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Abstract. In this paper we present a system for declaring and enforcing SLAs
in Cloud environments. The SLAs proposed are enriched with content terms,
storlets and federation capabilities and provide high degrees of customizability
for clients. A mechanism for SLA enforcement has been designed and imple-
mented which, based on policies, measurements, usage data computations, and
monitoring methods permits proactive SLA violation detection and handling.
SLA renegotiation is supported as well. The proposed framework has been
developed and evaluated in challenging scenarios in a variety of different
application domains.
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1 Introduction

The cloud paradigm has undoubtedly revolutionized the IT landscape given the sig-
nificance of on-demand cloud services offered by increasingly powerful cloud provi-
ders. The need for secure storage and retrieval of data is shared among all types of
clients who can range from a simple user who uses a cloud service to store their photos
to big enterprises (in a variety of sectors, i.e. healthcare, media, IT, banking, industry,
etc.), which store financial and other sensitive data. A Service-level agreement (SLA) is
a contract between a (cloud) service provider and a customer that specifies, in mea-
surable terms, what services the provider offers. A SLA often includes metrics that
specify the performance, availability, and security assured to the customer, as well as
penalties for violating these requirements.

SLAs in Cloud architectures have been the focus of attention of a significant
number of researchers and professionals, especially with the rapid adoption of cloud
based solutions in many different application domains. SLA schemas XML schemas
that represent the content of an SLA. Some existing approaches for SLA schemas and
the corresponding languages to define service description terms are: SLAng [1],
WS-Agreement [2], WSLA [3], WSOL [4], and SWAPS [5]. Nevertheless, the pro-
posed schemas have limitations. SWAPS is quite complex and the implementation is
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not publicly available. WSLA and SLAng have not further development at least since
2009. Apart from this, SLAng does not permit to define management information such
as financial terms and WSLA has not formal definition of metrics semantics. WSOL
lacks SLA related functionalities, such as the capture of the relationship between
service provider and infrastructure provider. The WS Agreement is a Web Services
protocol for establishing agreement between two parties using an extensible XML
language for specifying the nature of the agreement, and agreement templates to
facilitate discovery of compatible agreement parties. It allows arbitrary term languages
to be plugged-in for creating domain-specific service description terms.

Two challenging research issues are the requirements translation from high level
metrics to low level requirements and vice versa and the proactive violation detection.
Several proposals have been made for these issues, but very little for cloud environ-
ments. For instance, GRIA SLAs [6] suggest a solution for avoiding violations but
concerns only Grid environments. The LoM2HiS framework [7] proposes the trans-
lation of low level metrics to high level terms that are used in Cloud SLAs, but not the
reverse translation. Also, they are based on generic characteristics and terms (e.g.
availability) which are not application specific. The LAYSI framework [8] supports
two kinds of monitors sensors, the host monitor and the runtime monitor sensor. The
latter senses future SLA violation threats based on resource usage experiences and
predefined threat thresholds. In DesVi [9], an architecture is proposed for preventing
SLA violations based on knowledge database and case-based reasoning. It also uses the
LoM2HiS framework for the requirements translation.

In [10] an analysis of SLA violations in a production SaaS platform is described,
while [11] presents a scalable, stochastic model-driven an interacting Markov chain
based approach to quantify the availability of a large-scale IaaS cloud. In [12] the
authors present an aggregation mechanism for merging service-level objectives and for
guaranteeing a single SLA that specifies obligations and responsibilities of all partic-
ipants in a federation. The framework in [13] uses a portfolio-based optimisation to
improve SLA compliance by diversifying the selection and consequently the allocation
of traded instances of web services from multiple providers. An end-to-end framework
for consumer-centric SLA management of cloud-hosted databases is proposed in [14]
to facilitate adaptive and dynamic provisioning of the database tier of the software
applications based on application-defined policies for satisfying their own SLA per-
formance requirements. SALMonADA [15] performs an automated monitoring con-
figuration and it analyses highly expressive SLAs by means of a constraint satisfaction
problems based technique. In [16] a new proactive resource allocation approach is
proposed aiming at decreasing impact of SLA violations by using two user’s hidden
characteristics, i.e. willingness to pay for service and willingness to pay for certainty. In
[17] an SLA implementation for Cloud services based on the CMAC (Condition
Monitoring on A Cloud) platform is proposed, while in [20] decision-making with
regard to availability SLAs is explored.

