
Understanding Resource Selection Requirements
for Computationally Intensive Tasks

on Heterogeneous Computing Infrastructure

Jeremy Cohen1(B), Thierry Rayna2, and John Darlington1

1 Department of Computing, Imperial College London, London, UK
{jeremy.cohen,j.darlington}@imperial.ac.uk
2 Novancia Business School Paris, Paris, France

trayna@novancia.fr

Abstract. Scientists and researchers face challenges in efficiently con-
figuring their scientific computing tasks so that they can be run in a
timely and cost-effective manner. While the increasing availability of
different types of computing platforms provides many opportunities to
users, it can further complicate the job configuration process. In this
paper we present work-in-progress to develop an approach to assist with
identifying the most suitable computing platform and configuration for a
computational task based on a user’s financial and temporal constraints,
using a decision support system. We use Nekkloud, a web-based tool
for running computations via the Nektar++ spectral/hp element frame-
work, as an exemplar and build a table that scores a range of properties
for four example computing platforms to help select the most suitable
platform for a job. We demonstrate our approach using three sample
task scenarios.

Keywords: Resource selection · Decision support · Heterogenous plat-
forms

1 Introduction

Computing platforms have evolved significantly over recent years with the emer-
gence of multi-core processors containing increasingly large core counts and
many-core architectures such as those used in GPUs. In addition, new mod-
els of accessing resources, such as the pay-per-use, on-demand access provided
by Infrastructure-as-a-Service (IaaS) clouds, offer individuals additional oppor-
tunities for access to significant computational power.

While the capability to make use of new and different types of resources to
undertake computations can offer scientists and researchers greater flexibility, it
also presents a range of challenges. From a user perspective, these include select-
ing the most suitable resource(s) to use and correctly specifying the complex
parameters and configuration files that are often required to run high perfor-
mance scientific codes. Computing platforms have different costs, availability and
c© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 250–262, 2017.
DOI: 10.1007/978-3-319-61920-0 18



Understanding Resource Selection Requirements 251

reliability and choosing the most suitable platform is a complex matter because
it necessarily implies that trade-offs have to be made. Yet, it is not just an issue
of ‘time vs money’ and there is most likely not a straightforward continuum
of preferences that could be used to simply determine the most suitable plat-
form considering the characteristics of the project at hand. The large number of
parameters that are often involved in configuring High Performance Computing
(HPC) codes mean that standard optimisation approaches can be impractical.
This difficulty is compounded by the availability of multiple platforms and col-
laboration between different groups of individuals with different expertise when
specifying task parameters. In this paper we describe work-in-progress to develop
an alternative approach, relying on the expertise of those undertaking the job
configuration and supporting this with a decision support framework that can
assist in making the most appropriate decisions in a timely manner. We present
the first stage of our research into approaches to help users in selecting a suitable
target platform for running HPC jobs in environments where multiple resource
types are available. Our use case is based on the Nekkloud [8] tool which, in
combination with another tool, TemPSS [6], provides a web-based application
for running spectral/hp element [12] computations via the Nektar++ [5] soft-
ware. Using example scenarios, we demonstrate the challenges users can face in
selecting a suitable target platform for their research computations. We then
introduce the decision support framework, which will be implemented in the
second stage of the research, and show, using the same scenarios, how it may
be applied to help users in selecting suitable computational platforms for their
tasks. As this work develops, we consider that the main contribution will be the
ability to offer users of the Nekkloud tool, and others that adopt the decision
support framework, recommendations of the most suitable computational plat-
form to use to undertake their scientific HPC tasks. Ultimately we aim to enable
automated selection of resources to support a user’s required task configuration.

Related work is presented in Sect. 2 and we then introduce the HPC code
and tools that provide our use case in Sect. 3. Section 4 presents and ranks four
example computing platforms based on a set of properties. Section 5 presents the
user scenarios and Sect. 6 discusses the properties of a decision support system to
assist in efficient resource selection and looks at its application to the scenarios.
We present our conclusions and details of future work in Sect. 7.

