
José Ángel Bañares
Konstantinos Tserpes
Jörn Altmann (Eds.)

 123

LN
CS

 1
03

82

13th International Conference, GECON 2016
Athens, Greece, September 20–22, 2016
Revised Selected Papers

Economics of Grids, Clouds,
Systems, and Services

Lecture Notes in Computer Science 10382

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7411

http://www.springer.com/series/7411

José Ángel Bañares • Konstantinos Tserpes
Jörn Altmann (Eds.)

Economics of Grids, Clouds,
Systems, and Services
13th International Conference, GECON 2016
Athens, Greece, September 20–22, 2016
Revised Selected Papers

123

Editors
José Ángel Bañares
Department of Computer Science
University of Zaragoza
Zaragoza
Spain

Konstantinos Tserpes
Harokopio University of Athens
Tavros
Greece

Jörn Altmann
Seoul National University
Seoul
Korea (Republic of)

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-61919-4 ISBN 978-3-319-61920-0 (eBook)
DOI 10.1007/978-3-319-61920-0

Library of Congress Control Number: 2017945281

LNCS Sublibrary: SL5 – Computer Communication Networks and Telecommunications

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 13th edition of GECON, the International Conference on the Economics of Grids,
Clouds, Systems, and Services, took place in Athens, Greece, the cradle of Western
civilization and the birthplace of democracy. The term economics comes from the
Ancient Greek words oikos (house) and nomos (custom, law). Several ancient Greek
thinkers made various economic observations, especially Aristotle, Xenophon, and
Plato. We emulated ancient Greek thinkers on the main campus of Harokopio
University of Athens, which is located close to many important cultural sites of interest
such as the Acropolis Museum, Thissio, Panathenaic Stadium (Kallimarmaron),
Keramikos, and the Benaki Museum.

The aim of the GECON conference is to bring together distributed systems expertise
(e.g., in resource allocation, quality of service management and energy consumption)
with economics expertise (focusing on both micro- and macro-economic modelling and
analysis), in order to create effective solutions in this space. Thirteen years later,
GECON continues to focus on the marriage of these two types of expertise, reinforced
by the increasing intertwinement of economy and technology. The world of production
is becoming more and more networked, until everything is interlinked with everything
else with unexpected consequences. Today distributed systems include a network of
physical devices, vehicles, buildings, wearables, and cyber-physical systems with
capacity to act on the environment. In the connected world, we cannot separate the
physical world from business processes. Economy and IT technologies cannot be
considered as separate disciplines. In this context, we return to the ancient point of view
of Greek thinkers and consider economics and IT technologies as a factor of ethics,
politics, and laws.

For this year’s edition, we received 38 submissions. Each submission was assessed
by three to five reviewers of the international Program Committee. Of these 38 sub-
missions, 11 were selected as full papers with an acceptance rate of 29%. Additionally,
shorter work-in-progress papers were integrated in the volume. This combination of full
and work-in-progress papers fulfills the twofold aim of gathering original work to build
a strong multidisciplinary community in this increasingly important area of a future
information and knowledge economy, and enabling a more open and informed dia-
logue between the presenters and the audience. Our intention in increasing the number
of accepted work-in-progress papers is underpinned by the conviction that the GECON
conference is the best framework for the presenters to better position their work for
future events and to get an improved understanding of the impact their work is likely to
have on the research community. The schedule for the conference this year was
structure to encourage discussions and debates, with enough discussion time included
in each paper presentation session, led by the session chair.

This volume is structured following the seven sessions that comprised the confer-
ence program (three of which are work-in-progress sessions):

Session 1: Business Models
Session 2: Work in Progress on Quality of Services and Service Level Agreements
Session 3: Work in Progress on Cloud Economics
Session 4: Energy Consumption
Session 5: Resource Allocation
Session 6: Work in Progress on Resource Allocation
Session 7: Cloud Applications

Session 1 started with two papers about brokers and application composers. The first
paper by Zherui Yang, Slinger Jansen, Xuesong Gao, and Dong Zhang is a vision paper
entitled “On the Future of Solution Composition in Software Ecosystems” that intro-
duces the need for solution composers as an evolution or replacement of application
stores. The authors sketch a solution composer framework, which illustrates how they
believe software in the future will be shaped by end-users, consultants, and developers.
The vision is evaluated through expert reviews at several leading platform providers.
The next paper, “The Rise of Cloud Brokerage: Business Model, Profit Making and
Cost Savings” by Evangelia Filiopoulou, Persefoni Mitropoulou, Christos Michalakelis
and Mara Nikolaidou, focuses on the search for the best provider or the best bundle
through a broker. The paper highlights the pros that arise from the use of the broker’s
services and the cons from the intermediation. The authors also review the contem-
porary literature on the pricing methods that can be adopted by a cloud broker in order
to achieve cost savings; they also describe different pricing models for cloud brokers by
summarizing the main characteristic and evaluation results.

Session 2 was a work-in-progress session on quality of service (QoS) and
service-level agreement (SLA) management. The first contribution is the paper by
Nikoletta Mavrogeorgi, Athanasios Voulodimos, Vassilios Alexandrou, Spyridon
Gogouvitis, and Theodora Varvarigou entitled “Robust Content-Centric SLA
Enforcement in Federated Cloud Environments.” This paper presents an SLA man-
agement framework for declaring, enforcing, and negotiating SLAs in cloud environ-
ments, where commitments for using cloud services are defined. In this framework
developed within the EU project VISION cloud, the SLA schema is enriched with
content terms, and sections for storlets and federation. Dynamic SLAs are supported,
since the SLA templates are generated according to the current supplies, and a rene-
gotiation possibility is offered. Finally, dynamic rules are created and updated, in order
to detect and handle proactively SLA violations. Along the same lines, the second
contribution by Waheed Aslam Ghumman and Alexander Schill entitled “Structural
Specification for the SLAs in Cloud Computing (S3LACC)” proposes a structural
specification for the SLAs in cloud computing for the automation of a complete SLA
life cycle, i.e., negotiation, monitoring, management, and recycling. The specification
targets complex dependencies among different metrics and the composition of different
metrics in one service-level objective. The proposed SLA structure can be used to
implement almost all types of negotiation strategies and monitoring policies for an
automated SLA life cycle. The third paper by Antonios Makris, Konstantinos Tserpes,
and Dimosthenis Anagnostopoulos – “Load Balancing in In-Memory Key-Value

VI Preface

Stores for Response Time Minimization” – investigates key/data distribution within
in-memory key-value stores and how this affects query response time. The paper
focuses on an evaluation of the core factors influencing the performance of Redis.
Experimental results show that key distribution and key length are contributing factors
to the load balancing problem and impact the cluster’s response times. Finally, in
“Fault-Tree-Based Service Availability Models in Cloud Environments: A Failure
Trace Archive Approach,” Alexandru Butoi and Gheorghe Cosmin Silaghi present a
probabilistic model for evaluating the service reliability in cloud systems. The authors
provide a method for extracting failure events and then show how to use replication or
migration to provide service reliability.

Session 3, which comprised work-in-progress papers on cloud economics related to
security, recommender systems, and market models, started with the contribution of
Mathias Slawik, Begüm Ilke Zilci, Axel Küpper, Yuri Demchenko, Fatih Turkmen,
Christophe Blanchet, and Jean-Franois Gibrat, entitled “An Economical Security Archi-
tecture for Multi-Cloud Application Deployments in Federated Environments.” The
authors propose an architecture for security in federated environments, which fulfills the
requirements of various stakeholders. They provide a design rationale, evaluate
the resulting architecture, and offer readily instantiable components in their public code
repository. The second contribution in this session is “Efficient Context Management and
Personalized User Recommendations in a Smart Social TV Environment” by Fotis
Aisopos, Angelos Valsamis, Alexandros Psychas, Andreas Menychtas, and Theodora
Varvarigou. It focuses on smart TV recommendations. The authors present a new efficient
context management approach, to provide personalized multi-level recommendations via
a hybrid method combining graph analysis and collaborative filtering. The last paper in
this session, entitled “When Culture Trumps Economic Laws: Persistent Segmentation
of the Mobile Instant Messaging Market” by Maria C. Borges, Max-R. Ulbricht, and
Frank Pallas, discusses the general characteristics of the mobile instant messaging market
from a competition point of view. It highlights the fact that no single player has achieved
domination of the global market, in contrast to what has happened in digital social
networks. The authors point out that the distinct communication style of different cultures
is one of the reasons the market has not tipped yet.

Session 4 consisted of four papers on energy consumption and cost in cloud sys-
tems, which is a consolidated research area within cloud computing and present in the
last GECON conferences. The paper by Karim Djemame, Richard Kavanagh, Django
Armstrong, Francesc Lordan, Jorge Ejarque, Mario Macias, Raül Sirvent, Jordi Guitart,
and Rosa M. Badia entitled “Energy Efficiency Support Through Intra-Layer Cloud
Stack Adaptation” focuses on the embedding of energy efficiency support in each of the
typical cloud abstraction layers: SaaS, PaaS, and IaaS. The authors describe a properly
conceived system architecture using an intra-layer self-adaptation methodology tailored
for SaaS, PaaS, and IaaS to achieve an intra-layer support to energy efficiency. The
second paper by Alexandros Kostopoulos, Eleni Agiatzidou, and Antonis Dimakis
entitled “Energy-Aware Pricing Within Cloud Environments” presents pricing schemes
used by a set of current infrastructure and platform-as-a-service (IaaS/PaaS) providers
and then proposes a set of four different pricing schemes that take into account the
energy consumption of virtual machines in an IaaS environment. In “Energy Prediction
for Cloud Workload Patterns,” Ibrahim Alzamil and Karim Djemame propose the

Preface VII

necessity of having proactive and reactive management tools with energy-awareness at
a virtual machine (VM) level in order to enhance decision-making. In this paper, the
authors introduce an energy-aware profiling model that enables the attribution of a
physical machine’s energy consumption to homogeneous and heterogeneous VMs
based on their utilization and size. The fourth contribution by Muhammad Zakarya and
Lee Gillam entitled “An Energy-Aware Cost-Recovery Approach for Virtual Machine
Migration” investigates how migration decisions can be made such that the energy
costs involved with the migration are recovered.

Session 5 focused on resource allocation, one of the classic research areas in cloud
computing and in previous GECON conferences. The contribution of Patrick Poullie
and Burkhard Stiller entitled “The Design and Evaluation of a Heaviness Metric for
Cloud Fairness and Correct Virtual Machine Configurations” presents a runtime pri-
oritization mechanism for a fair assignment of resources to virtual machines according
to their respective utility function and greediness. The paper “A History-Based Model
for Provisioning EC2 Spot Instances with Cost Constraints” by Javier Fabra, Sergio
Hernádez, Pedro Álvarez, Joaquín Ezpeleta, Álvaro Recuenco, and Ana Martínez
presents and evaluates a framework for the analysis of the EC2 spot instances as a
cheap public infrastructure. It uses the price history of such resources to generate a
provisioning plan by means of a simulation algorithm considering cost constraints. The
authors achieved savings of up to 88% using their framework to generate a provi-
sioning plan for the deployment of a specific instance in regions of the EC2 cloud with
different price variations observed.

Session 6 consisted of four work-in-progress papers focusing on resource allocation
problems. Azamat Uzbekov and Jörn Altmann in their paper entitled “Enabling
Business-Preference-Based Scheduling of Cloud Computing Resources” explicitly try
to link economic and technical issues by presenting an architecture that connects the
technical layer of resource allocation with the business strategy layer of a cloud service
provider. The contribution of Benedikt Pittl, Werner Mach, and Erich Schikuta entitled
“Bazaar-Score: A Key Figure Measuring Market Efficiency in IaaS-Markets” presents a
novel genetic algorithm-based multi-round negotiation strategy between providers and
consumers of services enabling the creation of approximately Pareto-optimal offers.
The authors define the Bazaar Score, a key figure based on economic utility theory
enabling the comparison of different resource allocations. The third paper in this ses-
sion “Understanding Resource Selection Requirements for Computationally Intensive
Tasks on Heterogeneous Computing Infrastructure” by Jeremy Cohen, Thierry Rayna,
and John Darlington presents a decision support system to identify the most suitable
computing platform and configuration for a computational task based on a user’s
financial and temporal constraints. The system builds on approaches presented in the
extant economics literature, to help identify a user’s risk aversion and the opportunity
cost of different platform choices. The last paper in this session, entitled “Towards
Usage-Based Dynamic Overbooking in IaaS Clouds” by Athanasios Tsitsipas,
Christopher B. Hauser, Jörg Domaschka, and Stefan Wesner, looks into the issue of
overbooking physical machines in a cloud data center. The authors investigate pre-
conditions that have to be enabled in a data center to support dynamic overbooking,
and they describe a prototype implementation with OpenStack.

VIII Preface

The final session consisted of three papers on the economic implications of three
different cloud applications. The session began with the paper by Hyeong-Il Kim,
Hyeong-Jin Kim, and Jae-Woo Chang entitled “A Privacy Preserving Top-k Query
Processing Algorithm in Cloud Computing.” The paper deals with privacy concerns
and databases that need to be encrypted before being outsourced to the cloud. The
authors focus on preserving the privacy of a user query and propose a query-processing
algorithm that guarantees the confidentiality of data and hides data access patterns. The
second paper by Salman Taherizadeh, Ian Taylor, Andrew Jones, Zhiming Zhao, and
Vlado Stankovski entitled “A Network Edge Monitoring Approach for Real-Time Data
Streaming Applications” deals with the problem of enforcing service quality in
streaming systems that must consider real-time variations in the network quality. The
authors show how edge services for time-critical applications could be used to auto-
matically optimize the process of allocating and choosing the best infrastructure, and
they investigate network-level metrics that are particularly important for the develop-
ment and adaptation of time-critical applications. The final paper in this session by
Victor Medel, Unai Arronategui, José Ángel Bañares, and José Manuel Colom entitled
“Distributed Simulation of Complex and Scalable Systems: From Models to the Cloud”
deals with the problem of translating a simulation to the cloud, providing users with
appropriate tools to hide the modeler low-level details of this migration process con-
sidering cost and performance requirements. The authors give a central focus to Petri
net models, describing the behavior of the system including timing and cost infor-
mation. They propose a way to automatically translate high-level specifications to an
executable model suited to be partitioned on the cloud.

Finally, we would like to wholeheartedly thank the reviewers and Program Com-
mittee members for completing their reviews on time, and giving insightful and
valuable feedback to the authors. Furthermore, we would like to thank Alfred Hofmann
of Springer for his support in publishing the proceedings of GECON 2016. The col-
laboration with Alfred Hofmann and his team has been, as in the past, efficient and
effective.

September 2016 José Ángel Bañares
Konstantinos Tserpes

Jörn Altmann

Preface IX

Organization

GECON2016 was organized by the Department of Informatics and Telematics of the
Harokopio University of Athens (http://www.dit.hua.gr).

Executive Committee

Chairs

Konstantinos Tserpes Harokopio University of Athens, Greece
Dimosthenis

Anagnostopoulos
Harokopio University of Athens, Greece

Jörn Altmann Seoul National University, South Korea
José Ángel Bañares University of Zaragoza, Spain
Maria Nikolaidou Harokopio University of Athens, Greece

Program Committee

Rainer Alt University of Leipzig, Germany
Alvaro Arenas IE University, Spain
Marcos Assuncao Inria, LIP, ENS Lyon, France
Ashraf Bany Mohammed The University of Jordan, Jordan
Jeremy Cohen Imperial College London, UK
Costas Courcoubetis SUTD, Singapore
Tom Crick Cardiff Metropolitan University, UK
Patrizio Dazzi ISTI-CNR, Italy
Alex Delis National and Kapodistrian University of Athens,

Greece
Javier Diaz-Montes Rutgers University, USA
Patricio Domingues Polytechnic Institute of Leiria, Portugal
Bogdan Franczyk University of Leipzig, Germany
Felix Freitag Universitat Politècnica de Catalunya, Spain
Marc Frincu University of Southern California, USA
Wolfgang Gentzsch The UberCloud, USA
Netsanet Haile Seoul National University, South Korea
Chun-Hsi Huang University of Connecticut, USA
Bahman Javadi Western Sydney University, Australia
Odej Kao Technische Universität Berlin, Germany
Daniel Katz University of Chicago and Argonne National

Laboratory, USA
Stefan Kirn University of Hohenheim, Germany
Tobias Aurelius Knoch Erasmus University Rotterdam, The Netherlands
Bastian Koller HLRS, University of Stuttgart, Germany

http://www.dit.hua.gr

Somayeh
Koohborfardhaghighi

Dongguk University, South Korea

George Kousiouris National Technical University of Athens, Greece
Dieter Kranzlmüller Ludwig-Maximilians-Universität München, Germany
Dimosthenis Kyriazis National Technical University of Athens, Greece
Hing Yan Lee IDA, Singapore
Jysoo Lee KISTI, South Korea
Dan Ma Singapore Management University, Singapore
Richard Ma National University of Singapore, Singapore
Roc Meseguer Universitat Politècnica de Catalunya, Spain
Christos Michalakelis Harokopio University of Athens, Greece
Mircea Moca Babes-Bolyai University of Cluj-Napoca, Romania
Maurizio Naldi Università di Roma Tor Vergata, Italy
Leandro Navarro Universitat Politècnica de Catalunya, Spain
Marco Netto IBM Research, Brazil
Frank Pallas Technische Universität Berlin, Germany
George Pallis University of Cyprus, Cyprus
Rubem Pereira Liverpool John Moores University, UK
Dana Petcu West University of Timisoara, Romania
Radu Prodan University of Innsbruck, Austria
Peter Reichl Telecommunications Research Center Vienna, Austria
Lutz Schubert OMI, University of Ulm, Germany
Gheorghe Cosmin Silaghi Babes-Bolyai University, Romania
Mathias Slawik Technische Universität Berlin, Germany
Burkhard Stiller University of Zurich, Switzerland
Stefan Tai Technische Universität Berlin, Germany
Rafael Tolosana-Calasanz University of Zaragoza, Spain
Johan Tordsson Umeå University, Sweden
Dimitrios Tsoumakos Ionian University, Greece
Bruno Tuffin Inria Rennes Bretagne Atlantique, France
Iraklis Varlamis Harokopio University of Athens, Greece
Dora Varvarigou National Technical University of Athens, Greece
Luís Veiga Universidade de Lisboa / INESC-ID Lisboa, Portugal
Claudiu Vinte Bucharest University of Economic Studies, Romania
Stefan Wesner University of Ulm, Germany
Phillip Wieder Dortmund University of Technology, Germany
Ramin Yahyapour GWDG, University of Göttingen, Germany
Ruediger Zarnekow Technische Universität Berlin, Germany
Dimitrios Zissis University of the Aegean, Greece

Steering Committee

Jörn Altmann Seoul National University, South Korea
José Ángel Bañares University of Zaragoza, Spain
Steven Miller Singapore Management University, Singapore
Omer F. Rana Cardiff University, UK

XII Organization

Gheorghe Cosmin Silaghi Babes-Bolyai University, Romania
Kurt Vanmechelen University of Antwerp, Belgium

Sponsoring Institutions and Companies

Seoul National University, Seoul, South Korea
University of Zaragoza, Spain
Harokopio University of Athens, Greece
Springer LNCS, Heidelberg, Germany
Future Generation Computer Systems Journal
Electronic Markets Journal

Organization XIII

Contents

Business Models

On the Future of Solution Composition in Software Ecosystems 3
Zherui Yang, Slinger Jansen, Xuesong Gao, and Dong Zhang

The Rise of Cloud Brokerage: Business Model, Profit Making
and Cost Savings . 19

Evangelia Filiopoulou, Persefoni Mitropoulou, Christos Michalakelis,
and Mara Nikolaidou

Work in Progress on Quality of Services and Service Level Agreements

Robust Content-Centric SLA Enforcement in Federated
Cloud Environments . 35

Nikoletta Mavrogeorgi, Athanasios Voulodimos, Vassilios Alexandrou,
Spyridon Gogouvitis, and Theodora Varvarigou

Structural Specification for the SLAs in Cloud Computing (S3LACC) 49
Waheed Aslam Ghumman and Alexander Schill

Load Balancing in In-Memory Key-Value Stores for Response
Time Minimization . 62

Antonios Makris, Konstantinos Tserpes,
and Dimosthenis Anagnostopoulos

Fault-Tree-Based Service Availability Model in Cloud Environments:
A Failure Trace Archive Approach . 74

Alexandru Butoi and Gheorghe Cosmin Silaghi

Work in Progress on Cloud Economics

An Economical Security Architecture for Multi-cloud Application
Deployments in Federated Environments . 89

Mathias Slawik, Begüm Ilke Zilci, Axel Küpper, Yuri Demchenko,
Fatih Turkmen, Christophe Blanchet, and Jean-François Gibrat

Efficient Context Management and Personalized User Recommendations
in a Smart Social TV Environment . 102

Fotis Aisopos, Angelos Valsamis, Alexandros Psychas,
Andreas Menychtas, and Theodora Varvarigou

http://dx.doi.org/10.1007/978-3-319-61920-0_1
http://dx.doi.org/10.1007/978-3-319-61920-0_2
http://dx.doi.org/10.1007/978-3-319-61920-0_2
http://dx.doi.org/10.1007/978-3-319-61920-0_3
http://dx.doi.org/10.1007/978-3-319-61920-0_3
http://dx.doi.org/10.1007/978-3-319-61920-0_4
http://dx.doi.org/10.1007/978-3-319-61920-0_5
http://dx.doi.org/10.1007/978-3-319-61920-0_5
http://dx.doi.org/10.1007/978-3-319-61920-0_6
http://dx.doi.org/10.1007/978-3-319-61920-0_6
http://dx.doi.org/10.1007/978-3-319-61920-0_7
http://dx.doi.org/10.1007/978-3-319-61920-0_7
http://dx.doi.org/10.1007/978-3-319-61920-0_8
http://dx.doi.org/10.1007/978-3-319-61920-0_8

When Culture Trumps Economic Laws: Persistent Segmentation
of the Mobile Instant Messaging Market . 115

Maria C. Borges, Max-R. Ulbricht, and Frank Pallas

Energy Consumption

Energy Efficiency Support Through Intra-layer Cloud Stack Adaptation. 129
Karim Djemame, Richard Kavanagh, Django Armstrong,
Francesc Lordan, Jorge Ejarque, Mario Macias, Raül Sirvent,
Jordi Guitart, and Rosa M. Badia

Energy-Aware Pricing Within Cloud Environments 144
Alexandros Kostopoulos, Eleni Agiatzidou, and Antonis Dimakis

Energy Prediction for Cloud Workload Patterns . 160
Ibrahim Alzamil and Karim Djemame

An Energy Aware Cost Recovery Approach for Virtual Machine Migration . . . 175
Muhammad Zakarya and Lee Gillam

Resource Allocation

The Design and Evaluation of a Heaviness Metric for Cloud Fairness
and Correct Virtual Machine Configurations . 193

Patrick Poullie and Burkhard Stiller

A History-Based Model for Provisioning EC2 Spot Instances
with Cost Constraints . 208

Javier Fabra, Sergio Hernández, Pedro Álvarez, Joaquín Ezpeleta,
Álvaro Recuenco, and Ana Martínez

Work in Progress on Resource Allocation

Enabling Business-Preference-Based Scheduling of Cloud
Computing Resources . 225

Azamat Uzbekov and Jörn Altmann

Bazaar-Score: A Key Figure Measuring Market Efficiency in IaaS-Markets . . . 237
Benedikt Pittl, Werner Mach, and Erich Schikuta

Understanding Resource Selection Requirements for Computationally
Intensive Tasks on Heterogeneous Computing Infrastructure 250

Jeremy Cohen, Thierry Rayna, and John Darlington

Towards Usage-Based Dynamic Overbooking in IaaS Clouds 263
Athanasios Tsitsipas, Christopher B. Hauser, Jörg Domaschka,
and Stefan Wesner

XVI Contents

http://dx.doi.org/10.1007/978-3-319-61920-0_9
http://dx.doi.org/10.1007/978-3-319-61920-0_9
http://dx.doi.org/10.1007/978-3-319-61920-0_10
http://dx.doi.org/10.1007/978-3-319-61920-0_11
http://dx.doi.org/10.1007/978-3-319-61920-0_12
http://dx.doi.org/10.1007/978-3-319-61920-0_13
http://dx.doi.org/10.1007/978-3-319-61920-0_14
http://dx.doi.org/10.1007/978-3-319-61920-0_14
http://dx.doi.org/10.1007/978-3-319-61920-0_15
http://dx.doi.org/10.1007/978-3-319-61920-0_15
http://dx.doi.org/10.1007/978-3-319-61920-0_16
http://dx.doi.org/10.1007/978-3-319-61920-0_16
http://dx.doi.org/10.1007/978-3-319-61920-0_17
http://dx.doi.org/10.1007/978-3-319-61920-0_18
http://dx.doi.org/10.1007/978-3-319-61920-0_18
http://dx.doi.org/10.1007/978-3-319-61920-0_19

Cloud Applications

A Privacy-Preserving Top-k Query Processing Algorithm
in the Cloud Computing. 277

Hyeong-Il Kim, Hyeong-Jin Kim, and Jae-Woo Chang

A Network Edge Monitoring Approach for Real-Time Data
Streaming Applications . 293

Salman Taherizadeh, Ian Taylor, Andrew Jones, Zhiming Zhao,
and Vlado Stankovski

Distributed Simulation of Complex and Scalable Systems: From Models
to the Cloud . 304

Victor Medel, Unai Arronategui, José Ángel Bañares,
and José-Manuel Colom

Author Index . 319

Contents XVII

http://dx.doi.org/10.1007/978-3-319-61920-0_20
http://dx.doi.org/10.1007/978-3-319-61920-0_20
http://dx.doi.org/10.1007/978-3-319-61920-0_21
http://dx.doi.org/10.1007/978-3-319-61920-0_21
http://dx.doi.org/10.1007/978-3-319-61920-0_22
http://dx.doi.org/10.1007/978-3-319-61920-0_22

Business Models

On the Future of Solution Composition
in Software Ecosystems

Zherui Yang1(B), Slinger Jansen1(B), Xuesong Gao2, and Dong Zhang2

1 Utrecht University, Utrecht, The Netherlands
y.z ryan@hotmail.com, slinger.Jansen@uu.nl
2 Huawei Technologies Co., Ltd., Beijing, China
{james.gaoxuesong,zhang.dong}@huawei.com

Abstract. The trend of application stores is currently at a peak. How-
ever, the lack of dynamic composition for complex solutions is the largest
downside of the app store model, since solutions are increasingly created
as compositions of multiple solutions, APIs, and applications. Therefore,
in this vision paper, a superior model, solution composers, is proposed to
the app store model. A conceptual framework is established to illustrate
the inner workings of solution composers in software ecosystems. In order
to outline that solution composers are significant for the future of soft-
ware development, several industry cases are presented and compared
to support this concept, further indicating that a standard for solution
composition should be considered. In addition, the vision is evaluated
through expert reviews at several leading platform providers and chal-
lenges for practice and implementation are identified.

Keywords: Software ecosystems · AppStores · Solution composers

1 Introduction

Software ecosystems are complex networks of organizations, that collaboratively
serve a market [12]. Long value chains are formed in these ecosystems. The actors
in these networks are Software Producing Organizations (SPOs), such as open
source consortia and Independent Software Vendors (ISVs), and end-users, such
as software consumers of mobile apps, or employees at large companies that
require advanced business applications.

Whereas in the past end-users would accept pre-configured monolithic solu-
tion bundles in the form of, for example, large Enterprise Resource Planning
applications or complicated mobile apps, increasingly there is a demand for flex-
ible compositions of solutions from end-users that can be changed rapidly and
dynamically. In many cases, even non-technical end-users want to compose such
solutions. Therefore, in order to meet this demand, in this paper, the concept of
a solution composer is proposed and a conceptual framework is presented.

Research and studies from previous period have gained promising and valu-
able results, but have mostly focused on specific aspects of solution composition
c© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 3–18, 2017.
DOI: 10.1007/978-3-319-61920-0 1

4 Z. Yang et al.

or service integration [8,17], which are fragmented and lack of a holistic view
of the concept or the problem [4,6,14]. Therefore, a more holistic and consol-
idated framework is needed that attributes to the fundamental understanding
of solution composers in terms of concepts, industry practices, innovation and
development direction. This framework is useful and necessary to enhance the
efficiency and effectiveness of solution composer establishment.

There is an emerging need for customization and composition of solutions.
Firstly, there is an increase in interfaces and devices that provide access to
valuable features. Secondly, platforms are increasingly the gateway to large col-
lections of these features, such as Internet of Things (IoTs) platforms [2]. Pre-
composed and configured feature bundles, such as apps in the current AppSotres,
are rapidly losing their value, as these monoliths cannot easily be adapted to
create new solution compositions. One illustration of this development is the
Android Instant Apps platform [19], where apps can be downloaded and acti-
vated based on a set of predefined events, without having to use the Play Store.
This paper focuses on the following research questions:

1. Is there a need for solution composers?
2. Is the proposed solution composer framework valid?
3. What will the industry implications be of the introduction of solution com-

posers?

This paper continues with the research method, i.e., a number of industry
case studies and evaluation interviews. In Sect. 3, a critical discussion is given
on the current software industry. In Sect. 4, the solution composer concept is
introduced and the proposed framework is described in detail. Moreover, the
implementations of the framework in industry are discussed. Experts were invited
to evaluate the framework in forms of interviews in Sect. 5. Final discussion is
in Sect. 6 and we provided conclusions and an outlook in Sect. 7.

2 Research Method

This research can be seen as a light mixed study based on case study and inter-
views, using design science [24]. First, several industry cases were studied and
compared to establish a conceptual framework for solution composer. Second,
expert interviews were conducted to evaluate both the theoretical and practical
aspects of solution composers.

The design research paradigm focuses on creating and evaluating innovative
IT artifacts that enable organizations to address important information-related
tasks [24]. This paper aims to determine the nature of solution composers. The
research method is deemed appropriate when there is little evidence about a
phenomenon and the researcher seeks answers to research questions [20]. The
authors looked for experts who have a great deal to share about service compo-
sition and software ecosystems.

The cases were selected as representative service composition tools from
the industry. And the interviews were conducted in a semi-structured way.