In this paper, we present a system for declaring and enforcing SLAs in Cloud
environments where commitments for using Cloud services are defined. The SLAs are
enriched with content terms, storlets and federation capabilities. Additionally, many
SLOs (Service Level Objectives) are supported at different levels permitting the clients
to have customized SLAs. A mechanism for SLA enforcement has been designed and
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implemented which, based on policies, measurements and usage data computations,
permits SLA violations to be handled and imminent SLA violations to be proactively
detected. Moreover, renegotiation is supported, i.e. a client can change their SLA for a
variety of reasons. The system permits the SLA renegotiation and based on measure-
ments and usage data can suggest changes to the existing SLA aiming at being more
compatible to its data usage or for cost reduction. The main core of the presented
framework was developed in the context of the VISION Cloud EU project [18].

2 Cloud Models and Enriched SLA

Our proposed system permits the storage of objects and their retrieval anytime and
from anywhere. In order this to be achieved replicas of the objects are stored in
appropriate locations. The clients of the Cloud are the tenants and their users. A tenant
is the unit that subscribes to storage cloud services. A tenant defines its users. The users
handle the objects that are stored in the Cloud. The objects are stored grouped by
containers. Containers serve as an aggregation point for grouping related data objects
together. Policies can be set on a container basis and are applied to all of the objects in
the container. A container is associated with an SLA and based on it the number and
the locations of the replicas of the objects are defined. The Cloud is composed of
multiple data centers. Each data center is split to clusters and each cluster consists of
multiple nodes which contains the servers. This hierarchy is stored in Catalogs. Each
level has its own aggregated catalog and uses GPFS-SNC. A local catalog enables
mapping objects to file paths and the node containing the object. The resource model
can be seen in Fig. 1. The existence of a resource model in the PaaS layer of a Cloud
environment serves the need of management in terms of resource allocation, services
deployment and execution and finally optimization.

The proposed SLA contains additions that are significant for Cloud provisions.
Apart from the classical data of an SLA such as availability levels and responsibilities

Fig. 1. Resource model. Fig. 2. Federation.
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data between the provider and the tenant, our SLA is based on content terms and
contains more SLO’s in order to be customized as per the tenants’ desires. Also, it
contains federation and storlets support and commitments. Finally, it provides rene-
gotiation with suggestions for better SLA according to the tenant’s usage.

Content term addition. The innovation of declaring content terms permit the Cloud to
provide content-centric services. Also, it links content with performance estimates,
decisions for moving computation close to storage, pricing models, etc. Another
advantage is that support more efficient capabilities, e.g. quicker search and retrieval of
the objects, services regarding the content term for instance in case of media, high
performance video related services are supported.

SLOs. The SLOs are not restricted in availability. There are many requirements in
different levels that are selected by the tenant according to their desires. A tenant can
balance the cost with the supported levels. For instance a tenant that uses data related to
media can demand throughput of the highest level for the objects that concern the daily
news as these are highly demanded whereas to choose lower throughput in order to
have less cost. Finally, geographic constraints are supported. The tenant can choose the
desired regions and black list regions where restricts its data to be stored.

Storlets. Storlets are executables which provide capabilities for supporting and
improving the services that are offered to the tenants. Some storlets are: data com-
pression, file transformation in various formats, translation, speech2text, text2speech,
text2pdf, pdf2txt, transcode format, classify photos, extract data for patient, etc. Each
storlet has a condition and an action that is executed when the condition is met.

Federation. Cloud federation is the practice of interconnecting the cloud computing
environments of two or more service providers for the purpose of load balancing traffic
and accommodating spikes in demand. Also, there is a need for interoperability that is
to move data between providers without this to be visible to data usage. There are many
reasons for having data in more than one Cloud providers. For instance, the SLA (or
application) requires services that cannot be found on only one provider, the amount of
resources required goes beyond what a single provider can offer, or the required per-
formance cannot be guaranteed by any single provider alone. In our system we support
change of storage providers without data lock-in and single view of storage across
multiple providers. The SLAs federation section declares if the federation is permitted
and with which providers. Figure 2 shows the federation view. The tenant can have
access to their data without being interested in which Cloud provider they are stored
and without knowing the process of data movement between providers.

Requirements. The requirements addressed were chosen based on use cases of
VISION Cloud project and include: Throughput (some requirements require specific
throughput levels aggregated at the level of tenant, whereas others require throughput
per request), Durability (asked for specific durability levels), Availability, Duration
(constraints regarding the duration of the requests: latency and response time), Security
and privacy (Authorization, authentication and guarantee of proper use), Geographic
constraints (User determines in which regions he desires to store his data), Violations
checks (All the requirements should be checked and met during the SLA lifecycle),
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Storlets (SLAs also provide storlet selection), CDMI (The external interfaces should be
CDMI compliant), Billing, CRUD operations.