2 Related Work

Resource management and queuing systems such as TORQUE [1] and Grid
Engine R© [24] are widely used on HPC clusters to handle queuing and schedul-
ing of jobs, and extensive work has been undertaken looking at approaches to
job scheduling and resource management/selection. The emergence of computa-
tional grids raised additional challenges and [13] provides a survey of resource
managers that support grid computing environments. Systems such as these
handle a job when a platform has been chosen and the job submitted to it. As
new models and hardware for undertaking computations have emerged, such as



252 J. Cohen et al.

Infrastructure-as-a-Service (IaaS) cloud platforms, GPUs and other accelerators,
users have more opportunities to access computing power but also more chal-
lenges in understanding how best to select the most suitable platform(s) for their
tasks. Our work focuses on the process of assisting users in selecting a suitable
platform in an environment where multiple platforms are available.

Nekkloud users are currently required to select their chosen platform,
resource type and related properties before running a job. However, it is often
challenging for users to identify what they consider to be optimal and the level
of risk they are willing to accept to achieve this. This is demonstrated in [4]
which shows that where individuals have freedom of choice they take advantage
of this even when its clear that the evaluation costs are high, possibly resulting
in an inferior outcome compared to a case where choice is not available.

Describing platform capabilities and task requirements can be particularly
challenging. Condor ClassAds [18], developed as part of the Condor work-
load management system [23], provide an approach to describing and matching
requirements and capabilities. An extension of this mechanism, described in [15],
provides a resource selection framework. In more complex heterogeneous envi-
ronments, automating resource selection becomes especially challenging and [9]
presents an algorithm that is designed to tackle this problem in a scalable man-
ner. While it focuses on services, the SDL-NG framework [21] provides an alter-
native example of an approach, based on the use of domain specific languages, to
provide formal descriptions of services. Our methodology defines a set of platform
properties that are used to describe the capabilities of a platform, and could be
represented using an approach such as ClassAds, and a decision support system
that uses these properties to help address a user’s requirements.

3 Software Environment

The spectral/hp element method [12], a type of high-order finite element method
(FEM), can be used to solve systems of partial differential equations in order to
carry out modelling of a range of physical mechanisms in a variety of scientific
domains. Nektar++ provides an open source implementation of the spectral/hp
element method and a set of solvers. It is well-documented but the complexity
of such applications means it can still be challenging for end-users to work with.

Work to develop the libhpc framework [7,14], led to the development of a set
of software tools and services to support and simplify running of scientific HPC
codes on different computing resources. In this paper we base our investigations
on two specific libhpc outputs, Nekkloud, and TemPSS (Templates and Pro-
files for Scientific Software). Nekkloud is a web-based user interface for running
Nektar++ computations on different computing platforms and TemPSS is a ser-
vice for managing sets of job configuration parameters for scientific applications.
Figure 1 shows how the services are linked. TemPSS displays an application’s
configuration parameters as an interactive, visual tree. Users can build configu-
rations by entering parameters into the tree nodes. The ability to store subsets



Understanding Resource Selection Requirements 253

Fig. 1. The linking between Nekkloud, TemPSS, their users and computing platforms.

of parameters enables groups of individuals with different expertise to collab-
orate on building complete configurations. TemPSS can be used standalone or
integrated into other applications and it has been built into Nekkloud.

The combination of Nekkloud and TemPSS offers an improved user experi-
ence and significantly simplified approach for running Nektar++ computations
on remote platforms. It also helps to decouple the interactions between the dif-
ferent entities involved in running a computation. Nonetheless, in its current
configuration, Nekkloud still requires that a user manually selects the comput-
ing platform on which they want to run a job, requiring some end-user knowledge
about the pros and cons of running on different platforms and an understanding
of the possible costs or issues of selecting one platform over another.

4 Computing Platforms

We introduce four example computing platforms and our methodology for com-
paring their capabilities. Table 1 shows the result of applying this methodology.

1. Standalone server: A multi-core x86 64 server with 2x16-core processors.
2. HPC cluster using the PBS batch scheduler: A large-scale HPC cluster

consisting of several multi-core nodes interconnected with InfiniBand
TM

low-
latency networking and accessed via the PBS job scheduler.

3. OpenStack private cloud: An OpenStack private cloud IaaS system offer-
ing on-demand provisioning of virtual servers of different specifications.