On the Future of Solution Composition in Software Ecosystems 5

This method has been used to explore the framework, allowing new ideas to
be brought up during the interview as a result of interviewees’ answers [26]. All
the authors contributed to the interview questions and the interviews were con-
ducted by one of the authors. All the evidence including audio tape, transcripts
and notes from the interview have been kept and these information was used to
compose this report [26].

3 The Limits of AppStores

Jansen and Bloemendal [11] define an AppStore as an online curated marketplace
that allows developers to sell and distribute their products to actors within
one or more multi-sided software platform ecosystems. AppStores have striking
advantages for the software business. They have changed the application industry
significantly [11], introducing new business and deployment models to partners,
and offering end-users the maximum freedom of choosing applications. Also they
provide app developers with a wealth of opportunities to approach new niche
markets with domain specific applications [10].

Despite the advantages AppStores have, the AppStore model is increasingly
inflexible. Software applications in AppStores are monolithic collections of fea-
tures that aim to solve problems for end users, whether it is to book a train
ticket or to provide fun through a game. The downside of functionally compos-
ing such features into a collection is that end-users do not have the flexibility to
break down those features and compose them into novel solutions. End-users are
burdened with the job of carrying over content from one application to the next
manually and are tired of the lack of dynamic composition for complex solutions.
It appears AppStores have reached their peak. It is time for the “mini-monoliths”
in the AppStore to be decomposed and offered as separate features to solution
composers.

4 Solution Composers

The state of the practice introduces four types of software composition frame-
work: developer platforms, API composers, SOA composers and orchestrators,
and end-user service composers. After learning from and comparing with these
frameworks, a conceptual framework of solution composers is proposed, high-
lighting necessary elements in any successful solution composer. Subsequently,
several cases are presented and analyzed as the implementations of the proposed
framework in industry.

4.1 State of the Practice

The following four types of software composition frameworks are identified that
contain elements of solution composers.

6 Z. Yang et al.

Developer Platforms. Developer platforms [23] are platforms that enable
developers to create complex solutions on top of existing platforms, typically
with a rich set of developer tools to enable quick adoption of the platform. In the
context of solution composers, they enable developers to integrate services from
the ecosystem into their solutions, however, the facilitation of such composition
is typically through regular programming.
Example: Force.com is Salesforce’s developer platform, that enables developers
to create domain specific solutions on top of Salesforce.com. In Force.com we find
that developers integrate services from the platform and other APIs manually.
It has an AppStore for end customers, but this does not enable automatic or
supported composition of services and developers simply address the APIs of the
apps.

API Composers. API composers help to manage APIs to fast, affordably
and scalably communicate between all the values that have already been built
down and the new projects that are building for today, analyzing API data
and handle the IoT. In the context of solution composer, they allow separate
functions to communicate with each other but they do not provide internal or
external services for solutions composition.
Example: Apigee is an API composer, which allows end-users to secure, man-
age, analyze and connect all APIs. Although it enables end-users to manipulate
APIs and provides API management to store all compositions, there is no service
index in Apigee for end-users to choose available services from.

SOA Composers and Orchestrators. At a very high level, a crucial aspect
of Service Oriented Architecture (SOA) is service orchestration. Enterprise sys-
tems and integration projects designed according to SOA principles depend on
successful service orchestration. In the context of solution composer, SOA com-
poser is a web-based application that helps to build new applications with gran-
ular and reusable software components, but it lacks the flexibility and agility to
dynamically compose and integrate smaller units of services.
Example: Oracle SOA Composer allows users to work with Oracle Business
Rules dictionaries and tasks for deployed applications. Moreover, Oracle SOA
Composer provides a platform with enhanced service orchestration capabilities to
ease the integration challenges, but still not flexible enough for dynamic complex
solution composition.

End-User Service Composers. End-user service composers are platforms or
web services that aggregates many other web services or applications into one
place and can then perform actions given a certain set of criteria. End-users may
therefore create customized criteria and perform the action as desired. Because
of the customization character, end-user service composers might be the most
similar one to solution composers, nevertheless, they are too user-friendly for
developers to integrate and compose more complex solutions.

http://www.force.com
http://www.salesforce.com
http://www.force.com

On the Future of Solution Composition in Software Ecosystems 7

Example: IFTTT.com is a free web-based service that allows users to create
chains of simple conditional statements, called “recipes”, which are triggered
based on changes to other web services such as Gmail, Facebook and Instagram.
It has the necessary elements for solution composer, but it is way too immature
for higher level of solution composition to be performed on.

4.2 The Solution Composer Framework

By learning from and combining with the software composition frameworks, a
conceptual framework of a solution composer platform is proposed in Fig. 1, in
order to create a better understanding of how solution composer performs.

Fig. 1. The solution composer framework.

From the top, left and right sides of the figure, the different actors within the
framework are modeled, respectively the service providers, the solution creators
that might be end-users or consultants in the companies, and the end-users.

The communication between actors and the core of solution composer in
Fig. 1 is payment processing and business model. When solution composer is
carried into practice, the business model will therefore connect the theoretical
framework to the industry.

In the center of this framework, solution composer represents how it works
in detail with features as service index, solution designer, solution proposer and
composition index. Service index stores all available services and presents to end-
users in a certain form such as Library or Service Catalog. End-users can select
a range of services or applications for the need of integrating and composing
services according to their specific need. Solution designer is where end-users
can get their selected services and applications designed in some pattern which
is suitable for the final solution while Solution proposer is an entity providing
solution propositions. The composition index is created to store compositions
and benchmarks of solutions. The compositions are required to provide a list of
solutions that have been created in the past and can now be reused. The solution
benchmarks are especially useful for larger solution compositions where some

http://www.ifttt.com

8 Z. Yang et al.

knowledge is required about how the solution is going to perform in the future. In
the field of Software Defined Networking, for instance, bringing together different
parts of a solution is challenging, as little may be known about the performance
of (a combination of) services. Having a set of benchmarks can remedy this
situation to bring some predictability in the process of solution composition.

We separate solution composer and platform because solution composition is
the phase where service composition is designed and proposed while composition
run-time is the phase where the service composition is installed in the run-time
environment and executed. When the service composition platform enables the
selection process of individual services at deployment time, usually the com-
position from composition index can be re-configured. Moreover, the run-time
monitoring will monitor and analyze how the service composition is executed
and get as much performance evaluation as possible.

4.3 Implementations of the Solution Composer Framework in
Industry

Nowadays, business and technology can turn an idea into a potential product,
a new service or a better experience in a blink. With such fast growing, cus-
tomers find it more difficult to get satisfied outcomes about market placement
and development strategy [5], along with the related risk issues [13]. Also, as dif-
ferent SPOs attempt to produce complex combination of software systems and
hardware [9], there is a need for manual-automatic-combined solution composi-
tion.

Different from applications from AppStores, where apps work as individ-
ually separate collections of features, the process of the solution composition
and integration will require communications and interactions between features.
Enterprise application integration has traditionally relied on software-based mid-
dleware, such as Service Oriented Architecture (SOA) middleware solutions [16].
Disadvantages of SOA middleware, such as the lack of standards, high cost and
the inflexibility [3], make solution composers more appealing. Based on the ideals
of middleware, solution composers provide an open, standards-based approach
to integration. Unlike its predecessor, the Application Programming Interfaces
(APIs) used in solution composers is not a piece of software. Instead, it is a fully
functioning integration point. An API is much more flexible and agile than any
existing set of routines, protocols, and tools for the purpose of connection [7].

As the possibilities to create service compositions become more complex,
more technically oriented resources are required to create new solutions. Further-
more, as third parties will probably also provide basic APIs that are compatible
with the platform, advanced mechanisms are required such as service indexes
and semi-automatic service composition. Both of these lead to intricate value
chains and software ecosystems with many participants in them.

For solution composers to present solutions to customers, four different ways
are observed as manually through code (Manually), through a composition studio
(Composition Studio), through a composition proposer (Composition Proposer),
and hybrid (Hybrid) combinations of these three.

On the Future of Solution Composition in Software Ecosystems 9

These four ways may be in different combinations to support end-users and
composers optimally. In the first way, developers compose solutions with code,
for instance by programming against APIs from third parties and combining
them to create innovative solutions. In the second way, a complete composition
studio is offered that enables developers, technical consultants, and even end-
users to create new service configurations to create the best fitting solution.
The third way does not actually lead to a configuration, but proposes a solution
beforehand, which for instance enables benchmarking and comparison of different
service configurations. The fourth way is a combination of the first two, where
simple configurations can be created, but more advanced solutions still have to
be coded traditionally.

In Table 1, several tools are introduced for comparative analysis. The tools
evaluated were selected using a Google search for service composition tools.
The tools needed to satisfy the following criteria: (1) Enable the composition of
services to create a solution, (2) have a service index for the creation of solutions,
(3) be exemplary in the industry, and (4) be commercially available. We grouped
the API aggregation platforms, as there are many new entrants to the market.

Table 1. Implementations of the service providers, the Solution Composer, and End-
users in Industry. ISV stands for Independent Software Vendor, IoT stands for Internet
of Things.

Company Party

Online service
providers

Solution composers End users

Android API providers APP and API provider End users

APIGEE API provider Developers Everyone

Azure Cloud service
provider

Cloud solution
provider/developers

Companies

HP SDN ISVs/HP open
source

HP consultants Companies

IFTTT.com IoT/API
providers

End-users End-users

Pipemonk ISVs Developers/End-users Companies

Salesforce.com ISVs Consultants Companies

We-wired web IoT/Web apps End-users End-users

X-formation connect IoT/API
providers

Developers End-users

Zapier IoT/API
providers

End-users End-users

In Table 2, cases are further compared based on the four different features
in solution composers: service indexes, solution designers, solution proposers,

http://www.ifttt.com
http://www.salesforce.com

10 Z. Yang et al.

Table 2. Solution composer features observed in industry.

Case Party

Service index Solution
designer

Solution
proposer

Composition
index

Mashup [15] UDDI service
catalog

Mashup
environment

None None

FeatureHouse [1] Tree index None None None

Android APP Store None None None

APIGEE None Customer’s
own IDE

None API
management

Azure Runbook
gallery

Microsoft
powershell

End-
users/None

None

HP SDN SDN APP Store None None None

IFTTT.com IFTTT.com
channels

IFTTT
interface

End-
users/None

Recipes

Pipemonk Shopify App-
Store/Amazon
sellers

Pipemonk
interface

End-
users/None

QuickBooks

Salesforce.com AppExchange App
developer
IDE

None None

We-wired web Service catalog Visual wiring
diagrams

End-
users/None

None

X-formation
connect

Application
drop-list

Connect
interface

End-
users/None

None

Zapier Library Zapier
interface

End-
users/None

Zaps

and composition indexes. These four features define the character of a solution
composer. Service and composition indexes indicate where users can find all
services and composition available on the platform. The main features of solution
composers are solution designer and proposer.

As for an example, IFTTT allows end-users to create, integrate and combine
services into solutions and store these chains of simple conditional statements
as recipes, or as we call it here composition index. Thus, IFTTT consists of
service index (channels), solution designer (interface), solution proposer (end-
users themselves) and composition index (recipes), which makes it actually one
of the first to fully implement a solution composer. Also, Zapier shares the same
construction with full implementation of a solution composer. However, with a
more extensive service index and more flexible solution design patterns, Zapier,
to an extent, is even one step closer to the ideal implementation of a solution
composer.

http://www.ifttt.com
http://www.ifttt.com
http://www.salesforce.com

On the Future of Solution Composition in Software Ecosystems 11

For some tools, such as Pipemonk, We-Wired Web and X-formation Connect
are more or less like IFTTT or Zapier. They share the idea of service integration
automation and solution composition. What is different is that these tools do
not have a handy composition index for end-users.

For the rest of the cases, they all miss some essential elements, but each
of them contains significant part(s) of a solution composer. APIGEE is a API
management platform, focusing more on the designer and composition index
part. Microsoft Azure is a growing collection of integrated cloud services. It pro-
vides cloud services for the need of end-users but it does not have a composition
index. HP SDN allows end-users to select from a range of SDN Applications
that allow to program network to align with business needs. But HP SDN only
has an AppStore for the selection, and arranging consultants to help with all
the solution. There is no reference solution or relevant database for composed
solutions. Salesforce.com is a developer platform. It only provides service index
and solution designer.

After an extensive literature study, a couple of scientific frameworks were
selected by conducting snowballing procedure [25]. Snowballing refers to using
the reference list of a paper or the citations to the paper to identify additional
papers. The FeatureHouse framework [1] provides a method for software com-
position using superimposition. The framework, however, only concerns the com-
position of systems from different languages and does not provide tooling for
suggestion of fitting solutions, nor does it provide an index of composed solu-
tions. Another framework that was added is the Mashup framework [15], which
is a mechanism for enabling end-users to create mashups from a UDDI registry
of services, using drag and drop tools.

5 Evaluation

Based on learning and results from the industry cases, an interview question
protocol was drawn. In the second phase of this study, semi-structured interviews
were conducted. During interviews, experts were asked to provide insight on the
concept of solution composers and to evaluate the proposed framework. The
interviews were recorded, after which all the records were transcribed.

Table 3. The background of interviewees.

Background and occupations Interviewee

CEO of the company A

CTO and scientist innovator B

Product manager ecosystem C

Cooperation manager D

Senior developer E

http://www.salesforce.com

12 Z. Yang et al.

Interviewees’ Backgrounds - Interviewee A owns a company and is the CEO
of the company for three years. The projects he has been working on based mostly
on the idea of service composition. Interviewee B works as scientist innovator in a
project based national company for almost 4 years and he may join a new project
regarding service composition. And interviewee C works as a product manager
ecosystem in a software company for nearly two years. While interviewee D
works in a mobile company and is handling a project closely related to solution
composers. And interviewee E is an developer in a e-commerce company with
experience in the filed of web service. All backgrounds are indicated in Table 3.
Interview Analysis - Due to the wide range selection of questions, not all
of the interviewees were able to answer 100% of the questions listed. However,
the authors were able to combine and compare the information among all the
interviews and draw conclusions about the validity of the proposed framework
and the two-sides of solution composers. In this section, a thorough discussion
and analysis is provided.

The Need of Solution Composers. During interviews, interviewees indicated
that there indeed is a need for solution composer in the software industry that
will fulfill the need of end-users. Solution composer has further affected the
software ecosystem by providing standards and creating a new market. Currently,
some significant big shots in the software industry have started developing similar
services, such as Android Instant Apps platform.

Solution composers will offer standards and protocols to support the commu-
nication among component services. However, current service composition envi-
ronments barely have productivity support tools which is similar to what modern
Integrated Development Environments (IDEs) provided, such as code searching
or debugging [14]. Solution composer could therefore benefit from environments
with productivity techniques, for example, services index discovery and services
integration. As interviewee B also confirmed in the interview, “there is a lack
of standards”. Thus, solution composer that provides standards is needed for
services integration and composition.

Moreover, there is a market need for solution composer. With regards to
the effect of solution composer, interviewee A, when asked about the impact
on software ecosystem, replied: “It’s going to create a whole new way of apps
(services) and not only apps”. He also suggested that some of the big companies
with their own ecosystem have got hands on this field already, “Google, for
example, is already creating this alternative AppStore”, “it’s just about the first
party who gets in the market as fast as possible”. In the meanwhile, interviewee
B agreed on this point (Table 4).

Solution composer is more like a trend, rather than a tool needed to be
developed or introduced to the industry. We foresee that the trend of composing
software from small units of functionality will continue.

The Advantages of Solution Composers. Solution composer focuses on sin-
gle applications no more. To some extent, solution composer represents a higher

On the Future of Solution Composition in Software Ecosystems 13

Table 4. The need, advantage, challenge and validity of solution composers: Quotes
from the Evaluation Interviews.

On the need for solution composers Interviewee

“Change the industry”; “Offer completely new market place” A

“It will create a profitable market for whoever is in part of this
revolution”

B

“Obviously, there is a need for end-users”; “it’s really getting there
already”

C

“It can reach out to many fields and can be used in many ways. The
ICT area will be affected”

D

“Bring in new concept”; “a big innovation”; “will actually build
healthier software ecosystems”

E

On the advantage of solution composers Interviewee

“Don’t think of Apps anymore”; “make it easier for the users to get
functions they need”

A

“Making it easier for the end-users” B

“Allow end-users to customize”; “can make business around it” C

“First, it includes a service consultancy. Secondly, it provides
end-users with an experiential environment”; “attainability”

D

“The standardization and the attempt of customization”; “divide
two phases of the design and the run-time”

E

On the challenges of solution composers Interviewee

“Privacy is maybe still an issue. “Do you want it?” A

“Practical problems”; “need well-defined APIs and standardized” B

“Standardization”; “even without standardization, you will need to
build an ecosystem”; “90% of what you need is person (manual
work)”

C

“The technique support”; “how to simulate the environment” D

“How you can persuade people to use” E

On the validity of the framework Interviewee

“Could work for the business”; “(will need to) customize their daily
operations and the new technical infrastructure”

A

“Architecture for a framework that has not been implemented”; “A
lot of manual work to get everything to work on their platform”

B

“It sounds technical and detailed”; “can already be valuable now” C

“This is a good idea”; “will add value” D

“Quite clever”; “will make things easier and smoother” E

level of functionality and service composition. The idea of service composition
indicates the future of software industry, which is to meet the need of end-users.
This is also the most important aspect of software development. Thus, thinking
of the end-users is the main advantage of solution composer, as interviewees all
agreed.

14 Z. Yang et al.

Moreover, regarding the aspect of solution composer operation, interviewee
D pointed out that solution composer can provide end-users with an experien-
tial environment, allowing end-users to sense the final product they are going
to purchase. In this way, a solution is proposed in advance before it is carried
out into practice. Therefore, benchmarking and comparison of different service
configuration are enabled. “If the end-users could have the access to a trial prod-
uct with consultant and specialist’s advice, they may feel they’ve reached closely
to their goal”. This approach to present composed solution can soon meet end-
users’ requirement and satisfy end-users’ expectation. For end-users, the actual
outcome helps to make their finally decision.

The Challenge of Solution Composers. Nevertheless, challenges of the solu-
tion composer exist. The main concern addressed from interviewees is whether
solution composer can successfully attract customers in the current market. As
a matter of fact, with such a strong idea colliding with the AppStore nowadays,
it is reasonable to have concerns over the result of solution composer reshaping
the industry.

The interviewees reflected that standardization, which was also implied as
predefined manual work, would cost a lot of time and labor. In addition, inter-
viewee C brought up that implementing solution composer within an ecosystem
is also something needed to be concerned. Nevertheless, solution composers need
to be built on top of an existing ecosystem.

The Validity of the Proposed Framework. In the framework, we defined
solution composer and platform as separated phases because they have different
focuses. During the interview, Interviewee E agreed on this separation.

Furthermore, the proposed framework provides a standard for service com-
position that the current industry is lack of. “I would say there is a lack of
standards”, said interviewee B, “While some are very similar services but they
just have different APIs and there are some much work to implement that specific
API ”. The problem interviewee B brought up is what the solution composer is
about to fix. We proposed service index in order to form a standardized interface
for end-users, gathering all the services together rather than a whole bunch of
scattered APIs. In addition, the composition index brings convenience as well.
It allows end-users to easily look up composed solutions. Interviewee E said that
the composition index could be very interesting.

In the framework, besides the technical side, we also included payment
processing and business model in order to make it valid for business that will be
the work in the future.

Moreover, interviewee B suggested how we should make the framework more
valid or more advanced. “If you have well-defined services”, he gave suggestions
on how the solution composer could support semi-automatic composition, “if
you have some precondition and some post condition, output and input then you
could create an engine to do this”.

On the Future of Solution Composition in Software Ecosystems 15

However, interviewee B also addressed his concerns as the payment process-
ing and business model being in the center of the framework. He said: “If you
are saying business models and payment processing, then you are talking about
something in companies or back-ends.” In the meanwhile, interviewee A also had
the same concerns about whether there is an appropriate ecosystem or a business
background to support such framework, to bring it into practice and to make it
profitable in the market.

6 Discussion

Implications for the Industry. In order to validate the framework for prac-
tical implementations in software industry, protocols and standards are needed
for services to communicate. Within an environment for solution composer, dif-
ferent requirements in terms of component models are needed [14]. Since every
service works differently, it will be quite a burden if there is no protocol for
communications among services and consequently, it will increase the difficulty
in the solution composition process. For a simple example, booking tickets for
flight, every website is different. If there is standardized interface for travel infor-
mation, it will make things much easier. Nowadays, some very similar services
have different APIs and there will be abundant of manual work to implement
specific APIs if there is no unified protocol.

Moreover, software services should be simplified to only focus on core fea-
tures. With clear and distinguishable core features and without unnecessary
communications among redundant functions, it is easier for services to follow
the standardized protocol and for solution composer to perform concisely. Inter-
viewees B also expressed the urge for the industry to simplify software services.

In the meanwhile, automation is also needed. Nowadays, enterprises are
increasingly looking for new chances to cooperate with other enterprises by offer-
ing and performing integrated services and solutions [21]. However, the develop-
ment pace of solution composer that requires a considerable effort of low-level
programming has not kept up with the rapid growth of available opportunities.
Besides, the number of services to be integrated and composed may be huge,
so even with a standard protocol for component communication, involving sig-
nificant amount of manually coding work is inadequate considering the scale of
solution composition. Therefore, solution composers call for automation.

In addition, when automation is included and manual work is reduced, more
time and effort could be devoted into the main useful functional part of solution
composer, which is solution composition and service integration. Also with a
standardized protocol and simplified core service features, it will therefore make
consultancy easier and consequently will enable rapid system integration.

Last but not least, in order to facilitate the development of solution composer,
a healthy existing ecosystem is significant, either basing solution composer on
an ecosystem, or building an ecosystem around solution composer. Only within
an ecosystem, solution composer can be made the best use of, nourishing the
health of the ecosystem.

16 Z. Yang et al.

Research Validity. This paper brings up with a new concept of solution com-
poser. In order to further investigate the nature of it, we used exploratory
research based on case studies from the industry [22] and interviews from
experts [18].

With regards to internal validity, evaluating the framework with interviews
was a pragmatic decision, since the implementation and testing of the framework
in practice requires years of research. We do plan to implement the framework,
however, over the course of the next years at several industry research partners.

Regarding external validity (generalizability), it refers to the extent to which
the framework of this study can be generalized in industry. As observed in the
interviews, this framework has been evaluated in a variety perspectives and the
model can be applied to different parts of the software industry, such as the ser-
vices business or the Internet of Things business, as platforms like IFTTT.com
illustrate. Moreover, to minimize the external validity, we also analyzed practi-
cal cases from industry in order to show the general practice of the proposed
framework.

In terms of construct validity, the interviews were prepared with an extensive
interview protocol, consisting of a structure for the interview, but also definitions
for the solution composer and its parts. Using this definition list, interviewees
were sure to understand the concepts in the same way as other interviewees.
The semi-structured interviews were conducted as part of the case study. An
interview protocol was defined with questions including status quo in enterprise
AppStore and service composition, the impact of solution composer on software
ecosystem, and the future of service composition and software ecosystems. The
interviews were recorded, and transcribed. The results were analyzed to extract
observations, improvement suggestions, and conclusions.

7 Conclusion

From the industry cases and expert interviews suggested in the previous sec-
tions, it is clear that solution composers can be a major game changer in shaping
and reshaping the complete software ecosystem. One of the main observations
drawn from this study is that there is an undoubted need for the development
of solution composers, which provide end-users with more relevant and satisfac-
tory solutions. Furthermore, the proposed framework was considered useful for
industry practice, according to the experts from related fields.

This paper functions as an exploratory study into solution composers and
as a call for practitioners and researchers to further investigate solution com-
posers in practice. The industry cases illustrate that current SPOs are working
towards solution composers. According to the proposed framework, most of the
participants of this evolution movement for service composition have not yet
developed into maturity. Only a few have made the first baby steps towards
solution composers, yet still need abundant guidance and instructions to fully
grow into the real ones. Also the cases demonstrate, by performing solution com-
position, SPOs are actually benefiting and gaining market. In the meanwhile,

http://www.ifttt.com

On the Future of Solution Composition in Software Ecosystems 17

the scientific frameworks from previous works indicate the implementability of
solution composers.

In addition, expert interviews provide insight and evaluation from practical
side and help to evaluate the research results. Interviewees expressed that there
is a need for solution composers and the main advantages focus on customization
for end-users and the new way to discover and connect software in the wider soft-
ware ecosystem. However, most of the challenges brought up were from technical
and practical side, which present directions for future research.

First, both industry cases and interviews suggest that in order to establish
a robust solution composer, predefined standard will be needed, for instance,
the standard protocol for component services to communicate with each other
while composing solutions. Secondly, despite the need from market, solution
composers will suffer pressures from other existing big shots in the industry.
Whether thrive or not, depends largely on how solution composer will be unveiled
by whom. Thirdly, persuading end-users to join this software evolution will
encounter obstacles and barriers, because end-users may not realize how eager
they need the existence of solution composer. However, we will leave these to
future research and studies.

References

1. Apel, S., Kastner, C., Lengauer, C.: Language-independent and automated soft-
ware composition: the featurehouse experience. IEEE Trans. Softw. Eng. 39(1),
63–79 (2013)

2. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

3. Azeez, A., Perera, S., Gamage, D., Linton, R., Siriwardana, P., Leelaratne, D.,
Weerawarana, S., Fremantle, P.: Multi-tenant soa middleware for cloud computing.
In: 2010 IEEE 3rd International Conference on Cloud Computing, pp. 458–465.
IEEE (2010)

4. Brønsted, J., Hansen, K.M., Ingstrup, M.: A survey of service composition mecha-
nisms in ubiquitous computing. In: Workshop on Requirements and Solutions for
Pervasive Software Infrastructures, vol. 2007, pp. 87–92 (2007)

5. Colville, R., Adams, P., Curtis, D.: It service dependency mapping tools provide
configuration view. Gartner Research News Analysis, Gartner (2005)

6. Eid, M., Alamri, A., El Saddik, A.: A reference model for dynamic web service
composition systems. Int. J. Web Grid Serv. 4(2), 149–168 (2008)

7. Garber, L.: The lowly api is ready to step front and center. Computer 46(8), 14–17
(2013)

8. Garofalakis, J., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.: Web service discovery
mechanisms: looking for a needle in a haystack. In: International Workshop on Web
Engineering, vol. 38 (2004)

9. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering.
Prentice Hall PTR, Upper Saddle River (2002)

10. Hyrynsalmi, S., Mäkilä, T., Järvi, A., Suominen, A., Seppänen, M., Knuutila, T.,
Jansen, S.: App store, marketplace, play! an analysis of multi-homing in mobile
software ecosystems, pp. 59–72 (2012)

18 Z. Yang et al.

11. Jansen, S., Bloemendal, E.: Defining app stores: the role of curated market-
places in software ecosystems. In: Herzwurm, G., Margaria, T. (eds.) ICSOB
2013. LNBIP, vol. 150, pp. 195–206. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39336-5 19

12. Jansen, S., Cusumano, M.A., Brinkkemper, S.: Software Ecosystems: Analyzing
and Managing Business Networks in the Software Industry. Edward Elgar Pub-
lishing, Cheltenham (2013)

13. Jansen, S., Rijsemus, W.: Balancing total cost of ownership and cost of mainte-
nance within a software supply network. In: Proceedings of the IEEE International
Conference on Software Maintenance (ICSM 2006, Industrial track), Philadelphia,
PA, USA (2006)

14. Lemos, A.L., Daniel, F., Benatallah, B.: Web service composition: a survey of
techniques and tools. ACM Comput. Surv. (CSUR) 48(3), 33 (2015)

15. Liu, X., Hui, Y., Sun, W., Liang, H.: Towards service composition based on mashup.
In: 2007 IEEE Congress on Services, pp. 332–339. IEEE (2007)

16. Mahmoud, Q.H.: Service-oriented architecture (SOA) and web services: the road
to enterprise application integration (EAI), 16 November 2005

17. Mani, A., Nagarajan, A.: Understanding quality of service for web services. IBM
developerworks, 1 (2002)

18. Midgley, N., Parkinson, S., Holmes, J., Stapley, E., Eatough, V., Target, M.: Did
i bring it on myself? an exploratory study of the beliefs that adolescents referred
to mental health services have about the causes of their depression. Eur. Child
Adolesc. Psychiatry, 1–10 (2016)

19. Protalinski, E.: Google unveils android instant apps that launch immediately,
no installation required. http://venturebeat.com/2016/05/18/google-unveils-
android-instant-apps-that-launch-immediately-no-installation-required/. Accessed
18 May 2016

20. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)

21. Sheng, Q.Z., Benatallah, B., Dumas, M., Mak, E.O.-Y.: Self-serv: a platform for
rapid composition of web services in a peer-to-peer environment. In: Proceedings
of the 28th International Conference on Very Large Data Bases, pp. 1051–1054.
VLDB Endowment (2002)

22. Stebbins, R.A.: Exploratory Research in the Social Sciences, vol. 48. Sage, London
(2001)

23. van Angeren, J., Alves, C., Jansen, S.: Can we ask you to collaborate? analyzing
app developer relationships in commercial platform ecosystems. J. Syst. Softw.
113, 430–445 (2016)

24. von Alan, R.H., March, S.T., Park, J., Ram, S.: Design science in information
systems research. MIS Q. 28(1), 75–105 (2004)

25. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, p. 38. ACM (2014)

26. Yin, R.K.: Case Study Research: Design and Methods, vol. 5. Sage Publications,
Incorporated, London (2008)

http://dx.doi.org/10.1007/978-3-642-39336-5_19
http://dx.doi.org/10.1007/978-3-642-39336-5_19
http://venturebeat.com/2016/05/18/google-unveils-android-instant-apps-that-launch-immediately-no-installation-required/
http://venturebeat.com/2016/05/18/google-unveils-android-instant-apps-that-launch-immediately-no-installation-required/

The Rise of Cloud Brokerage: Business Model,
Profit Making and Cost Savings

Evangelia Filiopoulou(&), Persefoni Mitropoulou,
Christos Michalakelis, and Mara Nikolaidou

Department of Informatics and Telematics, Harokopio University of Athens,
9 Omirou Street, Tavros, Athens, Greece

{Evangelf,Persam,Michalak,mara}@hua.gr

Abstract. Cloud computing has succeeded in transforming the ICT industry,
making computing services more accessible to businesses. Nowadays, many
cost effective solutions are available to users. However, searching for the best
provider or the best bundle is not always an easy decision for the client. The
cloud broker is a widely known business model derived from this necessity. It is
a third-party business which assists clients to make the best decision in choosing
the most suitable cloud provider and the most effective service bundle for their
needs, in terms of performance and price. Into that context, this paper describes
the cloud broker business model and its promising future. It highlights the
broker’s vital role and the benefits that arise from the use of its services,
explores on the same time the drawbacks that derive from the intermediation of
cloud broker. The economic context of the cloud broker model is also examined
by reviewing the contemporary literature for the pricing methods that can be
adopted by a cloud broker in order to achieve cost savings.

