

This section shows a benchmark comparison between the SES obtained using the

proposed approach of Fig. 1b and the SES obtained from the usual procedure of

applying CPW in the order domain Fig. 1a. The data sets used in this section were

provided by the Centre Technique des Industries Mécaniques (CETIM).

4.1 Test Rig and Data Sets

Figure 4a shows the photograph of the test rig. A variable speed asynchronous elec-

tric motor drives the input shaft of a parallel spur-gear of ratio one and 18 teeth, and

an alternator applies a constant load. The output shaft is supported by two rolling

elements bearings of which the one close to the gearbox is in healthy conditions

while the other one has an outer race defect with expected repetition of 3.04 orders

(BPOO). An accelerometer mounted on the casing of the healthy bearing is used as

a vibration transducer.

Two signals are analysed in this paper: a run-up profile and a randomly varying

speed, the lengths of the signals are of 15 and 20 s respectively, both are sampled at

Fs = 12.8 kHz. Figure 4b and c show the two speed profiles as a function of time: in

the run-up the speed is varying approximately of 10 Hz increasing constantly from

25 to 35 Hz, while in the case of random variations the speed changes more drasti-

cally for example of approximately 30 Hz in 2.5 s. The SES of the run up signal is

shown in Fig. 5a and for the random speed signal in Fig. 5b. The speed variations
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Fig. 4 a The photograph of the test rig. b The run up speed profile. c The randomly varying speed

profile

are large in both cases therefore the SES are smeared and no clear peaks are present

at the theoretical bearing fault order. The SES after OT the signals are shown in

Fig. 5c and d and the presence of the defective bearing is revealed, however can be

noticed disturbing components among which 1X has the highest energy and 2BPOO

is almost masked. The real cepstra of the signals before and after OT are shown in

Fig. 5e for the run up case and Fig. 5f for the random speed profile. In both cases after

the operation of OT, in black, the gear components contribute a periodic spectrum

resulting in a cepstrum with peaks separated by 1/X. On the other hand the cepstra

for the raw non stationary signals, in blue, do not present peaks.

4.2 Results

The aim of the CPW step in the common procedure of Fig. 1a, is that of removing the

disturbing components from the SES of Fig. 5c and d. After the operation of OT the

spectrum shows periodicity contributing the peaks in the cepstra, as shown in Fig. 5e

and f in black, therefore this is the typical application of cepstral pre-whitening on a

non stationary signal [4].

In the method proposed in this paper, as shown in Fig. 1b, the CPW is applied

directly on the time non stationary signals for which the cepstra does not presents

peaks at characteristic frequencies, Fig. 5e and f in blue, and the SES Fig. 5a and b
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Fig. 5 a SES of raw signal for the run-up speed and b randomly varying speed. c, d Corresponding

SES after OT. e, f Real cepstra: in blue of the original signals and in black of the OT signals

has smeared peaks. The SES resulting from the two methods are shown in Fig. 6 for

the run up case and randomly varying speed respectively, top raw is the OT followed

by CPW and bottom raw is CPW followed by OT. The vertical scales are defined,

for a comparison, according to the SES of Fig. 5c and d. The proposed method per-

forms well when compared to the common procedure: the masking components are

more suppressed and the peaks at characteristic fault frequencies have higher relative

amplitude for both the analysed speed profiles.

5 Conclusion

The paper shows the effectiveness of cepstrum pre-whitening to enhance the pres-

ence of impacts from a faulty bearing when applied directly on acceleration signals

from machinery operating at varying speed. The paper also shows that in variable

speed situations it is beneficial to apply cepstrum pre-whitening directly to the time

non-stationary signals instead of the order-tracked signals, because the resonant fre-

quencies appear to change with speed in the order domain. The method proposed
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Fig. 6 SES after processing the signals. OT followed by CPW for a run up speed, b randomly

varying speed. CPW followed by OT for c run up speed, d randomly varying speed

here consists of order tracking the signal only after the operation of whitening the

time non-stationary signal, and finally calculating the squared envelope spectrum for

diagnostics.

Both numerical simulations and analysis of experimental data have been carried

out. The proposed method has been compared with the common procedure of order

tracking the signal as a first step and afterwards use the cepstrum pre-whitening in

the order domain. The evaluation of the squared envelope spectra obtained by the two

methods shows that, as proposed in this paper, the cepstrum pre-whitening performs

well on the time non-stationary signal and that it is advisable to apply it before order

tracking.
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Using of Entropy Method in Failure
Diagnostics

Stanisław Radkowski, Marcin Jasiński, Robert Gumiński
and Adam Gałęzia

Abstract Occurring of failure is accompanied by changing of energy distribution
of vibroacoustic signal generated by a dynamic system. Hence, comparing the
energy distributions of signals observed for technical conditions without failure and
for failure states of dynamic model one has access to information about the for-
mation and development of damaging process. The tool to estimate the probability
distribution changes corresponding to changes in the distribution of signal energy
can be failure oriented measure of information. The paper discusses the problem of
proper selection of entropy methods, for detecting and the identification of the
failures, both for the signals generated by the actual dynamic systems and simulated
one. Particular attention was paid to the possibility of using bispectral entropy and
singular entropy change for example signals generated during the formation and
propagation of the gear tooth crack. The next interesting resultants of analyzing
changes was in the entropy energy of vibration signal recorded during the tests on
the back to back test-bed. It was given the observation the chosen harmonic and its
modulated bands. During analysis we determined energy change as a function of
time in the bands of different widths around the successive harmonics engagement.
On the basis of such a limited energy of signal, the technical state of entropy was
calculated.
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1 Introduction

The subject applications vibroacoustics in technical systems, including the question
of vibroacoustic diagnostics assemblies and components machines are the contents
of numerous publications [4, 6]. Note that the underlying vibroacoustic methods
and associated methodology of diagnosis and prediction, the assumption of pro-
portional increase energy in vibration and noise. The presented approach is pro-
posed to detect and analyze diagnostic information about the stages of development
of failure taking into account the impact of nonlinear effects and nonstationary
phenomena based on the analysis of changes in the energy distribution of the signal
analyzing changes in entropy. Because the actual measured signal will contain both
the part generated by a diagnosed kinematic pair as components transmitted through
the structure to the measuring point, other an additional problem to be solved is the
problem of the separation of diagnostically useful signal part.

The problem is to develop an algorithm which takes into account the impact of
small low-energy phases of failure to the changes in the amplitude values and the
fact that important diagnostic information is transmitted by a modulated phase
angle. Hence, the proposed algorithm on the one side give the possibility of a
choice of modulated frequency bands on the basis of properly constructed models
the establishment of the analytical signal and conducting demodulation amplitude
and phase using Hilbert transform. On the other side it gives possibilities of study
changes in the distribution of energy in a wide frequency band which take into
account a lot of harmonics. Additional studies the impact of nonlinear effects
require linkage analysis between the individual harmonics as a function of the
development of failure.

Next step issue is the selection of the right model, because formulated diagnostic
tasks. The main problem with this approach is the problem of modelling the impact
of disturbances on the signal generated by the diagnosed object and then use the
results obtained for further analysis diagnostic and prognostic: reference evaluation
of the remaining useful life. The simplest solution is to directly incorporate the
results into the diagnostic inference. In fact, the results should be regarded as
uncertainty information. The concept of uncertainty is related to the degree of
compliance information with reality. Despite the existence of other approaches [2]
are still fundamental probabilistic methods, using entropy as a measure of uncer-
tainty. At the same time it was taking into consideration the relationship between
diagnostic information and changes in the distribution of signal energy. In the paper
was used the concept of entropy change, using the energy distribution in vibration
signal.
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2 Analysis Information of Signal

According to the theory of Shannon [3, 11, 13, 14], entropy is a measure of the
uncertainty, while the amount of mutual information contained in the random η of
the random process is described by the relation:

I ζ ̸ηð Þ=H ζð Þ−H ζ ̸ηð Þ ð1Þ

where:

I(ζ/η) mutual information;
H(ζ) the marginal entropies;
H(ζ/η) the conditional entropies;

and determines a reduction in uncertainty from the experiment and measure-
ments. Using the measurement [2] allows to determine the dependence of random
size of the input and the output of the line and detect the presence in them of
random disturbances. Greater possibilities involve the use of Kullback’a informa-
tion that can be used to determine changes in the probability distribution as a
measure of distance [10]:

Dðα ̸κÞ= Hðα ̸κÞ+Hðκ ̸αÞ ð2Þ

H α ̸κð Þ= ∑
n

i=1
qiln

qi
pi

ð3Þ

where:

α p1, p2, . . . , pnð Þ, κ= q1, q2, . . . , qnð Þ
κ a priori probability distribution,
α a posterior probability distribution

and allows you to assess the impact parameter change the shape parameter on the
hazard function of the function failure rate. Equation (3) was the basis for the
development of an algorithm to detect damage to the immediate impact on the form
of the probability distribution depends on changes in parameters describing the
distribution of the test.

In this case, assuming a Waybill’s distribution entropy will be described in
equation [12]:

H α, βð Þ= − lnα+1+
α− 1
α

γ + lnβ ð4Þ

Using of Entropy Method in Failure Diagnostics 287



where:

α the shape parameter,
β scale parameter,
γ Euler’s constant

Note that changing the scale parameter can be thought of as a disorder inde-
pendent of changes in the shape parameter, which changes have a major impact on
the reliability of the system. Provided this study by the authors regarding the
process a tooth crack in the gear confirm the high sensitivity of the analyzing
parameter of probability distribute to the process of damaging and clearly show the
successive phases of the process (Fig. 1).

3 The Characteristics of Entropy

Bearing in mind that different types of damage and their diverse impact directly
affect the value of the entropy of the signal at this angle analyzed NVH signal
generated by the kinematic node, which is a couple of gears. One such characteristic
is the entropy bispectral specified in bispectrum [8]. Cumulants of the second order
(k = 2) and third order (k = 3) are described by equations:

C2x kð Þ=E x* nð Þx n+ kð Þg� ð5Þ

C3x k, lð Þ=E x* nð Þx n+ kð Þx n+ lð Þ� � ð6Þ

where E [x*(n)] is expected value from x*(n), x* its conjugate.

Fig. 1 The parameter of
shape in function of
measurement number of
wheel no
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The k-order spectra are defined as Fourier’s transformants of the cumulants. So:

S2r fð Þ= ∑
∞

k= −∞
C2x kð Þe− j2πfk ð7Þ

S3r f1, f2ð Þ= ∑
∞

k= −∞
∑
∞

l= −∞
C2x kð Þe− j2πf1ke− j2πf2l ð8Þ

where f is frequency. They are called respectively spectrum of power and
bispectrum

Detailed characterization of the measurement are shown in bispectral operation
[5]. Referring to the energy distribution of signal on bispectral plane we determine
the entropy of the classical Shannon’s way:

H ζð Þ= ∑
N

i=1
psilnpsi ð9Þ

where:

psi =
∑si E ζið Þ
∑s EðζiÞ

For similar analysis capabilities of the energy distribution throughout the
experiment tooth crack, a further measure of entropy to create time-frequency plane
using the Hilbert transform (4). First, the whole plane is divided into smaller
elements, which calculate energy Ei (i = 1 … N). Then we can calculate the
normalized energy values for each item:

pi =
Ei

E
ð10Þ

hence:

H E½ �= − ∑
N

i=1
pilnpi ð11Þ

From the point of view of identification of the type of damage, in particular the
detection capabilities and its stage of development and location specific possibilities
does a signal analysis of information of the plane E-E ̇. At the outset created a
matrix whose elements are the energy values for each segment of plane E-E. Note
that studying the autonomics system in which the damping function is described by
the equation:
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x ̈+ f xð Þ=0 ð12Þ

Equation (12) we will write in the form of equations:

x ̇= y
y ̇= − f xð Þ

�
ð13Þ

Taking proposed by [1] plane, whose coordinates are expressed using paren-
theses Lie:

ψ x, yð Þ= − y2 − xf xð Þ ð14Þ

and Φ (x, y) as the derivative of this function ψ (x, y)

Φ x, yð Þ= xf
0
xð Þ− yf xð Þ ð15Þ

Note that in this way coordinate defined function (14) has a dimension of energy:
ψ (x, y) = E, and Φ (x, y) = e-dimension derivative energy.

Assuming the opportunity of presentation of signal spectral structure by means
of a Fourier series, it suggested examination of the characteristics of an information
signal using the Singular entropy [15]. For this purpose the individual segments of
the plane E-E ̇ established observation matrix A [5]. Using the procedure of
decomposition Singular (singular value decomposition)

A=USV′ ð16Þ

where:

U is a m × m, unitary matrix,
S is a diagonal m × n matrix with non-negative real numbers on the diagonal,

and
V′ is a n × n, unitary matrix over plane E, V′ is the conjugate transpose of the n

× n unitary matrix, V

We obtain diagnostic matrix S of the elements si … sk.
Hence:

pi =
si

∑k
j=1 sj

ð17Þ

Determines the distribution of power between the specific elements of the matrix
singular. A measure of the distribution is singular entropy signal:
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Hs = ∑
k

i=1
pilnpi ð18Þ

Analysis of entropy characteristics of vibroacoustic signal generated when
accelerated attempts to the tooth crack is presented later in this work.

4 Results of Laboratory Experiments

The experiment was conducted at the FZG back to back test-bed. The particular
description of test best is in [7].

They were subjected to accelerated fatigue test. Figure 2 present the changes of
subsequent mesh harmonics of a vibroacoustic signal registered on the toothed
gear’s casing during the whole experiment.