4. Amazon EC2 public cloud: The Amazon EC2 [3] public cloud platform
that offers on-demand, pay-per-use access to a variety of resources.

Our methodology for comparing the platforms involves the use of eight prop-
erties that are assigned values to rank platforms based on their pros and cons.
The use of these properties to help select a platform under different requirements
forms a type of multiple attribute analysis problem and an overview of various
approaches to such problems is described in [16]. The properties are:

– Cost (purchase and usage): The cost to the end user or their institution
of the initial platform purchase and the costs incurred at the point of use.



254 J. Cohen et al.

– Contention: This is worse where there may be a large number of users or a
long wait for a job to begin processing and better where there are fewer users
or dedicated access to a resource.

– Technical knowledge: The amount of technical knowledge required to use
a platform without the use of additional supporting tools such as Nekkloud.

– Capacity: Specification in terms of CPU cores, disk storage and memory.
– Flexibility: The ease of accessing different types/amounts of computing

capacity and being able to scale requirements up or down on a per-job basis.
– Reliability/maintainability: How likely a platform is to fail or become

unavailable and the potential difficulty of maintaining it.
– Communications: The expected inter-node communication performance.

Assigning numeric values to these properties allows straightforward summa-
tion or application of weights to the parameter values, as used in the “additive
weighting” approach described in [16]. We use a scale of values between 1 and
9 (inclusive) with 1 being the worst and 9 being the best. The size of the scale
was selected to offer flexibility in the assigning of scores for parameters where
there is considered to be similarity between two or more platforms. A smaller scale
would reduce the scope for highlighting small differences between platforms while
a larger scale provides an unnecessarily wide range of options. It is, nonetheless,
accepted that there is an element of subjectiveness in the assigning of the values
but it is still felt that they offer a good representation of platforms’ capabilities and
similarities. At the initial stage of this work we have opted to give all properties
equal weights rather than applying a weighting factor to give values more or less
significance. With the introduction of the decision support system in Sect. 6, there
is the opportunity to introduce weights to the property values and to automate
their selection in order to take user requirements into account.

Table 1. Summary of the pros and cons of different properties of the four example
platforms described in this section. P1 = standalone server; P2 = HPC cluster; P3 =
OpenStack cloud; P4 = Amazon EC2; ‘-’ = Parameter not applicable.

Cost Contention Tech knowledge Capacity Flexibility Reliability Comms Total

Purchase Usage

P1 7 7 7 6 1 2 5 - 35

P2 1 8 5 7 6 7 7 9 50

P3 5 7 7 3 5 6 4 2 39

P4 8 3 8 3 7 8 9 4 50

The values in Table 1 are based on example deployment scenarios for each
platform. These scenarios are considered from the perspective of a researcher
working in fluid dynamics wanting to use the platforms to undertake their
processing jobs. Platform 1 is purchased and operated by the researcher’s own
team. The team needs the expertise to deploy and manage the resource but
the researcher is then likely to have relatively uncontended access to it – it is



Understanding Resource Selection Requirements 255

likely to be shared only with other team members. The limited core count is
an issue and maintenance is the responsibility of the researcher or their team.
Platform 2, the HPC cluster, is designed for large-scale computations and is opti-
mised for performance, providing high-speed, low-latency interconnects between
nodes. Such a platform is very expensive to purchase but it may be supported
through direct institutional funding and made available for researchers to use
free of charge. Jobs are managed by the cluster’s batch scheduling system and on
a busy cluster, a job may be queued and take some time to begin running. The
OpenStack private cloud platform offers much of the flexibility of a standalone
server but with the potential to gain access to larger numbers of resources. A
significant issue is that resources are interconnected using standard gigabit ether-
net networking. This, combined with virtualised network interfaces on the cloud
instances, can result in a significant performance penalty for parallel codes that
undertake lots of inter-node communication. Reliability/maintainability may
be an issue since this is, again, a locally operated platform. Platform 4, the
Amazon EC2 public cloud, is accessed in a similar way to the OpenStack private
cloud. However, EC2 offers a much wider choice of resource types and physical
locations, which can be important if data is available in and must be processed
in a specific geographic location. Access to Amazon EC2 resources is charged
on a per-hour basis with a range of pricing options depending on the planned
usage profile.