Keywords: Cloud broker � Cloud computing � Brokering models �
Intermediary � Pricing models

1 Introduction

The cloud has succeeded in transforming the ICT industry, making software and
hardware services even more accessible to businesses and offering no upfront capital
investments for clients, leading to a faster market to market time in many businesses
[1]. From a provider’s standpoint, it offers a plethora of different features to adopt,
while on the demand side, users benefit by choosing the appropriate services or
combinations of them according to their needs. The task of finding the best service and
best pricing at the same time, raises new challenges on how to make this selection.

As a consequence, the necessity of cloud brokerage was realized and the business
model of cloud broker was developed. The broker acts as an intermediary between
users and providers, assisting the former to choose the services that meet their
requirements and the latter to schedule resources and apply effective pricing schemes.
The broker’s role is very important for reaching a point where both the demand and the
supply side agree with a price set, settling the best financial agreement, making a profit
out of this service [2]. The future of cloud broker is unquestionable and is considered to

© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 19–32, 2017.
DOI: 10.1007/978-3-319-61920-0_2

be the single largest cloud service in 2015 [3]. According to Gartner [4], cloud broker is
identified as one of the top ten technology trends of 2014 and it is expected that by year
2015, 40% of cloud services will be delivered via brokers [5]. In addition, cloud
brokerage market is predicted to grow from $1.57 billion in 2013 to $10.5 billion by
2018, as illustrated in Fig. 1, which represents a compound annual growth rate of
46.2% between these years [6]. This growth of cloud broker changes constantly the
cloud environment and the cloud broker model seems to hold the key of these reforms.

The rest of the paper highlights the cloud broker’s vital role and is structured as
follows. Section 2 provides a description of the cloud broker business model and its
services, while Sect. 3 highlights the beneficial role of the broker, exploring at the same
time its drawbacks. The financial context and a comparative review of the contem-
porary literature on the pricing models of a cloud broker are described in Sect. 4.
Finally, Sect. 5 concludes, providing directions for future research.

2 Cloud Broker and Services

A cloud broker aims at building a secure cloud management model in order to ease the
delivery of cloud services to cloud clients, while it presents them the services a cloud
provider can offer [7]. It mediates between clients, such as SMEs or larger scale
businesses, and providers, by buying resources from providers and sub-leasing them to
clients [8]. It is an entity that manages the use, performance and delivery of cloud
services, and negotiates relationships between cloud providers and consumers [9].

Cloud broker plays a dual role in the context of cloud computing. When it interacts
with a provider, acts as a client and it behaves as a provider when interacting with a
customer [10]. Cloud brokers are considered to be the key for managing hybrid IT
environments [11]. Enterprises, brokers and providers agree at a Service Level
Agreement (SLA) that specifies the details of the service, according to their require-
ments. The SLA is agreed by all parties; it determines details about the provided
services and contains penalties for violating the expectations of all parties [8].

A cloud broker manages multiple cloud services and offers technical services to
businesses, focusing on managing interoperability issues among providers.

$1.57

$10.50

 $-

$5.00

$10.00

$15.00

2013 2018

Bi
lli

on
 D

ol
la

rs

Years

Fig. 1. The expected cloud brokerage growth (2013–2018).

20 E. Filiopoulou et al.

Furthermore, it negotiates contracts with cloud providers on behalf of the businesses
[9]. A graphical depiction of the above is given in Fig. 2.

A cloud broker provides services in three categories:

1. Intermediation: A cloud broker acts as an intermediary between clients wishing to
adopt cloud services and cloud providers [9, 12].

2. Aggregation: A cloud broker can customize and combine multiple cloud services
into one or more services. An aggregation service establishes the secure data
movement between businesses and multiple cloud providers and includes data
integration [9, 12].

3. Arbitrage: A cloud broker assists customers to select several cloud providers
according to requirements, such as cost or performance. Service arbitrage is similar
to service aggregation, except that the services are being combined and are not fixed
[9, 12].

3 Cloud Broker Benefits

Businesses usually face difficulties in choosing the best provider based on service cost
and other specified requirements, mainly due to lack of knowledge and time. It is also
hard for clients to select services offered directly by providers, because there are no
standards that can measure performance of different service providers. Every provider
has its own standards, which are not necessarily widely acceptable [8]. Thus, they grant
the authorization to a broker to decide on behalf of them [12].

The benefit of cloud broker for an enterprise can be realized by assisting a provider
to choose the best framework, so that an enterprise can focus on its core business rather
than being concerned about task deployment strategies, meeting its functional or
non-functional requirements. Cloud broker offers not only the best provider but also
integrates disparate services across multiple hybrid approaches. Furthermore, it helps
providers adapt directly to market conditions and offer more efficient services [12]. It
pioneers the integration of the entire cloud ecosystem, connecting hardware players
such as IBM, HP, Dell; software players such as Microsoft, Citrix; PaaS, IaaS, SaaS

Fig. 2. Cloud service broker model

The Rise of Cloud Brokerage: Business Model, Profit Making 21

providers such as Google, Salesforce, Amazon, and Rackspace, among many other
prominent players in the IT and Telecom industry [3].

Cloud broker is a trusted and reliable advisor for businesses, as organizations
mistakenly think that the choice of cloud services is similar to the selection of web
services. However, this choice is in fact different, because there is no standardized
representation of cloud providers’ properties. The broker is bound to provide the
guaranteed resources [8] and it also forms Service Level Agreements with the providers
because the SLAs of the providers often vary in format and content, causing confusion
to the non-aware clients [2].

The model of cloud broker also provides budget guidance to businesses and assists
them to adopt a cost effective solution, satisfying budget requirements. It usually
achieves better discounts, reduces capital costs and accesses more information from
providers [12].

Some of the world’s largest technology companies offer cloud services, including
Google, Amazon and Microsoft. Since cloud providers deliver many services it is
almost impossible to manage each customer individually, therefore providers need the
intermediate cloud broker in order to promote their services to the clients [13]. They
cooperate with independent cloud brokers in order to empower their relationship with
enterprise customers, because customers seek for credible brokers [14].

4 Overview of Brokering Methods

A cloud broker functions in the cloud computing market the same way as it does in
real-world markets, matching users demands with providers supplies [8]. It aims to
succeed in settling the best financial agreement between the consumer and the provider
[15]. In the next paragraphs, the most common cloud brokers pricing methods are
presented, according to the contemporary corresponding literature.

4.1 Financial Brokering Method Based on Derivative Contracts

This brokering method was initially developed by HP Labs by Wu, Zhang, and
Huberman (WZH). It describes the financial method of a cloud broker based on
derivative contracts.

A derivative contract is a contract that derives its value from the performance of an
underlying entity. Options contracts, are common types of derivatives contracts which
give buyers the legal right, but not an obligation, to purchase a resource for an agreed
price on some later delivery date [16]. Derivative contracts are used by the broker as a
strategy to avoid the risk for uncertainty over future demand and supply [2].

Reserved instances are committed by the broker through derivatives contracts. As
soon as the contract matures, the resources are delivered to clients by the broker. The
broker makes a long-term reservation of resources, in fact the broker purchases obli-
gations on resources for the next 3 years. Then the cloud broker repacks the reserved
instances as one month options contracts [17]. Each month the broker accepts the
resource requirements from clients. The requirements are expressed as a probability

22 E. Filiopoulou et al.

that reveals the utilization of an instance in the next month. The broker sums these
probabilities that correspond to the prediction of how many instances will be required
in the following period. Consequently, the broker sells to clients options contracts and
decides whether or not to purchase resources [2, 17, 18].

The broker compares the performance of a reserved instance during the previous 36
month time period, P = {Pt−36, …, Pt}, with the future resource capacity, such as the
number of reserved instances that the broker has currently available F = {ft, .., ft+36}
during the following 3 years. The deficit profile D is estimated for each forthcoming
month, by subtracting historical demand from future expected demand.

D ¼ F� P ð1Þ

Margin Resource Utilization (MRU) describes the possible utilization of an addi-
tional reserved resource and it is the proportion of item in D > 0. In addition, the broker
uses another metric variable, which is called threshold and is denoted by h. Threshold
advices the broker whether it is in its interest to purchase reserved instances in advance
or it is better to buy on demand resources later on [2, 17, 18].

MRU and h are combined in the following way:

1. If MRU > h, then the broker is advised to purchase additional reserved instances,
which will very probably be utilized in the following months and this decision is
expected to be profitable.

2. If MRU <= h, then the broker should purchase new instances on demand, esti-
mating that it will be more profitable than purchasing reserved instances in advance.

3. The next month clients can demand instances from the broker by exercising their
options contracts. If the broker has available capacity to satisfy the demand of the
client, instances are sold to clients at a higher value than the purchased one.
Otherwise, the broker has to buy on demand instances and provide them to the
client in order to fulfill its obligation [2, 17].

The simulation was programmed in Python. Simulations were implemented with a
pool of 1000 clients submitting probabilities. The drawback of this method is that if
clients reveal a mistaken possibility, the broker will inaccurately forecast the reser-
vation of the resources.

4.2 A Cloud Computing Broker Model for IaaS Resources

This brokering method is based on provider tariffs instead of providers. Tariff options
constitute an open contract between the cloud provider and the client which outlines the
terms and conditions of providing cloud computing services to consumers and includes
rates, fees and charges [19].

Infrastructure as a Service includes control of fundamental computing resources,
such as memory, computing power and storage capacity [20]. The instances of IaaS are
presented by virtual machines (VMs) here. The resource (VM) is denoted as a vector
r = (#vCPU, RAM, HDD) which depicts a virtual machine that includes a number of

The Rise of Cloud Brokerage: Business Model, Profit Making 23

virtual CPUs (#VCPU), an amount of virtual random access memory in Gigabytes
(RAM) and an amount of storage capacity in Gigabytes (HDD).

The consumer-resource demand is expressed by the following number of factors
and criteria: (a) Qualitative criteria (C), such as constraints for CPU, RAM, HDD
(upper and lower bound, customer service, location and legislation), (b) Load profile
(L) that contains the consumer’s performance priorities for CPU, RAM, HDD, (c) Time
T: The total deployment time in hour of the VM, (d) ton: The number of hours the VM
is running (“on-time)”, (e) s: the HDD capacity required by the VM.

This brokering method can be described by 4 steps. In the first step consumers send
resource requests as mentioned above. Thereafter, the model filters provider tariffs for
consumer constraints, for example location, upper and lower bound and excludes tariffs
which do not meet the requirements. In the third step the cost-performance ratio of each
tariff is computed. The lowest cost-performance indicates the most cost-efficient
solution for the consumer. In the final step the broker ranks and returns the results.

The cost-performance ratio of an IaaS instance is estimated by a benchmarking
suite called UnixBench [21]. For every provider tariff, an instance (CPU, RAM, HDD)
is ordered and UnixBench runs benchmarks on the system, calculating the benchmark
points of the VM. The benchmark results (benchmark points BP, �X), the announced
price of the provider (P) and L are the three factors that estimate the cost performance
ratio. Especially L is a factor that can either attribute to the calculation of the ratio or
not. If it is independent of the process then the performance rate (Price per BP) is
calculated by the equation:

Price per BP ¼ P=�X ð2Þ

Therefore the lowest price per BP indicates the highest performance for the given
price and it is considered to be the most appropriate solution for the consumer.

If L that describes the relative importance of components (CPU, RAM, HDD) is
taken into account then the brokering process is more complicated. The benchmark
results are denoted by �XCPU, �XRAM, �XHDD for each component of the VM. L is con-
sidered to be (WCPU, WRAM, WHDD). At first, P is divided into components (CPU,
RAM, HDD) according to the weights of the load profile. By using the price to
distribute weights, the need to make assumptions about the relation of benchmarking
values between components is avoided. The performance weighed component price
(PWC) for each component is presented below, as shown in Table 1.

Afterwards and for each tariff, the performance weighed component price is divided
by the component benchmark points, calculated by UnixBench and then the sum of
them is used so that the Composed Total Weight tariff (CTW) is estimated:

Table 1. Performance weighed component price

CPU RAM HDD
WCPU*P WRAM*P WHDD*P

24 E. Filiopoulou et al.

CTW ¼ PWCCPU=XCPU
� �þ PWCRAM=XRAM

� �þ PWCHDD=XHDD
� � ð3Þ

After the estimation of the cost-performance ratio the tariffs are enlisted. In previous
step tariffs that do not fulfill qualitative criteria have been already excluded. The lowest
price per performance unit is the most suitable solution for the consumer’s task [19].

4.3 Dynamic Cloud Resource Reservation via Cloud Brokerage

As proposed in [22], the cloud brokerage service reserves a large pool of instances from
cloud providers and serves users with price discounts. The broker optimally exploits
both pricing benefits of long-term instance reservations and multiplexing gains, and
makes instance reservations, based on dynamic strategies, with the objective of min-
imizing its service cost. The evaluation of the methodology was made by simulations
driven by large-scale Google cluster-usage traces, revealing that the broker can achieve
significant price discounts.

IaaS clouds provide users with multiple purchasing options, the most popular being
“on-demand instances” and “reserved instances”. On-demand instances allow users to
pay a fixed rate in every billing cycle (e.g., an hour) with no commitment, paying for
example n*p monetary units, for n hours usage of an instance, which is charged at
p monetary units per hour. Reserved instance allows users to pay a one-time fee, in
order to reserve an instance for a certain amount of time. In most cases, the cost of a
reserved instance is fixed. The cloud broker exploits the pricing difference between
reserved and on-demand instances to reduce the expenses for the users.

The main problem to be satisfied in order to address the dynamic resource reser-
vation corresponds to the decision regarding the number of instances the broker should
reserve, the number of instances they should be launched on demand, as well as when
to reserve, since the demand changes dynamically over time. The “Instance Reserva-
tion Problem” is an optimization problem, seeking to minimize the total cost of all the
user demands, and can be formulated as:

min cost ¼
XT

t¼1
rtcþ

XT

t¼1
dt � ntð Þþ p; s: t: nt ¼

Xt

i¼t�rþ 1
ri; 8t ¼ 1; . . .; T ð4Þ

In the minimization formula, the first summation describes the total cost of reser-
vations and the second the cost of all on-demand instances. In the above equation rt is
the number of reserved instances, dt the aggregate demand and nt the number of
reserved instances that remain effective at time t = 1, 2 ,…, T. with the time in terms of
billing cycle. The term dt � ntð Þþ describes the additional on-demand instances nee-
ded to be launched at time t. Moreover, r is the reservation period, c the one time
reservation fee for each reserved instance and p the price of running an on-demand
instance per billing cycle.

The broker’s problem is to make dynamic reservation decisions for rt, t = 1,2 ,.., T
to minimize its total cost, as described by the above equation, while accommodating all
the demands. This problem is integer programming needing complex combinatorial
methods to solve it. However, such kind of problems are described by the curse of

The Rise of Cloud Brokerage: Business Model, Profit Making 25

dimensionality, the high number of possible combination and states which results into
exponential time complexity seeking for solutions. In addition and in the cases of users
who cannot predict their future demand, an online strategy is proposed which reserves
instances based only on demand history.

The performance evaluation was based on simulations and on Google cluster-usage
traces. The corresponding dataset contained 180 GB over a month’s resource usage
information of 933 users. According to their findings the broker can bring an aggregate
cost saving at a level of 15%, when it aggregates all the user demands. The broker’s
benefit is different in different user groups, achieving a higher cost saving, at a level of
40% for users with medium demand fluctuation, than those with low demand fluctu-
ation which amounts at a level of 5%.

Evaluating the price discount in each individual user who can enjoy from the
brokerage service it is found that over 70% of users can save more than 30%, while the
broker can bring more than 25% price discounts to 70% of users if all users are
aggregated.

4.4 Dynamic Pricing Based on Quantized Billing Cycles
and the Ski-Rental Problem

Quantized Billing Cycles (QBC) is the situation according to which the user pays the
same price for an on-demand instance, regardless if the time of usage is smaller than the
whole Billing Cycle, i.e. paying the same price of using the VM for 1 min or 1 h [23].
Users with sporadic demand are facing QBC problems and the higher the sporadic
nature, the greater the loss. When a cloud broker needs to buy VMs to serve the
aggregate demand faces the risk of underutilization of the VM in the subsequent time
slots. So, the broker has to decide without knowledge of future demand.

The pricing method presented in this section derives from the research performed in
[23] and can be used to maximize the profit of the cloud broker under QBC, in both
static pricing (the selling price remains constant at nominal rate) and dynamic pricing
(price varies in response to the user’s demand). The idea behind dynamic pricing is:
“Suffer a small loss in one interval by decreasing the demand, rather than buying a VM
and then suffering a major loss in the subsequent intervals due to low demand”. This is
realized by decreasing the demand and not increase the revenue, so the role of dynamic
pricing is to regulate the demand. Dynamic pricing turns out to make more profit than
static pricing, mainly due to the underutilization of the VMs met in the latter approach.

The mathematical formulation of the optimization problem described above, con-
sidering that the user pays the cloud broker based on per-request basis is:

maxP ¼
XT

t¼1
ðctdt � utÞ s:t:

Xt

i¼t�rþ 1
ui � dt; dt ¼ f dt�; ct;

8t ¼ 1; 2; . . .; T
ð5Þ

P is the profit to be maximized, ctdt � utð Þ is the profit at tth interval, ct is the selling
price per VM per time slot, dt is the number of VMs required to service the incoming
request, ut is the number of VMs bought at the tth interval and d�t is the actual demand, at t.

26 E. Filiopoulou et al.

The equivalent minimization problem to the above is:

minL ¼
XT

t¼1
c�d�t � ctdt
� �þ ut
� � ¼ f d�t ; ct

� �
;

s:t:
Xt

i¼t�sþ 1
ui� dt;8t ¼ 1; 2; . . .; Tdt

ð6Þ

In the above equation, c�d�t � ctdt
� �

and ut correspond to the demand loss and VM
loss, respectively and f d; cð Þ is the demand function. If there is an unexpected increase
in demand d�t for a short time, then the optimization problem described by (6) will
increase the selling price ct to reduce the demand. Thereby the cloud broker will suffer
a small “Demand Loss”. The option of buying enough VMs to support the demand hike
is a good solution only if the hike in demand persists for a long time, otherwise the
cloud broker may suffer a huge “VM Loss” in subsequent intervals due to underutilized
VMs. Since it is not possible to know beforehand if an increase in demand will persist
or decay soon, d�t is needed for all t. Hence, the next step is to design online algorithms
which can make such decisions online based on present and past data.

The proposed algorithms are based on the ski-rental problem, according to which a
player faces the decision of whether to buy or rent a resource, without the a priori
knowledge of the period of usage. If the period of usage is short, then renting is
preferable, while for a long period buying is cheaper. The concept of breakeven point is
used for the construction of online algorithms, suggesting the point after which buying
is cheaper than renting.

The evaluation of the proposed algorithms was based on simulations and on google
cluster usage traces and the generation of the demand function, while conducting
comparative studies regarding the effect of demand prediction and the demand
threshold for switching between renting and buying. The results revealed the impor-
tance of demand prediction and indicated the appropriate breakeven points for the
different threshold values considered.

The key points of the presented pricing methods, together with the evaluation
results are presented in Table 2.

Table 2. Overview of common pricing methods of a cloud broker

Name Description Evaluation Results

Financial
brokering
method for
cloud
computing [2]

• Clients send to the
broker probabilities
revealing the
utilization of
instances in the
following month

• Reserved instances
are committed by the
broker through
option contracts

• The simulation was
programmed in
Python

• Use of a pool of 1000
user agents
submitting
probabilities

• The broker is
profitable

• It is more profitable
for the broker to
purchase long-term
options contracts

• The past
performance of
clients benefits the
broker

(continued)

The Rise of Cloud Brokerage: Business Model, Profit Making 27

Table 2. (continued)

Name Description Evaluation Results

• The broker, based on
the probability and
the previous
performance of
clients, purchases
reserved instances or
waits to buy
instances on demand

A cloud
computing
broker model
for IaaS
resources [19]

• The model is based
on provider tariffs
instead of providers

• Each client presents
to the broker his
priorities (CPU,
RAM, and Storage)

• The broker collects
tariffs from the
provider market and
assesses them by
calculating the
cost-performance of
each tariff

• The lowest price per
performance unit is
the most suitable
solution for the
consumer’s task

• The
cost-performance
ratio of an IaaS
instance was
estimated by
UnixBench

• The data of
simulation was
obtained from three
providers: Amazon,
Azure and Rackspace

• Rank of
price/performance
price: different from
the order by price
or performance
alone

• Performance and
price deflect among
providers ! less
performance at a
higher price.

• Larger instances
have a worse
price/performance
price

Dynamic
Cloud
Resource
Reservation
via Cloud
Brokerage [22]

• The broker reserves
a large pool of
instances from
providers and
optimally exploits
both pricing benefits
of long-term
instance reservations
and multiplexing
gains

• Users purchase
instances from the
broker in an
“on-demand” way
and are served with
price discounts

• Dynamic strategies
are used for the

• The simulations
were driven by
large-scale Google
cluster-usage traces

• >900 users’ usage
traces on a
12 K-node Google
datacenter were used

• Users’ computing
demand data were
converted to IaaS
instance demand

• Users: 3 groups based
on demand
fluctuation level

• Users receive a
lower price when
trading with the
broker. There is no
need for upfront
payment for
reservations and no
money wasted on
idled reservation
instances

• The broker makes
profit by leveraging
the wholesale
(reservation) model

(continued)

28 E. Filiopoulou et al.

Table 2. (continued)

Name Description Evaluation Results

broker in order to
make instance
reservations with the
objective of
minimizing its
service cost

• When demand
predictions are
unavailable, an
online reservation
strategy to make
decisions based on
history is proposed

Quantized
Billing Cycles
[23]

• Quantized Billing
Cycles (QBC): user
pays the same price
for an on-demand
instance, regardless
if the time of usage
is smaller than the
whole Billing Cycle

• When a broker needs
to buy VMs faces the
risk of
underutilization of
the VM and has to
decide without
knowledge of future
demand

• The idea behind
dynamic pricing is:
“Suffer a small loss
in one interval by
decreasing the
demand, rather than
buying a VM and
then suffering a
major loss in the
subsequent intervals
due to low demand”

• Decrease of demand
and not increase of
revenue, so that the
role of dynamic
pricing is to regulate
the demand

• The proposed
algorithms were
based on ski-rental
problem

• It was made use of
the breakeven point:
the point after which
buying is cheaper
than renting

• The simulations were
based on google
cluster usage traces
and the generation of
demand function

• Comparative studies
of demand prediction
and threshold for
switching between
renting and buying
were conducted

• Dynamic pricing
turns out to make
more profit than
static pricing,
mainly due to the
underutilization of
the VMs met in the
latter approach

• The results revealed
the importance of
demand prediction
and indicated the
appropriate
breakeven points for
the different
threshold values
considered

The Rise of Cloud Brokerage: Business Model, Profit Making 29

5 Discussion

The overview of the cloud broker discussed in this paper focuses on the numerous
benefits of this widely known business model. From a business oriented perspective,
the broker assists enterprises to develop themselves, makes cost savings, creating at the
same time a competitive environment with more job opportunities and challenges. The
cloud brokering has a substantial potential for cloud service providers and small,
upstart entrepreneurs, who gain improved profitability and new revenue opportunities,
resulting to the growth of the society’s economy and the increase of social surplus.

Furthermore, the pricing methods adopted by a broker offer economic benefits to
both consumers and providers, while creating profits for the broker as well. Into that
context, a research area of high interest and importance, regarding the cloud brokering
services, is the development of more intelligent and flexible pricing approaches, since
the existing ones do not succeed to adequately address the pricing of cloud services.

Towards this direction, some of the most common cloud brokers pricing methods
are presented in this paper. According to them, the broker reserves instances from cloud
providers, based on past performance of clients, using either a probability which
reveals the utilization of instances for the next month [2] or an online reservation
strategy to make decisions based on history [22]. In addition, a broker may collect
tariffs from the provider market and assesses them by calculating the cost-performance
of each tariff always according to clients’ priorities for resources [20]. Dynamic pricing
is also proposed as an approach aiming to regulate clients’ demand based on the
underutilization of the VMs [23] or minimize the broker’s service cost using dynamic
programming and approximate algorithms [22].

6 Conclusions

In the market of cloud computing, a broker functions in the same way as it does in
other, real-world, markets. It matches users’ demands with providers’ supplies, aiming
to succeed in settling the best financial agreement between the supply and the demand
side of the corresponding market, in order to make profit and this is the successful
result of a deal in a commodity market.

The work presented in this paper describes the cloud broker and its promising
future, in terms of maintaining an essential role in an increasingly complex cloud
computing scenario and in profit making. It highlights the broker’s vital role and the
benefits that arise from the use of its services. The economic context of the cloud
broker model is also examined by presenting a short review of the contemporary
literature for the pricing methods that can be adopted by a cloud broker in order to
achieve cost savings.

As the cloud broker business model is still developed, there are a number of
important aspects to be further explored, mainly towards the direction of developing
and adopting more efficient pricing methods and the role of the broker into the
reduction of costs. Research must be extended to accommodate the SaaS and PaaS
models as well, which are also expected to diffuse quickly in the coming years, raising
the imperative need for new, innovative, business models.

30 E. Filiopoulou et al.

References

1. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing—The
business perspective. Decis. Support Syst. 51(1), 176–189 (2011)

2. Rogers, O., Cliff, D.: A financial brokerage model for cloud computing. J. Cloud Comput. 1
(1), 1–12 (2012)

3. King, M.: Cloud services brokerage market to increase by 55% (2013). http://www.
companiesandmarkets.com/News/Information-Technology/Cloud-services-brokerage-
market-to-increase-by-55/NI6908. Accessed 8 Apr 2013

4. Rivera, J.: Gartner identifies the top 10 strategic technology trends for 2014 (2013). http://
www.gartner.com/newsroom/id/2603623. Accessed 8 Oct 2013

5. Clancy, H.: Cloud integration brokerage services mature. Next-Gen Partner (2014). http://
www.zdnet.com/article/cloud-integration-brokerage-services-mature. Accessed 15 Apr 2014

6. Marketsandmarkets: Cloud services brokerage market by types (Cloud Brokerage Enable-
ment (Internal, External (Telecom Service Providers, System Integrators & ISVs, Hosting &
Cloud Providers)), Cloud Brokerage) - Global Forecast to 2020 (2015)

7. Nair, S.K., Porwal, S., Dimitrakos, T., Ferrer, A.J., Tordsson, J., Sharif, T., Sheridan, C.,
Rajarajan, M., Khan, A.U.: Towards secure cloud bursting, brokerage and aggregation. In:
2010 IEEE 8th European Conference on Web Services (ECOWS), pp. 189–196. IEEE
(2010)

8. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility.
Future Gener. Comput. Syst. 25(6), 599–616 (2009)

9. Pritzker, P., Gallagher, P.: NIST cloud computing standards roadmap, pp. 500–291. NIST
Special Publication (2013)

10. Bohn, R.B., Messina, J., Liu, F., Tong, J., Mao, J.: NIST cloud computing reference
architecture. In: 2011 IEEE World Congress on Services (SERVICES), pp. 594–596. IEEE
(2011)

11. Yasin, R.: Mid-year review: 10 predictions for cloud computing. GCN (2013). https://gcn.
com/articles/2013/08/21/cloud-predictions.aspx. Accessed 21 Aug

12. Geetha, D.V., Hayat, R.M., Thamizharasan, M.: A survey on needs and issues of cloud
broker for cloud environment. Int. J. Dev. Res. 4(5), 1035–1040 (2014)

13. Sampson, L.: A cloud broker can be a cloud provider’s best friend. SearchCloudProvider.-
com (2012). http://searchcloudprovider.techtarget.com/feature/A-cloud-broker-can-be-a-
cloud-providers-best-friend

14. Mihai, C.: Cloud broker or cloud provider? Or both? (2013). https://
enterprisetechnologyconsultant.wordpress.com/2013/05/07/cloud-broker-or-cloud-provider-
or-both/. Accessed 7 May

15. Papazoglou, M.P., van den Heuvel, W.-J.: Service oriented architectures: approaches,
technologies and research issues. VLDB J. 16, 389–415 (2007). doi:10.1007/s00778-007-
0044-3

16. Clearwater, S.H., Huberman, B.: Swing options: a mechanism for pricing IT peak demand.
In: Paper Presented at the International Conference on Computing in Economics (2005)

17. Clamp, P., Cartlidge, J.: Pricing the cloud: an adaptive brokerage for cloud computing. In:
5th International Conference on Advances in System Simulation (SIMUL-2013), pp. 113–
121. IARIA XPS Press, Venice (2013). Citeseer

18. Wu, F., Zhang, L., Huberman, B.A.: Truth-telling reservations. Algorithmica 52(1), 65–79
(2008)

The Rise of Cloud Brokerage: Business Model, Profit Making 31

http://www.companiesandmarkets.com/News/Information-Technology/Cloud-services-brokerage-market-to-increase-by-55/NI6908
http://www.companiesandmarkets.com/News/Information-Technology/Cloud-services-brokerage-market-to-increase-by-55/NI6908
http://www.companiesandmarkets.com/News/Information-Technology/Cloud-services-brokerage-market-to-increase-by-55/NI6908
http://www.gartner.com/newsroom/id/2603623
http://www.gartner.com/newsroom/id/2603623
http://www.zdnet.com/article/cloud-integration-brokerage-services-mature
http://www.zdnet.com/article/cloud-integration-brokerage-services-mature
https://gcn.com/articles/2013/08/21/cloud-predictions.aspx
https://gcn.com/articles/2013/08/21/cloud-predictions.aspx
http://searchcloudprovider.techtarget.com/feature/A-cloud-broker-can-be-a-cloud-providers-best-friend
http://searchcloudprovider.techtarget.com/feature/A-cloud-broker-can-be-a-cloud-providers-best-friend
https://enterprisetechnologyconsultant.wordpress.com/2013/05/07/cloud-broker-or-cloud-provider-or-both/
https://enterprisetechnologyconsultant.wordpress.com/2013/05/07/cloud-broker-or-cloud-provider-or-both/
https://enterprisetechnologyconsultant.wordpress.com/2013/05/07/cloud-broker-or-cloud-provider-or-both/
http://dx.doi.org/10.1007/s00778-007-0044-3
http://dx.doi.org/10.1007/s00778-007-0044-3

19. Gottschlich, J., Hiemer, J., Hinz, O.: A cloud computing broker model for IaaS resources
(2014)

20. Mell, P., Grance, T.: The NIST definition of cloud computing (2011)
21. Smith, B., Grehan, R., Yager, T., Niemi, D.: Byte-unixbench: a Unix benchmark suite.