The changes which accompany the subsequent phases of development of
fatigue-related defects are observable in a bispectrum [9]. Next step was to create a
new measure which is able to predict the moment of fatigue tooth crack. Integral of
bispectral noise from bispectral maximum diagrams and integral of bispectral noise
from bispectral residual maximum diagrams (Fig. 3) were calculated with maxi-
mum level 0.5E8 (everything higher than maximum level was equalize to this
maximum level) for full life time of this wheel. At Fig. 3 we can see that calculated
derivative of this diagrams (applying a smoothed curve) we can build effective and
sensitive diagnostic parameter of quality changes of fatigue process of toothed
wheel damage.

Based the bispectrum entropy model mentioned, bispectrum entropy of the test
signal are calculated.

This illustrates the problem of effectiveness of diagnostic observations results in
the task of diagnosis of early stages of defect development. Figure 4 present the
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Fig. 2 The changes of subsequent mesh harmonics (no. 1–7)
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values of bispectral entropy corresponding to these changes. Let us note that this
measure, similar to shape parameter of probability distribution depend on defect
development while the value of shape factor in particular, does not change
monotonously. In order to achieve higher efficiency in application of the results of
vibroacoustic diagnosis, we should take seriously into account, the individual
vibroacoustic characteristics which were defined during preliminary measurements
and analysis.

The next interesting resultants of analyzing changes in the entropy energy of
vibration signal recorded during the tests on the back to back test-bed. Give the
observation the chosen harmonic and its modulated bands. During analysis we
determined energy change as a function of time in the bands of different widths
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around the successive harmonics engagement. On the basis of such a limited energy
of signal, the technical state of entropy calculated in accordance with Eq. (11).
Particular attention was paid to the results obtained on the basis of energy desig-
nated in bands around the second harmonic meshing (Fig. 5). In the discovery of
determining the entropy assumed that it varies as a function of time along with the
change gear, so long the experiment was divided into a plurality (twenty) of equal
length intervals and each of these intervals determined entropy.

In addition, energy and entropy then determined in bands of different width
symmetrical around the second harmonic. The above waveforms relate to the
narrowest bandwidth (+12 Hz). It should be noted that the results in wider bands
differ slightly, which is due to the fact that the power of the harmonic engagement
considered bands around the second harmonic is dominant.

There next approach is based singular entropy (18) estimated on E-E plane
(14–15). Analysis of the impact of changes in model parameters on the value of
entropy basic parameters: fmesh = 540; f = 10 Hz; fAM = 25 Hz; fFM = 25 Hz.

Division of space into a small number of cells is not useful. The most useful
seems to be entropy calculated from the formula of division 100/100. For regular
borders the space (and consequently the division and cell boundaries) with the
increase of the parameter value of the modulation is an increase in entropy
(Table 1). However, for the permanent borders of entropy it is sensitive to the
distinction between AM and FM modulations but not to distinguish between AM
and AMFM (similar range of variation values). In addition, entropy in this case is
not sensitive to the occurrence of the disorder. For depending on type of failure
space (and consequently the dynamic division borders and cells) with increasing
modulation parameter takes no clear change in the entropy (FM AMFM). However,
for dynamic boundaries, entropy is allows you to distinguish between AM and FM
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modulations but no longer distinguish AM from AMFM (similar range of variation
values). In addition, entropy in this case allows to detect the occurrence of dis-
turbances (other than the cases of the modulation without disruption).

5 Conclusion

The work shows that it is possible to diagnose the changes of the condition of the
objects by means of vibroacoustic techniques with an assumption of significantly
small energy dissipation. The presented approach not only correctly explains and
defines the phenomena from the qualitative point of view but also enables their
quantitative evaluation, while maintaining, for defined conditions, a satisfactory
consistence.

A significant practical advantage of an approach such as that presented in this
paper is that it allows to start diagnose the changes of the condition of the objects
without having to develop detailed deterioration models of objects. One can start
managing their facilities with a set of entropy measure bispectral measures, which
are not only very sensitive on changes of frequency structure of vibroacoustic signal
but also are sensitive on changes of kind of nonlinearity and phase coupling con-
nected with analyzing phenomena. The analyze of bispectral noise changes could
be effective and sensitive diagnostic parameter of quality changes of the engines
technical state.

Table 1 Expanding borders

Modulation Parameter variable Entropy Hs

10/10
Entropy Hs

100/100
Entropy
Shannon’s

AM M = 0.1 0.8236 2.6445 0.4227
AM M = 0.2 0.8046 2.7748 0.3969
AM M = 0.3 0.7924 2.8644 0.3786
FM m = 0.5 0.7914 3.3112 0.3064
FM m = 1 0.7934 3.2892 0.3099
FM m = 2 0.8004 3.2939 0.3098
AMFM M = 0.1; m = 0.5 0.8039 2.6714 0.4263
AMFM M = 0.2; m = 1 0.8132 2.6323 0.4327
AMFM M = 0.3; m = 2 0.9176 2.7801 0.4092
AMFMz M = 0.2; m = 1; z = 5% 0.7836 2.2029 0.4957

AMFMz M = 0.2; m = 1; z = 10% 0.6580 1.9487 0.5444
AMFMz M = 0.2; m = 1; z = 20% 0.0379 1.5989 0.5943
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Use of Bispectral Measures in Machines
Faults Diagnostics—Examples

Marcin Jasiński

Abstract It is common knows that the power spectrum based methods cannot detect
the phase relationship between different frequency components and additionally
suppresses the phase information. It is therefore necessary to explore spectral mea-
sures of higher order, like the bispectral measures, to detect various forms of phase
coupling between frequency components. In the paper was analyzed the impact of
nonlinearity of the sub-section on the behaviour of the whole system by using of
bispectral measures: diagonal bispectrum, maximum bispectrum and residual bis-
pectrum. The results pointed to high sensitivity of bispectral measures to changes of
the signal’s frequency structure and to the possibility of using these relations while
constructing models of development of degradation-and-fatigue-related processes. In
the paper was build effective and sensitive diagnostic measure of quality changes of
fatigue crack growth at low-amplitude fatigue testing, fatigue process of toothed
wheel damage or electric motors bearings faults. To do this, It was create a new
measure (nobody else didn’t that way) which is able to extract the relevant diagnostic
information. Integral of bispectral noise from bispectral maximum diagrams and
integral of bispectral noise from bispectral residual diagrams were calculated with
maximum given level (everything higher than maximum level was equalized to this
maximum level) for every measurements.

Keywords Bispectral measures ⋅ Technical diagnostics ⋅ Residual bispectrum

1 Introduction

Development of mechatronic systems, especially the development of measurements
and analysis of dynamic quantities, resulted in a situation in which a constructor is
able to account for a product’s evolution, caused by wear and tear processes during
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a product’s operations, already during the design phase. Effective use of this
knowledge will in many cases decide about the adopted operational strategy [11],
the level and the extent of diagnostic resources involved, the method of achieving
the desired safety level during each phase of a product’s life, especially during the
maintenance [12] and repair phases.

The value of diagnostic information can be expressed in the form of a measure
which accounts for change of the decision-makers’ efficiency. In other words, the
ability to provide information of relevant quality resulted in lower uncertainty as
regards the right action to be taken and hence it enabled the right decisions to be
made.

Let us note that while assessing the utility value of the information provided at a
product’s design phase, we deal not so much with the volume of information but
with the impact it has on change of a decision maker’s efficiency in respect of
maintenance activity [1–3].

Increasing operational requirements set for de-vices and machines because of
safety reasons and due to need for operating cost minimization result in the need for
searching for new methods of defect detection in diagnosed objects, e.g. based on
the analysis of vibroacoustic signals [1, 4]. The natural feature of vibroacoustic
diagnosis is the possibility of easy and fast registration of a big number of heavily
redundant vibroacoustic signals and the associated surplus of information. This
leads to the necessity of reducing the utilized information down to the level
enabling building of an adequate diagnostic model [5].

In next sections it was described how to build new effective and sensitive
diagnostic parameters (maximum bispectrum and residual bispectrum) of quality
changes of: fatigue crack growth at low-amplitude fatigue testing, fatigue process of
toothed wheel damage or electric motors bearings faults.

2 Bispectral Measures

The central issue is how to extract the relevant diagnostic information and use it in
the fore-casting process. Let us note that the measured vibroacoustic signal is a real
signal which fulfils the requirement of causality. Thus, by using the measured signal
z(t) and a defined formalism, we are able, by means of addition of an imaginary part
of v(t), to form an analytical signal:

aðtÞ= zðtÞ+ jvðtÞ ð1Þ

In accordance with the theory of analytical functions the real and the imaginary
components are functions with two variables x and y.
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Let us assume that the analysis of analytical signal is conducted on the basis of
observation of the changes of the length of vector A and the phase angle of φ:

zðx, yÞ+ jvðx, yÞ=Aðcosφ+ j sinφÞ ð2Þ

Thus,

z=A cosφ, v=A sinφ ð3Þ

which means that the measured signal is an orthogonal projection of the vector A on
the real axis. Basing on Cauchy-Riemann condition, finally we get:

dz
dτ

=
dA
dτ

cosφ−A sinφ
dφ
dτ

ð4Þ

The obtained relationship, in accordance with our expectations, presents an
equation which enables the analysis of the measured signal on the basis of obser-
vation of A and φ. What simultaneously captures our attention is the fact that for the
low-energy processes, when we can disregard the changes of vector length and
assume that A≅ const, the whole information about the changes in the measured
signal is contained in the phase angle:

dz
dτ

= −A sinφ
dφ
dτ

ð5Þ

It is common knows that the power spectrum based methods cannot detect the
phase relationship between different frequency components and additionally sup-
presses the phase information. It is therefore necessary to explore spectral measures
of higher order, like the bispectral measures, to detect various forms of phase
coupling between frequency components. Investigating this possibility we try to
write, the bispectrum in form [6, 9]:

B fx, fy
� �

=E S fxð ÞS fy
� �

S* fx + fy
� �� �

. ð6Þ

where

E .½ � denotes the expectation operator,
S fð Þ it’s a power spectrum

It is easy to see the bispectrum is complex and that the bispectral values depend
on two frequencies fx and fy. Writing the Eq. (6) in terms of amplitude and phase
quantities one becomes:

B fx, fy
� �

= S fxð Þj j S fy
� ��� �� S fx + fy

� ��� ��ejΘβ fx, fyð Þ ð7Þ

where Θβ fx, fy
� �

=Θ fxð Þ+Θ fy
� �

−Θ fx + fy
� �

and is called the biphase.
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Using the fast Fourier transform (FFT) algorithm it is possible to calculate the
raw bispectrum:

Bi fx, fy
� �

= Si fxð ÞSi fy
� �

S*i fx + fy
� � ð8Þ

The raw bispectrum can be estimate over the inner triangular region
0≤ fy ≤ fx, fx + fy = fμ ̸2. This is sufficient for a complete description of the bis-
pectrum, since, due to symmetry in the fx – fy plane of the bispectrum, all of the
significant information is contained in the principal domain that consists of the
inner and outer triangles [9].

In addition to the basic bispectrum, the bispectrum diagonal slice is defined as:

Bs f , fð Þ=E S fð ÞS fð ÞS* 2fð Þ� � ð9Þ

with fx = fy = f.
The bispectrum diagonal slice is especially useful in detection of nonlinear effect

[5, 6, 9]:
The changes which accompany the subsequent phases of development of

fatigue-related defects are observable in a bispectrum [6]. Particularly interesting
results have been obtained for a diagonal bispectral measure, for a maximum bis-
pectral measure:

Bmax f , fð Þ=max Bi f , fð Þð Þ ð10Þ

and for measure created from vector of maximum values of triangular matrix
separated from bispectrum matrix by removing main diagonal of this matrix [5]—
residual bispectrum:

Bres f , fð Þ=Bmax f , fð Þ−Bs f , fð Þ ð11Þ

Values that remain are “residuals”.
As a result, the phase reactions defined by the dominant non-linear effect become

blurred. The results point to high sensitivity of bispectral measures to changes of the
signal’s frequency structure and to the possibility of using these relations while
constructing models of development of degradation- and-fatigue-related processes
which are required while creating the procedures of proactive maintenance strategies.

It was create a new measure (nobody else didn’t that way) which is able to
extract the relevant diagnostic information. Integral of bispectral noise from bis-
pectral maximum diagrams:

BImax =
Z

Bmaxðf , f Þdf ð12Þ
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and integral of bispectral noise from bispectral residual diagrams:

BIres =
Z

Bresðf , f Þdf ð13Þ

were calculated with maximum given level (everything higher than maximum level
was equalize to this maximum level) for every measurements.

3 Machine Diagnosis Examples

3.1 The Fatigue Crack Growth at the Low-Amplitude
Fatigue Testing

It was developed [5] and built a test bed for low-amplitude tests of fatigue pro-
cesses. For the preset maximum deformation from 5 to 40 μm range as well as the
generated frequency of 10 kHz, we selected a piezoelectric actuator—type
PPA80L, that can be powered with 150 V current, which inter works with LA75C
amplifier. The typical low-amplitude test beds rely on the frames of machines used
for testing the fatigue durability and are usually of big dimensions and weight. The
authors proposed a small-dimension test bed for diagnosing the low-amplitude
fatigue processes, with dimensions of usually 0.2 × 0.2 × 0.2 m and its weight
does not exceed 2 kg, with a titan head mounted directly on the piezoelectric
generator. To do away with play, the beam in the head is mounted by means of an
eccentric cam. The authors also analysed the resonant frequencies of individual
elements of the test-bed so as to avoid resonance of the test-bed when applying the
beam’s resonance frequency.