5 Usage Scenarios

We now look at three example usage scenarios, providing an initial platform
recommendation for each based on the values in Table 1. The recommendations
are revisited after the decision support system (DSS) is introduced in Sect. 6.

Scenario 1: A researcher is preparing a conference paper presenting analysis
based on a 3-dimensional mesh that they have developed to support a fluid flow
problem for a civil engineering project. The work is a collaboration between
the researcher (a mathematician), and a group of civil engineering researchers.
Around 3,000 CPU hours of computation are required for the analysis and the
paper deadline is in two days. The lead researcher has limited funding for CPU
time on their project which they would ideally like to retain for subsequent mod-
elling tasks. Their institution operates an HPC cluster that is free at the point
of use to researchers needing to undertake computationally intensive analysis.

Discussion: It is clear that the most important aspect here is the speed with
which the job can be completed. From a pure computation perspective, the
researcher would be best to undertake their job on the dedicated HPC cluster,
requesting, say, 1024 or 2048 cores and having their computation completed in
approximately 1.5–3 hours. However, this does not take into account job queuing
time which, depending on the current cluster load, could be substantial. An
alternative option would be to start a number of pay-per-use resources on the
Amazon EC2 public cloud. The main issue with this approach will be the cost
of purchasing around 3,000 CPU hours of compute time from the cloud service.



256 J. Cohen et al.

Platform recommendation: Local HPC cluster.

Scenario 2: An engineering team is developing a model of a gas pipe in a new
structure. To test the correctness of their model and identify any issues with it,
the team need to run a number of small-scale parallel tests. The number of time-
steps to be run will need about 50 CPU hours per test and it will be necessary
to undertake multiple runs with varying input parameters. The team are experts
in their scientific domain but they need to collaborate with a software expert in
order to select a suitable parallel computing environment and correctly configure
their problem parameters to be used in the flow modelling solver.

Discussion: In this situation, the engineering team need the computation results
as soon as possible in order to evaluate them and adjust the input parameters
for the subsequent run. A platform where jobs are delayed by long queuing
times is likely to be impractical, even if the ultimate computation performance
is very quick. A better option could be to use a platform that may be slightly
slower in terms of raw computation but where there is no contention for resource
access. Such a scenario is likely to suit an in-house private cloud platform, or
simply a multi-core standalone server. Software may need to be deployed and
possibly built from source code to suit the target resources. The team are likely to
require support from a computer scientist, if the software needs to be built from
source code, and from the platform operator to identify the most appropriate
parameters to suit the chosen platform when building and running the code.

Platform recommendation: Local, standalone, multi-core server

Scenario 3: A doctor wishes to model blood flow through an artery. They
have collaborated with a CFD expert and a computer scientist and developed a
one-dimensional model on which their computation will be undertaken using a
Navier-Stokes solver. While the doctor understands the scientific problem they
are tackling, their collaborators provide domain-specific knowledge to select or
build a solver suited to the particular task. Computational requirements here are
relatively low when compared to large three-dimensional models but funding is
not available for computing time so low cost is the most important requirement.

Discussion: Time is not a significant constraint in this scenario. The lowest cost
option depends on what resources are locally available to the doctor undertaking
the modelling. We assume that a local server and institutional private cloud are
available but not a cluster. For this computation, a local server offers the most
straightforward option, despite the fact that computations may take some time
to complete. However, a private cloud could offer the opportunity to scale com-
putations and the developer working with the doctor should be equally capable
of deploying their code to a local server or a remote cloud platform. The potential
for complexity or delay that may result from having to work with a third-party
platform is less of an issue with cloud infrastructure where a web based interface
or API are normally available to start/stop and manage resources.

Platform recommendation: Institutionally-operated private IaaS cloud.