Technical report
22. Wang, W., Niu, D., Li, B., Liang, B.: Dynamic cloud resource reservation via cloud

brokerage. In: 2013 IEEE 33rd International Conference on Distributed Computing Systems
(ICDCS), pp. 400–409. IEEE (2013)

23. Saha, G., Pasumarthy, R.: Maximizing profit of cloud brokers under quantized billing cycles:
a dynamic pricing strategy based on ski-rental problem (2015). arXiv preprint arXiv:
150702545

32 E. Filiopoulou et al.

http://arxiv.org/abs/150702545
http://arxiv.org/abs/150702545

Work in Progress on Quality of Services
and Service Level Agreements

Robust Content-Centric SLA Enforcement
in Federated Cloud Environments

Nikoletta Mavrogeorgi(&), Athanasios Voulodimos,
Vassilios Alexandrou, Spyridon Gogouvitis,

and Theodora Varvarigou

School of Electrical and Computer Engineering,
National Technical University of Athens, Athens, Greece

{nikimav,thanosv,alexv,spyrosg}@mail.ntua.gr,

dora@telecom.ntua.gr

Abstract. In this paper we present a system for declaring and enforcing SLAs
in Cloud environments. The SLAs proposed are enriched with content terms,
storlets and federation capabilities and provide high degrees of customizability
for clients. A mechanism for SLA enforcement has been designed and imple-
mented which, based on policies, measurements, usage data computations, and
monitoring methods permits proactive SLA violation detection and handling.
SLA renegotiation is supported as well. The proposed framework has been
developed and evaluated in challenging scenarios in a variety of different
application domains.

Keywords: SLA schema � SLA enforcement � Monitoring � Proactive SLA
violation detection � Content centric storage � Storlets � Federation � Evaluation

1 Introduction

The cloud paradigm has undoubtedly revolutionized the IT landscape given the sig-
nificance of on-demand cloud services offered by increasingly powerful cloud provi-
ders. The need for secure storage and retrieval of data is shared among all types of
clients who can range from a simple user who uses a cloud service to store their photos
to big enterprises (in a variety of sectors, i.e. healthcare, media, IT, banking, industry,
etc.), which store financial and other sensitive data. A Service-level agreement (SLA) is
a contract between a (cloud) service provider and a customer that specifies, in mea-
surable terms, what services the provider offers. A SLA often includes metrics that
specify the performance, availability, and security assured to the customer, as well as
penalties for violating these requirements.

SLAs in Cloud architectures have been the focus of attention of a significant
number of researchers and professionals, especially with the rapid adoption of cloud
based solutions in many different application domains. SLA schemas XML schemas
that represent the content of an SLA. Some existing approaches for SLA schemas and
the corresponding languages to define service description terms are: SLAng [1],
WS-Agreement [2], WSLA [3], WSOL [4], and SWAPS [5]. Nevertheless, the pro-
posed schemas have limitations. SWAPS is quite complex and the implementation is

© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 35–48, 2017.
DOI: 10.1007/978-3-319-61920-0_3

not publicly available. WSLA and SLAng have not further development at least since
2009. Apart from this, SLAng does not permit to define management information such
as financial terms and WSLA has not formal definition of metrics semantics. WSOL
lacks SLA related functionalities, such as the capture of the relationship between
service provider and infrastructure provider. The WS Agreement is a Web Services
protocol for establishing agreement between two parties using an extensible XML
language for specifying the nature of the agreement, and agreement templates to
facilitate discovery of compatible agreement parties. It allows arbitrary term languages
to be plugged-in for creating domain-specific service description terms.

Two challenging research issues are the requirements translation from high level
metrics to low level requirements and vice versa and the proactive violation detection.
Several proposals have been made for these issues, but very little for cloud environ-
ments. For instance, GRIA SLAs [6] suggest a solution for avoiding violations but
concerns only Grid environments. The LoM2HiS framework [7] proposes the trans-
lation of low level metrics to high level terms that are used in Cloud SLAs, but not the
reverse translation. Also, they are based on generic characteristics and terms (e.g.
availability) which are not application specific. The LAYSI framework [8] supports
two kinds of monitors sensors, the host monitor and the runtime monitor sensor. The
latter senses future SLA violation threats based on resource usage experiences and
predefined threat thresholds. In DesVi [9], an architecture is proposed for preventing
SLA violations based on knowledge database and case-based reasoning. It also uses the
LoM2HiS framework for the requirements translation.

In [10] an analysis of SLA violations in a production SaaS platform is described,
while [11] presents a scalable, stochastic model-driven an interacting Markov chain
based approach to quantify the availability of a large-scale IaaS cloud. In [12] the
authors present an aggregation mechanism for merging service-level objectives and for
guaranteeing a single SLA that specifies obligations and responsibilities of all partic-
ipants in a federation. The framework in [13] uses a portfolio-based optimisation to
improve SLA compliance by diversifying the selection and consequently the allocation
of traded instances of web services from multiple providers. An end-to-end framework
for consumer-centric SLA management of cloud-hosted databases is proposed in [14]
to facilitate adaptive and dynamic provisioning of the database tier of the software
applications based on application-defined policies for satisfying their own SLA per-
formance requirements. SALMonADA [15] performs an automated monitoring con-
figuration and it analyses highly expressive SLAs by means of a constraint satisfaction
problems based technique. In [16] a new proactive resource allocation approach is
proposed aiming at decreasing impact of SLA violations by using two user’s hidden
characteristics, i.e. willingness to pay for service and willingness to pay for certainty. In
[17] an SLA implementation for Cloud services based on the CMAC (Condition
Monitoring on A Cloud) platform is proposed, while in [20] decision-making with
regard to availability SLAs is explored.

In this paper, we present a system for declaring and enforcing SLAs in Cloud
environments where commitments for using Cloud services are defined. The SLAs are
enriched with content terms, storlets and federation capabilities. Additionally, many
SLOs (Service Level Objectives) are supported at different levels permitting the clients
to have customized SLAs. A mechanism for SLA enforcement has been designed and

36 N. Mavrogeorgi et al.

implemented which, based on policies, measurements and usage data computations,
permits SLA violations to be handled and imminent SLA violations to be proactively
detected. Moreover, renegotiation is supported, i.e. a client can change their SLA for a
variety of reasons. The system permits the SLA renegotiation and based on measure-
ments and usage data can suggest changes to the existing SLA aiming at being more
compatible to its data usage or for cost reduction. The main core of the presented
framework was developed in the context of the VISION Cloud EU project [18].

2 Cloud Models and Enriched SLA

Our proposed system permits the storage of objects and their retrieval anytime and
from anywhere. In order this to be achieved replicas of the objects are stored in
appropriate locations. The clients of the Cloud are the tenants and their users. A tenant
is the unit that subscribes to storage cloud services. A tenant defines its users. The users
handle the objects that are stored in the Cloud. The objects are stored grouped by
containers. Containers serve as an aggregation point for grouping related data objects
together. Policies can be set on a container basis and are applied to all of the objects in
the container. A container is associated with an SLA and based on it the number and
the locations of the replicas of the objects are defined. The Cloud is composed of
multiple data centers. Each data center is split to clusters and each cluster consists of
multiple nodes which contains the servers. This hierarchy is stored in Catalogs. Each
level has its own aggregated catalog and uses GPFS-SNC. A local catalog enables
mapping objects to file paths and the node containing the object. The resource model
can be seen in Fig. 1. The existence of a resource model in the PaaS layer of a Cloud
environment serves the need of management in terms of resource allocation, services
deployment and execution and finally optimization.

The proposed SLA contains additions that are significant for Cloud provisions.
Apart from the classical data of an SLA such as availability levels and responsibilities

Fig. 1. Resource model. Fig. 2. Federation.

Robust Content-Centric SLA Enforcement in Federated Cloud Environments 37

data between the provider and the tenant, our SLA is based on content terms and
contains more SLO’s in order to be customized as per the tenants’ desires. Also, it
contains federation and storlets support and commitments. Finally, it provides rene-
gotiation with suggestions for better SLA according to the tenant’s usage.

Content term addition. The innovation of declaring content terms permit the Cloud to
provide content-centric services. Also, it links content with performance estimates,
decisions for moving computation close to storage, pricing models, etc. Another
advantage is that support more efficient capabilities, e.g. quicker search and retrieval of
the objects, services regarding the content term for instance in case of media, high
performance video related services are supported.

SLOs. The SLOs are not restricted in availability. There are many requirements in
different levels that are selected by the tenant according to their desires. A tenant can
balance the cost with the supported levels. For instance a tenant that uses data related to
media can demand throughput of the highest level for the objects that concern the daily
news as these are highly demanded whereas to choose lower throughput in order to
have less cost. Finally, geographic constraints are supported. The tenant can choose the
desired regions and black list regions where restricts its data to be stored.

Storlets. Storlets are executables which provide capabilities for supporting and
improving the services that are offered to the tenants. Some storlets are: data com-
pression, file transformation in various formats, translation, speech2text, text2speech,
text2pdf, pdf2txt, transcode format, classify photos, extract data for patient, etc. Each
storlet has a condition and an action that is executed when the condition is met.

Federation. Cloud federation is the practice of interconnecting the cloud computing
environments of two or more service providers for the purpose of load balancing traffic
and accommodating spikes in demand. Also, there is a need for interoperability that is
to move data between providers without this to be visible to data usage. There are many
reasons for having data in more than one Cloud providers. For instance, the SLA (or
application) requires services that cannot be found on only one provider, the amount of
resources required goes beyond what a single provider can offer, or the required per-
formance cannot be guaranteed by any single provider alone. In our system we support
change of storage providers without data lock-in and single view of storage across
multiple providers. The SLAs federation section declares if the federation is permitted
and with which providers. Figure 2 shows the federation view. The tenant can have
access to their data without being interested in which Cloud provider they are stored
and without knowing the process of data movement between providers.

Requirements. The requirements addressed were chosen based on use cases of
VISION Cloud project and include: Throughput (some requirements require specific
throughput levels aggregated at the level of tenant, whereas others require throughput
per request), Durability (asked for specific durability levels), Availability, Duration
(constraints regarding the duration of the requests: latency and response time), Security
and privacy (Authorization, authentication and guarantee of proper use), Geographic
constraints (User determines in which regions he desires to store his data), Violations
checks (All the requirements should be checked and met during the SLA lifecycle),

38 N. Mavrogeorgi et al.

Storlets (SLAs also provide storlet selection), CDMI (The external interfaces should be
CDMI compliant), Billing, CRUD operations.

3 SLA Management and Enforcement

Our proposed SLA Management provides a robust end-to-end SLA system starting
from the SLA negotiation and runtime enforcing the currents SLAs with the agreed
services and commitments. The SLA enforcement apart from dealing with providing
the requested services according to the agreed SLOs with the tenant, is responsible for
checking for SLA violations and for detecting proactively imminent SLA violations. In
case of possible SLA violations it tries to avoid them with corrective actions. The SLA
enforcement is based on policies and usage data analytics that are checked based on
monitoring data.

As far as the architecture is concerned, there are two main components: (a) the SLA
Negotiator which handles the services that have to do with the external communication
with the clients that is SLA negotiation, SLA renegotiation, SLA templates generation,
billing etc. (see Fig. 3) and (b) the SLA Enforcer which deals with the enforcement of
the SLA and handles services that are needed in the Cloud internally such as policies
generation for monitoring and analysis, check of SLA violations, proactive detection of
possible SLA violations and decisions for corrective actions (see Fig. 4). The SLA
schema that is used is described in detail in [19].

SLA Negotiator. The SLA Negotiator component is responsible for implementing the
external interface of the platform with regard to SLAs.

SLA Negotiation. The negotiation of SLAs is realized by taking into account content
related terms, thus reflecting the content centric approach of VISION Cloud. Different
capabilities and costs are provided depending on the selected content term. To sign an
SLA, a tenant chooses and fills an SLA template. SLA templates are generated

Fig. 3. SLA negotiator.

Robust Content-Centric SLA Enforcement in Federated Cloud Environments 39

dynamically according to the supported capabilities of VISION Cloud and the content
terms. SLA templates contain the supported metrics with different levels, by which the
SLOs are derived when the tenant chooses his desired level, the supported services, the
obligations of both parties (provider and tenant), the billing rules and the penalties in
case the agreed service level is not met. An SLA template also contains terms related to
the federation capabilities of the platform, which define the tenant’s ability to perform
federation and with which providers. Additionally, a section for storlets is provided.
The set of storlets available to the tenant is based on the tenant authorization and the
type of the requested SLA template. Some storlets in the set might be compulsory, and
some optional; besides these storlets, other optional ones are displayed and can be
additionally chosen.

SLA Renegotiation. SLA renegotiation is supported. During SLA negotiation there is
a section for determining which data the tenant can request to the provider to be
modified during the SLA lifecycle (e.g. levels of the permitted SLO, addition of
storlets, federation permissions, etc.). If both parties agree, the SLA is changed, and it
is pushed to the internal system with all the necessary modifications. Also, suggestions
are provided to the tenant informing of what terms may be changed in his SLA in order
to better suit him (e.g. adding storlets, or using a lower level SLA which already covers
his needs at a lower cost). The SLA Management component is easily modifiable, and
contains an automatic way to handle changes in the SLA schema.

Reports and SLA Data. SLA Management provides a user friendly GUI, by which
the user can request the creation of an SLA and can delete, edit, view an SLA or a list
of SLAs that concerns the current user. Also, the user can be notified about certain
events, receive reports, and view older notifications and reports (e.g. SLA violations
occurred in a certain period). The GUI supports user authentication in order to enforce
security and privacy policies.

Fig. 4. SLA enforcer.

40 N. Mavrogeorgi et al.

SLA Enforcer. The SLA Enforcer deals with the system configuration regarding the
SLAs and the enforcement and maintenance of SLAs between tenants and providers.

Container Configuration. During container creation, the SLA Enforcer is contacted
by the Container Management component to obtain the QoS requirements stemming
from the chosen SLA. One responsibility is to translate the requirements translation
from the high-level QoS metrics to the low-level ones and vice-versa. Translation from
the high-level metrics specified in an SLA (e.g. durability) to low-level metrics by
which the internal system works (e.g. number of replicas) is important during SLA
management. It is also needed for checking the feasibility of the requested QoS metrics,
for generating policies in order to ensure the SLA enforcement and for the placement
execution. The reverse translation is needed during SLA templates generation in order
to generate templates expressed in SLA metrics based on the available and supported
low level metrics. Moreover, the SLA Enforcer is responsible for tuning the Monitoring
and Analysis components with appropriate parameters needed for the SLA enforce-
ment. These include the metrics that should be monitored and the threat thresholds.
Also, it provides to the Container Management component placement requirements
(how many replicas and in which locations) in low-level terms.

SLA Violation Handling. SLA violation is handled according to policies that are sent
to Monitoring. When an SLA violation occurs, a notification is sent to the Accounting
and Billing in order for the provider to be charged with the agreed penalty. Moreover,
the SLA Enforcer stores appropriate information in the Global View so as to be used
for preventing future SLA violations.

Proactive SLA Violation Detection. The SLA Enforcer is responsible for detecting
proactively possible SLA violations. The SLA Enforcer calculates for each metric the
threat threshold, which is more restrictive than the one signed and appropriate policies,
and sends them to the Analysis component. The Analysis component receives moni-
toring information for this metric and calculates trends and patterns. The SLA Enforcer
is notified by Analysis when forecasts that a metric will reach the given threshold.
Then, the SLA Enforcer decides on the actions that are needed to prevent the imminent
SLA violation and it reconfigures the system with new appropriate policies and
monitoring parameters. Examples of corrective action are replica creation, replica
movement, or request redirection to a cluster which is less loaded.

The proactive SLA violation detection is based on resource usage experiences and
historical data and uses the case base reasoning (CBR). CBR is the process of solving
problems based on past experience. In the knowledge database used in Global View the
conditions are stored under which a violation is going to be realized, and the pre-
ventative actions and solutions that should be performed for avoiding the violations.

Analysis algorithms for proactive SLA violation detection regarding forecasting
and normality are implemented based on Map/Reduce processes.

Policies Mechanism. The SLA Enforcement is based on policies that are created
runtime according to the SLOs and the monitoring data. The policies concern either
monitoring or forecasting metrics. Some policies examples are depicted in Fig. 5.

Robust Content-Centric SLA Enforcement in Federated Cloud Environments 41

Monitoring. The main responsibility of the Monitoring Component is the collection,
propagation and delivery of all events generated in the system to their respective
recipients. To this end, the component employs an asynchronous message delivery
mechanism, and on top of it, a simple distributed rules engine to decide where each
event should be transmitted and whether it should be aggregated with other events first.
The system distinguishes between a number of different aggregation levels. More
specifically a rule can be defined at a per node, per cluster, per datacenter or per cloud
level combined with a time frame. These levels have different granularities.

The monitoring component’s interactions fall into two broad categories:
Producers of Events in VISION Cloud include the Object Service, CCS, Resource

Map, SRE (Storlet Runtime Environment), VM-storlets and low-level metric gathering
probes. These services generate events upon user actions or at scheduled intervals. The
events are passed to Monitoring which performs various aggregation operations and are
finally passed on to consumers. A library provided by Monitoring is used (in python
and java) for integrating with the producers.

Consumers of Events. Most management operating layer services, for example CTO,
SLA Management, Accounting/Billing, Analysis and Analytics service, depend inte-
grally on the events dispatched by Monitoring. The events can be consumed through a
provided library.

The main components are the following:

Vismo-Core. This is the main monitoring instance. There is a unique instance running
on each node and its main purpose is to coordinate with the other modules. In the most
basic terms, it acts as a conductor of events and as such, can be seen as the backbone of
the system, receiving events from the event producers and distributing them to the
event consumers. Moreover, it is responsible for collecting locally produced events,
performing partial (node-level) aggregation and pushing the events to consumers.

Vismo-Dispatch. The sole purpose of this library is to connect a producer to the
locally running monitoring instance. In doing so, events generated in the producer are
passed in instantly to the monitoring process. Under the hood the open source zmq
library is used, in a pull/push fashion.

Vismo-Notify. The library is used by the various consumers to declare interest in one
or more group of events, called topics. Upon registration, the library is responsible for
notifying the client of the arrival of new events. The notification happens in an
asynchronous fashion to the main client program, in another thread. Here, also, the zmq
library is employed, using a PUBSUB mechanism.

Fig. 5. Monitoring policies examples.

42 N. Mavrogeorgi et al.

Rule System. A basic rule system is used to evaluate every event received and trigger
different processing actions, such as partial aggregation or immediate dispatching
according to rules.

Aggregator. This module is used to generate new events which are the result of an
aggregation method upon a list of raw events. Typically, the aggregation happens over
events of the same type. Another option is to collect a number of raw events and group
them by a given property field.

Rule Synchronizer. This module is responsible for synchronizing all the instances of
the rules engine to contain the same rules.

Vismo-Probes. These constitute various low level probes that are external to the main
instance and collect data about CPU and memory usage, network load, etc., per node.

CDMI-Queues Service. This service implements and extends the Notification queues
as proposed in the CDMI specification. CDMI specifies a means to define and
implement notification functionality that is based on queues.

Rules Propagation Mechanism. In order to allow for new rules to be inserted in the
system a new mechanism has been developed that allows for rules to be added, updated
or deleted at runtime. Moreover, the mechanism guarantees that the rules will be
eventually synchronised across all the instances of the distributed rules engine of the
monitoring system. The propagation mechanism works as follows: all the nodes at the
cluster level form a multicast domain. A simple election mechanism is used to elect a
cluster-head, a datacenter-head and a cloud-head. Once a node receives a request for a
rule, it propagates the change to all other nodes in the cluster through a multicast
message. Each node is responsible to send an acknowledgement to the cluster-head that
the change has been received.. Once the cluster is updated the cluster-head is
responsible to contact the datacenter head which in turn informs all the cluster-heads.

Implementation and Design Decisions. Our system is based on widely used proto-
cols. For the services we use REST services. Data exchanges are done with JSON
format. The database that we use is Cassandra a distributed database. The catalogs are
using GPFS. The SLA schema follows the WS-Agreement. Implementation language is
Java, Javascript and Python. For the policies the CDMI protocol is used and for
federation OVF and OCCI interface. The technical details of the SLA Management
component are abstract for other components, so they are unaware of them: RESTful
web services are provided to other components in order to use the SLA Management
functionality.

The SLA Management component at VISION Cloud is installed in all the nodes,
but only one instance runs per cluster. This decision was taken for failover and per-
formance reasons. Some of the SLA Management tasks are handled in different clus-
ters. Nevertheless, synchronization and other matters should be taken into account. An
alternative solution is installing the SLA Management component in one cluster and
offering a centralized SLA Management. This solves any synchronization issues that
may raise, but the performance is severely impacted. The source code of SLA Man-
agement was packaged in a WAR file and was deployed on a Tomcat web container,
which was tested in the VISION Cloud testbed.

Robust Content-Centric SLA Enforcement in Federated Cloud Environments 43

4 Evaluation

In this section we present an experimental evaluation of our system. The tests were
executed on a machine with an AMD Phenom II x4 965 Processor running Scientific
Linux 6.1. An event creation client created events with configurable event size and rate.
The client used the producer library of the mechanism, which added a timestamp to
every event. Each message was then propagated to the monitoring mechanism, which
after processing the event forwarded to a consumer which appended a timestamp to the
event. Using the two timestamps the latency and throughput were calculated in varying
scenarios of event rate generation, event size and rules to be executed. The testbed
examined consists of 9 machines, organized into 3 clusters.

In the first set of experiments the rate at which events were generated was kept
constant at 1000 events per second while the size of the events was gradually made
larger, starting from 512 bytes up to 10240 bytes. For each specific size a set of 5000
events were generated and the mean throughput and latency were calculated. Moreover
the memory used by the mechanism was measured in each run. The results can be seen
in following, while a statistical analysis of each graph can be found in Fig. 6.

Fig. 6. Statistical analysis of experiments.

Fig. 7. Throughput with variable size of events 1000 Events/sec rate and 3000 Events/sec rate.

44 N. Mavrogeorgi et al.

As the size of the events is made larger so does the latency increase, reaching
approximately 0,04 s at an event size of 10240. This is considered to be adequate
considering that event sizes should not in general be this large. As it is evident the
mechanism easily maintains a constant throughput of 1000 events per second. Memory
consumption is also affected by the size of the events reaching a maximum of
134 MBs.

In the next set of experiments and in order to stress the system we executed the
same experiment with an event rate of 3000 events/sec. As expected we see a negative
impact on the measured latency and throughput (Figs. 7, 8 and 9).

Fig. 8. Latency with variable size of events at 1000 Events/sec rate.

Fig. 9. Latency with variable size of events at 3000 Events/sec rate.

Robust Content-Centric SLA Enforcement in Federated Cloud Environments 45

In the third set of experiments the event size of kept constant at 1024 bytes while
event rates from 100 events/sec to 15000 events/sec were used. For each rate a total of
15000 events were sent and the mean latency and throughput were calculated.

Up to an event rate of 6000 events per second the latency is stable at around 0,04 s.
After this point there is a constant increase in its value reaching a maximum of 0,62 s.
The throughput of the system is able to easily cope with a generation rate of approxi-
mately 6500 events per second. After this point there is a constant increase in the
difference between generation and rate and output throughput. Memory consumption is
also affected by the rate of the events being similar to the consumption measured during
the first two tests and reaching a maximum of 189 MBs (Figs. 10 and 11).

5 Conclusion

In this paper we proposed an automated SLA Management mechanism for content
centric storage. It is based on an enriched SLA schema which contains content terms
and sections for storlets and federation. SLA Management exploits the chosen content
terms and supports services to the customer more efficiently and with reduced cost.

Fig. 10. Latency with variable rate of events.

Fig. 11. Comparison of achieved to maximum throughput.

46 N. Mavrogeorgi et al.

During the SLA enforcement, dynamic rules are created and updated, in order to handle
proactively SLA violations. Dynamic SLAs are also supported, as SLA templates are
generated according to the current supply, and renegotiation is offered.

References

1. Lamanna, D.D., Skene, J., Emmerich, W.: SLAng: a language for defining service level
agreements. In: FTDCS 2003, Washington, DC, USA. IEEE (2003)

2. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Kakata, T., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-Agreement)

3. IBM Web Service Level Agreements (WSLA) Project. http://www.research.ibm.com/wsla/
4. Tosic, V., Pagurek, B., Patel, K.: WSOL - a language for the formal specification of classes

of service for web services. In: ICWS, pp. 375–381. CSREA Press (2003)
5. Oldham, N., Verma, K., Sheth, A., Hakimpour, F.: Semantic WS-agreement partner

selection. In: WWW 2006, pp. 697–706. ACM, New York (2006)
6. Boniface, M., Phillips, S.C., Sanchez-Macian, A., Surridge, M.: Dynamic service

provisioning using GRIA SLAs. In: Nitto, E., Ripeanu, M. (eds.) ICSOC 2007. LNCS,
vol. 4907, pp. 56–67. Springer, Heidelberg (2009). doi:10.1007/978-3-540-93851-4_7

7. Emeakaroha, V.C., Brandic, I., Maurer, M., Dustdar, S.: Low level metrics to high level
SLAs - LoM2HiS framework: bridging the gap between monitored metrics and SLA
parameters in cloud environments. In: 2010 HPCS, pp. 48–54 (2010)

8. Brandic, I., Emeakaroha, V.C., Maurer, M., Dustdar, S., Acs, S., Kertesz, A., Kecskemeti,
G.: LAYSI: a layered approach for SLA-violation propagation in self-manageable cloud
infrastructures. In: 2010 IEEE 34th Annual COMPSACW, pp. 365–370, July 2010

9. Emeakaroha, V.C., Netto, M.A.S., Calheiros, R.N., Brandic, I., Buyya, R., De Rose, C.A.F.:
Towards autonomic detection of SLA violations in cloud infrastructures. FGCS (2011)

10. Martino, C.D., Chen, D., Goel, G., Ganesan, R., Kalbarczyk Z., Iyer, R.: Analysis and
diagnosis of SLA violations in a production SaaS cloud. In: 2014 IEEE 25th International
Symposium on Software Reliability Engineering, Naples, pp. 178–188 (2014)

11. Ghosh, R., Longo, F., Frattini, F., Russo, S., Trivedi, K.S.: Scalable analytics for IaaS cloud
availability. IEEE Trans. Cloud Comput. 2(1), 57–70 (2014)

12. Stanik, A., Koerner, M., Kao, O.: Service-level agreement aggregation for quality of
service-aware federated cloud networking. IET Netw. 4(5), 264–269 (2015)

13. Alrebeish, F., Bahsoon, R.: Implementing design diversity using portfolio thinking to
dynamically and adaptively manage the allocation of web services in the cloud. IEEE Trans.
Cloud Comput. 3(3), 318–331 (2015)

14. Zhao, L., Sakr, S., Liu, A.: A framework for consumer-centric SLA management of
cloud-hosted databases. IEEE Trans. Serv. Comput. 8(4), 534–549 (2015)

15. Müller, C., et al.: Comprehensive explanation of SLA violations at runtime. IEEE Trans.
Serv. Comput. 7(2), 168–183 (2014)

16. Morshedlou, H., Meybodi, M.R.: Decreasing impact of SLA violations: a proactive resource
allocation approach for cloud computing environments. IEEE Trans. Cloud Comput. 2(2),
156–167 (2014)

17. Galati, A., Djemame, K., Fletcher, M., Jessop, M., Weeks, M., McAvoy, J.: A
WS-agreement based SLA implementation for the CMAC platform. In: Altmann, J.,
Vanmechelen, K., Rana, O.F. (eds.) GECON 2014. LNCS, vol. 8914, pp. 159–171.
Springer, Cham (2014). doi:10.1007/978-3-319-14609-6_11

Robust Content-Centric SLA Enforcement in Federated Cloud Environments 47

http://www.research.ibm.com/wsla/
http://dx.doi.org/10.1007/978-3-540-93851-4_7
http://dx.doi.org/10.1007/978-3-319-14609-6_11

18. Kolodner, E.K., et al.: A cloud environment for data-intensive storage services. In: IEEE
CloudCom 2011, pp. 357–366 (2011)

19. Mavrogeorgi, N., Gogouvitis, S.V., Voulodimos, A., Kyriazis, D., Varvarigou, T.A.,
Kolodner, E.K.: SLA management in clouds. In: CLOSER 2013, pp. 71–76 (2013)

20. Franke, U., Buschle, M., Österlind, M.: An experiment in SLA decision-making. In:
Altmann, J., Vanmechelen, K., Rana, O.F. (eds.) GECON 2013. LNCS, vol. 8193, pp. 256–
267. Springer, Cham (2013). doi:10.1007/978-3-319-02414-1_19

48 N. Mavrogeorgi et al.

http://dx.doi.org/10.1007/978-3-319-02414-1_19

Structural Specification for the SLAs
in Cloud Computing (S3LACC)

Waheed Aslam Ghumman(B) and Alexander Schill

Technische Universität Dresden, Dresden, Germany
{Waheed-Aslam.Ghumman,Alexander.Schill}@tu-dresden.de

Abstract. Cloud service providers generally offer service level agree-
ments (SLAs) in descriptive format which is not directly consumable by
a machine/system. The SLA written in natural language may impede
the utility of rapid elasticity in a cloud service. Automation of differ-
ent phases of the SLA life cycle (e.g. negotiation, monitoring and man-
agement) is also dependent on the availability of a machine readable
SLA. In this work, we propose a Structural Specification for the SLAs
in Cloud Computing (S3LACC) for the automation of complete SLA life
cycle i.e. negotiation, monitoring, management and recycling. S3LACC
is specifically designed for cloud domain to meet latest standards and
complex requirements of the cloud services such as service composition,
dynamic negotiations, automated monitoring and formalization of quali-
tative parameters. Additionally, S3LACC defines a single SLA structure
to be used as an SLA template and as a final agreement as well.