3 SLA Management and Enforcement

Our proposed SLA Management provides a robust end-to-end SLA system starting
from the SLA negotiation and runtime enforcing the currents SLAs with the agreed
services and commitments. The SLA enforcement apart from dealing with providing
the requested services according to the agreed SLOs with the tenant, is responsible for
checking for SLA violations and for detecting proactively imminent SLA violations. In
case of possible SLA violations it tries to avoid them with corrective actions. The SLA
enforcement is based on policies and usage data analytics that are checked based on
monitoring data.

As far as the architecture is concerned, there are two main components: (a) the SLA
Negotiator which handles the services that have to do with the external communication
with the clients that is SLA negotiation, SLA renegotiation, SLA templates generation,
billing etc. (see Fig. 3) and (b) the SLA Enforcer which deals with the enforcement of
the SLA and handles services that are needed in the Cloud internally such as policies
generation for monitoring and analysis, check of SLA violations, proactive detection of
possible SLA violations and decisions for corrective actions (see Fig. 4). The SLA
schema that is used is described in detail in [19].

SLA Negotiator. The SLA Negotiator component is responsible for implementing the
external interface of the platform with regard to SLAs.

SLA Negotiation. The negotiation of SLAs is realized by taking into account content
related terms, thus reflecting the content centric approach of VISION Cloud. Different
capabilities and costs are provided depending on the selected content term. To sign an
SLA, a tenant chooses and fills an SLA template. SLA templates are generated

Fig. 3. SLA negotiator.
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dynamically according to the supported capabilities of VISION Cloud and the content
terms. SLA templates contain the supported metrics with different levels, by which the
SLOs are derived when the tenant chooses his desired level, the supported services, the
obligations of both parties (provider and tenant), the billing rules and the penalties in
case the agreed service level is not met. An SLA template also contains terms related to
the federation capabilities of the platform, which define the tenant’s ability to perform
federation and with which providers. Additionally, a section for storlets is provided.
The set of storlets available to the tenant is based on the tenant authorization and the
type of the requested SLA template. Some storlets in the set might be compulsory, and
some optional; besides these storlets, other optional ones are displayed and can be
additionally chosen.

SLA Renegotiation. SLA renegotiation is supported. During SLA negotiation there is
a section for determining which data the tenant can request to the provider to be
modified during the SLA lifecycle (e.g. levels of the permitted SLO, addition of
storlets, federation permissions, etc.). If both parties agree, the SLA is changed, and it
is pushed to the internal system with all the necessary modifications. Also, suggestions
are provided to the tenant informing of what terms may be changed in his SLA in order
to better suit him (e.g. adding storlets, or using a lower level SLA which already covers
his needs at a lower cost). The SLA Management component is easily modifiable, and
contains an automatic way to handle changes in the SLA schema.

Reports and SLA Data. SLA Management provides a user friendly GUI, by which
the user can request the creation of an SLA and can delete, edit, view an SLA or a list
of SLAs that concerns the current user. Also, the user can be notified about certain
events, receive reports, and view older notifications and reports (e.g. SLA violations
occurred in a certain period). The GUI supports user authentication in order to enforce
security and privacy policies.

Fig. 4. SLA enforcer.
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SLA Enforcer. The SLA Enforcer deals with the system configuration regarding the
SLAs and the enforcement and maintenance of SLAs between tenants and providers.

Container Configuration. During container creation, the SLA Enforcer is contacted
by the Container Management component to obtain the QoS requirements stemming
from the chosen SLA. One responsibility is to translate the requirements translation
from the high-level QoS metrics to the low-level ones and vice-versa. Translation from
the high-level metrics specified in an SLA (e.g. durability) to low-level metrics by
which the internal system works (e.g. number of replicas) is important during SLA
management. It is also needed for checking the feasibility of the requested QoS metrics,
for generating policies in order to ensure the SLA enforcement and for the placement
execution. The reverse translation is needed during SLA templates generation in order
to generate templates expressed in SLA metrics based on the available and supported
low level metrics. Moreover, the SLA Enforcer is responsible for tuning the Monitoring
and Analysis components with appropriate parameters needed for the SLA enforce-
ment. These include the metrics that should be monitored and the threat thresholds.
Also, it provides to the Container Management component placement requirements
(how many replicas and in which locations) in low-level terms.

SLA Violation Handling. SLA violation is handled according to policies that are sent
to Monitoring. When an SLA violation occurs, a notification is sent to the Accounting
and Billing in order for the provider to be charged with the agreed penalty. Moreover,
the SLA Enforcer stores appropriate information in the Global View so as to be used
for preventing future SLA violations.