Understanding Resource Selection Requirements 257

6 Decision Support System

6.1 System Model

As illustrated in the scenarios, constraints faced by users are heterogenous. While
this means that access to different computing platforms is of critical importance,
it also makes choosing the right platform quite complex, as all platforms have
different properties. As a result, users are facing multi-dimensional trade-offs.
There is obviously the matter of time and money (cost and contention). While
this may, at first, look rather straightforward – there is a budget that cannot be
exceeded and a deadline to be met – even such a trivial matter is actually not that
simple. Indeed, what is the actual opportunity cost of a particular project? How
much extra would a particular user or group of users be willing to pay to obtain
their computation results a bit earlier? Conversely, how much money should they
be offered to accept postponing completion of the computation for some period
of time? In Table 1, property weights were considered to be equal. Yet, as with
the property values assigned in Sect. 4, such weights are highly subjective and
strongly depend on the project at hand. One task of the decision support system
is to compute appropriate values for these weights given a particular scenario.

Previous literature [19] has emphasised the increasing complexity of choices
in an environment when options are numerous and, as a result, the growing
importance of decision support systems. In the case at hand, there is a clear need
for a system that would enable identification of the most relevant option, based
on the opportunity cost of each computational task. This question is particularly
critical because the pricing of computing resources on certain types of computing
platforms is often not stable (e.g. the ‘spot’ prices of computing units on Amazon
EC2 [2] which evolve all the time). Being able to model the actual trade-off
between time and money for a particular project provides the ability to identify
opportunities as the project (and related computation) is being carried out. For
instance, it may be possible to identify potential savings that can be achieved by
delaying some of the computations. For some projects, this will be acceptable,
but not for others. Hence the need to know the opportunity cost profile of the
project. Determining this opportunity cost profile requires the following:

– knowing the ‘super-boundaries’: a maximum budget is sometimes not the
actual maximum that can be spent on a project and even the strictest deadline
might be extended by a small amount. Knowing what it would take for users
to accept to ‘go the extra mile’ is critical to identify the best opportunities.

– knowing the ‘boundary conditions’: conversely, once a budget and time con-
straint have been assigned to a project, under which conditions is it acceptable
to move away from these constraints?

– knowing the general opportunity cost of the project: considering the con-
straints of the project, what is the value of time (in money) for the users?

The first two points above can be determined through asking users a set of
dedicated questions. The third point requires the use of an experimental method-
ology, such as the one used in [17] or described in [22]. When the project is carried



258 J. Cohen et al.

out by a group of users instead of a single user and there are several stakehold-
ers (meaning that the opinion of several users – including some that may not
be interacting directly with the computing environment – has to be taken into
account), it is possible to use methods such as Discrete Choice Experiments [20]
to infer the trade-offs of the group (weighting can also be introduced in case
different stakeholders have different weight in the final decisions).

Another critical aspect of the optimal choice of platform relates to users’
attitude towards risk. Indeed, depending on the project at hand, a failure of
the computing platform can have more or less dramatic consequences. Since one
can reasonably expect reliability and price to be correlated, the attitude towards
risk can have an important impact on expenditure. Evaluating risk aversion is,
however, quite straightforward: users are asked to answer a series of questions
related to lotteries and their answers are used to build their risk profile [10,11].

The methodologies used to evaluate the opportunity cost and the risk aver-
sion can be extended to cover the other properties of platforms. For instance,
a Discrete Choice Experiment (DCE) can be built to encompass the properties
listed in Sect. 4. A shortcoming is that when more parameters are included, users
need to answer more questions for an accurate trade-off profile to be built. When
only one or a few users are involved, this can become quite tedious. A way to
alleviate this issue is to make use of gamification to help make the data collection
process entertaining for participants.

6.2 Application to Scenarios

We now revisit the three scenarios introduced in Sect. 5 and look at how the
application of the decision support system can help to improve on the naive
recommendations made based on the values from Table 1 in Sect. 4.

Scenario 1: Analysis of a fluid flow problem for a civil engineering project.

Initial platform recommendation: Local HPC cluster.

Impact of the Decision Support System: Time and money are clearly con-
flicting in this scenario. knowing the super boundaries (i.e. investigating addi-
tional funding, however limited, that could be used towards the project) would
enable the DSS to offer alternatives to the use of the HPC cluster, in particular
if the job queue is long, e.g. by monitoring spot prices on platforms such as
Amazon EC2 that offer variable or demand-based pricing. Knowing the user’s
boundary conditions would enable the DSS to advise on substituting local HPC
resources for external resources, as the former become available. In this case,
it is essential to estimate the actual ‘exchange rate’ between time and money:
how much money saved makes it worth delaying the obtention of the results?
Finally, risk is, in this case, worth considering. Facing both a nearing deadline
and funding shortage, the user might be willing to consider less reliable, alter-
native options. Assessing risk aversion of the user would enable a DSS to advise
on such options.