Keywords: Service Level Agreement · Negotiation · Monitoring

1 Introduction

Cloud computing has been established as a ubiquitous model for on-demand com-
puting with regnant effects across IT infrastructures, software architectures, stor-
age solutions, applications and services. Cloud services are most often bounded
by an agreement between cloud service provider (CSP) and a cloud service user
(CSU), termed as service level agreement (SLA), to define the quality of service
(QoS) parameters, guarantees and obligations. The life cycle of an SLA generally
includes requirement specification, negotiation over SLA parameters between a
CSU and a CSP, monitoring and management of the SLA. Manual or semi-
automated approaches for complete SLA life cycle and for its individual phases
diminish true utility of cloud features like cost efficiency, timeous availability of
the cloud services and lesser administrative overheads. An admissible SLA speci-
fication should fulfill some definitive requirements, e.g. composition of more than
one quantitative and/or qualitative metrics into a single service level objective
(SLO), an SLO may include one or more sub-SLOs to define complex business
objectives, definition of a common template for all parties (CSP, CSU and third
parties) or linking negotiation and monitoring parameters to an SLA template.
c© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 49–61, 2017.
DOI: 10.1007/978-3-319-61920-0 4

50 W.A. Ghumman and A. Schill

Also, an appropriate SLA specification should have a good trade-off between its
power of expressiveness and complexity [3]. In this paper, we present a Structural
Specification for the SLAs in Cloud Computing (S3LACC). The structural design
of the S3LACC is rationalized considering the following standards/guidelines:

– Cloud computing service metrics description (draft) by National Institute of
Standards and Technology (NIST), US Department of Commerce (2014).1

– Cloud service level agreement standardization guidelines by European Com-
mission (2014).2

The SLA standard (ISO/IEC 190863) by International Organization for Stan-
dardization (ISO) is still under development to date. The main design features
of S3LACC include, (i) a single SLA document for an SLA template, SLA nego-
tiation process and an agreed SLA, (ii) quantitative and qualitative service para-
meters can be defined using S3LACC, (iii) different deadline based negotiation
strategies (e.g. linear, Boulware, conceder or a custom negotiation strategy) are
possible to embed in SLA itself for an automated negotiation process, (iv) a
dynamic negotiation strategy can be linked with the SLA for an autonomous
negotiation based on opponent’s behavior, demand/supply and/or other factors,
(v) an automated and fully customizable scheduling based monitoring process
is supported by S3LACC design, (vi) the SLA guarantees and obligations are
supported by renegotiation parameters, automatic renewal of SLAs and service
state transformations to achieve a fully automated SLA management and (vii)
S3LACC is language or format independent, it can be implemented in most of
modern programming languages.

The rest of the paper is organized as follows. Section 2 presents the detail
of the proposed specification S3LACC. In Sect. 3, a brief overview of collective
functioning of the S3LACC framework is discussed. A use case for S3LACC
based SLA is presented in Sect. 4. An analysis of the presented SLA specification
structure, related work and a comparison with existing approaches are presented
in Sect. 5. Future work and conclusions are summarized in Sect. 6.

2 S3LACC Design and Specification

An SLA template is a document which consists of service description, obligations,
QoS parameters (SLOs), metrics to measure those SLOs and guarantees. An
SLO is a mean to measure the level of a cloud service [12]. An SLO can be
quantitative (e.g. availability or throughput) or qualitative (e.g. reliability). A
qualitative SLO has a value that is in a descriptive form. A metric is a method or
scale to measure an SLO e.g. the SLO availability is generally measured with the
1 NIST Special publication 500-307 - http://www.nist.gov/itl/cloud/upload/RATAX

-CloudServiceMetricsDescription-DRAFT-20141111.pdf.
2 https://ec.europa.eu/digital-single-market/news/cloud-service-level-agreement-

standardisation-guidelines.
3 ISO/IEC JTC 1/SC 38 - http://www.iso.org/iso/home/store/catalogue tc/catalogue

tc browse.htm?commid=601355.

http://www.nist.gov/itl/cloud/upload/RATAX-CloudServiceMetricsDescription-DRAFT-20141111.pdf
http://www.nist.gov/itl/cloud/upload/RATAX-CloudServiceMetricsDescription-DRAFT-20141111.pdf
https://ec.europa.eu/digital-single-market/news/cloud-service-level-agreement-standardisation-guidelines
https://ec.europa.eu/digital-single-market/news/cloud-service-level-agreement-standardisation-guidelines
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=601355
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=601355

Structural Speciffication for the SLAs in Cloud Computing 51

metric percentage. An SLO contains a service level, metric, measurement period,
measurement type and location [2]. The SLA template is a common document
among the participating parties and is a basis for the negotiation process. Mostly,
an SLA template is a different document than the final agreed SLA. However, in
S3LACC, an SLA template and final SLA are combined into a single structure.
To achieve this common structure, the SLA parameters (Ps = {P1, ..., Pn} such
that Pi ∈ Ps and 1 ≤ i ≤ n) are divided in the following three types:

– Template parameter represents such information which is part of an SLA
template only and is denoted by a PT

i . The template parameters are not nego-
tiable. An SLA with template parameters is generated by a service provider
based on a mutually known format.

– Negotiation parameter represents such parameter which contains infor-
mation about automated negotiation process and is denoted by PN

i .
– Agreement parameter contains the agreed value of a negotiated parameter

and is denoted by PF
i .

– Mix parameter contains such information which may belong to different
phases of the SLA transformation in different SLAs and is donated by P ρ

i

where ρ ∈ {T, N, F}.

Fig. 1. S3LACC transformation process from SLA template to the final SLA.

The categorization of SLA parameters enables specification of all information
in a single SLA and is adapted in different phases of the SLA life cycle. Negoti-
ation parameters and agreed values of the negotiated parameters are added to
the SLA template by the CSP and the CSU individually. An overview of this
transformation from SLA template to the final SLA is shown in Fig. 1.

52 W.A. Ghumman and A. Schill

Fig. 2. UML representation of the SLA structure in S3LACC.

An SLA in S3LACC is composed of service description, one or more SLOs,
zero or more guarantees, zero or more obligations and zero or more notes (con-
taining such explanatory information and clauses which are not related to QoS
parameters). A UML representation of the relationships between the SLA and
its different parts is shown in Fig. 2. Detail of each SLA part is given in the
following subsections.

2.1 Service Description

Service description is composed of the following parameters:

– SLA name/identifier (SLANameT) is a unique name and/or a unique iden-
tifier assigned to the SLA and is mutually known to all parties

– Service provider (ServiceProviderT) represents the name of the CSP and is
available in the SLA template

– Service user (ServiceUserN) represents the name of the cloud service user
and contains empty value in the SLA template

– Third parties list with roles (ThirdPartiesρ) is a list of parties involved in
a cloud service other than the CSP and the CSU, e.g. broker or an exter-
nal monitoring service provider. This list is represented as ThirdPartiesρ =
[TP ρ

1 , ..., TP ρ
m] where m ≥ 0, ρ ∈ {T, N, F} and TP ρ

i = 〈ThirdParty
Namei, Rolei〉 where 0 ≤ i ≤ m. A third party information may be added
as negotiation parameter TPN

i (e.g. broker or negotiation agent) or as a final
agreement parameter TPF

i (e.g. a third party for SLA monitoring)
– Service duration (ServiceStartDateT imeF , ServiceEndDateT imeF) repre-

sents the start date and end date of the service
– Service renewal parameters (ServiceRenewalParametersF) contain informa-

tion about automatic renewal of the cloud service on a preset date/time or
based on a precondition. Automatic renewal may involve automatic renego-
tiation also. Renewal parameters are the following:

• Precondition (ServiceRenewalConditionF) represents a boolean expres-
sion that must be evaluated to true before the service is renewed. If the
precondition is empty then service is renewed automatically on preset
date/time

Structural Speciffication for the SLAs in Cloud Computing 53

• Renegotiate on renewal (RenegotiateOnRenewalF) is a boolean which
represents whether a renegotiation is required on service renewal or not.
Renegotiation parameters are defined in Sect. 2.3

• Service renewal date/time (ServiceRenewalDatT imeF) is the time-
stamp on which serviced is renewed

• Renew service (ResetService()F) is a function that resets all agreement
parameters (PF

i) to their initial values or to renegotiated values
– Service current state (ServiceCurrentStateF) contains the current state of a

cloud service. It may contain one of the intuitive values {Starting, Stopping,
Stopped, Started, Terminated}.

2.2 Service Level Objectives (SLOs)

The performance of a cloud service is characterized by defining Service Level
Objectives (SLOs). An SLO may depend on another SLO, may contain one
or more qualitative parameters, quantitative parameters or both. One way to
represent such an SLO is to divide the SLO into two separate SLOs i.e. a quan-
titative SLO and a qualitative SLO. In S3LACC, qualitative and quantitative
parameters of the SLOs are intuitively shifted to their metrics and a single SLO
may contain one or multiple metrics (qualitative, quantitative or both). Further
detail of quantitative and qualitative metrics is discussed in the Sect. 2.3. An
SLO contains the following parameters:

– SLO ID (SLOIDT) contains the unique identifier of the SLO
– Name (SLONameT) contains the SLO name
– SLO weight (SLOWeightρ) is a value from the interval [0, 1] to represent the

priority of an SLO. This value is used at the time of negotiation to generate
and evaluate the negotiation bids

– Metric list (Mρ
s (SLOID) = {Mρ

1 , ...,Mρ
l } where l ≥ 1), represents list of

metrics IDs associated with the SLOID
– SLO list (SLOρ

s = {SLOρ
1 , ..., SLOρ

k} where k ≥ 0), is a list of SLOs used to
combine one or more SLOs as sub-SLOs to meet composition requirements.

2.3 Metrics

A metric Mρ
i (SLOID) can have one of the value types from the set ν ={numeric,

date/time, range of numeric or date/time values, boolean, qualitative/fuzzy}.
A quantitative metric represents a metric which contains value type in set
{ν} \ {qualitative/fuzzy}. A qualitative metric in S3LACC has value type
of qualitative/fuzzy. All possible descriptive values of the qualitative metric are
defined as a well ordered set (Xs = {X1, ...,Xj} where j ≥ 1, Xi ∈ Xs and
1 ≤ i ≤ j) with respect to the utility level (U(Xi)) of each descriptive value
(Xi) such that U(Xi) < U(Xi+1) and U(Xi) = i/j. Semantically, utility level
of a descriptive value Xi represents its worthiness level. A qualitative metric in
S3LACC is automatically processed by converting its descriptive values to their
numeric utility levels. A metric comprises of the following parameters:

54 W.A. Ghumman and A. Schill

– Metric ID (MetricIDρ) is a unique metric identifier
– Name (MetricNameρ)
– Unit of measurement (MetricUnitρ)
– Negotiation parameters
– Renegotiation parameters
– Monitoring parameters

The negotiation parameters of a metric are the following:

– Negotiable (IsNegotiableT) is a boolean value which describes whether metric
is part of the negotiation process or not. A false value is used when a metric
is defined for monitoring or management purposes only

– Mandatory (IsMandatoryN) is a boolean value which is set by the CSP
and the CSU in their respective template as part of the negotiation strategy.
If a true value is assigned to this parameter then negotiation requirements
(as restricted by desired value and acceptable value) for the metric must be
fulfilled otherwise the negotiation process is unsuccessful. If a false value is
assigned to this parameter then it represents that negotiation requirements
are preferred to be fulfilled, however not mandatory.

– Weight (MetricWeightN) is value from interval [0, 1] representing the prior-
ity/importance level of the metric. A weight at SLO level and at metric level
facilitates to prioritize an SLO and metrics within an SLO separately

– Desired value (DesiredV alueN) represents best possible single value or range
of values for the metric. Depending on negotiation policy, this value is usually
the starting value in the negotiation process

– Acceptable value (AcceptableV alueN) represents the reserve value (or worst
possible value that is acceptable) during the negotiation process

– Agreed value (AgreedV alueF) represents the final value that is agreed
between the CSP and the CSU after negotiation process

– Deadline (DeadlineT) is the maximum number of negotiation rounds or time
limit allowed for the negotiation process for the metric. This parameter is
part of the SLA template and set by the CSP. However, a CSU may set a
different value if required but not exceeding the value set by the CSP

– Concession values (CV N
s = {〈D1, CV1〉, ..., 〈Dq, CVq〉}) is an ordered set

(with respect to deadline Di) such that 〈Di, CVi〉 ∈ CV N
s , CVi is concession

value and 1 ≤ i ≤ q. If this set contains only one tuple (〈D1, CV1〉) then
D1 = DeadlineN which means that in every negotiation round an equal
amount of concession value CV1 is applied to generate a new bid value for
the metric. If more than one tuples are present in the set CVs then concession
value CVi is applied until deadline Di. After Di, the concession value CVi+1

is applied until deadline Di+1 and so on. These values can be used to preset
a negotiation strategy i.e. conceder, Boulware, linear or a custom concession
strategy can be defined by varying the values in this set.

– Negotiation strategy (NegotiationStragety()N) is a function which dynam-
ically fills the negotiation parameters in set CVs and may depend on oppo-
nent’s negotiation strategy, number of competitors, demand/supply and/or

Structural Speciffication for the SLAs in Cloud Computing 55

any other factor. This function is used to implement any type of automated
and dynamic negotiation strategy by modifying the set CVs on runtime.

Renegotiation parameters define a set of new values or expressions for
the specified parameters of a metric for which negotiation information is to be
updated for the renegotiation process. This set is defined as:
RNPF

s = {RNPF
1 , ...RNPF

r } where r ≥ 0, RNPF
i ∈ RNPF

s , 0 ≤ i ≤ r
and RNPF

i = 〈RNPID,ResetParameterName,NewV alueOrExpression〉.
RNPF

s enables to automate the renegotiation process in case of service fail-
ure or SLA violation by linking the RNPID to the violation rules (discussed in
Sect. 2.4).

Monitoring parameters are the following:

– Computation formula (ComputationFormulaF) is a well formed mathemat-
ical expression to compute the value of a metric which may include the
observed/calculated values of other metrics in the same SLA, constants
and/or variables containing values from the metrics of other SLA(s), web ser-
vice(s), database value(s) or any other internal and/or external data source.

– Monitoring schedule (MSF) is a set which contains different monitoring
schedules at which monitoring of the metric is performed:
MSF

s = {MSF
1 , ...,MSF

t } where t ≥ 0, MSF
i ∈ MSF

s , 1 ≤ i ≤ t,
MSF

i = 〈MSStartDatei, MSEndDatei, MSStartT imei, MSEndT imei,
MSFreqi, StoreLocation〉 and MSFreqi ∈ {ms, ss,mm, hh, dd,mm, yy}.
MSStartDatei, MSEndDatei, MSStartT imei and MSEndTimei are start
and end dates and times respectively at which monitoring schedule MSF

i of a
metric starts and ends. MSFreqi is the monitoring frequency which contains
one of the value from the set {ms, ss,mm, hh, dd,mm, yy} to represent mon-
itoring of the metric every millisecond, second, minute, hour, day, month or
year respectively. This flexible monitoring schedule technique allows to define
the different monitoring schedules for different weekdays, for different months
of the year or for a particular season to accommodate the dynamic require-
ments of cloud service monitoring. StoreLocation contains the data storage
location where the monitored value is stored.

2.4 Guarantees/Obligations

An SLA guarantee is an agreed commitment by a cloud service provider to
maintain a certain service level. Guarantees are defined with respect to the agreed
values of metrics in the SLOs. A guarantee has the following parameters:

– Guarantee ID (GuaranteeIDρ) is a unique identifier
– Guarantee precondition (GuaranteePreconditionρ) is a combination of one

or more boolean expressions (containing observed/calculated value(s) of the
metric(s), variable(s) and/or constant(s) joined by boolean operators (AND,
OR, NOT)

56 W.A. Ghumman and A. Schill

– Guarantee action (GuranteeAction()ρ) is a function that performs prede-
fined tasks (e.g. automatically logging of the specific information, changing
ServiceCurrentStateF or preparing a service claim document).

Obligations are also defined as guarantees with similar parameters as guan-
rantees, i.e. ObligationIDρ, ObligationPreconditionρ and ObligationAction()ρ.
Obligations are different from guarantees in such a way that obligation may not
depend on observed/calculated metric values but rather may depend on external
conditions e.g. a cloud service user may be obliged to inform the cloud service
provider two hours in advance if further resources are required compared to what
is agreed in the SLA.

3 S3LACC Framework

S3LACC framework briefly gives an overview of the S3LACC’s usage in a cloud
environment. An overview of S3LACC framework is depicted in Fig. 3. Service
requirements come from the CSU which starts a provider discovery process and
may involve a broker/third party as a support service party. It is assumed that
all CSPs for the same service have similar SLA templates. SLA processing service
selects shortlisted CSPs, negotiation parameters are added to the SLA template
and any qualitative metrics are transformed to their quantitative utility lev-
els by qualitative metric processor. A custom negotiation strategy may also be
embedded in the SLA as described in above sections. Negotiation service may
involve a broker to mediate the negotiation process. Implementation and details
of the negotiation process based on S3LACC is out of the scope of this paper
and a state of the art negotiation strategy with implementation using S3LACC
is presented in a separate paper. After negotiation process, agreed values from
the SLA are communicated to the monitoring service component. Monitoring
service reads real-time metric values from the specified locations on the specified
time schedule. Variables are stored separately which contain up-to-date data val-
ues from different sources. Each variable contains a particular data value from a
specific data source. These variable values are used as input in metric computa-
tion formula and also in condition expressions (e.g. in GuaranteePrecondition
or in ObligationPrecondition). The guarantees/obligations service checks for
service violations or obligations. An integration with external system is achieved
through an integration service which transforms the SLA data to XML format.

4 Use Case

As a proof of concept, we transform a precise descriptive SLA of a cloud based
customer relation management (CRM) service S1 (assumed) to the S3LACC
based SLA. Let’s consider the following scenario for the service S1:

A company ABC has its offices throughout the country and requires S1 to be
used by its employees (S1 users). ABC requires that S1 should have availability

Structural Speciffication for the SLAs in Cloud Computing 57

Fig. 3. An overview S3LACC framework.

from 95% to 100%. S1 may have 2 to 6 outages per month with maximum dura-
tion of 10min per outage. The S1 users should be authenticated using one of the
protocols {TACACS+, RADIUS, DIAMETER, Kerberos, OpenID}, arranged in
ascending order of priority. S1 users should be authenticated within 5 seconds
after submitting the login information. The cloud service providers CSP1 and
CSP2 offer S1. ABC receives SLA template from CSP1 and CSP2, adds negoti-
ation parameters according to its objectives and starts an automated negotiation
process with the CSP1 and CSP2. An agreement is made with the CSP1 after
negotiation process. According to the final SLA, the following terms are agreed. If
monthly availability of the S1 is less than 96% then CSP1 will reimburse 20% of
the monthly service cost. S1 may have upto 5 outages per month with maximum
duration of 5min per outage. ABC is responsible to provide logged information
of service unavailability (date, time, duration). If average user login time is more
than 3 seconds then CSP1 is liable to reimburse 7% of the monthly service cost.
ABC is responsible to inform CSP1, one day in advance if ABC wants payment
of the S1 to be delayed.

Above SLA description is transformed to the S3LACC based SLA as shown
in Table 1. Due to space limitation, only relevant SLA parts of the S3LACC are
included in this description. SLO1 (Availability) contains three metrics (with
metric IDs M1, M2 and M3) and SLO2 (Authentication) contains two metrics
(a qualitative metric M4 and a quantitative metric M5). Assumed negotiation
and agreement parameters are described for each metric in a nested table for
illustration. The metric parameter WeightN is set by the ABC according to its

58 W.A. Ghumman and A. Schill

Table 1. Example of S3LACC based SLA for the scenario described in Sect. 4.

Service description:
SLANameT = S1 SLA, ServiceProviderT = CSP1, ServiceUserN = ABC
Variables:
var x1 = PlannedDowntime = 5 × 5 = 25mins
var x2 = TotalServiceT imeAgreed =<Total agreed service time in the month>
var x3 = ActualAvailability = <Monitored value>
var x4[] = DurationPerOutageInTheMonth =<Array of outage durations>
var x5 = MonthlyServiceCost = x3 × <price per unit>
var x6[] = UserAuthenticationT imes =<Array of monitored values>
var x7 = MonthlyLoginRequests =<total number of login requests>
var x8 = AccountBalance =<External value from accounting system>
SLOs:
SLOIDT = SLO1, SLONameT = Availability, MT

s (SLO1) = {M1,M2,M3}
SLOIDT = SLO3, SLONameT = Authentication, MT

s (SLO3) = {M4,M5}
Metrics:
MetricIDT = M1, MetricNameT =Availability percentage
MetricIDT = M2, MetricNameT = Number of outages per month
MetricIDT = M3, MetricNameT = Duration per outage
MetricIDT = M4, MetricNameT = Authentication protocol
MetricIDT = M5, MetricNameT = Average authentication time per user

MetricIDT M1 M2 M3 M4 M5

IsNegotiableN true true true true true

IsMandatoryN true true true true true

WeightN 0.40 0.15 0.15 0.15 0.15

AcceptableV alueN 95% 6 10 mins TACACS+ 5 sec

DesiredV alueN 100% 2 1 min OpenID 1 sec

AgreedV alueF 96% 5 6 mins OpenID 3 sec

DeadlineN 20 4 10 5 5

CV N
s {〈0.001, 15〉, 〈0.007, 20〉} {〈1, 4〉} {〈1, 10〉} {〈1, 5〉} {〈1, 5〉}

Computation
FormulaF

x3 + x1

x2
× 100 Length(x4) x4 None

Sum(x6)

x7

Guarantees:
GuaranteeIDF = G1, GuaranteePreonditionF = M1 < 96%
- GuaranteeAction()F {

var ClaimAmount = 0.2 × x5;
Send claim to CSP1 of ClaimAmount;
Send logged information to CSP1 for monthly service unavailability;

}
GuaranteeIDF = G2, GuaranteePreonditionF = M5 > 3 seconds
- GuaranteeAction()F {

var ClaimAmount = 0.07 × x5;
Send claim to CSP1 of ClaimAmount;

}
Obligations:
ObligationIDF = O1,
- ObligationPreonditionF = x8 < reserve amount AND bill is due tomorrow
- ObligationAction()F {

Inform CSP1 about delay in payment
}

Structural Speciffication for the SLAs in Cloud Computing 59

priority (supposed) for each metric. The negotiation process for M4 starts from
highest priority authentication protocol (i.e. OpenID) and if not accepted by a
CSP then a lower priority protocol is suggested in next round. CV N

s represents
the list of tuples containing concession value up to a specific deadline during
the negotiation process, e.g. {〈0.001, 15〉, 〈0.007, 20〉} for M1 indicates that 0.1%
concession is given on initial preferred value of 100% until 15 rounds of the
negotiation process. From 16th round and until 20th round, 0.7% concession is
offered. Variables (containing values of different sources) are used in computation
formulae of some metrics.

5 Related Work and Analysis

Different languages and specifications have been proposed to represent an SLA in a
machine readable format e.g. Web SLA (WSLA) Framework [5], SLAng for defin-
ing SLAs in IT services [8,9], Web Services Agreement (WS-Agreement) speci-
fication [1], SLA* as part of SLA@SOI project [4], CSLA (Cloud Service Level
Agreement) language [7] and a formal language SLAC for SLAs in cloud com-
puting [11]. However, as discussed by SLAC authors [11], most of these specifi-
cations are not defined specifically for the cloud services and do not fulfill spe-
cific requirements of SLAs for the cloud services e.g. scenarios involving a bro-
ker during negotiation process [11]. In [11] a comparison of different SLA spec-
ification models and languages with respect to different features such as cloud
domain, multi-party, broker support, business metrics, price schemes, syntax,
semantics, verification, evaluation and open-source. S3LACC includes all of these
features except verification. Apart from these features, the S3LACC extends
the SLA specification with additional capabilities such as a common template
for the CSU and the CSP, static/dynamic negotiation support in the SLA and
automated monitoring facilitation. Moreover, S3LACC is designed according to
the latest available cloud SLA standards and definitions to support the com-
plete SLA life cycle rather than its isolated phases. All information of the com-
plete SLA life cycle is efficiently bundled in a single SLA. The quantitative and
qualitative SLA parameters are possible to be grouped in a single SLO using
S3LACC. Another closer approach is presented by Stamou et al. [10] which
describes SLAs for data services as a directed graph to represent dependencies
in SLA data management flow. The SLA directed graph model by Stamou et al.
is based on WSLA Framework. The structure defined as the graph model in
[10] is different from the S3LACC structure, i.e. an SLO and a service object
are different entities in their model. According to [10], a service object con-
tains SLA parameters like transaction time or average execution time, whereas,
SLOs define limits for these SLA parameters through guarantees or obligations.
Kotsokalis et al. [6] model SLAs for service computing as binary decision diagrams
(BDDs) to automate the SLA negotiation, subcontracting, optimizing the utility
and SLA management. An SLA in [6] is defined in terms of facts, conditions and
clauses which evaluate to true or false, hence an SLA is represented as a boolean
function. This boolean function is represented as BDD to eliminate redundancies.

60 W.A. Ghumman and A. Schill

However, as discussed in the [6], the proper recognition of facts requires additional
attention.

6 Conclusions and Future Work

In this paper, we have proposed a specification for SLAs in cloud computing
(S3LACC) with a good trade-off between complexity and expressiveness. Our
specification targets specific requirements of cloud domain such as complex
dependencies among different metrics and composition of different metrics in
one SLO (through metric lists). Current approaches lack standardized struc-
ture definition according to international standards for the cloud computing
SLAs. Also, support for automation of the complete SLA life cycle is gener-
ally ignored in most of the SLA specification languages and models. S3LACC
meets all of these requirements by defining an intuitive SLA structure which
can be used to implement almost all types of negotiation strategies and moni-
toring policies for an automated SLA life cycle. Also, renegotiations in case of
QoS violations and automated recycling of the SLA is possible using S3LACC.
Qualitative parameters are an important part of the cloud SLAs which are easily
definable using S3LACC. Future work includes definition and implementation of
an automated negotiation strategy using S3LACC, automated monitoring ser-
vice utilizing S3LACC based SLAs and an automated management environment
to complete the automated life cycle for the SLAs in cloud computing.

References

1. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web services agreement specification
(Ws-Agreement). In: Open Grid Forum, vol. 128, p. 216 (2007)

2. Frey, S., Reich, C., Lüthje, C.: Key performance indicators for cloud computing
SLAs. In: The Fifth International Conference on Emerging Network Intelligence,
pp. 60–64, September 2013

3. Ghumman, W.A.: Automation of the SLA life cycle in cloud computing. In:
Lomuscio, A.R., Nepal, S., Patrizi, F., Benatallah, B., Brandić, I. (eds.) ICSOC
2013. LNCS, vol. 8377, pp. 557–562. Springer, Cham (2014). doi:10.1007/
978-3-319-06859-6 51

4. Kearney, K.T., Torelli, F., Kotsokalis, C.: SLA*: an abstract syntax for service level
agreements. In: 11th IEEE/ACM International Conference on Grid Computing, pp.
217–224, October 2010

5. Keller, A., Ludwig, H.: The WSLA framework: specifying and monitoring service
level agreements for web services. J. Netw. Syst. Manage. 11(1), 57–81 (2003)

6. Kotsokalis, C., Yahyapour, R., Rojas Gonzalez, M.A.: Modeling service level agree-
ments with binary decision diagrams. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.)
ICSOC/ServiceWave -2009. LNCS, vol. 5900, pp. 190–204. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-10383-4 13

7. Kouki, Y., De Oliveira, F.A., Dupont, S., Ledoux, T.: A language support for cloud
elasticity management. In: 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pp. 206–215, May 2014

http://dx.doi.org/10.1007/978-3-319-06859-6_51
http://dx.doi.org/10.1007/978-3-319-06859-6_51
http://dx.doi.org/10.1007/978-3-642-10383-4_13

Structural Speciffication for the SLAs in Cloud Computing 61

8. Lamanna, D.D., Skene, J., Emmerich, W.: SLAng: a language for defining service
level agreements. In: The Ninth IEEE Workshop on Future Trends of Distributed
Computing Systems, pp. 100–106, May 2003

9. Skene, J., Lamanna, D.D., Emmerich, W.: Precise service level agreements. In:
26th International Conference on Software Engineering, pp. 179–188, May 2004

10. Stamou, K., Kantere, V., Morin, J.H., Georgiou, M.: A SLA graph model for
data services. In: Proceedings of the Fifth International Workshop on Cloud Data
Management, pp. 27–34, October 2013

11. Uriarte, R.B., Tiezzi, F., Nicola, R.D.: SLAC: a formal service-level-agreement
language for cloud computing. In: Proceedings of the IEEE/ACM 7th International
Conference on Utility and Cloud Computing, pp. 419–426, December 2014

12. Wu, L., Buyya, R.: Service level agreement (SLA) in utility computing systems.
In: Performance and Dependability in Service Computing: Concepts, Techniques
and Research Directions. IGI Global, pp. 1–25, July 2011

Load Balancing in In-Memory Key-Value
Stores for Response Time Minimization

Antonios Makris(&), Konstantinos Tserpes,
and Dimosthenis Anagnostopoulos

Department of Informatics and Telematics,
Harokopio University of Athens, Athens, Greece
{amakris,tserpes,dimosthe}@hua.gr

Abstract. In-memory key-value stores (IMKVS) have now turned into a
mainstream technology in order to meet with demanding temporal application
requirements under heavy loads. This work examines the factors that affect the
load distribution in IMKVS clusters as well as migration policies that cure the
problem of unbalanced loads as a means to provide response time guarantees.
Experiments are conducted in a Redis deployment under various settings. The
results show that the key distribution and key length are contributing factors to
the load balancing problem and impact the cluster’s response times. On the
contrary, key popularity and query volume seem to have minor or no effect at all.

Keywords: Distributed storage � In-Memory � Stores � Load balancing � Query
response time

1 Introduction

Data centers have become a critical component in enterprise systems as web services
and cloud computing continue their massive growth. For example, Facebook reported
having 936 million daily active users in the first quarter of 2015 and a detailed request
trace from Facebook’s servers in 2012, reported an average of 54 thousand requests per
second [1]. Meeting hard application constraints (e.g. temporal) under these circum-
stances puts an enormous strain on the capabilities and limits of enterprise systems,
especially in coping with the immense rate of queries in the persistence layer.