After analysing the assumptions of the test-bed that it is a big problem to select a
relevant kinematic node which could enable mating of the head with a sleeve in the
upper plate of the test-bed and had durability of 108–109 cycles. The authors
designed solution: mating of two very hard surfaces; was proposed covering the
two mating surfaces, the head’s pin and the sleeve in the test-bed’s casing, with a
coat of titanium nitrate (it is practically a pioneer solution in Poland and around the
world). A recording-control program has been developed in the LabView 7.1
environment which has the task of tracking the resonant frequency of a beam based
on the spectral analysis of a vibration signal registered by a use of the non-contact
measurement system and the piezoelectric accelerometer. The frequency value
estimated in this way is in the next step sent to the generator in order to correct the
frequency of the signal stimulating the piezoelectric converter. Thus it is possible to
track the changes of frequency (at the resonant curve) of a beam’s proper vibration
connected with the developing fatigue-related crack. This investigation enables not
only detection of surface failures, but also detection of failures appearing in the
specimen core. Investigations done up to now in Integrated Laboratory of the
Mechatronics System of Vehicles and Construction Machinery in Warsaw
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University of Technology [5] confirming possibility of elaborating measurements of
fatigue failure development.

Lab tests were intended to verify the impact that various types of notches had on
fatigue strength of materials in the case of low-amplitude fatigue tests where the
amplitudes were in the range of several hundred micrometers.

The size of the sample (height × width × length) was 10 mm × 5 mm
40 mm. The small notches were added on both sides of the mounting point, for
load stress increase.

Bispectrum from channel no. 2 (laser vibration meter), which measured the
amplitude at the free end of the beam, was calculated during the measurements.
Modulating frequencies appeared at 2 × 106 cycles, just before the sample broke.
Thus bispectral analysis can be a useful tool for detecting fatigue-related tracks.
A similar effect was observed while building the bispectral measures in the function
of change of the loads, including the maximum bispectrum and the diagonal bis-
pectrum. The next step was to calculate bispectral measures (maximum and residual
bispectrum) which would be able to foresee the moment of emergence of a
fatigue-related crack in a much better way. Integrals for the entire lifecycle of a
sample were calculated based on the graphs of the maximum bispectrum and the
maximum bispectrum (12) and calculated on the basis of a triangular matrix—the
residual bispectrum (13) (Fig. 1), which emerged as a result of cutting out the main
diagonal which described the impact of modulation phenomena and non-linear
effects. In addition the cut-off level for maximum amplitudes was applied at
0.25E8 m/s2 (everything which had a higher value than this level was reduced to
this level).

Fig. 1 Integrals from residual bispectrum graphs (level of 0.25E8)—full line and eigen frequency
of a beam (dot- and dash-line)
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We can observe an upward trend of the amplitude which accompanies the
presumed development of a fatigue-related crack. While by analysing Fig. 1 it
could be concluded that the fatigue-related crack most probably started developing
from 1.2 million cycles and reached the critical (pre-failure) level at 1.9 million
cycles. Thus, based on these findings it is possible to build a very sensitive and
reliable diagnostic parameter which describes the development of a fatigue-related
crack. Of course, at this point we cannot talk about defining the quantitative rela-
tionships, and even more so the statistical ones. The essence of the surveys was to
exploit the resonant amplification of the sample’s vibration amplitude in the high
frequency band and to check whether this type of a test could prove useful while
examining the impact of a notch’s shape as well as whether vibroacoustic signals
could be used for detecting early stages of defects. The above findings call for
confirmation during further research aimed at verifying them.

3.2 The Fatigue Process of Toothed Wheel Damage

The experiment was conducted at the FZG back to back test-bed [7, 8]. The test-bed
consists of two toothed gears operating in a revolving power setup and it enables
examination of both toothed wheels as well as gear lubricants.

The shaft connecting the pinions is divided, which enables rotating one of its
sections versus the other and thus introducing relevant meshing forces. Strain
gauges are affixed to the shaft and they enable measuring the torque. Wheels with
straight teeth are installed in the examined gear, while wheels with helical teeth are
installed in the closing gear. Thanks to such a set up it was the examined toothed
gear that was subject to defect-development during the experiment. Parameters of
the test-bed:

• Maximum tensioning torque 1200 Nm (or 1500 Nm for shafts with bigger
torsional rigidity):

• Motor speed: 1460 rpm;
• Gear ratio in both toothed gears: 1.296;
• Module of test specimen wheels and counter-test specimen wheels 4 mm;
• Number of teeth in test specimen wheels: 27;
• Number of teeth in counter-test specimen wheels: 35;
• Axle base for wheels: 125 mm.

Toothed wheels made of 20H2N4A carburized steel, hardened to 60 HRC
hardness were used for the research. They were subjected to accelerated fatigue test.

The changes which accompany the subsequent phases of development of
fatigue-related defects are observable in a bispectrum. Particularly interesting
results have been obtained for a diagonal bispectral measure, for a maximum bis-
pectral measure [6]. We use maximum bispectrum and residual bispectrum to
predict the moment of fatigue tooth crack. Integral of bispectral noise from
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bispectral maximum diagrams (12) and integral of bispectral noise from bispectral
residual maximum diagrams (Fig. 2) (13) were calculated with maximum level
0.5E8 (everything higher than maximum level was equalize to this maximum level)
for full life time of this wheel. At Fig. 2 we can see that calculated derivative of this
diagrams (applying a smoothed curve) we can build effective and sensitive diag-
nostic parameter of quality changes of fatigue process of toothed wheel damage.

3.3 Electric Motors Bearings Faults

Rolling element bearings are one of the most widely used elements in machines and
their failure one of the most frequent reasons for machine breakdown.

It was analysed current supply signal from electric motors with rolling elements
bearings model-fault [10]. An interesting effect was observed when compared the
engine without the bearings faults and engine with damaged bearings (external and
internal race heavily faults) using the maximum bispectrum, diagonal bispectrum
and the maximum bispectrum calculated on the basis of a triangular matrix—
residual bispectrum, formed by cut-outs of the main diagonal of the bispectral
matrix [5], which describes the influence of modulation phenomena and nonlinear
effects.

The most promising measure, when it comes to distinguishing rolling element
bearings state is residual bispectrum.

The next step was to use bispectral measures (residual bispectrum), which are
much better detect bearing failure. It is created by calculating the integral of residual
bispectrum charts for different engine loads (13). In addition, the best results were
obtained for channel 1, using a cut-off level of the maximum amplitude equal to
30,000—all of which had a value higher than this level was equal to it. The biggest
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difference values for undamaged and damaged bearings (about 2 × ) occurs at a load
of 1.1 kW.

The next goal was to qualify the state of bearings for the above measure.
Re-calculated integrals of the charts residual bispectrum, this time for different
engines (different bearing faults or no fault—Table 1), with the same load of
1.1 kW, channel 1, using the cut-off equal to the maximum amplitude of 70,000—
all of which had a value of higher than this level was equal to it (Fig. 3).

We are able to distinguish between engines with good bearings (measuring 4 and
8, 6 doubtful) from engines with damaged bearings (1.5 − 2 × higher level), you
can even distinguish between the type of bearing fault (inner race, outer), unfor-
tunately only for the engine 15 (measurement # 1 and 3). This is partly the fault of
the lack of measurements made on the same engines, bearing a good and bad
(different types of faults).

Table 1 Classification of bearing failures

Measurement # Bearing state Engine #

1 The outer race severe fault 15
2 The inner race severe fault 13
3 The inner race average fault 15
4 No fault 82,255
5 The inner race weak fault 13
6 No fault (the inner race slightly fault!) 11
7 The internal race average fault—doubtful 12
8 No fault 1
9 The inner race severe fault 309,923
10 The inner and outer race severe faults 14
11 The inner race severe fault 4

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

14

16

18 x 106

Bispectrum triangular max noise (level=70000) - time signal, 

Measure no

B
is

pe
ct

ra
l a

m
pl

itu
de

 [ 
]

channel: 1, n256l_4.txt
Fig. 3 Integrals of the
residual bispectrum, the
cut-off level of 70,000,
various bearings faults for
various engines—Table 1,
1.1 kW load, channel 1

Use of Bispectral Measures in Machines Faults … 305



Based on the bispectral analysis, in particular the use of the integral of residual
bispectrum, we are able to carry out the initial classification of rolling element
bearings: good/bad, set-up the level of classification.

The correct diagnosis types of bearing’s faults not only requires further analysis,
but mostly perform additional measurements made on the same engines, a good and
also bad bearings.

4 Conclusion

The work shows that it is possible to diagnose the changes of the condition of the
objects by means of vibroacoustic techniques with an assumption of significantly
small energy dissipation. The presented approach not only correctly explains and
defines the phenomena from the qualitative point of view but also enables their
quantitative evaluation, while maintaining, for defined conditions, a satisfactory
consistence.

We can build effective and sensitive diagnostic parameters (bispectral maximum
and bispectrum residual) of quality changes of fatigue crack growth at
low-amplitude fatigue testing, fatigue process of toothed wheel damage or electric
motors bearings faults.
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Hybrid Method for Researching Pulsating
Flows in Pipes Exemplified with Orifice
Application

Tomasz Pałczyński and Wojciech Rydlewicz

Abstract This paper presents a measurement process based on a test rig for
investigating pulsating flow in pipes, with the possibility of changing several key
parameters: temperature, closed end nozzle diameter, mass flow rate and pulsation
frequencies or orifice plate rate. The main flow parameters needed to evaluate
temperature, pressure and mass flow were measured at three control sections along
the tested pipe. The measurement process was based on the LabView environment.
The transient parameters were processed using Matlab scripts supported with a
Graphic User Interface to make the proposed procedure more legible. FFT proce-
dures were used to estimate transient flow parameters. The research potential of the
presented method is exemplified in a study of the influence of orifice plate
dimensions on the dynamic parameters of the tested pipe. The influence of the
estimated parameters on amplitude-frequency characteristics is shown using 3D
maps. The research process was significantly improved due to the synergy effects of
using a hybrid of Labview and Matlab software together.

Keywords Pulsating flows in pipes ⋅ Amplitude-frequency characteristics ⋅
Matlab simulink ⋅ Orifice

1 Introduction

A hybrid method can be broadly defined as the synthesis of a variety of available
methodologies into a composite technique, which, taken as a whole, is more useful
than any of the individual methods [1, 2]. As reciprocating compressors deliver
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pulsating flow, for safe and reliable operation it is essential to keep the amplitudes
and frequencies of the pressure pulsations within close limits [3–5]. The mea-
surement settings in LabView and math calculations based on matrix calculus in
Matlab are well known. The presented methodology uses the best features of each,
in an easy to use and intuitive research system for investigating pipes supplied with
pulsating flow, especially with orifice application. A second order system model
was used for approximation and modelling the elaborated characteristics [6, 7].

1.1 Research Goals

A test rig was prepared to investigate the transitional states in pulsating flows in
pipes with orifice application. The application of the orifice at the pipeline caused
by decreasing flow resonances is very popular. The location of the orifice enables
the influence of the chocking effect to be investigated at the opening of the pipeline.
The frequency bandwidth was determined using the available test rig frequency.

In what follows, the results of a series of measurements taken for various fre-
quencies and orifice diameters are presented. The main flow parameters evaluated
were pressure, temperature and mass flow, measured at three control sections. The
measurement procedure was automated in the LabView environment to ensure
rapid and reliable processing. Amplitude frequency and phase frequency charac-
teristics were estimated using Matlab software. A script was authored to process the
data acquired from each probe with an automatically repeated loop for the entire
results database. A very painstaking and tedious process was thereby automated,
accelerating the research process (faster processing of large databases, elimination
of random errors caused by human participation, possibility of repeated probes).
Hybridization based on software synthesis achieved synergy and improved the
overall methodology. LabView measurement settings and math calculations based
on matrix calculus in Matlab were used. Estimates were based on second-order
inertial elements, and provide quite a good representation of the acquired data.
Three-dimensional matrixes were elaborated to provide three dimensional (3D)
maps of the estimated characteristics for frequency and the orifice diameter
coefficient.

2 Hybrid Measurement Method

The proposed hybrid measurement method is presented schematically in Fig. 1. The
National Instrument NI USB-6259 measurement card is designed to operate in the
LabView environment and is not supported by Matlab. Therefore, the experimental
part of this project was based on LabView software. The second part, focusing on
analog data processing, FFT (Fast Fourier Transform) analysis and Fourier series
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approximation, was conducted in Matlab. This clear division of process require-
ments demanded hybridization of the measurement process.

Automated testing and recording was performed with LabView 2013 software.
Calibration was performed using reference transmitters. Pressure transducers
(Endevco 8510C-15 and 8510C-50) were calibrated using the glass tube water level
gauge and Vaisala PTB 330 reference barometer. Steady-state characteristics and
performance were estimated using this procedure. Constant current thermometers
(CCTs) were calibrated using a Type E reference thermoelectric element. Constant
temperature anemometers (CTAs)—mass flow rate transducers—were calibrated
using an Annubar-type flow meter.

A calibration process was carried out before each measurement series to ensure
the required accuracy. The outputs of this process are the parameters of the assumed
steady-state characteristics. The same method for curve approximation was used in
all the experiments.