Scenario 2: An engineering team modelling a gas pipe in a new structure.



Understanding Resource Selection Requirements 259

Initial platform recommendation: Local, standalone, multi-core server.

Impact of the Decision Support System: In such a scenario, choosing the
right platform is no longer just a matter of time versus money, other charac-
teristics such as contention have to be considered. It is in cases such as this
that a DSS becomes particularly important. Firstly, contention boundaries can
be defined by the team. Then, both super boundaries and boundary conditions
related to contention versus other factors (e.g. time, money) are assessed at the
team level (with each team member undergoing the testing procedure to assess
the various trade-offs). This enables evaluation of each computational option and
identification of the most suitable one. A further interesting aspect is that it may
be the case that not all team members have the same objectives. For instance,
a more suitable option for the engineers may require a significant amount of
additional work for the support team. This is why the decision is based on the
combined trade-offs of each stakeholder in the project and strict boundaries and
property weightings can be set to ensure selection of the most relevant platform.

Scenario 3: A doctor wishes to model blood flow through an artery.

Initial platform recommendation: Institutionally-operated private IaaS
cloud.

Impact of the Decision Support System: In this scenario, the role of the
DSS is essentially to identify cheap substitute alternative options to the local
private cloud as they become available. The issue is, of course, that while local
resources are often free at the point of use, external resources may not be (e.g.
Amazon EC2). In such a case, an optimal solution would most likely make use
of internal and external platforms. A DSS can help determine the right balance
between the two platform types. Indeed, an accurate estimation of the time-
money tradeoff enables a calculation of how much computation can be diverted
towards paid-for external platforms. Furthermore, since time is not a significant
constraint in this case, less reliable (and presumably cheaper) options may be
considered. However, the involvement of a technical team in the project is likely
to impact on the risk profile of the project. Indeed, while the doctor may not bear
the consequences of unreliable sources (since the local server is always available
as a back up), switching between options leads to additional deployment work
for the technical team. Consequently, as time is not of the essence, the trade-offs
made by the technical team are given a greater weight in the project profile.

7 Conclusions

Running complex HPC applications in modern computing environments with
a variety of available hardware platforms presents a number of challenges in
selecting the most suitable resources to address a user’s requirements. We have
observed that one of the key aspects in helping to ensure that users obtain the
most appropriate resources is ensuring that they understand their own require-
ments and risk profile in sufficient detail to make the most suitable choice from



260 J. Cohen et al.

the available options. However, it is clear that correctly identifying these require-
ments is key to obtaining the correct platform choice and to address this we
introduce a decision support system. This system builds on approaches demon-
strated in previous economics literature to help identify a user’s risk aversion and
the opportunity cost of different platform choices. The outputs of the decision
support system can then be used to add weights to platform properties to help
improve on the information provided by the platform feature matrix shown in
Sect. 4 to obtain a platform choice.

In future work we aim to prepare an initial implementation of the decision
support system and a framework for allowing straightforward addition of new
platforms to the feature matrix. We intend to integrate this into the Nekkloud
tool to provide a prototype platform recommendation feature for Nekkloud users.

Acknowledgements. The authors wish to acknowledge the Nektar++ team for their
advice, particularly in relation to the scenarios and solvers. JC and JD acknowledge
Imperial College London for funding the Pathways to Impact project “Simplifying
High Performance Computing Access for the Nektar++ Framework” under Imperial’s
EPSRC Impact Acceleration Account. JC and JD also acknowledge EPSRC for their
support of the completed libhpc (EP/I030239/1) and libhpc Stage II (EP/K038788/1)
projects where Nekkloud and TemPSS were initially developed.