To cope with these ever-growing application requirements, the data management
layer must decouple itself from the many, heavy disk IOs and add a faster persistence
layer in between. This approach is implemented with in-memory storage mechanisms
which maintain data views in the form of key-value pairs and respond to queries in
near-real time even under heavy loads. Two of the most popular in-memory key value
stores (IMKVS) are Redis and Memcached. These key-value stores are commonly used
as a caching layer between a front-end web server and a backend database and the goal
is to keep the most frequently accessed data in this cache so that it can be served
directly from main memory.

However IMKVS suffer inherently (as any distributed system) from the problem of
the uneven load distribution among the underlying nodes. The load balancing problem
refers to the identification of a utility function that expresses the distribution of keys in

© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 62–73, 2017.
DOI: 10.1007/978-3-319-61920-0_5

the IMKVS nodes and minimizes the average response times to queries or maximizes
the average resource utilization or both (in which case it equals to a maximization of
the throughput). The latter is in fact more realistic as intuitively there is an implicit
relationship between utilization and response time, if we disregard factors external to
the IMKVS such as network latency, etc.

Focusing on the intrinsic factors that affect the balanced load distribution we
conclusion that a proper investigation of the problem requires the examination of at
least three factors: the frequency and volume of incoming queries and the way the keys
are distributed in the system. These factors are often considered in isolation in the
various implementations mainly because the mitigation policy can be complex and
includes a combination of operations such as migration and replication.

This work aims at validating and identifying the actual contributing factors to the
load balancing problem, i.e. the metrics that are needed to be monitored in order to
better distribute the load among the IMKVS nodes. A prototype deployment of the
Redis IMKVS is employed and the response times in “get” queries are monitored as an
indication of uneven load distribution. Multiple load configurations are tested based on
the three abovementioned factors. A fourth potential factor, the key length, is also
examined under the intuition that it might infuse an overhead in the hash function when
the keys are distributed using a consistent hashing approach among the nodes. Finally,
the paper presents a key distribution load balancing policy based on migration and
discusses the results.

The document is structured as such: Sect. 2 provides details about the related work
in load balancing in IMKVS presenting representative solutions from each factor class;
Sect. 3 provides the details of the experimental approach and the assumptions made;
Sect. 4 gives a full account of the experimental results while Sect. 5 presents the final
conclusions and future work.

2 Related Work

According to the above existing load balancing mechanisms in IMKVS can be
examined under three lenses if we only consider the intrinsic factors of uneven load
distribution:

1. load balancing based on key popularity: The frequency that specific items are
invoked seems to be related to the performance of the IMKVS node and system.

2. load balancing based on key distribution: In many systems the distribution of the
keys in the available nodes are inherently posing a load balancing challenge. The
examination of the problem in isolation from the previous as well as from the
capabilities of the underlying nodes can be risky, however it is far more simple in
terms of implementation, even though based on mere statistics.

3. load balancing based on query volume: The amount of keys requested concurrently
from a IMKVS deployment and consequently from a node seems to be a metric of
interest in some load balancing deployments.

In what follows we provide a brief account of existing tools that tackle the problem
of load balancing under each of the abovementioned prisms.

Load Balancing in In-Memory Key-Value Stores 63

2.1 Load Balancing Based on Key Distribution

Most of Redis and Memcached’s Application Programming Interface (API) clients use
a technique called consistent hashing (CH). According to CH the available keys are
uniformly distributed among the servers. This has been used successfully in several
kinds of applications, like caching and storage. Although CH is a very efficient tech-
nique, it is prone to unbalanced loads in a production network, causing hot spots, since
it does not consider any environmental aspects nor object’s characteristics, like size,
link congestion or object’s popularity [2].

To improve the performance of in-memory key value stores cache, the two-phase
load balancing mechanism is used. This solution consists of two phases: the First-Phase
Load Balancer that can operate with distinct load balancing algorithms and the
Second-Phase Load Balancer that is a specialized cache that implements traffic man-
agement and replicates frequently used data items. This load balancer can be deployed on
unstructured networks aiming at the replacement of the consistent hashing algorithm [2].

2.2 Load Balancing Based on Key Popularity

One more method to ensure load balancing, is by using a popularity-based small
front-end cache, which directly serves a very small number of popular items in front of
primary servers (“back-end nodes”), in cluster architectures. This application cache is
small enough to fit in the L3 cache of a fast CPU, enabling a high-speed and efficient
implementation compatible with front-end load balancers and packet processors. The
cache serves the most popular items without querying the back-end nodes, ensuring
that the load across the back-end nodes is more uniform and need to store only O(n log
n) where n is the total number of back-end nodes entries, to provide good load balance.
As an example, a key-value storage system with 100 nodes using 1 KiB entries can be
serviced using 4 megabytes of fast CPU cache memory, regardless of the query dis-
tribution that it must handle leads to a cluster that use large numbers of slower, but
more energy- and cost-efficient nodes to provide massive storage and high overall
throughput. As a result these kind of cluster can serve high query rate with all of their
code and data in the CPU cache [4].

2.3 Load Balancing Based on Query Volume

Another data rebalancing mechanism called Citrusleaf ensures that query volume is
distributed evenly across all nodes, and is robust in the event of node failure happening
during rebalancing itself. Rebalancing does not impact cluster behavior because the
system is designed to be continuously available. The transaction algorithms are inte-
grated with the data distribution system, and there is only one consensus vote to
coordinate a cluster change. Thus, there is only a short period when the cluster internal
redirection mechanisms are used while clients discover the new cluster configuration.
This mechanism optimizes transactional simplicity in a scalable shared-nothing envi-
ronment while maintaining ACID characteristics. Also Citrusleaf allows the configu-
ration options to specify how much available operating overhead should be used for

64 A. Makris et al.

administrative tasks like rebalancing data between nodes as compared to running client
transactions. Finally, one of the advantages is that the system can rebalance data on the
fly while using real-time prioritization techniques to balance short running transactions
with several classes of long running tasks [6]. Also SRDS (Service Resource Discovery
System) is a system that provides scalable and configurable query support over plat-
form by combining different P2P approaches [9].

Searching non-textual data is challenging, because of the big volumes of mixed
multimedia data and the distribution of them among multiple nodes. The authors
propose a system called MRoute that supports similarity search for content-based
retrieval and combines the Routing Index with the Similarity Search on the Metric
Spaces Approach. The system uses a P2P indexing structure. Each node (peer) stores
and indexes its object and a table for every neighbor. The complex queries are easily
supported while the similarity-based search exploits objects characterized by a metric
space. This system offers a better scalability and the client queries are well-balanced
over the network [10].

2.4 Adaptable Load Balancing Approaches

Another research output is the DBalancer, a generic distributed module that performs
fast and cost-efficient load balancing on top of a NoSQL data store. The load balancing
is performed by message exchanges. More specifically, the DBalancer component runs
in every data store’s node executing the desired load balancing algorithm. It then
exchanges messages in order to find balancing partners, co-ordinate the balancing
procedure and collect load information. When the appropriate nodes have been found
and reserved, it utilizes the data-store’s specific implementations to exchange keys and
fix routing table information between balancing partners [5].

2.5 External Factors Affecting Load Balancing Based on Key Popularity

A method to do rapid load balancing of key-value stores is the Network-Assisted
Lookups (NAL) which exploits the existing IP infrastructure. This method involves a
distributed caching method based on dynamic IP address assignment. Keys are mapped
to a large IP address space statically and each node is dynamically assigned multiple IP
addresses. This leads to a system with minimal need for central coordination (no single
point of failure). Instead of having fixed network service identifiers attached to data
nodes and have these identifiers updated at the lookup service, whenever the location of
a data block is changed due to migration, NAL employs a static key-to-location
mapping created once and for all at key hash generation time and provides for accurate
lookup of arbitrarily migrated data blocks by updating the network identity of the actual
location of a block [3].

The load-balancing algorithm of the NAL approach works as follows: (a) at the
beginning of each load-balancing iteration, the algorithm reads the eviction rates of all
cache servers and computes the average eviction rate across the system, (b) no
load-balancing action is taken in case no outlier is identified, (c) the algorithm enters

Load Balancing in In-Memory Key-Value Stores 65

the core of its load-balancing logic towards deciding the list of block sets (sets of
key-value stores) that are to be migrated from the most overloaded to the least loaded
server, (d) the choice of the destination server depends on the state of the caches, (e) the
algorithm picks the block sets with the lowest number of requests per second, thus
keeping the hot blocks at the overloaded data server and (f) the number of block sets to
migrate is driven by the parameter N (normalization factor for deciding popularity of
blocks to be migrated) [3].

3 Approach

In our approach we employed the Redis IMKVS to implement a prototype and conduct
experiments mainly due to its simple architecture and adaptability in “plugging in” load
balancing policies.

Redis is an in-memory data structure store that can be used as database, cache and
message broker. The Redis Cluster is a distributed implementation of Redis and aims to
provide high performance and scalability, availability through partition tolerance and
acceptable degree of consistency.

The nodes in Redis Cluster are responsible for holding the data, capturing the state
of the cluster and mapping keys to the right nodes. The nodes in the cluster are
connected through a service channel using a TCP bus and a binary protocol, called the
Redis Cluster Bus. To exchange and propagate information about the cluster, nodes use
a gossip protocol in order to auto-discover new or other nodes, to send ping-pong
packets, to detect working or non-working nodes, to send cluster messages needed to
signal specific conditions and to promote slave nodes to master when needed in order to
continue to operate when a failure occurs [7]. Figure 1 represents an instance of the
communication between nodes themselves as well as with the clients.

Cluster nodes are not able to proxy requests, thus clients redirect and talk to other
nodes guided through redirection errors based on ASCII protocols. Thus, the client may
be ignorant of the cluster state and employ the redirection property to reach any key.

Fig. 1. Connection between nodes and client communication with them.

66 A. Makris et al.

However the performance can be improved by caching the map between keys and
nodes. Instead of client redirection in the node that holds the key in every read, the
client is able to hold persistent connections with many nodes (using cluster hints from
nodes), cache node info (hash slot), and update his table that contains the information
about the slots configuration. Clients usually need to fetch a complete list of hash
“slots” and mapped node addresses at startup in order to populate the initial slots
configuration. The same thing may happen when a ‘MOVED’ redirection notification is
received [7].

According to the Redis Official Documentation, there is currently no way to
rebalance automatically the cluster by checking the distribution of keys across the
cluster nodes and intelligently moving slots as needed [8]. To tackle this issue, we
devised an algorithm that adaptively rebalances the keys between the Redis cluster
master nodes based on certain real-time measurements that trigger the migration policy
for balancing the nodes’ load.

3.1 IMKVS Infrastructure Setup

Initially, we installed Redis-3.0.4 version and for the needs of our experiments, we
implemented a Redis cluster with 6 nodes. Three nodes were employed as masters and
for each master we assigned a single slave (used mainly for fault tolerance purposes).
Redis Cluster does not provide strong consistency, but has a different form of sharding
where every key is part of a hash slot. In Redis there are by default 16384 hash slots.
We followed the recommended reshard plan and thus, each master node was assigned
an equal number of hash slots.

• Master One (M1) - allocated hash slots 0-5460
• Slave One (S1) - replicates Master One, is promoted if a quorum of nodes cannot

reach M1
• Master Two (M2) - allocated hash slots 5461-10922
• Slave Two (S2) - replicates Master Two, is promoted if a quorum of nodes cannot

reach M2
• Master Three (M3) - allocated hash slots 10923 - 16383
• Slave Three (S3) - replicates Master Three, is promoted if a quorum of nodes cannot

reach M3

Both master and slave nodes run two TCP services, the first is for normal RESP
messages and the second is Cluster Bus that communicates with the Redis Cluster
Gossip protocol as shown in Fig. 2.

The last step was to load keys in master nodes dissimilarly, aiming to test our
algorithm.

3.2 Key Distribution Load Balancing Algorithm

Initially, we implemented a function named reshard_keys inside redis-trib.rb. In gen-
eral redis-trib.rb constitutes a cluster manager program and contains all the functions

Load Balancing in In-Memory Key-Value Stores 67

for the management of the cluster such as the initializer, the resharding of the hash
slots, the messages between nodes, consistency checking etc. The existing support of
resharding allows the user to reshard hash slots from one node to another but without
the knowledge of whether there are actual keys in these hash slots. So, there is a need to
create a function that moves the actual keys to the existing node to allow rebalancing.
The function reshard_keys can be called at any point it is required by the client for
load balancing the distribution of keys in cluster but the key-idea is that it runs in fixed
time intervals monitoring the distribution of the keys to all master nodes.

The steps of the algorithm are as follows:

1. Find the crowd of masters
2. Obtain the total number of keys they hold
3. For each master node store the hostname, port and number of keys
4. Calculate the keys that each master must hold so that the distribution of keys to be

balanced (total keys of cluster/ number of masters)
5. Find which master nodes must take or give keys and the total amount of keys that

they must give/take
6. Characterize masters as source or target nodes depending on whether they are

receiving or giving away keys respectively
7. Start migrating from source node to target nodes, first the hashslots and then the

relevant keys and iterate until all the masters have the same amount of keys

With this implementation we achieve to balance the load of the cluster, by redis-
tributing the keys in the master nodes. Note, that this process is performed as a
background process not affecting the cluster’s read/write operations. This is possible as
every node knows what slots are served and what keys are held for all the nodes in the
cluster therefore any change is propagated in the cluster almost in real time.

Fig. 2. Redis cluster configuration.

68 A. Makris et al.

4 Experiments

The aim of the experiments was to investigate the impact of the three well-studied
factors (key distribution, key popularity and query volume) to the way that the load is
balanced among the nodes of a IMKVS cluster. The impact itself is measured in terms
of response times to “get” queries that are generated based on the particular factor that
is needed to test. Furthermore, is being tested two extrinsic factors: (a) the length of the
keys and how this affects the response time, based on the intuition that the calculations
that the hash function is conducting may contribute to lower response times, and (b) the
volume of the values for the requested keys.

Finally, the migration policy for a uniform key distribution based on the algorithm
presented in Sect. 3 was also tested.

The underlying computing infrastructure was a commodity machine with the
following configuration:

• Ubuntu 14.04 LTS 64-bit
• Intel® Core™ i5-4570 CPU @ 3.20 GHz � 4
• 7,7 GiB RAM

The 3 + 3 nodes’ cluster described in Sect. 3 was set up in this PC using virtualized
nodes.

In the first experiment, our aim was to observe how response time (RT) changed
according to the number of keys in a node, in different numbers of concurrent calls. For
this experiment we created a python script that fires concurrent read calls for one
particular key and calculates the RT. Three setups with 33000, 16000 and 1 keys in a
node were employed and for each setup, we generated 1000, 100 and 1 concurrent
client calls. The results are represented in Fig. 3.

We observed that the RT to get one particular key hardly changed, as the number of
keys changed in the node. For example the RT remained about the same in 100
concurrent client calls, for a different amount of keys loaded in the node. Furthermore,

Fig. 3. Average response time to fetch one particular key for 33000 (blue), 16000 (black) and 1
(green) keys under concurrent client calls (1, 100, 1000). (Color figure online)

Load Balancing in In-Memory Key-Value Stores 69

the RT was affected by the different number of client calls. Specifically, the RT
increased as the number of client calls was increasing.

In our second experiment, our aim was to observe how RT changed according to
the key length. We created a JavaScript script that reads all keys and calculates the RT.
For the purposes of our experiment, we loaded 1000, 5000 and 10000 keys in node.
The results are represented in Fig. 4.

We observed that the RT grew rapidly, with an increased length of the key. In
detail, for a node with 10000 keys and size of key 10, the RT was 91,7 ms and for the
same node and key length 24000, the RT was 1014,3 ms. Furthermore, to retrieve one
single key with size 10 the RT was 0.0127 and to retrieve one single key with size
24000 the RT was 0,102.

Figure 5 illustrates the RT for fetching 1000 keys according to key length for one
specific node.

Fig. 4. Average response time considering key size (number of characters) for 10000 (green),
5000 (black) and 1000 (blue) keys. (Color figure online)

Fig. 5. Response time considering key size (number of characters) for 1000 keys.

70 A. Makris et al.

Also, we made one more experiment to observe how RT was changed according to
the value length this time. We created a JavaScript script, that reads all keys and
calculates the RT. The results are represented in Fig. 6.

We observed that the difference of response times between the volumes of the
values is insignificant and thus we concluded that value size does not affect RT.

In the third experiment, our aim was to observe how response time (RT) changed
according to the number of keys in the node, in different numbers of concurrent calls.
For this experiment we created a python script that reads all the keys at once and
calculates the RT. We loaded 33000, 16000 and 1 keys in node and for each one of the
above values, we made 1 and 4 concurrent client calls. The results are represented in
Fig. 7 below.

Fig. 6. Average response time considering value size (number of characters) for 1000 keys.

Fig. 7. Average response time to fetch all keys for 33000 (blue), 16000 (black) and 1 (green)
keys under concurrent client calls (1, 4). (Color figure online)

Load Balancing in In-Memory Key-Value Stores 71

The RT is about 3 times larger in the case of four calls. Thus, the growth rate of RT
is proportional the number of client calls.

The experiments demonstrate that the distribution of the keys plays an important
role in the load balancing factor. Thus, in our last experiment our aim was to observe
how response time (RT) changes through the migration of keys from one node to
another in Redis Cluster. For the needs of our experiment we loaded 33000 in one
master (M1) node and 0 in the other master (M2). We made 4 concurrent client calls in
M1 and we started migration at time 7 and stopped at time 36 as presented in Fig. 8.

We observed that the RT for 4 concurrent client calls averaged a 25 ms. In the
beginning of the migration process the response times present a sudden increase while
at the end of the process we notice a reduction in the order of magnitude of 9 ms. This
improvement indicates a 3x speedup. The spikes shown in above Fig. 8 are due to the
overhead of the migration command. This command actually executes a DUMP +
DEL operation in the source instance, and a RESTORE operation in the target instance.
In conclusion it is clear that with the migration of keys from one heavy loaded node to
another the response time is significantly reduced.

5 Conclusion and Future Work

In-memory key-value stores (IMKVS) are typical NoSQL databases optimized for
read-heavy or compute-intensive application workloads. We conducted a number of
experiments in a Redis deployment under various setups and examined how response
time varies given different aspects. The results show that factors such as key popularity
and query volume seem to have a minor effect. On the other hand the key distribution
and key length are contributing factors to the load balancing problem and impact the
cluster’s response times. The RT can be reduced by migrating the keys from one node
to another, in such way that each node in the cluster has the same number of keys.

Fig. 8. Response time in time unit by migration of keys from M1 to M2.

72 A. Makris et al.

Our future plans include the creation of a mechanism for dynamic load balancing in
a Redis Cluster in a dynamic context. This mechanism will be able to rebalance the
cluster according to the number of keys changed over time. Eventually we will achieve
the optimization of the read operations in the system in terms of RT. Also we intend to
execute the migration experiment between nodes that are located in different servers
and compare the results with the current implementation that comprises of a single PC
with multiple virtual machines.

References

1. Facebook Company Info. http://newsroom.fb.com/company-info/
2. Trajano, A.F.R., Fernandez, M.P.: Two-phase load balancing of in-memory key-value

storages using network functions virtualization (NFV). J. Netw. Comput. Appl. 69, 1–13
(2016)

3. Cesaris, D., Katrinis, K., Kotoulas, S., Corradi, A.: Ultra-fast load balancing of distributed
key-value stores through network-assisted lookups. In: Silva, F., Dutra, I., Santos Costa, V.
(eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 294–305. Springer, Cham (2014). doi:10.1007/
978-3-319-09873-9_25

4. Fan, B., et al.: Small cache, big effect: provable load balancing for randomly partitioned
cluster services. In: Proceedings of the 2nd ACM Symposium on Cloud Computing. ACM
(2011)

5. Konstantinou, I., et al.: DBalancer: distributed load balancing for NoSQL data-stores. In:
Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data.
ACM (2013)

6. Srinivasan, V., Bulkowski, B.: Citrusleaf: a real-time nosql db which preserves acid. Proc.
VLDB Endow. 4(12), 1340–1350 (2011)

7. Redis Cluster Specification. http://redis.io/topics/cluster-spec
8. Redis Cluster tutorial. http://redis.io/topics/cluster-tutorial
9. Carlini, E., et al.: Service and resource discovery supports over p2p overlays. In: 2009

International Conference on Ultra Modern Telecommunications & Workshops. IEEE (2009)
10. Gennaro, C., et al.: MRoute: a peer-to-peer routing index for similarity search in metric

spaces. In: Proceedings of the 5th International Workshop on Databases, Information
Systems and Peer-to-Peer Computing (DBISP2P 2007) (2007)

Load Balancing in In-Memory Key-Value Stores 73

http://newsroom.fb.com/company-info/
http://dx.doi.org/10.1007/978-3-319-09873-9_25
http://dx.doi.org/10.1007/978-3-319-09873-9_25
http://redis.io/topics/cluster-spec
http://redis.io/topics/cluster-tutorial

Fault-Tree-Based Service Availability Model
in Cloud Environments: A Failure Trace

Archive Approach

Alexandru Butoi(B) and Gheorghe Cosmin Silaghi

Business Information Systems Department,
Faculty of Economics and Business Administration, Babes-Bolyai University,

Cluj-Napoca, Romania
{alexandru.butoi,gheorghe.silaghi}@econ.ubbcluj.ro

Abstract. In a cloud computing environment with capabilities such
as live migration and elastic resource provisioning, with a mandatory
request for critical availability of the service, our challenge consists in
how to use basic fault tree analysis for assessing the health state of
a node/service instance and perform load balancing in an autonomous
manner. We propose a model that extracts event abstraction from the
run-time logs, aiming to assess whether the primary service instance or
its replica is reliable or unreliable. We employ replication or live migra-
tion processes to keep the service availability at an acceptable level. The
model is a probabilistic one and is validated using the LANL HPC Failure
Trace Archive (FTA) data set.

Keywords: Fault trees · Service availability · Cloud environments ·
Distributed computing · Failure trace · Archive

1 Introduction

This paper is a continuation of the previous work presented in [1,2]. The first
one introduced the idea of using fault trees for autonomous tracing and assess-
ment of the failures of virtual machines in cloud computing. The second paper
used some XEN log traces to evaluate the model at the IaaS level with three
differential modeled cases for error impacts. The current paper mainly provides
an enhanced fault tree based reasoning model by introducing the scenario of
event logs being dependent by the previously raised ones, tackling the problem
of chained errors scenarios. Moreover we use real FTA LANL failure traces [3]
as input for evaluation that changes the applicability context used by the previ-
ous publications, from infrastructure level to the service instance specific level.
Compared with previous work, the paper brings the following contributions: (1)
excludes the decaying error impact while simplifying and speeding the compu-
tation; (2) extends the previous fault model by taking into consideration the
chained errors scenario in Sect. 3; (3) improves the computation of migration

c© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 74–86, 2017.
DOI: 10.1007/978-3-319-61920-0 6

Fault-Tree-Based Service Availability Model in Cloud Environments 75

and theoretical probabilistic indicators in Sect. 3; (4) introduces new methodol-
ogy and event abstraction computation in Sect. 4; (5) the model is adapted and
evaluated using Failure Trace Archive [4,5] in Sect. 5. The aim of the current
work is to provide a dynamic model used to avoid and reduce the costs of penal-
ties induced by the SLA breaches while minimizing the amount of replicated
resources locked with the purpose of service unavailability avoidance, having a
direct impact on associated costs.

2 Background

We consider a cloud specific distributed system such as virtual clusters, high
performance systems (HPC), peer-to-peer (P2P) or grid, with a number of n
nodes N1, N2, ..., Nn. Every node runs specific services in a distributed manner.
The service instance node are deployed on a specific node Ni and requires specific
amount of minimum resources of different types, mainly CPU’s, RAM memory,
Storage and Network Bandwidth. These services are delivered according to a
Service Level Agreement (SLA) between the cloud provider and cloud consumer.
The two essential properties of the cloud system model applicable for our problem
are: (1) the availability of the service guaranteed by the SLA (known as minimum
up time)- at service level, this can be expressed as a maximum accepted failure
rate: for example if the guaranteed availability is 99% of the total running time,
the maximum accepted failure rate is 1% of the total time running time; (2)
the capacity of every service instance to be replicated or to migrate to another
node at any time; the majority of cloud systems have this capacity due to elastic
provisioning of resources in cloud computing, being a powerful fault tolerance
mechanism for such systems. Replication and migration is used for assuring the
service availability in these systems, by running a separate instance of the same
service on a different node. In this case the main service running instance is
further referred as primary instance of the service, while the replicated one is
referred as replicated instance of the service/migrated instance of the service. If
rs1 is the replicated service instance of the s1, rs1 will require the same amount
of resources as s1.

3 The Enhanced Fault Tree Model

In a cloud computing environment that has all the properties and capabilities
described above, if every node or service instance has a synchronized replica,
the challenge is to use basic fault tree analysis for assessing the health state of
a node and perform load balancing in an autonomous manner.

We build a fault tree for every service instance together with its replica. The
computed probabilistic indicators of failure are constantly updated and recal-
culated every time an event is raised by the corresponding instance. At time
ti, the model considers four types of event logs raised in the system: (1) run-
time error events which are raised by running service instances and describes
a possible faulty state in the running process; (2) run-time non-error events

76 A. Butoi and G.C. Silaghi

raised by running service instances describing a (positive) non-faulty state in the
running process; (3) migration error events raised by the migration process,
describing a possible faulty state of the system which may result in an unsuc-
cessful migration; (4) migration non-error events specific to the migration
process, describing a (positive) non-faulty state of the migration capability of
the system; The error type event abstractions are the input descriptors for a
possible fault state of the instance, while the non-error event abstractions are
the input descriptors for a healthy state of the source instance. Another relevant
remark would be the fact that some events could be related or unrelated with
each other.

The fault tree model. We further use the fault tree model depicted in Fig. 1
using the following assumptions about the entire distributed system: (1) every
primary service instance has an identical state replica; (2) every primary service
instance runs independently by other primary instances; (3) every instance has
associated a fault tree built using the relationships of her with other replicas or
migrated instances; (4) every running instance is subject of event logs produced
by itself or by the underlying operating system or running environment; (5)
every service instance is deployed on a virtual or physical node in the distributed
system;

Fig. 1. Fault tree model of one replicated service instance which runs independent by
others - source: [1].

The components of the fault tree presented in Fig. 1 have the same meaning
as described in [1].

Every fault tree node in the tree is characterized by three probabilistic indi-
cators that computes the probability of possible fault states at time t. The basic
fault tree presented in Fig. 1 uses three probabilistic indicators to predict the
faults of the corresponding instances. A basic requirement for the chosen proba-
bilistic indicators is to be comparable and at least one of them to be designed to

Fault-Tree-Based Service Availability Model in Cloud Environments 77

be used as benchmark. The gates for aggregation are AND gates, because replica
and migrated instances are parallel running components of the system. The prob-
abilistic indicators used in our model have the same definition as described in
[1,2]: (1) tqk is the theoretical fault probability of the fault node; (2) cqki is
the computed independent fault probability of the fault node, after the event i
was raised by the instance k; (3) cdki represents the computed dependent fault
probability of the fault node after the event i was raised by the instance k; The
main improvements introduced here are the introduction of dp indicator that
tackles with the chained errors scenario, the migration probability computation
and the theoretical probability computation. For a clear understanding of the
model we present the entire enhanced model.

Computed fault probabilities cq or cd of a specific node are recomputed
every time an event abstraction is raised by the corresponding service instance.
In our fault tree model cq represents the cumulative fault probability of an
instance to have a faulty state assuming that all instance related events are
independent, while cd indicator represents the cumulative fault probability of an
instance to crash, assuming that the instance-related events have dependency
relations between each other. These indicators are computed as follows for every
fault node in the tree:

1. If at time ti an instance run-time error event Ei(ip, dp) is raised by the
instance k or by its replica rk, inducing a probability ip computed with the
independent events assumption and another dp probability computed with
the dependent events assumption:
I. update the cq and cd indicator of the corresponding fault node Npk or

Nrk:

cqki
= Min(QSLA, cqki−1 + ip); cdki

= Min(QSLA, cdki−1 + dp).

The QSLA is a constant between 0.9 and 1 referring to the maximum guar-
anteed service availability that can be specified in the SLA. For example if a
service has a maximum guaranteed availability time of 99% the QSLA con-
stant will be 0.99, if the maximum guaranteed up-time is 99.9% the QSLA
will be 0.999. We can also treat this constant as a maximum agreed prob-
ability for the service not to fail: TotalServiceAvailabilityT ime

TotalUsageT ime = 99
100 = 0.99

This means that there is an acceptable probability for the service to not be
available due to fault incidents: TotalServiceUnavailabilityT ime

TotalUsageT ime = 100−99
100 =

0.01
II. recompute the cqri and cdri of the replication node Rk:

cqri = cqki
· cqrki

; cdri = cdki
· cdrki

III. recompute the cqsi and cdsi of the general failure node S:

cqsi = cqri · cqmi
; cdsi = cdri · cdmi

78 A. Butoi and G.C. Silaghi

2. If at time ti an instance migration error event Ei(ip, dp) is raised in the
system, inducing a probability ip for the independent events assumption and
another dp probability for the dependent events assumption for the migration
process to fail:
I. update the cqmi

and cdmi
indicators of migration node Mrk :

cqmi
= Min(QSLA, cqmi−1 +

ip

Rq
); cdmi

= Min(QSLA, cdmi−1 +
dp

Rq
)

where Rq is the probability of having enough resources to migrate at time
t; in the case of the event of not having enough resources to migrate, the
probability of fault will increase while the lack of available resources for
the migration process will increase the chances of service unavailability.