The following default parameters were defined: starting frequency 20 Hz, fre-
quency step 2 Hz, final frequency 180 Hz, time delay 500 ms, sampling rate 20
kHz/per channel and number of samples 20,000 (–). Frequency step defines the
degree of frequency increase between particular probes. Time delay describes the
time needed to stabilize flow parameters and the pulse generator at each new
pulsation frequency. Decreasing the frequency enables the time delay to be reduced.

Fig. 1 Structure of the hybrid system for researching pulsating flows
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A simplified front panel is assumed, which enables the definition of particular
testing parameters. The test program (described above) can then be chosen.

An electric motor was connected with the pulse generator frequency set as an
analog output using NI USB-6259. This analog output voltage signal is converted
into a standard current signal which is at the same time an input signal for the
electric motor inverter.

The real pulse generator frequency is measured using a photoelectric sensor,
which is mounted on the electric motor shaft. One peak is generated per revolution.
A pulse generator (PG) is used to produce variable reliable and repeatable flow
pulsations, as presented in Fig. 2. The pulse generator was designed to have as little
friction loss as possible and is driven by an electric motor.

Fig. 2 aMain elements of the test rig. 1 water manometer, 2 thermocouple type E, 3 Vaisala PTB
330—reference barometer, 4 reference manometers—annubar mass flow rate, 5 NI USB 6259—
measurement card, 6 differential amplifier, 7 Annubar probe—mass flow rate. b Main elements of
the tested pipe. P.G. pulse generator, O, K, 3 tested cross sections, E endevco pressure transducers,
CCT constant temperature thermometers, CTA constant temperature anemometer
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The real position of the pulse generator is shown via a photoelectric sensor. It is
thereby possible to indicate the phase of the measured waves. This peak signal is a
reference point for Fourier series analysis. It enables Fourier windowing (cutting a
finite number of whole periods from an estimated wave).

The second part of the method (realized in the Matlab environment) performs the
following tasks:

(a) Implementation of steady-state characteristics parameters. These parameters are
processed during the calibration process.

(b) Selection of the appropriate data folder to be automatically transformed into
appropriate physical values for pressure, temperature and mass flow rate;

(c) Selection of a finite number of particular full waves to be analyzed. This is
based on the acquired peak signal from the photoelectric sensor;

(d) Approximation of coefficients identified using the Fourier series function. The
following approximation of the Fourier series was assumed:

p tð Þ ormðtÞ or TðtÞ= a0 + ∑
∞

k=1
ck sin k2πf1t+ϕkð Þ ð1Þ

where:

a0 The constant part of reconstructed variation
ak, bk Coefficient of the k harmonics
ck Amplitude of the k harmonics calculated from ak and bk
f1 Value of the I harmonics pulsation frequency (Hz)
ϕk Phase displacement of the k harmonics (rad)

This approximation must be performed for each parameter with several probes
(three at cross sections 1 and 3, one at cross section K) and repeated for each
frequency. The results are also recorded in the Matlab workspace.

(e) Collection of results in the domain of frequency and the orifice diameter
coefficient. The selected parameters must be compared to each other and col-
lected in a separate matrix to enable frequency domain analysis.

(f) Second order oscillating element approximation. Amplitude frequency char-
acteristics were estimated using Eq. 2 following [8]. Phase delay characteristics
in the frequency domain were approximated using Eq. 3.

M fð Þ= 1−
f
fn

� �2
" #2

+
2ζf
fn
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where:

M fð Þ magnitude of oscillations (–)
fn natural frequency (Hz)
ζ relative damping coefficient (–)
f input frequency (Hz)
ϕ phase displacement (o)

The approximated amplitude frequency characteristics reach the maximum value
at resonant frequency, defined as follows:

fr = fn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2ζ2

q
ð4Þ

where:

fr Resonance frequency (Hz)

The main parameters of the test rig are as follows [9]:

(a) Range of desired values for pulse generator frequency f = 20 ÷ 180ð Þ Hz.
(b) Pipe diameter Dp =42× 10− 3 m.
(c) Pipe length Lp =0.544 m, determined with resonance at 70 and 140 Hz.
(d) Nozzle diameter Dn =10 * 10− 3 m. The nozzle is mounted on one end of the

pipe, at cross section (3).
(e) Desired flow temperature T =313.15 K.
(f) Mean Flow speed u=20 m/s (mean value).
(g) Mean Pressure p = 115,000 Pa.

β=
Dorifice

Dpipe
ð− Þ ð5Þ

(h) Orifices: β = 0.93; 0.81; 0.69; 0.6. The tested orifices were defined dimen-
sionless as the quotient of orifice Dorifice and pipe Dpipe diameter (m) coefficient
defined below, Eq. 5:

Table 1 Main parameters of
orifice influence on pulsating
flows in pipes [10]

Orifice β (–) M fð Þ (–) fr (Hz) ζ (–) fn (Hz)

1 (w/o orifice) 9.02 147.3 0.083 148.4
0.93 8.82 146.4 0.086 147.5
0.81 7.82 145.2 0.109 147.0
0.69 4.82 142.5 0.166 146.6
0.6 2.81 134.2 0.188 147.0
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3 Experimental Results

An experiment was constructed based on the assumptions defined above to
investigate the influence of orifice diameter on the dynamics of pulsating flows in
pipes. The main parameters estimated following the proposed hybrid procedure are
summarized in Table 1.

The conclusions from the experiment are as follows:

(a) The proposed method significantly improves the research process. The human
factor was eliminated to the minimum necessary. The length of the experiment
was reduced tenfold—from 60 to 6 min;

(b) The hybridization of existing research methods was justified, especially by the
development of specialized scientific software.

(c) The orifice coefficient was clearly shown to have a significant influence on the
dynamics of the tested pipe, especially for values lower than β=0.7. Values of
β=0.9 and above do not influence the dynamics of the tested pipe;

(d) Decreasing resonant frequency is observed as the relative damping coefficient
increases;

(e) The example characteristics presented in Fig. 3 (amplitude frequency charac-
teristics) and Fig. 4 (phase-frequency characteristics) confirm the assumed form
of the dynamics (as a second order oscillating element). Quite high coefficients
of determination, no less than 0.98, were obtained.

(f) The phase delay reaches 90° at resonant frequencies.
(g) Example three-dimensional pressure amplitude characteristics were elaborated

in the domain of frequency and the orifice coefficient. This 3D map (presented
in Fig. 5) greatly facilitates analysis of pulsating flows in pipes.

Fig. 3 Amplitude frequency
characteristics—orifice
β=0.60
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4 Conclusion

In this paper, a hybrid method of researching pulsating flows in pipes was presented
and its validity confirmed. The proposed method has two main advantages:
decreasing the human factor in the experimental process, and significantly reducing
the time required for the research process. The exemplified test case can thereby be
processed almost just in time. This enables new uses of the presented test rig for
training and teaching purposes.

The relatively complex influence of orifice diameter on pipes supplied with
pulsating flow was analyzed as follows:

(a) The orifice was mounted at the inlet of a pipe supplied with pulsating flow. The
orifice diameter, especially below β=0.7, changed the properties of the pipe
dynamics significantly. This type of orifice can be used to decrease the
amplitude of pulsation.

Fig. 4 Phase frequency characteristics—orifice β=0.60
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(b) The second order oscillating element transfer function is suitable for modeling
the examined case. The resonant frequency and damping coefficient include the
influence of orifice diameter on pulsating flow.

In previous work, the author has elaborated a 1D model for researching pulsating
flows in pipes using Matlab/Simulink software based on the method of character-
istics [11, 12]. This software enables analysis and estimation of transient states
between defined cross-sections. The experimental results presented in the current
study will be subsequently investigated according to this method for instantaneous
approximation of cross section parameters. In the opinion of the author, this
combination of technologies provides a quite nuanced research tool for investi-
gating pipes supplied with pulsating flow.
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Dynamic Behavior of Spur Gearbox
with an Elastic Coupling Under
Acyclism Regime

Atef Hmida, Ahmed Hammami, Mohamed Taoufik Khabou,
Fakher Chaari and Mohamed Haddar

Abstract For many researchers and industrials the dynamic behavior of gearbox
remains a paramount concern. In fact the diagnosis as well as the improvement of
efficiency of gearbox is an ultimate goal for users such as machine builders,
aeronautic and automotive manufacturers or energy producers. We should remind
that the dynamic behavior of a gearbox depends on its design parameters and is also
influenced by the engine operating conditions as well as the type of driving unit.
A single stage spur gearbox is considered in this paper to investigate its dynamic
behavior under acyclism regime. In fact the studied spur gear is powered by a four
strokes four cylinders diesel engine using an elastic coupling modeled by Nelson
and Crandell approach [7]. A numerical model is proposed taking into account the
excitations induced by the motor torque fluctuation as well as the load variation and
the fluctuation of meshing stiffness cased by acyclism regime. The implicit New-
mark algorithm is used to investigate dynamic response of the studied system and
the obtained results show the significant influence of both acyclism effect and
elastic coupling on it.

Keywords Acyclism ⋅ Dynamic behavior ⋅ Elastic coupling ⋅ Spur gearbox
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1 Introduction

The acyclism is a transient regime that can be observed for combustion engines. It
is characterized by the fluctuation of the torque which is a significant external
source of excitation on mechanical transmissions such as gearboxes espicially.
Actually the effect of acyclism regime on gears dynamic behavior is investigated by
few authors such as Barthod et al. [1] who studied the effect of acyclism on the
rattle threshold inside different gearbox configurations: unloaded gear with different
inertia and backlash. Rattle phenomenon is at the origin of impulses that occurs on
gears which does not transmit any power. The input speed is a sinusoidal function
in the initial inertia. When the inertia decreased, the input speed will be composed
of several harmonics with relative amplitudes and phases. The same authors [2]
proved that threshold kinetic energy and threshold are linked together and behave in
the same way.

The effect of meshing stiffness and engine speed fluctuations on a tortional gear
model is investigated by Sika and Velex [8] who considered the engine speed
fluctuations as a sinusoidal and multi-harmonic function and they introduced
modulations in the meshing stiffness function. The authors observed the existance
of unstable areas which expand due to the mesh stiffness variation increase.
Mono-harmonic engine speed fluctuations generate additional secondary instabili-
ties side-bands located around the main area. For the multi-harmonic speed fluc-
tuations, more instability side-bands are obtained

A spur gear transmission coupled to a diesel engine is investigated by Khabou
et al. [4] who considered the engine applied torque as a multi-harmonic function
with a period of acyclism. The period of transmission error and its fluctuation is
proportional to the loading conditions.

Elastic coupling is used to join rotating parts and it is able to reduce transmitted
vibration induced by acyclism phenomenon between them providing that the
dynamic characterization of the coupling is well determined. Tadeo and Cavalca [9]
studied the effects of flexible coupling on the dynamic behavior of rotating
mechanical system, especially on the natural frequencies. They used a system
composed of two flexible shafts supported by four hydrodynamic bearings con-
nected through a flexible coupling and divided into beam elements of continuous
mass and constant cross section. They introduced the flexible coupling using five
different models. The first model of coupling was introduced as a rigid disk; the
second model was developed according to the first approach of Kramer [5] where
the coupling is modeled by two nodes with mass and inertia effects in each node.
The second approach of Kramer [5] which included the rotational stiffness and
damping was adopted in the third case. The first model of Nelson and Crandall [7]
is adopted and the inertia of the coupling as well as the translational and rotational
stiffness are considered for the fourth case. The translational and rotational
dampings of the flexible coupling are added to the second model of Nelson and
Crandall [7] and is adopted in the fifth case.
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Tadeo et al. [10] compared the numerical results of the last four cases presented
previously to an experimental investigation and found that the second model of
Nelson and Crandall is the best one to describe the dynamics of an elastic coupling.
They found also that the secondmodel ofKramer including the rotational stiffness and
damping is the best in controlling the dynamic response for the experimental setup.

In this paper the effect of acyclism on the dynamic behavior of a mechanical
system is investigated. The studied system is composed by one stage spur gearbox
and an elastic coupling powered by four strokes four cylinders diesel engine. The
elastic coupling is mounted between the driving motor and the gearbox in order to
reduce the transmitted vibrations. Nelson and Crandall approach [7] is adopted to
model this coupling. Excitations due to the motor torque, load variation, the input
engine speed fluctuations and the fluctuation of meshing stiffness due to this regime
are introduced to the numerical model.

2 Dynamic Model

The studied system is composed of a motor driving a load through a spur gearbox.
An elastic coupling is introduced between the motor and the pinion. Each trans-
mission shaft is supported by a bearing.

The corresponding lumped parameter model of a faultless system is shown in
Fig. 1 and can be divided into three blocks.

The first block includes the motor and the first part of the elastic coupling. They
are connected through a transmission shaft (1). The second block is composed by
the second part of the coupling and the pinion gear (21) connected through the shaft
(2). The third block is composed by the wheel (22) and the loading machine
(32) connected to each other by a transmission shaft (3).

Pinion and wheel are assumed as rigid bodies. Shafts are assumed to be massless
and have torsional stiffness Kθi with torsional damping Cθi (i = 1, 2, 3). They are
supported by bearings which are modeled with parallel springs (Kxi, Kyi) and
damping (Cxi, Cyi).

The second model proposed by Nelson and Crandall is adopted for the elastic
coupling with a translation stiffness (Kxc, Kyc), torsional stiffness (Kθc), translation
damping (Cxc, Cyc) and torsional damping (Cθc). Inertial effects are included in the
model as two rigid disks in the first block (I12) and the second block (I21).