References

1. Adaptive Computing Inc.: TORQUE Resource Manager. http://www.
adaptivecomputing.com/products/open-source/torque/. Accessed 19 July 2016

2. Amazon Web Services Inc.: Amazon EC2 Spot Instances Pricing. https://aws.
amazon.com/ec2/spot/pricing/. Accessed 19 July 2016

3. Amazon Web Services Inc.: Elastic Compute Cloud (EC2) Cloud Server & Hosting
- AWS. https://aws.amazon.com/ec2. Accessed 19 July 2016

4. Botti, S., Hsee, C.K.: Dazed and confused by choice: how the temporal costs of
choice freedom lead to undesirable outcomes. Organ. Behav. Hum. Decis. Process.
112(2), 161–171 (2010). http://dx.doi.org/10.1016/j.obhdp.2010.03.002

5. Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G.,
de Grazia, D., Yakovlev, S., Lombard, J.E., Ekelschot, D., Jordi, B., Xu, H.,
Mohamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C., Kirby, R.M., Sherwin,
S.J.: Nektar++: an open-source spectral/hp element framework. Comput. Phys.
Commun. 192, 205–219 (2015). http://dx.doi.org/10.1016/j.cpc.2015.02.008

6. Cohen, J., Cantwell, C., Moxey, D., Nowell, J., Austing, P., Guo, X., Darlington, J.,
Sherwin, S.: TemPSS: a service providing software parameter templates and profiles
for scientific HPC. In: 11th IEEE International Conference on e-Science (e-Science
2015), pp. 78–87, August 2015. http://dx.doi.org/10.1109/eScience.2015.43

7. Cohen, J., Darlington, J., Fuchs, B., Moxey, D., Cantwell, C., Burovskiy, P., Sher-
win, S., Hong, N.C.: libHPC: software sustainability and reuse through metadata
preservation. In: First Workshop on Maintainable Software Practices in e-Science,
Chicago, IL, USA, position paper, October 2012

http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2
http://dx.doi.org/10.1016/j.obhdp.2010.03.002
http://dx.doi.org/10.1016/j.cpc.2015.02.008
http://dx.doi.org/10.1109/eScience.2015.43


Understanding Resource Selection Requirements 261

8. Cohen, J., Moxey, D., Cantwell, C., Burovskiy, P., Darlington, J., Sherwin, S.J.:
Nekkloud: a software environment for high-order finite element analysis on clus-
ters and clouds. In: 2013 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, Poster paper, September 2013. http://dx.doi.org/http://dx.
doi.org/10.1109/CLUSTER.2013.6702616

9. Costa, P., Napper, J., Pierre, G., van Steen, M.: Autonomous resource selection
for decentralized utility computing. In: 29th IEEE International Conference on
Distributed Computing Systems (ICDCS 2009), pp. 561–570, June 2009. http://
dx.doi.org/10.1109/ICDCS.2009.70

10. Eckel, C.C., Grossman, P.J.: Men, women and risk aversion: experimental evidence.
In: Handbook of Experimental Economics Results, vol. 1, pp. 1061–1073. Elsevier
(2008). http://dx.doi.org/10.1016/S1574-0722(07)00113-8

11. Holt, C.A., Laury, S.K.: Risk aversion and incentive effects. Am. Econ. Rev. 92(5),
1644–1655 (2002). http://dx.doi.org/10.1257/000282802762024700

12. Karniadakis, G., Sherwin, S.: Spectral/HP Element Methods for Computational
Fluid Dynamics, 2nd edn. Oxford University Press, New York (2005)

13. Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and survey of grid resource
management systems for distributed computing. Softw. Pract. Experience 32(2),
135–164 (2002). http://dx.doi.org/10.1002/spe.432

14. libHPC. http://www.imperial.ac.uk/london-e-science/projects/libhpc. Accessed
19 July 2016

15. Liu, C., Yang, L., Foster, I., Angulo, D.: Design and evaluation of a resource selec-
tion framework for grid applications. In: Proceedings of the 11th IEEE Interna-
tional Symposium on High Performance Distributed Computing (HPDC 2002), pp.
63–72, HPDC 2002. IEEE (2002). http://dx.doi.org/10.1109/HPDC.2002.1029904