II. recompute the cqsi and cdsi of the general failure node S:

cqsi = cqri · cqmi
; cdsi = cdri · cdmi

3. If at time ti an instance run-time non-error event Ei(ip, dp) is raised by the
instance k or by its replica rk, with a probability ip in the case of independent
events assumption and dp in the case of dependent events assumption:
I. update the cq and cd indicators of the corresponding fault node Npk or

Nrk:
cqki

= Max(0, cqki−1 − ip); cdki
= Max(0, cqki−1 − dp)

II. recompute cqri and cdri of the replication node Rk:

cqri = cqki
· cqrki

; cdri = cdki
· cdrki

III. recompute the cqsi and cdsi of the general failure node S:

cqsi = cqri · cqmi
; cdsi = cqri · cdmi

4. If at time ti a migration non-error event Ei(ip, dp) is raised in the system,
with a probability ip in the case of independent events assumption and dp in
the case of dependent events assumption:
I. update the cqmi

and cdmi
indicators of migration node Mrk :

cqmi
= Max(0, cqmi−1 − ip

Rq
); cdmi

= Max(0, cdmi−1 − dp

Rq
)

where Rq is the probability of having enough resources to migrate
II. recompute the cqsi of the general failure node S:

cqsi = cqri · cqmi
; cdsi = cdri · cdmi

The probability of having enough resources to migrate at time t, Rq

is computed with the assumption of a unique and limited pool of resources
from which every service can claim the required amount of resources. In the
migration process, required resources can be of several types like CPU, RAM,

Fault-Tree-Based Service Availability Model in Cloud Environments 79

Storage, Bandwidth. Moreover, a required resource can be subject of a maximum
linear increasing criteria (“as bigger the amount, as better”) like CPU, RAM,
Storage or a subject of minimum linear decreasing criteria (“as little as better”)
like latency or time for response. In this case, when RAA(RTi) stands for the
“Required Amount of Resource Type i” and TAA(RTi) stands for the “Total
Amount Available from Resource Type i”, Rq can be computed as follows:

1. if the resource type is a linearly increasing one, Rqi(RTi) is computed as
follows:

Rqi(RTi) =

{
QSLA if RA(RTi) ≤ TAA(RTi)
RA(RTi)
TAA(RTi)

if RA(RTi) > TAA(RTi)
(1)

2. if the resource type is a linearly decreasing one, Rqi(RTi) is computed as
follows:

Rqi(RTi) =

{
QSLA if TAA(RTi) ≤ RA(RTi)
TAA(RTi)
RA(RTi)

if TAA(RTi) > RA(RTi)
(2)

A service instance will require more than one resource type to migrate defined
as RT1, RT2, ..., RTk. The probability for the event of having enough resources
to migrate will be the probability of the independent events of having enough
RT1 resources AND RT2 resources AND ..RTi.. AND RTk resources: Rq =∏

i=1,k Rqi where Rq is the probability of having enough required resources for
every required type, in order to migrate to a new service instance. In our setup we
calculate two probabilities for every raised event: the ip associated probability
calculated with the assumptions that all previous events of the instance are
independent by others and dp probability calculated with the assumption that
previous events of the instance are dependent by each other.

Theoretical fault probability is computed once when the fault tree is built
and initialized, and does not change during the entire life time of the fault tree.
It is being used as a baseline in the process of decision making. The tq values
for every computation nodes are the theoretical, context-free probabilities of
the corresponding service instance to fail. The tq of the Npk and Nrk nodes is:
tq = 1

ReplicationLevel , where the replication level represents how many possible
replicas of the same service instance can be found at a certain moment in the
system; in our fault tree model the replication level for tq values of the compu-
tation nodes is equal with 2, considering the primary instance and the replica.
Following the fault tree aggregation rules of nodes Npk and Nrk the theoretical
fault probability of the Rk node will be: tqr = tqk ·tqrk = 1

ReplicationLevel2 , where
Rk and Mk nodes are siblings aggregated at the general fault node level S and
having the theoretical probability of fault equal to the accepted service disrup-
tion rate specified in the SLA. The accepted service disruption rate is computed
as 1 − QSLA, QSLA accordingly with SLA specification:

tqs = tqr · tqm = 1 − QSLA,

80 A. Butoi and G.C. Silaghi

Knowing the tqs and tqr, the theoretical probability of the migration node is
computed indirectly:

tqm =
1 − QSLA

tqr
=

1 − QSLA
1

ReplicationLevel2

= ReplicationLevel2(1 − QSLA)

The general fault probability of the system at the general fault node has to
be lower than or equal with the accepted service disruption rate in order to avoid
SLA breaches.

The decision model is the same as in previous work [1,2]: at time ti, given
a threshold fi, 0 < fi < 1, fi is the percent or ratio of independent proba-
bility computed indicators in theoretical probability of a fault node, and fd,
0 < fd < 1, fd is the percent or ratio of dependent probability computed indi-
cators in theoretical probability of a fault node; if the computed probabilistic
indicators are approaching the theoretical fault indicator within a fixed threshold
the service instance might enter in a fault state and a replication or migration
decision has to be made. The possible decisions taken by the fault agent are: (1)
REPLICATED - the control has to be transferred to replica - taken based on
primary instance corresponding node; (2) MIGRATED - the primary instance
and its replica are unreliable - taken upon replication node; (3) OK - a com-
putation node is in a reliable state; (4) REPLICATED to OK/MIGRATED to
OK - when a service instance is becoming reliable again and can be reversed
from its previous state (replicated/migrated) to its normal state; (5) SYSTEM
UNRELIABLE - when replication and migration strategy has not succeeded,
the service enters in an unreliable state - taken based on the general failure fault
nodes;

4 Methodology and Experimental Setup

The Failure Trace Archive is a centralized and standardized repository which
provides availability traces of some of the known distributed systems [4]. The
tabbed format contains several columns like platform, node, eventtrace, creator,
eventtrace and eventstate [5]. The most relevant columns used in our setup
were the node indicator for identifying the instance, eventstate indicating an
availability/unavailability state and eventtrace consisting of eventstarttime and
eventendtime used to compute availability and unavailability times of the com-
ponents for event abstractions. While currently the FTA does not provide a
failure trace archive for a real cloud system, we used the FTA tabbed format for
LANL High Performance Computer [3] as the HPC systems are similar to cloud
systems used for intensive and long-time computation jobs.

Based on FTA archive we used distinct node topologies that have traces in the
input tabbed file. For every node we parsed the associated event traces from the
failure trace archive into the simulation framework, transforming them in event
objects abstraction. All the output was saved in a delimited format file, which
was further analyzed. We analyzed the fault probabilistic evolution for every
type of fault node in the fault trees together with the fault agent decisions.

Fault-Tree-Based Service Availability Model in Cloud Environments 81

Every event has associated two probabilities of fault:

1. EIP - the probability of the independent event, calculated with the
assumption that the corresponding event log took place independently
by other events; At time t if the service state is unavailability, we con-
sider the event as an error event: EIP = TotalUnvailabilityT ime

TotalRunningTime . For all
unavailability events raised before time t, TotalUnavailabilityT ime is:
TotalUnavailabilityT ime =

∑
(EventStopT ime − EventStartT ime). At

time t if service is in an availability state, we have a non-error event:
EIP = TotalAvailabilityT ime

TotalRunningTime . For all availability events raised before time t,
TotalAvailabilityT ime is: TotalAvailabilityT ime =

∑
(EventStopT ime −

EventStartT ime). In both cases the TotalRunningT ime is expressed as:

TotalRunningT ime =
∑

(EventStopT ime − EventStartT ime)

2. EDP - the probability of the dependent event, calculated with the assumption
that the corresponding event log was influenced or triggered by other events.
The EDP indicator is computed for those events that have the same type
(error or non-error), are raised by the same node and all considered events
are raised before the current event; At time t if service state is unavailability,
we have an error event and: EDP =

∏n
k=1

TotalUnavailabuility−TimeSpan(Ek)
TotalRunningTime−TimeSpan(Ek)

,
where TimeSpan(EK) represents the time span of unavailability induced by
the current event computed as: TimeSpan(Ek) = EventStopT ime(Ek) −
EventStartT ime(Ek). At time t if the service state is availability, we
have an error event and: EDP =

∏n
k=1

TotalAvailabuility−TimeSpan(Ek)
TotalRunningTime−TimeSpan(Ek)

and
TimeSpan(Ek) represents the time span of availability induced by the current
event: TimeSpan(Ek) = EventStopT ime(Ek) − EventStartT ime(Ek)

5 Experimental Results for LANL Traces

In this section we present a relevant experiment based on LANL high perfor-
mance computing traces. We ran a sample of 500 experiments for the LANL
failure trace dataset, provided by the Failure Trace Archive. We analyzed the
structure of the event failure probabilities, the evolution of the primary node,
replication node, migration node and general failure node probabilistic indica-
tors. The plots in Fig. 2 presents the event associated fault probabilities com-
puted for (a) the independent events assumption and for (b) the dependent
events assumption. We observe that the distribution of these probabilities is
a uniform one in the specific interval, with a strong variation for the event
probabilities values. We also analyzed the evolution of fault probabilities of the
replication at the primary service fault node level and at the replication fault
node level in a given observation time span. Figure 3 depicts the evolution in
time of the computed values for probabilistic indicators on computation nodes.
The red line is the theoretical probability used as a benchmark. All the values
that are bellow the red line, indicate that the node is in a reliable state, while all

82 A. Butoi and G.C. Silaghi

Fig. 2. Probabilistic event indicators for LANL sample.

Fig. 3. Computed probabilistic indicators evolution for the instance specific nodes.

the values which are in the proximity and above the red line indicate a possible
state of fault. If at time t an event triggers the probabilistic indicators above
the red limit in both (a) and (b) charts, the fault agent will trigger an unreli-
able state of the corresponding fault node. We can observe the “healing” effect
of the non-error raised events, which lowers the computed probabilities of fault
turning, the node state from UNRELIABLE to OK. Moreover, when both prob-
ability values are above the theoretical value, the fault agent takes the decision
for REPLICATION.

The evolution of aggregated fault probabilistic indicators on replication node
are depicted in Fig. 4. When the fault indicators in both cases are above the line,
live migration strategy is needed, if the migration process is reliable and enough
resources are available.

Figure 5 depicts the fault probabilistic indicators for migration indicating
whether the migration is feasible or not. At the general fault node level, the
replication and migration nodes are aggregated to assess the capacity of the
system to maintain it’s availability state after the replication and migration
strategy were employed. The important thing here is timing: in order for the
fault agent to decide the GENERAL FAILURE state, the four indicators of the

Fault-Tree-Based Service Availability Model in Cloud Environments 83

Fig. 4. Computed probabilistic indicators on replication nodes.

Fig. 5. Computed probabilistic indicators on migration nodes.

migration and replication node has to be positive and higher enough for their
aggregation product to be above or in the proximity of theoretical value (0.01
in this case) at the same moment of time t.

Figure 6 depicts the scatters of the computed indicators for replication node
together with the migration node. We can observe that in sub-figure (a) we
have 4 cases when migration and replication indicators are above the line, while
in sub-figure (b) we have two similar cases. The agent declared the SYSTEM
UNRELIABLE state in three cases (the ones marked with red), when the inde-
pendent and dependent computed values are both above the line at the same
moment. The fault agent decisions are summarized in Table 1.

Computing the unavailability of the system we have Total Running time =
179414800500 UNIX EPOCHS, Total DownTime = 16941060 UNIX EPOCHS
and the unavailability percent is 0.01% obtaining 99.99% availability. If we
used only the replication mechanism we would obtain a Total Down Time =
8484500500 UNIX and an unavailability percent of 4.72% resulting a 95.27%
availability.

84 A. Butoi and G.C. Silaghi

Fig. 6. Computed probabilistic indicators on migration nodes. (Color figure online)

Table 1. Agent decisions overview.

Decision Fault nodes

OK 79056

REPLICATED 605

REPLICATED to OK 291

MIGRATED 8

MIGRATED to OK 2

SYSTEM UNRELIABLE 3

6 Related Work

Literature offers many abstractions for describing the ability of a distributed
system to cope with failures. In this paper, we describe the failure behavior of
a fault tolerant system using fault tree models [6] which seems to be well fit
to present the different levels of errors interdependence specific to distributed
computing infrastructures [7,8].

The cloud services impose conditions for which the hardware is not incipiently
created [9]. Applications deployment on cloud instances within clouds adds more
risks while failures in data centers cannot be controlled by the client being the
responsibility of the cloud provider. Traditional approaches in fault tolerance
challenges require the users to have very good knowledge of the base mechanisms.

We have identified a gap in using the fault tree analysis applied in the
fault management of distributed systems. Although some examples can be sum-
marized here like [6] which states that the behavior of servers can be ana-
lyzed through fault tree models. The fault trees present the different levels
of errors interdependence inherent to the cloud computing infrastructure [7,8].

Fault-Tree-Based Service Availability Model in Cloud Environments 85

Examples for using fault tree analysis in computing science are tackling the prob-
lem in a combination with neural networks [10]. Moreover fault tree analysis has
been recently used in fault-tolerant parallel processor [11] and GPU speed-up
[12]. Failure Trace Archive approaches are relatively new in today’s literature:
for example [4] comparatively presents statistical analysis of nine FTA data sets,
mitigating the specific limitations of fault algorithms built using specific data
sets while [13] propose a reliable provisioning model of spot instances based on
traces extracted from Parallel Workload Archive.

7 Conclusions

We presented the results when applying our model for LANL failure traces,
but the model has been successfully applied on P2P, Grid, Web and DNS FTA
archives. The main advantage of the above approach is that the third replica is
created only on demand and the required resources are not used from the start,
resulting a more efficient mechanism for resource allocation with the capability of
higher service availability. The main disadvantage of the strategy is timing: for a
successful migration process, the migrated instance should be in a healthy state
implying the usage of probabilistic provisioning system to be able to predict
future fault states and to be able to start migration while is feasible. Future
work could focus on producing and applying the model on a new failure trace
archive for a real cloud system and analyze the cost reduction when using the
fault strategy compared to existing approaches.

Acknowledgements. We acknowledge support from UEFISCDI under project PN-
II-PT-PCCA-2013-4-1644.

References

1. Butoi, A., Stan, A., Silaghi, G.C.: Reliable management of virtualized resources
using fault trees. In: 2014 16th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), pp. 309–316. IEEE (2014)

2. Butoi, A., Stan, A., Silaghi, G.C.: Autonomous management of virtual machine
failures in IaaS using fault tree analysis. In: Altmann, J., Vanmechelen, K., Rana,
O.F. (eds.) GECON 2014. LNCS, vol. 8914, pp. 206–221. Springer, Cham (2014).
doi:10.1007/978-3-319-14609-6 14

3. Schroeder, B., Gibson, G.A.: A large scale study of failures in high-performance-
computing systems. In: International Symposium on Dependable Systems and Net-
works (DSN) (2006)

4. Javadi, B., Kondo, D., Iosup, A., Epema, D.: The failure trace archive: enabling the
comparison of failure measurements and models of distributed systems. J. Parallel
Distrib. Comput. 73(8), 1208–1223 (2013)

5. Kondo, D., Javadi, B., Iosup, A., Epema, D.: The failure trace archive: enabling
comparative analysis of failures in diverse distributed systems. In: 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing
(CCGrid), pp. 398–407. IEEE (2010)

http://dx.doi.org/10.1007/978-3-319-14609-6_14

86 A. Butoi and G.C. Silaghi

6. Jhawar, R., Piuri, V.: Fault tolerance management in IaaS clouds. In: 2012 IEEE
First AESS European Conference on Satellite Telecommunications (ESTEL), pp.
1–6 (2012)

7. Guerraoui, R., Yabandeh, M.: Independent faults in the cloud. In: Proceedings of
the 4th International Workshop on Large Scale Distributed Systems and Middle-
ware, LADIS 2010, pp. 12–17. ACM, New York (2010)

8. Undheim, A., Chilwan, A., Heegaard, P.: Differentiated availability in cloud com-
puting SLAs. In: Proceedings of the 2011 IEEE/ACM 12th International Con-
ference on Grid Computing, GRID 2011, pp. 129–136. IEEE Computer Society,
Washington, DC (2011)

9. Feller, E., Rilling, L., Morin, C.: Snooze: a scalable and autonomic virtual machine
management framework for private clouds. In: 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 482–489 (2012)

10. Bartlett, L.M., Andrews, J.D.: Choosing a heuristic for the “fault tree to binary
decision diagram” conversion, using neural networks. IEEE Trans. Reliab. 51(3),
344–349 (2002)

11. Xiang, J., Yanoo, K., Maeno, Y., Tadano, K.: Automatic synthesis of static fault
trees from system models. In: 2011 Fifth International Conference on Secure Soft-
ware Integration and Reliability Improvement (SSIRI), pp. 127–136 (2011)

12. Aghassi, F., Aghassi, H., Sheykhlar, Z.: A speed-up algorithm in Monte Carlo
simulation for fault tree analysis with GPU computing. In: 2011 International
Conference on Soft Computing and Pattern Recognition (SoCPaR), pp. 469–474
(2011)

13. Voorsluys, W., Buyya, R.: Reliable provisioning of spot instances for compute-
intensive applications. In: 2012 IEEE 26th International Conference on Advanced
Information Networking and Applications, pp. 542–549 (2012)

Work in Progress on Cloud Economics

An Economical Security Architecture
for Multi-cloud Application Deployments

in Federated Environments

Mathias Slawik1(B), Begüm Ilke Zilci1, Axel Küpper1, Yuri Demchenko2,
Fatih Turkmen2, Christophe Blanchet3, and Jean-François Gibrat3

1 Telekom Innovation Laboratories, Service-centric Networking,
Technische Universität Berlin, Berlin, Germany

{mathias.slawik,ilke.zilci,axel.kuepper}@tu-berlin.de
2 System and Network Engineering,

University of Amsterdam, Amsterdam, The Netherlands
{y.demchenko,f.turkmen}@uva.nl

3 CNRS, UMS 3601; Institut Français de Bioinformatique, IFB-core,
Avenue de la Terrasse, 91190 Gif-sur-Yvette, France

{christophe.blanchet,jean-francois.gibrat}@france-bioinformatique.fr

Abstract. Contemporary multi-cloud application deployments require
increasingly complex security architectures, especially within federated
environments. However, increased complexity often leads to higher efforts
and raised costs for managing and securing those applications. This pub-
lication establishes an economical and comprehensive security architec-
ture that is readily instantiable, pertinent to concrete users’ require-
ments, and builds upon up-to-date protocols and software. We highlight
its feasibility by applying the architecture within the CYCLONE inno-
vation action, deploying federated Bioinformatics applications within a
cloud production environment. At last, we put special emphasis on the
reduced management efforts to highlight the economic benefit of follow-
ing our approach.

Keywords: Cloud federation · Architecture design · Security

1 Introduction

There is widespread usage of cloud technologies within contemporary application
deployments. Examples include using VMs and containers for componentiza-
tion of applications, relying on highly scalable public cloud infrastructures, and
embracing the immutable infrastructure paradigm to structure scalable cloud
services, possibly deployed to multiple clouds. As the architecture of these appli-
cations becomes more complex, securing them also presents many new challenges
that we address in this publication.

Our contribution was devised in the CYCLONE innovation action that
focuses on two main application characteristics: multi-cloud deployment, e.g.,
c© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 89–101, 2017.
DOI: 10.1007/978-3-319-61920-0 7

90 M. Slawik et al.

for increased resiliency or reduced latency, and authentication and authorization
using federated identities, e.g., academic and social identities (Google, Facebook,
etc.). We previously gave an overview about CYCLONE in [9]. The project deliv-
erables1 complement this publication with information about the architecture
(D4.1), the APIs and data formats (D4.3), as well as the Bioinformatics Use
Case (D3.1). This publication extends our previous work in the following ways:
in contrast to expansive project deliverables, it summarizes key aspects in a
short and concise way. It furthermore consolidates information about the practi-
cal application of our work from diverse sources. At last, we thoroughly analyze
its economic benefit as well as highlight its feasibility through the deployment
in a production environment.

As a methodology we apply “Design Science in Information Systems
Research” by Hevner et al. [3] that also structures our presentation: first, in
order to define the application area of our contribution we define the stake-
holders and analyze their requirements in Sect. 2. Afterwards, to ensure research
rigor, we give a comprehensive overview about related works in Sect. 3. Then,
we describe the architecture and its provided functionalities in detail in Sect. 4
before evaluating it in Sect. 5. The evaluation also incorporates a discussion on
the economic benefit. We conclude the paper by explicating the future extensions
and open issues in Sect. 6 before summarizing it in Sect. 7.

2 Stakeholders and Requirements

This section provides the involved stakeholders and concludes with an analy-
sis of their requirements for the security architecture. We consider three stake-
holder groups: Cloud Infrastructure Providers who provide cloud resources
to Application Service Providers to deploy applications for Cloud Appli-
cation End Users. In the following, we describe the three main requirements
that are most pertinent to our contribution:

Requirement 1: Federated authentication and authorization. Federated
identities, for example, academic identities, are quite common in cloud envi-
ronments. They are used, for example, by scientific online libraries and shared
research infrastructures. Using Facebook and Google identities to access per-
sonal cloud applications is also quite popular. We see that all stakeholder groups
require using them: Cloud Infrastructure Providers for reuse of preexisting iden-
tities for administrative log-ins as well as Application Service Providers to attract
End Users who can reuse their identities in a practical and secure manner. Espe-
cially for data sharing by End Users, authorization by federated identities can
be way more trusted than anonymous username/password pairs. To sum up, the
security architecture has to provide functionalities to authenticate and authorize
federated user identities in a secure manner.

Requirement 2: Secure multi-cloud application deployment. Multi-cloud
deployment by Application Service Providers provides many benefit, for exam-
ple, lower latency through global server distribution, and higher resiliency if
1 http://www.cyclone-project.eu/deliverables.html.

http://www.cyclone-project.eu/deliverables.html

An Economical Security Architecture for Multi-cloud Application 91

using more than one cloud provider. The security architecture should therefore
allow the deployment of applications in multiple clouds while still providing all
of the security properties.

Requirement 3: Unified logging for distributed systems. As both the
cloud infrastructure as well as many cloud applications are extensively dis-
tributed, gathering diagnostic messages and performance metrics from all of
these applications in a unified system is very challenging. Without, debug-
ging these systems and providing an audit trail becomes a tedious endeavour.
Therefore, the security architecture should provide unified logging capabilities
for highly distributed systems.

Nonfunctional requirements. We address the following four main solution
qualities as nonfunctional requirements: Relevance: Through the requirements
analysis with concrete use cases we create a relevant architecture for contem-
porary cloud environments. Immediate instantiability: Since we publish all
components as open source2, our security architecture becomes almost instantly
instantiable. Comprehensibility: We provide a large volume of comprehensible
supporting material, making it easy to follow and take up our ideas. Maturity:
We use established software as well as common protocols and libraries to create
a stable and mature environment. We highlight this by applying the architecture
within a production environment.

3 Related Technologies

After establishing the stakeholders and their requirements, we now give an
overview about the technologies related to our contribution.

OpenID, OAuth, and OpenID Connect. Accessing resources on Web 2.0
platforms on behalf of other resource owners - without handing over usernames
and passwords - provided the first use case for federated web-authentication
and authorization. For this purpose, OAuth, OpenID, and the recent OpenID
Connect were introduced: OpenID3 specifies how relying parties “prove that
an end user controls an identifier” without disclosing credentials to relying par-
ties. Resource access requests can be expressed by OAuth [2]. OAuth enables
“a third-party application to obtain limited access to an HTTP service, either
on behalf of a resource owner [...] or by allowing the third-party application to
obtain access on its own behalf”, most commonly through the OAuth Authoriza-
tion Code Grant flow4. The most recent authentication protocol, OpenID Con-
nect , focuses on solving security issues when using OAuth for authentication5.

2 https://github.com/cyclone-project/.
3 http://openid.net/specs/openid-authentication-2 0.html.
4 Basically, relying parties use HTTP redirection to request an access token from the

resource server. If users accept this request, the resource server issues a token that
allows relying parties access to users’ resources (see 4.1 of [2]).

5 For a comprehensive discussion, see http://oauth.net/articles/authentication.

https://github.com/cyclone-project/
http://openid.net/specs/openid-authentication-2_0.html
http://oauth.net/articles/authentication

92 M. Slawik et al.

OpenID Connect uses JSON Web Tokens (JWTs)6 for transmitting user claims.
As a result, the OpenID Connect Authentication Code Flow (OIDCACF) com-
bines JWT and OAuth to provide secure web-based single sign-on for contem-
porary web applications.

SAML and eduGAIN. The OASIS Security Assertion and Markup Lan-
guage (SAML)7 “defines the syntax and processing semantics of assertions
made about a subject by a system entity”. It incorporates Web Service tech-
nologies, such as XML, XML Encryption & Signature, and SOAP. Version 2.0
adds HTTP bindings to use SAML without SOAP. The GÉANT eduGAIN ser-
vice “interconnects identity federations around the world”, i.e., it provides a
metadata aggregator for inter-federation service access between 38 participating
federations, 2093 Identity-, and 1208 Service Providers.

Notable Compatible Implementations. Shibboleth8 is an open source Dis-
covery Service, Identity-, and Service Provider implementation, based on SAML
2.0, extensively deployed in academic institutions worldwide. The Simple-
SAMLphp9 Identity- and Service Provider additionally supports OpenID and
OAuth. Keycloak10 provides “Integrated SSO and IDM for browser apps and
RESTful web services” and implements all standards previously mentioned. It
offers an Identity Broker, integration with Active Directory and LDAP, as well
as a rich set of libraries for different implementation platforms.

PAM, XACML & Moonshot. The Linux Pluggable Authentication Mod-
ules (PAM)11 subsystem provides a simple API to offer policy-compliant authen-
tication, authorization, and accounting to relying software, such as Secure Shell
Server (SSH) or getty processes. The Extensible Access Control Markup
Language (XACML)12 provides an XML-based policy language and a distrib-
uted access control architecture. It enables attribute-based authorization, that is,
it uses a set of subject attributes, e.g., group membership or confidentiality level,
to authorize actions carried out on arbitrary resources. The Moonshot project13

“aims to enable federated access to virtually any application or service”. One
of its main components is a federation-enabled version of OpenSSH. However,
relevant work ceased at the end of the last pilot in March 2015. Now, Moonshot-
provided software packages are outdated and insecure due to a lack of patches
for recent vulnerabilities and therefore unsuitable for CYCLONE production
environments.

6 See http://jwt.io and [4].
7 http://saml.xml.org/saml-specifications.
8 http://shibboleth.net/.
9 https://simplesamlphp.org/.

10 http://keycloak.jboss.org/.
11 http://www.linux-pam.org/.
12 https://www.oasis-open.org/committees/xacml/.
13 https://wiki.moonshot.ja.net/.

http://jwt.io
http://saml.xml.org/saml-specifications
http://shibboleth.net/
https://simplesamlphp.org/
http://keycloak.jboss.org/
http://www.linux-pam.org/
https://www.oasis-open.org/committees/xacml/
https://wiki.moonshot.ja.net/

An Economical Security Architecture for Multi-cloud Application 93

4 Security Architecture and Security Functionalities

We now describe the security architecture and its functionalities. Figure 1
presents the architecture. The main component is the Federation Provider14

that issues uniform user claims to relying applications, e.g., users’ identifiers,
email addresses, and their home organizations. These claims are contained within
JWTs retrieved using the OIDCACF. The Federation Provider contains the
Identity Broker as well as the Backend Modules implementing SAML
2.0 and OpenID Connect. The SAML 2.0 functionality is used to communi-
cate with the Shibboleth-based Identity Providers, using eduGAIN as a Meta-
data Provider . As the end user’s User Agents communicate directly with
the Identity Providers, credentials are never transmitted to 3rd parties. Fur-
thermore, end users can reuse their login sessions to achieve web-based single
sign-on.

Fig. 1. UML component diagram of the security architecture.

The Logging Middleware unifies distributed log messages, supporting,
besides others, TCP-based and Syslog-compatible loggers. Not shown are the
Logging Frontend, allowing end user log consumption, as well as the Logging
Backend, e.g., a database or flat files, to persist the logs.

14 We use this term as “Federated Identity Provider” would be ambiguous: “provider
of a federated identity” or “identity provider in a federation”?.

94 M. Slawik et al.

Deployed Cloud Applications rely on the OIDCACF to authenticate
and authorize users - both on the application layer, through OpenID Connect
libraries, as well as the OS layer, through the PAM Module . Depending on the
concrete requirements, the PAM module maps identities either to a respective
local user account, or to a shared user account. In contrast to Moonshot, the
PAM Module does not need a modified SSH client or server.15 They also log
to the Logging Middleware and rely on the Deployment Manager to be
deployed on the IaaS Platform. The Deployment Manager should support
multi-cloud application deployment, e.g., it should model application topolo-
gies, connect to different IaaS APIs, and offer a web- and a RESTful interface.
It should also allow end users to use the OIDCACF for logging in and should
write its log messages to the Logging Middleware.

There is an optional architectural element, the Self-service Portal . It
allows end users without technical background to use the Deployment Man-
ager for instantiating VMs on the IaaS platform. This Portal uses OIDCACF
for authentication and authorization and logs to the network interfaces of the
logging middleware. It communicates with the RESTful API of the Deployment
Manager in order to deploy and scale applications on preconfigured clouds.

4.1 Security Functionality

We now describe how the components interact to realize the main security func-
tionalities application deployment, federated authentication and authorization,
and distributed logging.

Application deployment. First, deployment descriptions need to be created
containing all the steps necessary to create new application instances. Nuv.la,
for example, uses base images (e.g., “Ubuntu Linux LTS”) as well as deployment
scripts to describe how to install the respective application components on newly
instantiated VMs. After all application modules have been prepared, the Deploy-
ment Manager calls the respective IaaS platform APIs to instantiate the base
images and runs the deployment scripts on them, either for initial deployment,
for subsequent scaling, or to tear down the application.

Federated authentication and authorization. Cloud applications rely on the
OpenID Connect authentication code flow (OIDCACF) to use federated identi-
ties for authentication and authorization. They transmit signed authentication
requests and retrieve signed user identity claims to and from the Federation
Provider. There is a set of attributes recommended for every eduGAIN iden-
tity provider16, for example, display name and home organization. The research
institutions are free to implement any number of these attributes and can also
introduce additional attributes, for example, group membership. At last, the
Federation Provider also supports creating local user accounts and using an
LDAP server for special cases not involving federated identities.