The equation of motion is obtained using Lagrange formalism:

Mq ̈+ ðCm +CsÞq ̇+ ðKðtÞÞ+KsÞq=FðtÞ ð1Þ

q is the degree of freedom vector and it is expressed as following

q= ðθ11, θ12, θ21, θ22, θ31, θ32, x1, y1, x2, y2, x3, y3Þ ð2Þ
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[M] is the global mass matrix. [Ks] and [K(t)] are respectively the structural
stiffness matrix of the system and the time varying mesh stiffness matrix. [Cs] and
[Cm] are respectively the structural damping matrix and the mesh damping matrix.
These entire matrixes are defined by Hmida et al. [3].

3 Numerical Results

The lumped-parameter values of the dynamic model are shown in Table 1.
The engine generates a variable load and speed during the power stroke.
The rotational speed of the engine Ω tð Þ is written by Sika and Velex [8] as

Ω tð Þ=Ω10ð1+ ∑n ρn Ω10ð Þ sin nΩ10t+φnð ÞÞ ð3Þ

Fig. 1 Dynamic model of spur gearbox with an elastic coupling
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where Ω10 is the average velocity, n is the harmonic of the generated speed
function, ρn and φn are respectively the corresponding amplitude and phase.
According to the last equation limited on the 2nd harmonic, the evolution of the
rotational speed generated by the combustion engine motor is shown in Fig. 2.

The evolution of the rotational speed of the Diesel engine is quasi sinusoidal.
This shape generates a periodic fluctuation of the gear meshing function as shown
in Fig. 3.

Combustion engine develops torque Cm which can be written according to Ligier
and Baron [6] as

Cm ≈Cm +
Pmax

192
Vcyl 0.46 sin 2αc +0.24 sin 4αc +0.03 sin 6αcð Þ

where αc is the angular position of the crankshaft, Pmax is the maximum pressure
inside cylinders Cm, is the average of engine torque and Vcyl is the cylinders
capacity. Hence the applied torque is also periodic as shown in Fig. 4.

After taking into account the previous parameters, numerical results are com-
puted using Newmark algorithm.

Table 1 Values of the model parameters

Gear box parameters

Teeth number Z12 = 20; Z21 = 30
Mass (kg) m12 = 1.77; m21 = 2.5
Pressure angle α = 20°
Teeth module (m) mn = 2 × 10−3

Contact ratio εα = 1.6
Average mesh stiffness (N/m) Kmoy = 2.11 × 108

Coupling characteristics

Inertia (kg m2) 4 × 10−3

Mass (kg) 4.5
Torsional stiffness (Nm/rad) 352
Translation stiffness (N/m) 462 × 102

Engine characteristics

Inertia (kg m2) 4 × 10−3

Maximum pressure inside cylinders Pmax (Bar) 49

Average of engine torque Cm (N m) 17.5

Cylinders capacity Vcyl (cm
3) 2000

Receiver characteristics

Inertia (kg m2) 6 × 10−3

Shafts and bearings characteristics

Torsional shaft stiffness (Nm/rad) 5 × 105

Bearing stiffness (N/m) 5 × 108
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Time displacement signal of the second bloc in the X direction is shown in
Fig. 5. The displacement is periodic with acyclism period. Fluctuations are also
observed, they correspond to the influence of the meshing phenomena on the
dynamic response.

The amplitude of displacement is reduced in the bearing of this bloc compared to
the amplitude of displacement obtained by Khabou et al. [4]. In fact, the amplitude
without elastic coupling was 5 × 10−5 m and it is reduced to 1.5 × 10−5 m using
the elastic coupling. It is then obvious that the vibration produced by the diesel
engine can be damped thanks to the vibration reduction capabilities of the elastic
coupling.
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Time–frequency map is used to analyze the cyclo-stationary behavior of the
signal and Fig. 5 represents the Wigner–Ville distribution of the acceleration of the
second bloc.

In fact, the meshing frequency and its harmonics which excites the system are
variable in time. Inclined lines confirm the variation of the meshing frequency and
its harmonics and higher amplitudes corresponds to high applied torque conditions.
This will result in simultaneous amplitude and frequency modulations as shown in
Fig. 6.
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4 Conclusion

In this paper, the dynamic behavior of one stage spur gearbox connected to a four
stroke four cylinders engine by an elastic coupling is studied in cyclo-stationary
regime which is acyclism. The dynamic model is based on lumped parameter model
in order to study the effect of a modulated engine speed on the dynamic behavior of
this gearbox. The variations of the diesel engine speed and the torque generated by
combustion engine are modeled and included in simulations. In addition, the gear
mesh stiffness was modeled as square function with varying period to take into
account the speed variation.

This regime affects the dynamic behavior of the gearbox as the applied torque
and rotational speed varies periodically. Time–frequency map was used to analyze
its behavior.

It was highlighted the effects of coupling in reducing the transmitted vibration
between the engine and mechanical transmissions.

Future investigation will be focused mainly on the dynamic behavior of the
studied system with defects under acyclism regime.
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Possibilities of Faults Detection of Rolling
Bearings Using Energetic Descriptors
of Vibrations Signals

Adam Gałęzia, Roman Barczewski and Bartosz Jakubek

Abstract The need for fast and reliable evaluation of technical state of rotating
machines forces constant development and research for condition monitoring
techniques. The paper presents energetic characteristics of vibration signals as a
promising new approach in condition monitoring of rolling bearings. The presented
approach is based on application of the differential Teager-Kaiser energy operator.
The operator makes possible to the detection of short-time disturbances in the signal
which are caused by developing faults. Authors assumed that the energetic char-
acteristics and measures would be good tool for detection of faults and defects in
rolling bearings, especially when vibration signals are non-stationary in the am-
plitude and/or the frequency sense. The paper presents the energetic characteristics
of the bearing vibration signal in the form of the time history, the energetic tra-
jectories and measures parameterizing them. The obtained results give ability to
determine the basic features of characteristics and measures,. The presentation of
qualitative changes in the form of characteristics caused by different kinds of faults
of rolling bearings was one of the main aims of the research. From practical point of
view the assessment of the sensitivity of the above-mentioned energetic measures
on changes in technical condition of bearings was also crucial. The presented results
have been obtained by testing the set of tapered roller bearings of the same type and
size. New bearings, defective ones and bearings with artificially introduced faults
were tested.
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1 Introduction

The rolling bearings are common components of many machines. Their failure can
cause machine breakdown, resulting in high economic and environmental costs.
Vibration signals generated by bearings have been widely studied over the past
years. Despite that, new condition monitoring techniques are still developed in
order to increase trustworthiness of diagnostic and prognostic inference.

There are many publications discussing various techniques of condition moni-
toring of the rolling bearings. In general there can be distinguished two most
common groups of techniques, i.e. techniques based on the time-domain approach
and those based on the frequency-domain approach.

The most basic condition monitoring tool, advised by many standards, utilizes
the wideband root-mean-square value of vibrations [1]. However, due to low
sensitivity of this tool, often other parameters are used, such as kurtosis, crest factor
[2] or XSK [3]. The fore mentioned parameters are usually calculated from the raw
vibration signal or its envelope [4]. Evaluation of technical condition is often based
on diagnostic matrixes taking into account a number of parameters [5]. The simplest
frequency-domain technique methods uses detection of the so-called characteristic
fault frequencies. Their appearance in the signal spectrum is a symptom of
advanced development of a fault. In bearing condition monitoring it is important to
be able to determine whether changes in the diagnostic signal were caused by the
evolution of a fault or by the change of a propagation path. This can be emphasised
by the use of cepstrum. The cepstrum [6] allows us to detect separated harmonics of
the characteristic fault frequencies of a rolling bearing over a wide range of other
frequencies. Attempts to use bispectral analysis in fault detection have also been
reported [5, 7].

Precise estimation of technical condition requires using a method that allows
early detection and identification of signal components associated with an emerging
fault. To increase the low sensitivity of energetic symptoms different approaches are
used. To extract diagnostically useful information researchers use the following
methods empirical mode decomposition [8], wavelet analysis and neural networks
[9]. The shock pulse method (SPM) has been widely used in industry since the
1970s and is successful in the determination of rolling bearings condition [10–12]
This method uses band filtration of the vibration signal recorded in the acceleration
sensor resonance band. Next, using demodulation techniques, the envelope is cal-
culated in order to obtain SPM measures and the SPM spectrum [5]. An attempt to
use acoustic signals and acoustic emission response was also reported as a method
for bearing fault detection [12]. Early detection of rolling element bearing failure
can also be provided using REBAM-Rolling Element Bearing Activity Monitor
[13, 14].

In many publications [1, 5, 6] authors state that the best methods of rolling
bearing condition monitoring are based on detection and enhancing impulsiveness
of the signal from bearing. An important requirement which a diagnostic technique
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must fulfil is the ability to identify transient disturbances in the signal. Such a
technique can be based on the Teager-Kaiser energy operator.

2 Energetic Descriptors

The Teager-Kaiser energy operator (TKEO) is a non-linear differential operator. As
a result of application of the TKEO on a time signal a waveform of an energetic
measure is obtained (Teager-Kaiser energy—ETK) It can be interpreted as a
waveform of energy of this signal [15]. The operator was described and its prop-
erties were analyzed in many publications [16–19]. For a continuous signal the
Teager-Kaiser operator is defined as follows:

ΨðxðtÞÞ= x ̇2ðtÞ− xðtÞx ̈ðtÞ ð1Þ

An interesting property of the energy operator (1) is its sensitivity to sudden
changes in analyzed signals, such as transient disturbances of the signal waveform.
It is reported that the Teager-Kaiser energy operator was successfully applied in
condition monitoring of gearboxes [20–23]. Thanks to its properties, TKEO was
also used for condition monitoring of bearings [24–27]. It is worth noticing that a
Teager-Huang transform was also used for bearing condition monitoring [28].

In this paper the authors discuss the possibility of the fault detection of rolling
bearings using energetic descriptors of vibrations signals. The considered energetic
descriptor of a diagnostic signal is the energetic trajectory of the vibration signal.
The Teager-Kaiser energetic trajectory represents a signal on the Teager-Kaiser
energetic plane. This tool was first introduced for models of signals with distur-
bance or modulation [29]. It was noticed that it detects disturbances related to the
diagnostic symptoms in the energetic structure of the signal.

The creation of the Teager-Kaiser energetic plane was based on the assumption
that the emergence and development of a fault disturb the energetic structure of the
vibration signal. This disturbance is characterized by high values of the
Teager-Kaiser energy and high velocity of change of Teager-Kaiser energy. Taking
into account both measures, i.e. the energy and the velocity of change of energy, it
is possible to detect transient events in the signal and to specify the significance of
observed phenomena.

The Teager-Kaiser energetic plane is defined by canonical coordinates: ETK(x(t))
—the energy descriptor of the signal x(t) and ĖTK(x(t))—the velocity of change of
energy descriptor of the signal x(t). Both components of the analytical signal are
obtained with the use of the Teager-Kaiser energy operator Ψ(x(t)). For a given
vibration signal x(t), ETK(x(t)) and ĖTK(x(t)) create a representation on the energetic
plane ETK − ĖTK in the form of the Teager-Kaiser energetic trajectory or shortly the
energetic trajectory.
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3 Experiment

Potential possibilities of rolling bearing faults detection based on ETK have been
determined experimentally. Roller tapered bearing type CBK-171 was chosen as a
test object. The tested bearings set included an undamaged bearing and bearings
with artificially introduced faults of various types. Intentionally introduced bearing
defects (Fig. 1) and their codes are detailed in Table 1.

During experiments the following parameters have been applied: axial bearing
load (spring washer) FA = 55 N, radial load (vertical)—gravitational load by a
mass m equal to 1545 g, FV = 15.16 N; lubricant—silicone oil (1/8 ml); rotating
speed 1450 rpm; recorded signal—vibration accelerations; transducer localization
—at the bearing housing; analyzed signal interval 60 s, recorded 90 s after test start
(after stabilization of the bearing operating conditions).

All energetic characteristic and their parameters mentioned in the introduction
were obtained by application of a digital signal processing system elaborated in the
DASyLab® environment. Acceleration of vibrations was recorded up to 50 kHz
(linear) but the determination of ETK was carried out in the narrow frequency band
(18.5–20.0 kHz), covering the local resonance of the bearing-housing system (the
highest available in the frequency sense). It should be remembered that faulty
bearings generate short-time impact excitations besides the background noise.

Fig. 1 Examples of artificially introduced bearing defects (sandblasting and electroerosion)

Table 1 The set of tested rolling bearings

Defect
code

Bearing
code

Faulty
element

Damage type Defect
size

Defect width
(mm)

Defect depth
(μm)

UD N02 Undamaged – – – –

IR(EL) N00 Inner race Electroerosion Local 0.5 NA

RE(EL) N19 Rolling
element

Electroerosion Local 1 NA

OR(EL) N14 Outer race Electroerosion Local 2 approx. 85

OR(EW) N17 Outer race Electroerosion Wide 11 approx. 50

OR(EF) N03 Outer race Electroerosion Extensive Whole race approx. 50

OR(SL) N12 Outer race Sandblasting Local 3 approx. 12

OR(SW) N01 Outer race Sandblasting Wide 11 approx. 12

OR(SF) N16 Outer race Sandblasting Extensive Whole race approx. 13
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Taking the above into consideration, we can assume that this approach leads to
processing the quasi-harmonic signal with amplitude modulation. Some features of
ETK described in ([30], p. 25) particularly that changes of ETK reflect changes
occurring in analysed signal, allows us to create an energetic envelope of the signal
of vibration accelerations. This feature of the energy descriptor is visible in Fig. 2.
It can be assumed that the obtained energetic characteristics will be a good tool for
detection of the short-term signal disturbances which are typical for local defects of
rolling bearings.