Proactive SLA Violation Detection. The SLA Enforcer is responsible for detecting
proactively possible SLA violations. The SLA Enforcer calculates for each metric the
threat threshold, which is more restrictive than the one signed and appropriate policies,
and sends them to the Analysis component. The Analysis component receives moni-
toring information for this metric and calculates trends and patterns. The SLA Enforcer
is notified by Analysis when forecasts that a metric will reach the given threshold.
Then, the SLA Enforcer decides on the actions that are needed to prevent the imminent
SLA violation and it reconfigures the system with new appropriate policies and
monitoring parameters. Examples of corrective action are replica creation, replica
movement, or request redirection to a cluster which is less loaded.

The proactive SLA violation detection is based on resource usage experiences and
historical data and uses the case base reasoning (CBR). CBR is the process of solving
problems based on past experience. In the knowledge database used in Global View the
conditions are stored under which a violation is going to be realized, and the pre-
ventative actions and solutions that should be performed for avoiding the violations.

Analysis algorithms for proactive SLA violation detection regarding forecasting
and normality are implemented based on Map/Reduce processes.

Policies Mechanism. The SLA Enforcement is based on policies that are created
runtime according to the SLOs and the monitoring data. The policies concern either
monitoring or forecasting metrics. Some policies examples are depicted in Fig. 5.
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Monitoring. The main responsibility of the Monitoring Component is the collection,
propagation and delivery of all events generated in the system to their respective
recipients. To this end, the component employs an asynchronous message delivery
mechanism, and on top of it, a simple distributed rules engine to decide where each
event should be transmitted and whether it should be aggregated with other events first.
The system distinguishes between a number of different aggregation levels. More
specifically a rule can be defined at a per node, per cluster, per datacenter or per cloud
level combined with a time frame. These levels have different granularities.

The monitoring component’s interactions fall into two broad categories:
Producers of Events in VISION Cloud include the Object Service, CCS, Resource

Map, SRE (Storlet Runtime Environment), VM-storlets and low-level metric gathering
probes. These services generate events upon user actions or at scheduled intervals. The
events are passed to Monitoring which performs various aggregation operations and are
finally passed on to consumers. A library provided by Monitoring is used (in python
and java) for integrating with the producers.

Consumers of Events. Most management operating layer services, for example CTO,
SLA Management, Accounting/Billing, Analysis and Analytics service, depend inte-
grally on the events dispatched by Monitoring. The events can be consumed through a
provided library.

The main components are the following:

Vismo-Core. This is the main monitoring instance. There is a unique instance running
on each node and its main purpose is to coordinate with the other modules. In the most
basic terms, it acts as a conductor of events and as such, can be seen as the backbone of
the system, receiving events from the event producers and distributing them to the
event consumers. Moreover, it is responsible for collecting locally produced events,
performing partial (node-level) aggregation and pushing the events to consumers.

Vismo-Dispatch. The sole purpose of this library is to connect a producer to the
locally running monitoring instance. In doing so, events generated in the producer are
passed in instantly to the monitoring process. Under the hood the open source zmq
library is used, in a pull/push fashion.

Vismo-Notify. The library is used by the various consumers to declare interest in one
or more group of events, called topics. Upon registration, the library is responsible for
notifying the client of the arrival of new events. The notification happens in an
asynchronous fashion to the main client program, in another thread. Here, also, the zmq
library is employed, using a PUBSUB mechanism.

Fig. 5. Monitoring policies examples.
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Rule System. A basic rule system is used to evaluate every event received and trigger
different processing actions, such as partial aggregation or immediate dispatching
according to rules.

Aggregator. This module is used to generate new events which are the result of an
aggregation method upon a list of raw events. Typically, the aggregation happens over
events of the same type. Another option is to collect a number of raw events and group
them by a given property field.

Rule Synchronizer. This module is responsible for synchronizing all the instances of
the rules engine to contain the same rules.

Vismo-Probes. These constitute various low level probes that are external to the main
instance and collect data about CPU and memory usage, network load, etc., per node.

CDMI-Queues Service. This service implements and extends the Notification queues
as proposed in the CDMI specification. CDMI specifies a means to define and
implement notification functionality that is based on queues.