16. MacCrimmon, K.R.: Decisionmaking among multiple-attribute alternatives: A sur-
vey and consolidated approach. Technical report MEMORANDUM RM-4823-
ARPA, The RAND Corporation, Santa Monica, CA, USA (1968). http://www.
rand.org/pubs/research memoranda/RM4823.html

17. Payne, J.W., Bettman, J.R., Luce, M.F.: When time is money: decision behavior
under opportunity-cost time pressure. Organ. Behav. Hum. Decis. Process. 66(2),
131–152 (1996). http://dx.doi.org/10.1006/obhd.1996.0044

18. Raman, R., Livny, M., Solomon, M.: Matchmaking: distributed resource manage-
ment for high throughput computing. In: Proceedings of the Seventh IEEE Inter-
national Symposium on High Performance Distributed Computing, p. 140, HPDC
1998. IEEE Computer Society, Washington, DC, July 1998. http://dl.acm.org/
citation.cfm?id=822083.823222

19. Rayna, T., Darlington, J., Striukova, L.: Pricing music using personal data: mutu-
ally advantageous first-degree price discrimination. Electron. Mark. 25(2), 139–154
(2015). http://dx.doi.org/10.1007/s12525-014-0165-7

20. Ryan, M., Gerard, K., Amaya-Amaya, M. (eds.): Using Discrete Choice
Experiments to Value Health and Health Care, The Economics of Non-
Market Goods and Resources, vol. 11. Springer, Netherlands (2008).
http://dx.doi.org/10.1007/978-1-4020-5753-3

21. Slawik, M., Küpper, A.: A domain specific language and a pertinent business
vocabulary for cloud service selection. In: Altmann, J., Vanmechelen, K., Rana,
O.F. (eds.) GECON 2014. LNCS, vol. 8914, pp. 172–185. Springer, Cham (2014).
http://dx.doi.org/10.1007/978-3-319-14609-6 12

22. Smith, V.L.: Theory, experiment and economics. J. Econ. Perspect. 3(1), 151–169
(1989). http://dx.doi.org/10.1257/jep.3.1.151

http://dx.doi.org/http://dx.doi.org/10.1109/CLUSTER.2013.6702616
http://dx.doi.org/http://dx.doi.org/10.1109/CLUSTER.2013.6702616
http://dx.doi.org/10.1109/ICDCS.2009.70
http://dx.doi.org/10.1109/ICDCS.2009.70
http://dx.doi.org/10.1016/S1574-0722(07)00113-8
http://dx.doi.org/10.1257/000282802762024700
http://dx.doi.org/10.1002/spe.432
http://www.imperial.ac.uk/london-e-science/projects/libhpc
http://dx.doi.org/10.1109/HPDC.2002.1029904
http://www.rand.org/pubs/research_memoranda/RM4823.html
http://www.rand.org/pubs/research_memoranda/RM4823.html
http://dx.doi.org/10.1006/obhd.1996.0044
http://dl.acm.org/citation.cfm?id=822083.823222
http://dl.acm.org/citation.cfm?id=822083.823222
http://dx.doi.org/10.1007/s12525-014-0165-7
http://dx.doi.org/10.1007/978-1-4020-5753-3
http://dx.doi.org/10.1007/978-3-319-14609-6_12
http://dx.doi.org/10.1257/jep.3.1.151


262 J. Cohen et al.

23. Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Condor: a distributed job
scheduler. In: Sterling, T. (ed.) Beowulf Cluster Computing with Linux, pp. 307–
350. MIT Press, Cambridge (2002). http://dl.acm.org/citation.cfm?id=509876.
509893

24. UnivaR© Corporation: Products Suite (2016). http://www.univa.com/products/.
Accessed 19 July 2016

http://dl.acm.org/citation.cfm?id=509876.509893
http://dl.acm.org/citation.cfm?id=509876.509893
http://www.univa.com/products/

	Understanding Resource Selection Requirements for Computationally Intensive Tasks on Heterogeneous Computing Infrastructure
	1 Introduction
	2 Related Work
	3 Software Environment
	4 Computing Platforms
	5 Usage Scenarios
	6 Decision Support System
	6.1 System Model
	6.2 Application to Scenarios

	7 Conclusions
	References