A comparison of acceleration signals recorded on bearing housing (with
extensive defects Fig. 2a and local defects Fig. 2b of the bearing elements) and
energetic characteristics corresponding to these signals are shown in Fig. 2.

Table 2 contains basic parameters of ETK determined for the tested bearings set.
One of the possible methods of the technical degradation degree assessment of
bearings and type of damage detection is presented in Fig. 3.

Diagnostic inference can be based on the size as well as on the shape of energetic
trajectories, which are shown in Fig. 4.

The trajectory fitting a circular shape (Fig. 4b) evidences the occurrence of
extensive damage, which continuously stimulates the bearing housing system to
vibrate resonantly. The asymmetry of the trajectory (Fig. 4c) and predomination of
positive values of ĖTK are typical for a transient decaying vibration signal (e.g. an
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Fig. 2 Short signals sequences: vibration acceleration of bearings (a, b) and corresponding
energetic characteristics ETK (c, d)
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answer of a mechanical structure after the periodic impact excitation). That tra-
jectory shape can be evidence of local defects of race or rolling element.

The next method of fault detection is based on analysis and parameterization of
the probability density function of ETK. Figure 5 shows comparisons of these
functions determined for undamaged bearing and bearings with various types of
artificially introduced defects. For extensive damage, a significantly larger share of
components with higher ETK values can be seen.

Table 2 Basic parameters of the energetic characteristics ETK of the testing bearings set

Defect code Bearing code Faulty element ETK [m2/s6]
Max Average RMS

UD N02 Undamaged 9.87E+12 8.01E+10 2.03E+11
IR(EL) N00 Inner race 3.55E+13 2.95E+11 6.00E+11
RE(EL) N19 Rolling element 2.53E+14 4.66E+11 2.80E+12
OR(EL) N14 Outer race 2.53E+14 4.66E+11 2.80E+12
OR(EW) N17 Outer race 8.48E+13 5.50E+11 1.19E+12
OR(EF) N03 Outer race 1.38E+14 4.67E+12 7.20E+12
OR(SL) N12 Outer race 1.07E+13 1.47E+11 3.16E+11
OR(SW) N01 Outer race 3.32E+13 4.78E+11 9.77E+11
OR(SF) N16 Outer race 8.26E+13 1.06E+12 2.00E+12
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of faults size based on ETK parameters (for description of bearing faults see Table 1)
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4 Conclusions

The results of experiments allow us to conclude that energetic descriptors of
vibrations signals, e.g. ETK, ĖTK and their measures may be a base of new methods
of the rolling bearing diagnosing. Estimates obtained as a result of parametrization
of ETK allow evaluation of the technical condition of bearings and assessment of
form/extensity of defects of bearings. The analysis of the shape of the energetic
trajectory can be useful in determining the defects forms (local or extensive). The
trajectory size is significantly related to defect intensity and can be applied for
quantitative evaluation of the degradation process.

(a) (b) (c)

Fig. 4 Qualitative changes in energetic trajectories of bearing vibration signals (pictures have the
same scale); a bearing without defects, b extensive defect of outer race—electro erosion, c local
defect of rolling element
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Fig. 5 The comparison of probability density functions of ETK for various types of faults of
rolling bearings (for description of faults see Table 1)
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The probability density function of ETK can be applied to evaluate the condition
of bearings. In this case passing of the probability alarm/limit value can be used as
a diagnostic symptom. The decision threshold (e.g. good/faulty) should be deter-
mined experimentally.
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Bearing Fault Feature Extraction Using
Autoregressive Coefficients, Linear
Discriminant Analysis and Support Vector
Machine Under Variable Operating
Conditions

Mourad Kedadouche, Zhaoheng Liu and Marc Thomas

Abstract Advanced monitoring requires automatic diagnosis of machines operat-
ing under variable conditions. In this paper, an intelligent method is introduced in
order to enhance the classification and achieves a higher precision for the diagnosis
of degradation of rolling bearings operating under condition variations. The method
uses the coefficients of autoregressive modeling (AR) of the bearing vibration signal
as the features of a classifier. A Linear Discriminant Analysis (LDA) of the matrix
feature obtained from AR analysis is applied in order to extract the components that
discriminate the different fault modes since it is insensitive to the working condi-
tions. Finally, the results obtained from LDA are used as the input of a support
Vector Machine (SVM) classifier to automatically identify the bearing state. The
experimental results show that the performance of the proposed method is effective
and achieve a good accuracy.
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1 Introduction

Rolling bearing fault diagnosis has been the subject of numerous researches about
machine monitoring. Many techniques were developed and enhanced in order to
detect a possible fault. Generally, the fault diagnosis methodology is realised fol-
lowing the following steps: signal acquisition, feature extraction and finally fault
identification and classification. The feature extraction is a key of a good diagnosis.
Selecting sensitive features which present a good discrimination between different
classes of the fault modes enhance the performance of the classifier. In case of
rolling bearing operating under variable conditions, many features present a vari-
ation and are non-stable. This makes the fault-diagnosis methods less effective. So,
it is important to develop a rolling bearing diagnostic method that is relevant to
different working conditions.

Recently, some research works have been conducted to correlate the features
extracted from different sensors and the working conditions [1, 2]. For example,
Shao et al. [3] used an intelligent bearing equipped with several sensors to track the
time-varying parameters. Ruiz-Cárcel et al. [4] propose a method to analyse a
combination of process, electric and vibration measurements. These methodologies
need more sensors devices to be integrated into the system. Other researches have
focused on the use of time-frequency analysis such as Wavelet Transform (WT) [5],
Empirical Mode Decomposition (EMD) [6, 7], and Hilbert Huang Transform
(HHT) [8]. The features extracted from time-frequency analysis are complex and
need a good expertise to explore and use them efficiently for pattern recognition.
Consequently, a reduction of the matrix dimension is required by searching a new
representation of the features in the low dimension in order to select only the
components with a good discrimination between the classes to enhance the clas-
sification accuracy. In order to reduce the matrix of the features extracted, Hongmei
et al. [8] employed Singular Value Decomposition (SVD) extracted from HHT and
demonstrated that the SVD presents a good stability. Ye et al. [9] used the Local
Mean Decomposition (LMD) for bearing faults. However, the techniques based on
EMD and LMD suffer from amode mixing which limits the accurate estimation of
the instantaneous frequencies. To overcome this drawback, EEMD [10] and ELMD
[11] are proposed which are noise-assisted data analysis methods. These
noise-assisted data analysis methods determine the true component as the mean of a
set of trials. It was demonstrated that introduce artificial noise helps data analysis
and attenuates the mode mixing. Unfortunately, guidance is lacking on how to
choose the appropriate parameters of the EEMD and ELMD methods [7].

Autoregressive (AR) model is one of the methods that have been efficiently used to
extract the information of system conditions that reflect the characteristic dynamics of
the system [12, 13]. The basic idea is to use the coefficients of the model as the feature
inputs of the classifier for pattern recognition. However, the parameters of the
autoregressive model are sensitive to the working conditions and are not efficient if
the machine works under variable conditions. To overcome this drawback, combined
methods have been proposed. Junsheng et al. [14] used the autoregressive parameters
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of all IMF obtained from the decomposition of the vibration bearing signal by using
EMD. These features are used as input classifiers. The same authors [14] have used
the samemethodology in order to diagnosis gears fault [15]. Liye Zhao et al. [16] used
the Complementary Ensemble Empirical Mode Decomposition (CEEMD) to
decompose the signal into multiple components and the autoregressive model
parameters are established for the IMF selected from correlation coefficients.

In this paper, the authors used the autoregressive model parameters for bearing fault
diagnosis under variable conditions. For one fault mode (one class) taken under
different velocity variations, it is obvious that the parameters extracted present a certain
dispersion. The deal is to minimize the dispersion within class and maximize the
dispersion between others classes. Linear Discriminant Analysis (LDA) [17] is pro-
posed in this study to achieve this purpose. The particularity of the LDA is its ability to
find a new representation of the data in a low dimension space that minimize the
dispersion within class and in the same time maximize the dispersion between classes.
Therefore, integrating this technique can help to minimise the dispersion of the fea-
tures extracted within the classes caused by the working condition variation. The
adopted methodology is to establish the autoregressive parameters of the vibration
signal and then to use LDA to reduce the matrix dimension and found a new repre-
sentation with a low dimension. At this stage, we select only the pertinent information
and use it as the feature input of the SVM classifier. The analysis results of experi-
mental data demonstrate that the proposed methodology is effective.

This paper is organized as follows: Sect. 2 gives a theoretical background of
LDA; Sect. 3 introduces the proposed methodology; Sect. 4 describes a history
case performed to validate the method, and Sect. 5 presents the conclusions and
related future works.

2 Theoretical Background of LDA

Linear Discriminant Analysis (LDA) is dedicated for dimensionality reduction and
classification [17]. LDA gives an optimal transformation of the data in a low
dimension by minimizing the within-class distance and maximizing the
between-classes distance simultaneously.

Given a data set with c classes where Ni represents the number of samples in the
ith class and xij is the jth sample from the ith class. The between-classes scatter
matrix SB and the total scatter matrix SW are defined as:

SB =
1
N

∑
c

i=1
ðμi − μÞ ⋅ ðμi − μÞT ð1Þ

SW =
1
N

∑
c

i=1
∑
Ni

j=1
ðxij − μiÞðxij − μiÞT ð2Þ
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where N = ∑
c

i=1
Ni is the total number of the samples, μi is the centroid of the ith

class and μ is the centroid of the data set.
LDA aims on finding a linear transformation W = ½W1,W2 . . . Wd� such that

between-classes scatter matrix is large whereas the within class covariance is small.
The vector W is obtained by maximizing the following equation:

JðWÞ= argmax
W

WTSBWj j
WTSWWj j ð3Þ

The W is obtained by finding the eigenvectors corresponding to the d largest
generalized eigenvalues of S− 1

W SBW = λW .
The samples x are transformed in the new d-dimension space by the following

equation:

y=WTx ð4Þ

3 Feature Extraction Method Based on AR-LDA

The extracted features are used as input of the classifier in order to identify the
mode fault. Thus, the feature extraction is a primordial step for automatic diagnosis
and the performance of the classifier depends on the quality of the extracted fea-
tures. The chart of the proposed fault diagnosis method for rolling bearings is
shown in Fig. 1.

For each signal, the AR model [12, 13] is established using the following
equation:

xðtÞ− ∑
m

k=1
akxðt− kÞ= eðtÞ ð5Þ

where: akðk=1, 2, . . . , mÞ are the model parameters; m is the order of the model of
the AR model and eðtÞ is the error term of the model.

The parameters akðk=1, 2, . . . , mÞ may reflect the characteristics of a roller
bearing vibrating system. Then, the LDA is used to reduce the matrix size of the
feature and extract only the components which have a good discrimination and less
sensitivity to the working conditions. Finally the selected features are used as input
to the SVM classifier. According to the extracted feature vectors, the fault mode is
identified.
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4 Experimental Results and Discussion

4.1 Experimental Data Sources

This study uses experimental data from the bearing data center of Case Western
Reserve University (CWRU) [18]. Experiments were conducted using induction
motor (left), a torque sensor (middle) and a dynamometer (right) connected by a
self-aligning coupling (middle), as shown in Fig. 2. The dynamometer is controlled
so that desired torque load levels can be achieved. The test bearing (SKF 6205-2RS
JEM) supports the motor shaft at the drive end. Single point faults were introduced

Fig. 1 The follow chart of the proposed method
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into the test bearing using electro-discharge machining. Bearing faults under con-
sideration cover outer race fault, inner race fault and rolling element fault. The
considered fault size is very small: 178 μ in diameter and 279 μ in depth. The fault
position relative to the load zone is: ‘centred’ (fault in the 6.00 o’clock position).

The geometric characteristics of the bearing are listed in Table 1. Acceleration
was measured in the vertical direction on the housing of the drive-end bearing.
Besides, the sampling frequency is 12,000 Hz and 120,000 data samples are used
(10 s acquisition).

For each fault condition, the data were collected under different speeds operating
at 1730, 1750, 1772, and 1797 rpm (motor loads of 0, 1, 2 and 3 horsepower (hp)).
As shown in Table 2, four datasets sampled under normal state, inner-ring fault,
outer ring fault and rolling element fault were recorded. In the following

Fig. 2 The test rig

Table 1 The geometric characteristic of the bearing (mm)

Inside diameter Outside diameter Thickness Ball diameter Pith diameter

25 52 15 7.94 39

Table 2 The dataset used in this study

Label Status Working conditions
0 hp (1797
RPM)

1 hp (1772
RPM)

2 hp (1750
RPM)

3 hp (1720
RPM)

Total
dataset

1 Healthy 20 20 20 20 80
2 Outer race

fault
20 20 20 20 80

3 Inner race
fault

20 20 20 20 80

4 Rolling
element fault

20 20 20 20 80

Total 320
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experiments, the vibration signals are divided into several non-overlapping seg-
ments with the length N = 6000. Each condition has 20 samples, and there are total
80 samples each dataset. Consequently, the full four datasets contain 360 samples.

4.2 Fault Feature Extraction

The features are the coefficients ak of the AR model of the vibration signal. These
coefficients reflect the characteristics related to the bearing fault. The AR model
order is determined according to the Final Prediction Error (FPE) method given as:

FPE=V 1+
2m

N −m

� �
ð6Þ

where V is the residual sum of squares, m is the order of the model and N is the
number of the data points.