Rules Propagation Mechanism. In order to allow for new rules to be inserted in the
system a new mechanism has been developed that allows for rules to be added, updated
or deleted at runtime. Moreover, the mechanism guarantees that the rules will be
eventually synchronised across all the instances of the distributed rules engine of the
monitoring system. The propagation mechanism works as follows: all the nodes at the
cluster level form a multicast domain. A simple election mechanism is used to elect a
cluster-head, a datacenter-head and a cloud-head. Once a node receives a request for a
rule, it propagates the change to all other nodes in the cluster through a multicast
message. Each node is responsible to send an acknowledgement to the cluster-head that
the change has been received.. Once the cluster is updated the cluster-head is
responsible to contact the datacenter head which in turn informs all the cluster-heads.

Implementation and Design Decisions. Our system is based on widely used proto-
cols. For the services we use REST services. Data exchanges are done with JSON
format. The database that we use is Cassandra a distributed database. The catalogs are
using GPFS. The SLA schema follows the WS-Agreement. Implementation language is
Java, Javascript and Python. For the policies the CDMI protocol is used and for
federation OVF and OCCI interface. The technical details of the SLA Management
component are abstract for other components, so they are unaware of them: RESTful
web services are provided to other components in order to use the SLA Management
functionality.

The SLA Management component at VISION Cloud is installed in all the nodes,
but only one instance runs per cluster. This decision was taken for failover and per-
formance reasons. Some of the SLA Management tasks are handled in different clus-
ters. Nevertheless, synchronization and other matters should be taken into account. An
alternative solution is installing the SLA Management component in one cluster and
offering a centralized SLA Management. This solves any synchronization issues that
may raise, but the performance is severely impacted. The source code of SLA Man-
agement was packaged in a WAR file and was deployed on a Tomcat web container,
which was tested in the VISION Cloud testbed.
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4 Evaluation

In this section we present an experimental evaluation of our system. The tests were
executed on a machine with an AMD Phenom II x4 965 Processor running Scientific
Linux 6.1. An event creation client created events with configurable event size and rate.
The client used the producer library of the mechanism, which added a timestamp to
every event. Each message was then propagated to the monitoring mechanism, which
after processing the event forwarded to a consumer which appended a timestamp to the
event. Using the two timestamps the latency and throughput were calculated in varying
scenarios of event rate generation, event size and rules to be executed. The testbed
examined consists of 9 machines, organized into 3 clusters.

In the first set of experiments the rate at which events were generated was kept
constant at 1000 events per second while the size of the events was gradually made
larger, starting from 512 bytes up to 10240 bytes. For each specific size a set of 5000
events were generated and the mean throughput and latency were calculated. Moreover
the memory used by the mechanism was measured in each run. The results can be seen
in following, while a statistical analysis of each graph can be found in Fig. 6.

Fig. 6. Statistical analysis of experiments.

Fig. 7. Throughput with variable size of events 1000 Events/sec rate and 3000 Events/sec rate.
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As the size of the events is made larger so does the latency increase, reaching
approximately 0,04 s at an event size of 10240. This is considered to be adequate
considering that event sizes should not in general be this large. As it is evident the
mechanism easily maintains a constant throughput of 1000 events per second. Memory
consumption is also affected by the size of the events reaching a maximum of
134 MBs.

In the next set of experiments and in order to stress the system we executed the
same experiment with an event rate of 3000 events/sec. As expected we see a negative
impact on the measured latency and throughput (Figs. 7, 8 and 9).

Fig. 8. Latency with variable size of events at 1000 Events/sec rate.

Fig. 9. Latency with variable size of events at 3000 Events/sec rate.
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In the third set of experiments the event size of kept constant at 1024 bytes while
event rates from 100 events/sec to 15000 events/sec were used. For each rate a total of
15000 events were sent and the mean latency and throughput were calculated.

Up to an event rate of 6000 events per second the latency is stable at around 0,04 s.
After this point there is a constant increase in its value reaching a maximum of 0,62 s.
The throughput of the system is able to easily cope with a generation rate of approxi-
mately 6500 events per second. After this point there is a constant increase in the
difference between generation and rate and output throughput. Memory consumption is
also affected by the rate of the events being similar to the consumption measured during
the first two tests and reaching a maximum of 189 MBs (Figs. 10 and 11).

5 Conclusion

In this paper we proposed an automated SLA Management mechanism for content
centric storage. It is based on an enriched SLA schema which contains content terms
and sections for storlets and federation. SLA Management exploits the chosen content
terms and supports services to the customer more efficiently and with reduced cost.

Fig. 10. Latency with variable rate of events.

Fig. 11. Comparison of achieved to maximum throughput.
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During the SLA enforcement, dynamic rules are created and updated, in order to handle
proactively SLA violations. Dynamic SLAs are also supported, as SLA templates are
generated according to the current supply, and renegotiation is offered.
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