For different fault modes under variable working conditions, the AR model is
established. Figure 3 shows the variation of FPE values as a function of model
order for different fault modes working in different conditions (0, 1, 2 and 3) hp. It
can be seen that for the healthy bearing, outer race fault and rolling element fault,
the FPE observe a minimum value which stay stable for m≥ 10, except for the inner
race fault where the order is about 20. So, to have the same dimension of the
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feature, a vector m=20 is selected in this study. It means that each signal may be
characterised by 20 coefficients a1, a2, . . . , a20½ �.

As mentioned in Table 2, the operating states of rolling bearings contain normal,
inner ring fault, outer ring fault, and rolling element fault. The effectiveness of the
extracted features is evaluated from their capability to distinguish between different
types of the degradations in different working conditions (0, 1, 2 and 3) hp. It
means that these features allows a good discrimination between the classes (healthy,
outer ring fault, inner ring fault and rolling element fault).

The AR coefficients akðk=1, 2, . . . , 20Þ are computed for all dataset given in
Table 2. To verify their discrimination capability, the mean and standard deviation
of the coefficients are displayed in Fig. 4. This representation is an easy way to
summarize the distribution of all features extracted for different fault modes under
variable conditions. It is clear that these features are overlapped, except for a1 in
which the gaps between the healthy case and other mode is satisfactory. This is due
to the fact that AR model is applied directly to the nonstationary signals (for one
fault mode, the working condition is variable) and the analysis results are unsat-
isfactory. The AR model is more suitable for stationary signal processing (same
working conditions). As a first conclusion, it is not interesting to use directly these
coefficients as input to the classifier because the discrimination between the fault
modes is not satisfactory and this affects the decision of the classifier to distinguish
between the classes. Thus, a pre-treatment is needed in order to improve the dis-
crimination capability of the features. For this reason, the authors propose to use the
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Fig. 4 Distribution of the coefficient akðk=1, 2, . . . , 20Þ for different fault modes
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LDA to transform the features on another dimension in order to reduce the dis-
persion of the features for one fault mode and increase the distance classes.

4.3 Fault Feature Selection

Originally, the data feature parameters (the AR coefficients akðk=1, 2, . . . , 20Þ)
are completely overlapping and cannot be clustered well for each condition of
faults. To avoid this drawback, we should extract the useful features and reduce the
dimension of original data features. In this part, dimensionality reduction is used to
select the optimal features for classification. The LDA gives an optimal transfor-
mation of the data (the AR coefficient akðk=1, 2, . . . , 20Þ) in a low dimension by
minimizing the within-class distance and maximizing the between-class distance
simultaneously. A comparison between LDA and PCA (principal component
analysis) is conducted. Based on the eigenvalues, we select the largest eigenvalue to
reduce the matrix dimension. The eigenvalues of LDA and PCA result are plotted in
Fig. 5. It can be seen that, in both cases, the three first components present high
eigenvalues. Consequently, these three components are selected. The first three
LDA and PCA components are plotted in Figs. 6 and 7, respectively.

In case of LDA, It can be seen that the clusters for the four fault modes under
different working conditions are well separated without overlapping (Fig. 6).
However, The PCA can only separate the healthy case from the other fault modes
(Fig. 7). The feature extraction using PCA observe an overlapping between outer
ring fault, inner ring fault and the rolling element fault. It is then obvious that LDA
is better than PCA. Unlike LDA, PCA deals to find the features with the highest
variation without considering the class structure.

For the rolling bearing feature extraction under variable operating conditions, the
proposed method based on AR-LDA performs better than PCA. The features can
well separate the different classes. Therefore, it is easy for classifiers to identify the
bearing state.
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4.4 Classification Performance Based on SVM

State classification of rolling bearings is based on the selected feature vectors
extracted using AR-LDA method. The data is divided into two groups, training and
test data, with 160 samples for each group.

The SVM classifier is based on supervised learning [19, 20]. A multiclass SVM
is adopted to perform the classification using one-vs-all methods. In this study, the
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polynomial and RBF kernel are used as the basic kernel function. Their mathe-
matical formulas are given respectively as:

Kðxi, xÞ= exp
− xi − xk k2

2γ2

 !
ð7Þ

Kðxi, xÞ= xi ⋅ x+1ð Þd ð8Þ

The kernel function is characterised by two parameters (C and γ) for the RBF
and d for the polynomial function) which must be selected to get a good perfor-
mance for the classifier. To evaluate the performance of the classifier built with the
training data, the cross-validation method is used [19]. The grid search approach is
an effective way to find the best C and γ [20]. Principally, all the pairs of (C, γ) for
the RBF kernel and (d) for the polynomial are tested and the parameters with the
high cross-validation accuracy are chosen. In this work, several combinations have
been tested to choose the optimal parameters of the RBF function
(C∈ 20, 21 . . . 27

� �
, γ ∈ 2− 3, 2− 2, . . . 23

� �
and d∈ 1, 2, . . . , 7f g) The best

combination is the one with the lowest C value and the smallest γ value. For the
polynomial function, the simplest model is selected. Table 3 summarize the
selected parameters. The performance of the classifiers built, regardless of the
feature extraction method or kernel function, is 100% accuracy.

With the designed classifier using the parameters listed in Table 3, the 160
samples of test data are classified. The classification results are displayed in Figs. 8
and 9. Both figures show the SVM outputs and the desired outputs. From Fig. 8, it
may be noticed that there is just one sample misclassified. The classification
accuracy when using RBF function is 99.38%. For the polynomial function, all
samples are well classified (100% of accuracy). In the both cases, the proposed
method performs very well which is important and what is needed for automatic
diagnosis operation.

Table 3 Classification accuracy for the training data with the best parameters (C, γ and d)

Kernel Feature extraction Parameters Classification rate (%)

Polynomial AR-LDA d=1 100
RBF AR-LDA c= 20

� �
γ = 2− 3� � 100
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5 Conclusions

In this paper, a new methodology for feature extraction and selection is proposed.
The method is based on the autoregressive modelling, linear discriminant analysis
and support vector machine methods. It is found that the features extracted using
AR-LDA are insensitive to working condition variations and the features have a
good discrimination under the variable states of degradation which is useful to
enhance the classification accuracy. The features selected are used as input of the
SVM classifier in order to automatically classify the data. SVMs-based multi-class
classification based on one-against-all strategy is applied. The results show that
SVMs achieves high accuracy. So, the proposed method is effective for rolling fault
diagnosis under variable working condition.
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Fig. 8 Classification results for test data using RBF function (c=20, γ =2− 3)
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Further works will be done in order to introduce other dimensionality reduction
techniques to verify their efficacy for bearing fault under variable conditions and
extend the method to other rotating machinery with more data.
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Multidimensional Data Segmentation Based
on Blind Source Separation and Statistical
Analysis

Jacek Wodecki, Pawel Stefaniak, Pawel Śliwiński
and Radosław Zimroz

Abstract Horizontal transport in underground copper ore mines mainly consists of

LHD machines (loaders, haulers) and belt conveyors. One of the most crucial mining

issues for assessment of efficiency of production is identification of operation cycles

of haulage machines. In the literature one can find procedure based on analyzing of

pressure signal variability developed for loader (Polak et al Identification of loading

process based on hydraulic pressure signal pp 459–466, 2016, Stefaniak et al An ef-

fectiveness indicator for a mining loader based on the pressure signal measured at a

bucket’s hydraulic cylinder 15, pp 797–805 [6, 7]). The algorithm allows to identify

partial operations of loader cycles like: loading, haulage and return to mining face.

For haulers this task can seem to be very easy to solve—machines are driving from

point A to point B. Nevertheless, when we take into account harsh and specific con-

ditions of underground mine, the problem remains very hard to solve using classical

methods based on single variable and if-then-else rules. In most cases, those meth-

ods are not robust enough due many random factors (logistical, human factors, work

organisation with loaders etc.). In this paper, we propose some kind of data fusion

approach to recognition of partial hauler operations. Our method is based on blind

source separation approach with particular focus on independent component analy-

sis technique that uses JADE algorithm based on joint approximate diagonalization

of eigenmatrices. Obtained components allow for easy segmentation of the signals.

Keywords Haulers ⋅ Segmentation ⋅ Blind source separation ⋅Multivariate analy-

sis

1 Introduction

Dump trucks are designed for the haulage of ore from mining faces to local transfer

points with rock-breaker to break oversize material on the screen. The single cycle

of a hauler consists of four basic steps:
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∙ loading of cargo box at the mining face,

∙ driving to the dumping point,

∙ unloading process,

∙ return to loading zone at mining face.

During loading, the ore is directly passed from loader bucket to the cargo box.

Generally, capacity of hauler determines what type of loader can work together with

it. It is usually assumed that loading of cargo box requires three full cycles of a loader.

Haulage machines travel up to 1500 m-long distances along separate dedicated ac-

cess roads. The machines’ driving speed is up to 12 km/h. Unloading process usually

is short and takes not more than one minute.

Considering the aforementioned description of partial operations of these ma-

chines, identification of cycles of hauler operation can be achieved by analysis of its

basic operational parameters like: speed, engine rotational speed or fuel consump-

tion. It is obvious that loading process will be characterized by a few minutes idling

in mining faces. Driving along access road is easy to recognize using the machine

speed, engine rotational speed and fuel consumption. Of course, driving of haulage

machine to dumping point with full cargo box will be different compared to its return

to mining face when engine load is lower. Short time break between these cycles of

driving is related to unloading process.

There are also some difficulties for this kind of analysis. Partial operations are

not always comparable due to constantly varying operational conditions. For exam-

ple, driving time depends on the conditions along the access road, and the degree

of dumping point occupation; time of bucket loading depends on the skill and per-

formance of the loader operator, and this on the other hand depends on other things

like amount and fragmentation degree of blasted ore etc. All the aspects are inter-

connected, and it does not make the analysis any easier.

2 Monitoring System and Industrial Data

Self-propelled machines as basic machines in exploitation area are one of the most

expensive assets using in production process. For this reason, nowadays, the increas-

ing tendency to use monitoring system for estimation of reliability and performance

assessment is observed. An underground mine is a specific case where monitoring

system is restricted by many factors, such as the size of the mine, the number of

machines and their technological diversity and, above all, complicated environmen-

tal conditions characterized by high temperature and humidity, and high levels of

dust and salt in the air. The development of a system for the operation monitoring

of hundreds of self-propelled machines working over one kilometer underground re-

quires to provide relevant robustness regarding the infrastructure. The crucial chal-

lenges are related to supply of equipment for data acquisition integrated with these

machines, the design and maintenance of the data transmission network in the un-

derground mine, data management, analysis and software operating system on the

ground surface.
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According to the type, these machines are playing completely different role in

exploitation process. Therefore, in many cases information needs in terms of ma-

chine operations of haulers concern another parameters than for other type of self-

propelled machine. In haulers case, basic requirements for the monitoring system

are related to engine, drive transmission system, hydraulics of cargo box and tyres.

From view point of investigated assessment of the efficiency of haulers performance

and work organization the key variables are:

∙ engine rotational speed,

∙ driving speed,

∙ fuel consumption,

∙ driving direction and current gear,

∙ total distance travelled.

Exemplary data set of above listed variables from ten hauler cycles has been pre-

sented in Fig. 1.

As mentioned early haulers operation is not complex—machines are driving

from point A to point B. As one can see in Fig. 1 time series are characterised by

cyclic variability, very similar in following haulage cycles. Assessment of their per-

formance requires development of algorithm to identify each operation regime of

haulage (loading, haulage, unloading, return to mining face) by appropriate signals

segmentation [5–9]. For haulers this task can seem to be very easy to solve. However,

taking into account harsh and specific conditions in mining corridors, recognition of

these regimes is hard to achieve using classical methods based on single variable

and if-then-else rules. Currently development of signals separation techniques leads

to obtain components with a variable content regard to signal segmentation.

Fig. 1 Key variables for efficiency assesment of haulars operation
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3 Methodology for Identification of Haulage Process

3.1 JADE-ICA Algorithm

Joint Approximation Diagonalization of Eigenmatrices (JADE) is one of several

blind source separation (BSS) techniques from the family of Independent Compo-

nent Analysis (ICA) algorithms [1–4]. It exploits the fourth order moments in order

to extract the source signals from mixed signals. Principle of operation of JADE is

given as follows:

∙ Set of input data X is provided in the form of M-by-N matrix of M input vectors

of the length N.

∙ The whitening matrix P and the set of prewhitened data Z = PX are estimated.

∙ The fourth cumulants of the whitened mixtures ̂QZ
i are computed. Their m most

significant eigenvalues 𝜆i and their corresponding matrices Vi are determined. An

estimate of the unitary matrix R is obtained by maximizing the criteria 𝜆i Vi by

means of joint diagonalization. If 𝜆i Vi cannot be exactly jointly diagonalized, the

maximization of the criteria defines a joint approximate diagonalization.

∙ An orthogonal contrast is optimized by finding the rotation matrix R such that the

cumulant matrices are as diagonal as possible, according to the equation:

𝐑 = argmin
R

∑

i
Off

(
𝐑T

̂𝐐Z
i 𝐑

)

∙ The mixing matrix A is estimated as ̂A = RP−𝟏
and the output components are

estimated as matrix ̂S = ̂A−𝟏X of the same size as X.

4 Application to the Real Data

Based on visual inspection and physical meaning three variables were selected for

the analysis as the most promising: engine rotational speed, fuel consumption and

vehicle speed. Vectors were merged into 3-by-N matrix and provided to JADE al-

gorithm, that returned 3-by-N matrix of output components. First output feature in-

cludes sufficient information about haulage process and its variability. It ensures easy

segmentation in the context of regime recognition. Hence, it has been selected for

further analysis. Selection can be done automatically, because JADE in contrast to

some other ICA algorithms (e.g. FastICA) always outputs resulting component vec-

tors in the same order (see Fig. 2).

Features were then slightly smoothed using moving average with window length

equal to 20. It allowed to obtain clearer signal with more visible trend of behavior

(see Fig. 3).
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Fig. 2 Input data (left panels) and smoothed independent components (right panels). Charts

zoomed in time domain for better visibility

Fig. 3 Raw and smoothed output features
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Fig. 4 Smoothed kernel

density estimate of the

selected component no. 1

In the next step we investigated expected subsets of values in the extracted feature.

Smoothed kernel density estimate for selected component has been calculated (see

Fig. 4), and its local minima define two thresholds that divide component values into

three main regimes that are identified as:

∙ loading of a cargo box,

∙ driving to dumping point,

∙ return from dumping point with empty cargo box.

We can make an assumption here, based on visual inspection of input data and out-

put components, that first component selected for further analysis is connected to

vaguely stated “machine operational load”, since it is structurally mostly similar to

engine speed and fuel consumption. We can then easily identify mentioned regimes:

∙ Loading of a cargo box will take the lowest values. Machine is standing still and

its cargo box is being loaded, engine load is the lowest.

∙ Driving to dumping screen will take the highest values. Cargo bucket is full and

machine is driving under load.

∙ Returning from the screen will take medium values. Machine is driving, but with

empty cargo bucket, which results in moderate load.

Signal of this component is then segmented according to obtained regimes of val-

ues (see Fig. 5). At the end of segmentation, data is post-processed just to eliminate

very short improperly detected regimes originating from unexpected spikes in the

signal, that were present because of the way that decomposition into independent

components occurred.

As Fig. 5 shows, regimes are identified in very clear and correct way, that can

allow for further statistical analysis related to process optimisation see Fig. 6.
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Fig. 5 Segmented component signal

Fig. 6 Duration of particular partial operations of haulage cycles from single shift
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5 Summary

Segmentation of operational data is just a pre-processing stage for further analysis.

Extraction of cycles with its partial operations might allow to analyse performance

of machines. In haulers case, identification of operational regimes and working cy-

cles leads to constructing the algorithms like e.g. counting cycles in relation to time,

analysis of regimes and cycles duration, detection of unexpected stoppages in the

workflow etc. (see Fig. 6). Such indicators might give many information about real-

ization of production in mining face and allow to support mining staff in context of

better work organization. In this paper we present signal segmentation method based

on independent component decomposition of hauler operational data. Results show

that feature extraction methods can create good foundation for parameterization be-

fore applying segmentation procedures.
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Unsupervised Anomaly Detection
for Conveyor Temperature SCADA Data

Jacek Wodecki, Paweł Stefaniak, Marta Polak and Radosław Zimroz

Abstract Belt conveyor system is a crucial element of ore transport process in

underground copper ore mine. Damage of single belt conveyor might cause stop-

ping of huge part of underground transport network, especially when failure con-

cerns the main haulage conveyor line. For that reason it is important to use SCADA

monitoring system. The symptom of damage can be found in increasing temperature

measured within the system. Unfortunately, operating belt conveyors can be consid-

ered as time-varying system and direct decision making using temperature value is

difficult. Long-term analysis of time series enables to learn how to recognize alarm-

ing moment. Thus the removal of failure can be scheduled so as to minimize the

losses in production. In this paper the clustering method was applied to the long-

term observations of the temperature in order to gearbox fault detection. Moreover,

the breaks in the activity of belt conveyors (no operation) caused by holidays will

be determined. The clustering algorithm identifies also the specific character of the

work at the beginning and end of week.

Keywords Clustering algorithms ⋅ Scada system ⋅ Belt conveyor system ⋅ Tem-

perature measurements

1 Introduction

Today extraction of deposit is reaching into increasingly deeper parts of rock mass

what is closely related to much higher deterioration of mining conditions in con-

text of environment, safety and reliability of machinery park. Currently underground

mining industry demands in terms of assumed efficiency relate to ensure high reli-

ability and availability of the machines. Conscious planning of repair works allows

to achieve full integration of machine system in good condition during the opera-

tion. Such approach is closely connected with predictive maintenance (PdM) based
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on condition monitoring that should crowd out currently machine maintenance pro-

cedures in use in mining industry [1–3]. In copper ore mine case, this is especially

important for belt conveyor network where damage of one belt conveyor might cause

stopping of huge part of underground transportation system as well as LHD machin-

ery operation [3].

In the literature the topic of the optimal control and efficiency of the belt convey-

ors system is widely investigated [4–6]. In the process of belt conveyors exploitation,

SCADA systems record a lot of data represented as physical variables to monitor

technological processes, especially degree of utilization, operational load and tech-

nical condition of the machines during their operation. Long term analysis of this

data is very important in terms of understanding nature of the degradation process

[7–9]. It can allow to identify any anomalies occurring in the context of well estab-

lished general case of behavior. In practical application in industry, especially in

mining, acquired data are difficult to interpret due to external disturbances (noise,

missing values, etc.) and the complexity of monitored processes/systems. Tempera-

ture time series are varying in time and difficult to estimate in wider time window.

It depends on many factors like:

∙ Conveyor technical condition,

∙ Conveyor design features,

∙ External load of conveyor,

∙ Location and role in transportation system,

∙ Engine operation mode,

∙ Environment parameters [10, 11].

Definition of set of statistical parameters and selection of appropriate analytical

model for further classification is expected to lead to extraction of diagnostic infor-

mation which is undoubtedly necessary to support maintenance staff [12, 13]. Early

detection of damage might establish opportunities to determine repair moment in

optimal time during planned standstill of given conveyor systems.

In this paper, a procedure for processing and analysis of temperature data from

gearbox has been presented. The paper is organized as follows. Firstly, description of

industrial acquisition process data and its pre-processing procedure will be shown.

Next, we will move on to the proposed algorithm for clustering of multivariate data.

At the end of the article, the context analysis of temperature data and identification

of anomalies in operation process will be discussed.

2 Real Data Acquisition and Pre-processing Procedures

SCADA systems used in copper ore mine allow to collect the data concerning infor-

mation about operational parameters of underground machines. Measurement of the

specific physical variables helps in monitoring of condition of the machines and pre-

venting damages. In this paper we analyze temperature data acquired by commercial,
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multichannel low frequency data logger installed on the belt conveyor gearbox in

copper ore mine.

Before starting any data analysis one should be sure that the data were acquired

properly and were cleaned from the incorrect values, what allow to avoid the false

conclusions of analysis. The pre-processing procedures are obligatory in case of tem-

perature data from belt conveyor gearbox, where we applied two-step procedure:

cleaning data and resampling [14].

First step of data pre-processing was to remove the outliers observations. In the

recorded data there were clearly visible incorrect values, for example negative tem-

peratures. Such observations are not possible in the underground mine reality, where

temperature varies between 20 and 90
◦
C. Therefore the all outliers observations

should be erase from the recording.

Another problem is the not-equally sampling of examined data. For memory

saving, temperature data begin record while the difference between two consecu-

tive observations is large enough, that means it is higher than predefined threshold.

Although that algorithm minimizes the size of data, the observations are not equally

sampled, what hinders the analysis. Due to that, we should focus on adequate resam-

pling procedure. In [14] authors proposed the linear interpolation procedure to fill

the missing observations. In view of the relatively small changes in the tempera-

ture during the short period of time, the mentioned method is appropriate to this

kind of data. For each missing data time point, two neighboring recorded tempera-

tures were taken and next the first order polynomial were fitted to them. The missing

observation is replaced by value of fitted curve in specific time point. The data after

application of pre-processing procedures are shown in Fig. 1. As one can see on the

time series in Fig. 1, there are visible cyclic drops of the temperature. They are con-

nected to breaks at work in underground mine. In that time the gearbox is cooled to

the ambient temperature. That specific behavior allows to easily split the data into

fragments corresponding to each week of the belt conveyor operation. Moreover one

can notice that at 33rd day of collected data the sudden increase of the temperature

occurs. Higher values of temperature remains for long time. The increase of temper-

ature might be a symptom of damage. Therefore the aim of the article is to propose

anomaly detection procedure, which automatically indicates the alarming time point.

Such tool can help in preventing damages and in advance planning the repair. Using

the time-date information, pre-processed data was split into sub-signals relating to

one day of belt conveyor operation. In Fig. 2 one can see a difference between behav-

ior of examined data depending on the day of the week. It should be mentioned that

in copper ore mine there is a four shift work system. Moreover, on Saturday the work

finishes at 6 p.m. and then begins at 6 a.m. on Monday. Therefore, during the 36 h

break in operation, the belt conveyor is cooled to the ambient temperature. This time

is used for planned maintenance tasks. In other days the cyclic breaks in working are

caused by blasting procedures, which in copper ore mine are performed twice dur-

ing the day. It is reflected in the time series as two temperature local minima about

9 a.m. and 21 p.m. Such different behavior of time series can be the indicator in the

clustering process, which is used to recognized working days when the overheating

has placed.
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Fig. 1 Real temperature data from belt conveyor gearbox after pre-processing

Fig. 2 Behavior of the temperature time series depending on day of the week

3 Description of Clustering Method

The clustering procedure used for unsupervised anomaly detection is the Expectation

—Maximization algorithm. It is an iterative optimization method for estimation of

unknown parameters, given measured data and latent variables representing missing

data. EM is particularly useful for separating mixtures of Gaussian distributions over

the considered feature space. It consists of two main steps: Expectation (E-step) and

Maximization (M-step), which are iterated until convergence [15–18].

In the first iteration algorithm has to be provided with some initial values of

parameters. It can be done by picking random means, covariances and distribution

weights, but it is a good practice to pre-estimate means ⃖⃖⃗𝜇l using some simpler algo-

rithm like k-means or hierarchical clustering, then compute covariance matrices 𝛴l
basing on results of this pre-clustering, and set weights 𝛼l to normalized amount of

points in each pre-cluster.

It is important to remember about limitations of EM methodology. EM only tries
to find the maximum likelihood estimate, and not finds it with 100% confidence,
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because EM estimate only guarantees not to get worse in the process. If the likelihood

function has multiple peaks (non-concavity case) EM will not necessarily find the

global optimum of the likelihood. In practice, one can never trust one single run. It is

very common to start EM multiple times with multiple random initial guesses, and

choose the one with the largest likelihood as the final estimate for parameters.

EM is widely used for data clustering in machine learning and computer vision

techniques. In natural language processing, two prominent instances of the algorithm

are the Baum-Welch algorithm and the inside-outside algorithm for unsupervised

induction of probabilistic context-free grammars. In our method we also propose to

estimate optimal amount of clusters with Silhouette criterion [12, 19] for limited

range of number of clusters k (in our application k = 2:6) with Euclidean measure of

distance.

In our application we use Expectation—Maximization algorithm under the

assumption that point clouds in feature space will form clusters distributed normally.

Statistics used to feed the clustering algorithm were simple, yet informative. We

chose:

∙ Maximum value of the day,

∙ Dispersion of values of the day,

∙ Value at the end of the day.

Time plot of statistics is presented in Fig. 3.

Fig. 3 Statistics used in clustering process
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4 Clustering Results

Obtained feature data points constructed from described statistics distributed them-

selves in the 3D feature space as shown in Fig. 4. It is clearly visible that there are four

or even five clusters possible to be distinguished. For this dataset Silhouette criterion

returned optimal amount of clusters equal to 5. As a result of presented procedure we

obtained information about individual days belonging to certain clusters (see Fig. 5).

Each cluster defines in correct and accurate way one of five possible outcomes:

∙ Mondays,

∙ Saturdays,

∙ Sundays,

∙ Other days of the week in good condition,

∙ Other days of the week in bad condition.

All of those classes are important to be detected and identified. Mondays, Satur-

days and Sundays reveal very outlying behavior, hence they are not informative and

are detected only to be eliminated from further analysis. On the other hand, theoret-

ically all days of the week could be divided into classes of good and bad conditions,

but it would require more data. Greater amount of data might cause points in feature

space to fill empty spaces within the clusters. Because of that, point clouds would be

denser and more consistent. It would allow the Silhouette criterion to estimate larger

optimal cluster amount, which then could possibly lead to distinction between good

and bad condition on Mondays, Saturdays and Sundays. This outcome is impossi-

ble to obtain with the currently possessed amount of data, even if we force larger

amount of clusters, because classification algorithm cannot properly construct clus-

ters with this little amount of points in feature space. Figure 6 presents the results in

time domain. Algorithm assigned particular days to correct classes.

Fig. 4 Distribution of points in 3D feature space
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Fig. 5 Clustering results in feature space (values normalized). Clusters represent Sundays (1),

Mondays (2), Saturdays (3), other days in good condition (4), and other days in bad condition (5)
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Fig. 6 Clustering results in time domain

5 Conclusions

In this paper we have presented the application of unsupervised learning method used

for data classification in order to detect anomalies in diagnostic temperature signal

from heavy duty gearbox used in underground mining industry. The methodology is

based on Expectation—Maximization algorithm for Gaussian mixture model esti-

mation, and parameterization with simple statistics. Introduced technique applied to

real data gives much better and more reliable results than direct one-dimensional

time series analysis. Obtained results allow to detect unusual behavior of the gear-

box.
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