15 More details at https://github.com/cyclone-project/cyclone-python-pam.
16 https://wiki.edugain.org/IDP Attribute Profile: recommended attributes.

https://github.com/cyclone-project/cyclone-python-pam
https://wiki.edugain.org/IDP_Attribute_Profile:_recommended_attributes

An Economical Security Architecture for Multi-cloud Application 95

Distributed Logging. The Logging Middleware should be quite flexible in the
formats it accepts for logging as well as the structure of the log messages. For
example, the Logstash middleware used by CYCLONE supports 49 different
input plugins17. As the logging system is multi-tiered (front-end, middleware,
database), it can be clustered and scaled quite flexibly, thus supporting a wide
range of different deployment topologies. We created a filter for the ELK stack18

that we use in production to filter log messages based on clients’ ids. Together
with an OIDCACF-compliant logging dashboard, this provides a flexible multi-
tenant logging system.

5 Evaluation

This chapter presents the evaluation of the production deployment of the archi-
tecture within the CYCLONE innovation action, emphasizing three aspects:

1. Functionality. We evaluate how the architecture enables new functionality
within the CYCLONE innovation action.

2. Economics. We evaluate how the architecture lowers efforts and therefore
provides economic benefit to its users.

3. Security. We apply a formalized security threat analysis of the Federation
Provider to assess the level of security.

5.1 Securing the CYCLONE Bioinformatics Use Case

The CYCLONE Innovation Action is funded by the European Commission in
the Horizon 2020 framework and aims at integrating cloud management software
in order to create a holistic cloud application management platform. A project
cornerstone is the direct implementation of innovative developments within pro-
duction environments, such as the CYCLONE bioinformatics use case. This use
case extends an established self-service cloud platform19 with new functionali-
ties addressing the challenge areas of CYCLONE. The self-service cloud platform
allows bioinformaticians to initiate the deployment of VMs containing related
software, for example, to analyze human biomedical data and microbial genomes.
We deployed the security architecture in production and detail the main imple-
mentation tasks in the following:

Establishing the federation provider. First, we set up and registered the
Federation Provider with eduGAIN. The process is different for each NREN, in
our case it meant registering the Federation Provider metadata20 as a Service
Provider (SP) through the DFN, the German NREN. To allow attribute retrieval
we followed the “Data Protection Code of Conduct Cookbook”21. However, we
17 See: https://www.elastic.co/guide/en/logstash/current/input-plugins.html.
18 See: https://github.com/cyclone-project/cyclone-logging.
19 https://cloud.france-bioinformatique.fr/cloud/.
20 https://technical.edugain.org/show entity details.php?entity row id=213.
21 https://wiki.edugain.org/Data Protection Code of Conduct Cookbook.

https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://github.com/cyclone-project/cyclone-logging
https://cloud.france-bioinformatique.fr/cloud/
https://technical.edugain.org/show_entity_details.php?entity_row_id=213
https://wiki.edugain.org/Data_Protection_Code_of_Conduct_Cookbook

96 M. Slawik et al.

faced two major difficulties: first of all, not every Identity Provider (IdP) is
fully accustomed with all of the accompanying technologies and procedures -
requiring manual coordination effort. Second, there are only recommendations
but no requirements for the attribute release. Some IdPs chose to release all
attributes, some only when SPs follow the Data Protection CoC, some implement
approval processes, and some release no attributes at all. These circumstances
make it nearly impossible to offer a Federation Provider for all of the 2091
Identity Providers.

Federated authentication for the biomedical data analysis VM. The Bio-
medical data analysis VM allows Bioinformaticians to upload data and retrieve
analysis results at a later point in time, both via HTTP. Extending this upload
form with federated authentication proved quite straightforward: as the form
was presented using the Apache HTTP server, we used the HTTP server mod-
ule mod auth openidc22 for implementing the OIDCACF.

PAM-based federated authorization. Bioinformaticians collaboratively use
the “microbial genomes analysis” as well as the “live remote cloud sequencing
data processing” VMs and require simple data sharing between them. As they
access the VMs using SSH and X2Go (which relies on SSH), enforcing access con-
trol using Linux file system ACLs was obvious. We integrated the PAM module
into the VMs to map federated identities to local user accounts. Now the bioin-
formaticians can, for example, securely assign access rights to any collaborator
using their email address.

5.2 Economic Benefits

This section discusses the economic benefit of applying the security architecture,
contrasting them with the required upfront efforts. We strive to lower these
upfront costs by preparing ready-to-deploy modules, providing practical demos,
as well as writing comprehensive documentation. However, not every user will
realize all of the benefit as this depends on a number of factors that we cannot
control, e.g., how many relying applications there are and how well are the users
versed in the technologies.

Once the Federation Provider is initially set-up and registered in
eduGAIN, further applications are registered in minutes instead of
weeks. Before introducing the Federation Provider, registering every cloud appli-
cation instance with eduGAIN was simply not feasible for a large number of
applications: first, the process itself is manual and can take days to complete. In
fact, registering the first Federation Provider instance took us weeks, a duration
deemed typical by other project partners that have completed such an under-
taking before. Second, eduGAIN requires publishing every Service Provider’s
metadata23. Adding every cloud application instance would enlarge this docu-
ment considerably, raising memory and processing requirements for all eduGAIN
22 https://github.com/pingidentity/mod auth openidc.
23 Currently 1206 SPs, see https://technical.edugain.org/entities.

https://github.com/pingidentity/mod_auth_openidc
https://technical.edugain.org/entities

An Economical Security Architecture for Multi-cloud Application 97

participants. In contrast, registration of new OpenID Connect clients at the
Federation Provider is a much more straightforward process: logging into the
administrative interface and entering the details of the new client.

After investing effort in learning the technologies, using OpenID Con-
nect libraries and handling JWTs proves far more easier than using
the Shibboleth SP and SAML. This observation is based on our own experi-
ence as well as those of our use case partners. Reasons include: the token format
is simpler, the documentation is more abundant and comprehensive, there is
a larger number of libraries available for a wider range of platforms, and the
protocol is less complex.

After setting up the Federation Provider and integrating all relying
applications through OpenID Connect, the extensive identity broker-
ing available at the Federation Provider saves the effort of integrating,
e.g., a social login into each application. The Federation Provider can
broker identities from eduGAIN, LDAP, Google, Facebook, Twitter, GitHub,
LinkedIn, Microsoft, and Stack Overflow. The economic benefit of using the
Federation Provider as a kind of authentication proxy are most extensive if
there are a large number of applications in need of this functionality, as it needs
to be integrated just once into the Federation Provider instead of into every
application.

After the PAM module is installed and set-up, end users reuse their
existing identities instead of learning about SSH, or remembering yet
another credential. Furthermore, federated authorization management
is very simple: modifying a plain text file. Before CYCLONE, Bioinfor-
maticians were required to either learn how to manage SSH keys or memorize
yet another local account in order to access their VMs. Now, they can just reuse
their existing federated identities, thus reducing identity management overheads
and simplifying account management on the cloud provider’s side. This effect is
magnified when there are a large number of machines where the end users have
access to. Permitting access to a VM is also very simple: VM owners just need
to add the mail address of the other account to a certain file on the VM.

After setting up the distributed logging and changing the configuration
of logging applications, debugging distributed applications becomes far
more easy. Merging application- as well as infrastructure log messages eases
the debugging process considerably. As the logging middleware supports a large
number of input sources, integrating the distributed logging into applications is
oftentimes as easy as changing some lines of a configuration file, for example,
when using the popular Log4j Java library.24

24 https://www.elastic.co/guide/en/logstash/current/plugins-inputs-log4j.html.

https://www.elastic.co/guide/en/logstash/current/plugins-inputs-log4j.html

98 M. Slawik et al.

5.3 Security Analysis of the Federation Provider

We use the OWASP Application Threat Modelling (ATM) methodology25 to
analyze the Federation Provider. Our goal was to assess the current level of
security, to find out security threats, and to strengthen the architecture. While
all details of this process can be found in the CYCLONE Deliverable 4.1, this
subsection gives an overview about the four main steps and their results:

Step 1: Application decomposition. In order to provide a comprehensive
base for the next steps, we decomposed the Federation Provider.

Step 2: Definition of dependencies, trust levels, and entry points. Next,
we identified: External Dependencies, such as the deployment on a hardened
VM and the use of an H2 database, Trust Levels, such as “Anonymous Web
User”, and “Federation Provider Admin”, and system Entry Points such as
the OpenID Connect API and the Federation Provider log-in screen.

Step 3: Modeling the Federation Provider data flows. Figure 2 shows
the modeling of the data processes, -stores, -flows, as well as the environment
boundaries as a data flow diagram. We modeled the current project environment,

Fig. 2. Federation provider data flow diagram.

25 https://www.owasp.org/index.php/Application Threat Modeling.

https://www.owasp.org/index.php/Application_Threat_Modeling

An Economical Security Architecture for Multi-cloud Application 99

where the Federation Provider is installed on a VM hosted in the internal cloud
of TU Berlin. It uses the Keycloak Identity Broker for implementing OpenID
Connect and integrates SimpleSamlPHP for eduGAIN access.

Step 4: Determining and ranking threats. As the most valuable step, we
then compiled an extensive list of threats, their possible causes, a mitigation
strategy, and the attacker type, applying the DREAD threat-risk model26 and
the Thread Rating Table27 provided by Microsoft. We saw that some threats can
be mitigated by following the Open ID Connect standard, others by following
industry best practice. For brevity reasons, the three top threats are: imperson-
ation of eduGAIN users, impersonation of Federation Provider admins, as well
as further exposure to security and privacy threats by unintended authentication
request disclosure.

6 Extensions and Open Issues

This section highlights a number of future extensions and open issues associated
with the security architecture.

Automated Registration of OpenID Connect Clients. Creating new
OpenID Connect clients for each cloud application deployment is a manual
process. In the future, we will implement an API that can be used to auto-
matically register newly deployed applications as OpenID Connect clients. This
includes the secure exchange of OpenID Client identifiers and associated secrets.

End-to-End Data Security in Cloud Environments. Our previous work
[7] establishes the Trusted Cloud Transfer Protocol (TCTP), an end-to-end data
security protocol, based on TLS. In [8] we have already demonstrated that it can
be successfully deployed in production environments. To enable the users of the
security architecture to also benefit from its additional security characteristics,
we will work on integrating TCTP into the security architecture.

Attribute-Based Access Control and Secure Trust Bootstrapping.
While the PAM module is sufficient for most CYCLONE use cases, there are
advanced scenarios requiring more flexible authorization schemes. Our past
work [1,6] shows that a XACML-based distributed attribute-based access control
infrastructure provides many benefit in dynamically provisioned cloud environ-
ments. In the future we will integrate this work into the security architecture
to create opportunities for new use cases as well as a further reduction of man-
agement effort. We will also employ a secure trust bootstrapping mechanism [5]
for the establishment of trust between provisioned cloud resources, enabling the
dynamic configuration of access control attributes for VMs during deployment.

Open Issue: Federated authentication using non-browser software.
OpenID Connect and SAML are aimed for browser usage, leading to a lot of

26 https://www.owasp.org/index.php/Application Threat Modeling#DREAD.
27 https://msdn.microsoft.com/en-us/library/ff648644.aspx (see Table 3.6).

https://www.owasp.org/index.php/Application_Threat_Modeling#DREAD
https://msdn.microsoft.com/en-us/library/ff648644.aspx

100 M. Slawik et al.

issues when using them with, e.g., RESTful API clients. OpenID Connect pro-
vides the Direct Access Grant flow28 to retrieve an identity token using a user-
name/password combination, although this has negative security implications.
SAML2.0 provides the “Enhanced Client or Proxy”29 that supports non-browser
clients. There is a working implementation in the Shibboleth IP, however none
of the 2000+ eduGAIN identity providers has enabled it.

Federated access delegation to cloud resources. While the PAM module
allows people to use their federated identities for logging into systems, allowing
these systems access to other cloud resources on behalf of the federated identity is
still an ongoing issue. There are related technologies, such as Kerberos, however
we did not find a simple to use and economically feasible solution to apply in
this scenario.

7 Summary and Outlook

By deploying the architecture presented in this publication in production we
significantly reduce the effort to provide federated multi-cloud application secu-
rity. This publication contains more than just the interaction of contemporary
technologies: we provide a design rationale in form of stakeholders and require-
ments, evaluate the resulting architecture through both real-world application
and a thorough analysis, and provide readily instantiable components in our pub-
lic code repository30. In the future, we will work together with the community
on extending the architecture as well as deploying it to new use cases.

Acknowledgements. The authors wish to thank the members of the bioinformat-
ics platforms Centre Léon Bérard (Lyon, France) and IFB-MIGALE (Jouy-en-Josas,
France) to provide their bioinformatics applications as respective use cases “Biomed-
ical data analysis” and “Bacterial genomes analysis”. This work is supported by the
CYCLONE Horizon 2020 Innovation Action CYCLONE (http://www.cyclone-project.
eu), funded by the European Commission under grant number 644925.

References

1. Demchenko, Y., de Laat, C., Lopez, D.R., Garcia-Espin, J.A.: Security services
lifecycle management in on-demand infrastructure services provisioning. In: Qiu, J.
(ed.) Proceedings of the IEEE Second International Conference on Cloud Computing
Technology and Science (CloudCom 2010). IEEE, Piscataway, NJ (2010)

2. Hardt, D.: The OAuth 2.0 authorization framework. RFC 6749 (Proposed Stan-
dard), October 2012. http://www.ietf.org/rfc/rfc6749.txt

3. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28(1), 75–105 (2004)

28 https://keycloak.github.io/docs/userguide/keycloak-server/html/
direct-access-grants.html.

29 https://wiki.shibboleth.net/confluence/display/CONCEPT/ECP.
30 https://github.com/cyclone-project.

http://www.cyclone-project.eu
http://www.cyclone-project.eu
http://www.ietf.org/rfc/rfc6749.txt
https://keycloak.github.io/docs/userguide/keycloak-server/html/direct-access-grants.html
https://keycloak.github.io/docs/userguide/keycloak-server/html/direct-access-grants.html
https://wiki.shibboleth.net/confluence/display/CONCEPT/ECP
https://github.com/cyclone-project

An Economical Security Architecture for Multi-cloud Application 101

4. Jones, M., Bradley, J., Sakimura, N.: JSON Web Token (JWT). RFC 7519 (Pro-
posed Standard), updated by RFC 7797, May 2015. http://www.ietf.org/rfc/
rfc7519.txt

5. Membrey, P., Chan, K.C.C., Ngo, C., Demchenko, Y., de Laat, C.: Trusted vir-
tual infrastructure bootstrapping for on demand services. In: Seventh International
Conference on Availability, Reliability and Security, Prague, ARES 2012, Czech
Republic, 20–24 August 2012, pp. 350–357 (2012)

6. Ngo, C., Membrey, P., Demchenko, Y., de Laat, C.: Policy and context management
in dynamically provisioned access control service for virtualized cloud infrastruc-
tures. In: Proceedings of the Seventh International Conference on Availability, Reli-
ability and Security (ARES2012). IEEE, Piscataway, NJ (2012)

7. Slawik, M.: The trusted cloud transfer protocol. In: IEEE 5th International Confer-
ence on Cloud Computing Technology and Science (CloudCom), vol. 2 (2014)

8. Slawik, M., Ermakova, T., Repschläger, J., Küpper, A., Zarnekow, R.: Securing
medical SaaS solutions using a novel end-to-end encryption protocol. In: Avital,
M., Leimeister, J.M., Schultze, U. (eds.) ECIS 2014 Proceedings. AIS Electronic
Library (2014)

9. Slawik, M., Zilci, B.I., Demchenko, Y., Aznar Baranda, J.I., Branchat, R., Loomis,
C., Lodygensky, O., Blanchet, C.: CYCLONE: unified deployment and manage-
ment of federated, multi-cloud applications. In: Proceedings of the 5th Workshop
on Network Infrastructure Services, pp. 453–457 (2015)

http://www.ietf.org/rfc/rfc7519.txt
http://www.ietf.org/rfc/rfc7519.txt

Efficient Context Management
and Personalized User Recommendations

in a Smart Social TV Environment

Fotis Aisopos1(&), Angelos Valsamis2, Alexandros Psychas1,
Andreas Menychtas1, and Theodora Varvarigou1

1 Distributed, Knowledge and Media Systems Group,
National Technical University of Athens, Athens, Greece

{fotais,ameny,alps}@mail.ntua.gr,

dora@telecom.ntua.gr
2 Department of Informatics and Telecommunications,

National and Kapodistrian University of Athens, Athens, Greece
ang.valsamis@gmail.com

Abstract. With the emergence of Smart TV and related interconnected devices,
second screen solutions have rapidly appeared to provide more content for
end-users and enrich their TV experience. Given the various data and sources
involved - videos, actors, social media and online databases- the aforementioned
market poses great challenges concerning user context management and
sophisticated recommendations that can be addressed to the end-users. This paper
presents an innovative Context Management model and a related first and second
screen recommendation service, based on a user-item graph analysis as well as
collaborative filtering techniques in the context of a Dynamic Social & Media
Content Syndication (SAM) platform. The model evaluation provided is based
on datasets collected online, presenting a comparative analysis concerning effi-
ciency and effectiveness of the current approach, and illustrating its added value.

Keywords: Smart TV recommendations � Social media � Second screen �
Context management � Graph analysis

1 Introduction

Recent studies show that mobile devices are gradually employed more and more in
parallel with TV usage, creating the so called second screen phenomenon1. Users
comment or rate TV shows on Social Media and search for related information about
actors, places and all other sorts of information related to the show they are watching.
This phenomenon is expected to grow exponentially, creating a huge impact on the
way content is created and delivered, not only through regular broadcasting but also
thought mobile devices. However, there are still no second screen standards, protocols
or ever common practices for users to discover and access additional information
related to the consumed content [1].

1 Second Screen Society: http://www.2ndscreensociety.com/.

© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 102–114, 2017.
DOI: 10.1007/978-3-319-61920-0_8

http://www.2ndscreensociety.com/

The lack of such attributes drives them to search intuitively in the social media or
online search engines for content. Moreover, despite the popularity of products like
Vizrt Social TV2 or Beamly social content network, building a custom user experience,
including context management and recommendations, is inefficient and not scalable3.
The continuing growth of online content though led to a need for the creation of
systems that manage it, to provide quality of service, content syndication and recom-
mendations. The main motivation of the current work is to provide an efficient model
that captures and manages Social TV-related context data, to provide smart recom-
mendations to the users.

In the context of the SAM Project [2], a Social Media-aware content delivery
platform for syndicated data to be consumed in a contextualised social way through
second screen devices has been provided. The former, out-dated model of users
searching for the information they desire is replaced with a new approach, where
information reaches users on their second screen using content syndication. This paper
focuses on user interaction history with first and second screen and the related beha-
vioural models applied in SAM, to form an innovative Context Management mecha-
nism, based on a graph database. To this end, users, Social Media items (e.g. widgets
appearing in second screen) as well as related interactions are saved in the form of a
nodes/edges, where graph analysis models and correlation techniques are employed to
properly assess the relevance of each media item to every user. As a result, a relevance
rating list for each first/second screen user is produced, allowing personalized rec-
ommendations of videos and related assets. Thus, user’s Social TV experience is
enriched as such: upon interaction with first screen, a relevant list of videos is rec-
ommended to her, while upon watching a specific video only relevant information
widgets (like Wikipedia articles) appear in second screen.

More specifically, the current paper contributions are summarized below:

• Scalable and timely efficient Social Media user profiling and Context Management
using an appropriate graph model (visualizing users, assets, interactions)

• Intelligent data analysis based on a combination of graph analysis and collaborative
filtering

• Multi-level Social TV personalized user recommendations via relevance rating
approach for root assets (videos) in first screen and sub-assets (video-related sources
of information) in second screen

• A comparative analysis of commonly used machine learning algorithms and clus-
tering techniques, applied to Social TV user context-based recommendations

The rest of the document is organized as follows: Sect. 1 is the current one and
serves the purpose of the introduction. Section 2 presents related work on graph-based
and collaborative filtering techniques, investigating the existing Social TV user context
modelling and recommendations. Section 3 introduces the SAM context management
approach, while Sect. 4 elaborates on graph analysis and collaborative filtering.
Finally, Sect. 5 analyzes the experimental results and Sect. 6 presents the conclusions.

2 http://www.vizrt.com/solutions/social-tv-solution/.
3 http://adexchanger.com/digital-tv/social-tv-platform-beamly-learns-the-second-screen-is-a-feed/.

Efficient Context Management and Personalized User Recommendations 103

http://www.vizrt.com/solutions/social-tv-solution/
http://adexchanger.com/digital-tv/social-tv-platform-beamly-learns-the-second-screen-is-a-feed/

2 Related Work

Graph databases have been extensively used lately to optimize storage and processing
of highly connected data. For example, authors in [3–5] provide insights into Neo4j
graph database and its performance advantages, illustrating the various cases it is used,
including recommender systems that apply “item-to-item” and “user-to-user” (i.e.
collaborative filtering) correlation. Demovic et al. [6] presented an interesting
context-based graph recommendation approach, saving multimedia-related data in a
graph structure and using Graph Traversal Algorithms to efficiently address user
preferences. This work uses explicit user “likes” for movies or genres, but does not
collect any other contextual or social data. Focusing on Social TV Platforms, works in
[7, 8] highlight the concept of context management and analysis in the frame of social
enabled content delivery to multi-screen devices. These papers present a novel solution
for media content delivery, based on the idea of fusing second screen and content
syndication, exploiting the advancements in the area of social media.

Recommender systems for eCommerce [9, 10] usually follow a personalised rec-
ommendation approach, based on users’ clustering and correlation, as well as behavior
factorization [11]. When it comes to TV-related personalised recommendations, a
substantial amount of work has been performed, focusing on TV programs and movies’
context evaluation. Krauss et al. [12] introduced personalized TV program recom-
mendations based on users’ viewing behavior and ratings, combining various data
mining approaches. A ten-fold cross validation over a user-generated dataset aggregated
from the operation of the TV Predictor software resulted into a promising program
prediction accuracy. Kim et al. [13] on the other hand, presented an automatic recom-
mendation scheme based on a user clustering approach that did not require explicit
ratings from TV viewers, but rather the watching history logs. The proposed rank model
used a collaborative filtering technique, taking into account the watching times, to
illustrate effectiveness with rich experimental results over a real usage history dataset.

Collaborative filtering techniques are frequently used by online recommender
systems [14] in domains such as web services [15], social networks [16] or movies [17]
selection. Kwon and Hong [18] propose a personalized program recommender for
smart TVs using memory-based collaborative filtering, employing a novel similarity
method that is robust to cold-start conditions and faster than existing approaches. The
evaluation uses an own-built crawling agent to retrieve movie reviews by real users and
predict ratings for non-viewed programs. On the other hand, work in [19] proposes
improvements to two of the most popular approaches to Collaborative Filtering,
introducing a new neighborhood based model, as well as extensions to SVD-based
latent factor models and integrating implicit feedback into the model. Those are
evaluated with a very limited form of implicit feedback, available on Netflix. Efficient
methods for collaborative filtering like Item-to-Item or SVD [20] decrease the impact
of noise and improve the ability for high quality recommendations systems, such as
movie recommenders [21]. However in our case, the high performance of the graph
analysis that will be presented is supported by a Pearson correlation technique, only in
the case the user has not interacted with neighboring multimedia items, in which case
Item-to-Item approaches would not provide sufficient results.

104 F. Aisopos et al.

SAM Context Management for Smart Social TVs attempts to progress beyond the
state-of-the-art solutions presented above, by providing a personalized multi-level
recommendation mechanism (applying both for first and second screen content), based
on an efficient graph-based approach. The localization of the graph analysis, in contrast
with the global machine learning or collaborative filtering models, yields a high
scalability for a big datasets of multimedia items and interactions.

3 SAM Context Management Approach

3.1 Platform Architecture and Data Collected

SAM aims at the development of a context-centric middleware that acts supportively to
its advanced federated social media delivery platform, providing open and standardised
way of defining, characterising, discovering, syndicating and consuming media assets
interactively. In the context of SAM Platform, the generic components of Context
Control are responsible for storing and managing context information. Figure 1 [22]
shows the subcomponents realising the Context Representation operations along with
the connections between them and other SAM components. The core component for
context-related operations is the Context Manager, collecting contextual information
from Social Media, including SAM dynamic communities exposed by Community
Structure Analyser, as well as the Syndicator and the Dashboard. Based on the analysis
of those data, the Context Manager produces ranked lists of assets (videos or widgets)

Fig. 1. SAM context control components.

Efficient Context Management and Personalized User Recommendations 105

per user and forwards those to the Syndicator that uses them to send smart recom-
mendations to first and second screen, after a user logs in to the SAM Dashboard.

The SAM Dashboard connects to specific Data Listeners capturing and storing all
interactions according to an extended W3C Social Web Working Group context model
(successor to the OpenSocial format). The aforementioned Data Listeners (Social Data
Listener, Content Data Listener, User Data Listener) are managed by a Data Listener
Controller and forward to the Context Manager all data related to the Social TV
context, including Social Media posts on SAM multimedia and user interactions with
first and second screen. The interactions which are useful for the Context Data Anal-
yser are the ones illustrating user’s relevance or satisfaction with the content provided,
such as “likes” or “scrolls”, as well as text comments or online posts, further evaluated
with the support of Semantic Services for sentiment analysis, so as to enrich the user
profile with contextual information.

In specific, the following user interaction items (Table 1) are collected from
Generic Dashboard listeners and sent to SAM Context Management component to
support the analysis:

3.2 SAM’s Graph Database

The Graph database of SAM is composed of edges and nodes, with nodes representing
entities and edges relations between them. Three types of entities are defined: “Assets”,
“Persons” and “Keywords”. Assets represent all kind of multimedia content in SAM
(video, widgets, related information etc.), while Keywords are nodes describing the
tags of an Asset. Finally, Persons represent users of the SAM first and second screen.
Every type of node has specific attributes, describing the information it enfolds. For
instance, an Asset has attributes such as id, type, title, etc. and a Person has name,
identifier, etc.

Nodes are connected to each other with edges called relationships. Assets can be
connected with other Assets with the relationship “is root asset of”, signifying the
widgets of a root Asset (movie). Assets can also be connected with Keywords with the
relationship “has keywords” or with Persons via a variety of relations. For Root Assets
(movies), these relationships are “consumes” and “comments”. If a person has watched
a movie or consumed related material then automatically an edge describing “con-
sume” action is created to store this action. The same principle is applied to the
“comment” relationship: if users express an opinion about an asset, the action is stored
as “comment”. Other relationships existing in such connections are “dislike”, “like”,
“fullscreen” and “scroll”. Edges have also attributes in order to enrich the information

Table 1. User interactions collected from Generic Dashboard.

Root asset interactions Widget interactions

Consume root asset Scroll widget
Scroll root asset Dismiss widget (Close window)
Fullscreen root asset Like widget
Comment root asset Dislike widget

106 F. Aisopos et al.

about the entities’ relationships. For example the edge “comment” contains information
about the intensity of a comment, its type (if it is a negative or a positive comment) and
the comment itself. An instance of the SAM graph DB with some initial records can be
seen in Fig. 2:

Note that the same person can change her mind on an asset (e.g. dislike what she
liked in the past). Thus, we decided to replace the explicit interactions (like/dislike,
comment) with the latest one received from the SAM Dashboard, so that the relevance
score to be calculated is efficient and properly updated.

4 Context Analysis and Recommendations

4.1 Graph Analysis

A basic part of the graph analysis is the application of “weights” to the interactions
between users and assets. Setting +1 and −1 as absolute values of relevancy and
irrelevancy respectively, we apply those values to user-asset relations that explicitly
show such a rating (“like” weights for +1, “dislike” weights for −1). Moreover,
comments on assets are saved along with their sentiment polarity and intensity (per-
centage of positivity or negativity), thus we can apply decimal weights, ranging from
(0, +1] for positive comments and from [−1, 0) for negative comments. Zero values
obviously express neutrality.

However, consuming or scrolling a root asset also indicates some interest by the
user. The same applies for clicking or scrolling a specific widget in second screen,
while dismissing it before it automatically closes indicates lack of interest. To capture
those implicit patterns, we need to make sure that they will not totally overlap the
explicit ones already mentioned. For example, if a user has “liked” an asset, but on the
other hand dismissed it early on, this implies a weaker “like” or “interest” relation. The
approach that we follow to make sure the overall weight (sum of weights) is mainly
defined by “likes”/”dislikes” and only partly affected by other interactions is to apply to
the latest a weight of

Fig. 2. SAM context manager graph database example.

Efficient Context Management and Personalized User Recommendations 107

wi ¼ pi
t � 1

ð1Þ

where pi = polarity indication (+1, −1) and t = number of interaction types for this
asset type. In this case, if an explicit interaction weight we is contradictory to implicit
weights wi, the overall weight W ¼ we þ

P
wi will still bare the (now normalized)

“polarity” of we

Moreover, we want to collect indirect user relationships with an asset. In cases, for
example, that a user has “liked” or commented positively for all widgets or keywords
of a root asset (which may also exist in other videos as well), a strong indication of
relevance to this root asset also exists. Similarly to the previous logic, we need to make
sure that indirect relations to assets will not overlap a direct weight to it. Thus, for every
rating to a connected asset/keyword we apply a weight of

wx ¼ rx
aþ kþ 1

ð2Þ

where rx = rating of neighbouring node, a = number of neighbouring assets and
k = number of the initial asset’s keywords. The overall relevance weight of a person for
an asset now becomes:

W ¼ we þ
X

wi þ
X

wx , W ¼ we þ
X pi

t � 1
þ

X rxi
aþ kþ 1

ð3Þ

Running this process recursively for connected assets, we conclude to the following
general algorithm:

108 F. Aisopos et al.

Note that keywords are also treated as assets in the following algorithm for sim-
plicity purposes.

To provide a rated list of assets to a user, based on her relevance to those, we need
to calculate a user’s node weights with existing assets. Thus, the algorithm shown
above must be run for all assets in the graph which implies a complexity of O(n2).
However, given the fact that recursive calls only need to apply for depth 2 in order to
make sense (when shortest path between assets equals 2 to bare some meaningful
relevance), complexity is further reduced to O(n).

4.2 Collaborative Filtering Analysis

In cases of more “isolated” assets in the graph, when the user analyzed has not
interacted with those or their neighbours (e.g. a new movie), it is obvious that the
aforementioned analysis will not identify any meaningful relevance. In such cases, it
was decided to use collaborative filtering among different users, in order to estimate the
user relevance with the specific assets, based on her correlation with other users.

A most common approach used for collaborative filtering, having a dataset of
simple numeric ratings [15], is using the Pearson Correlation Coefficient:

cau ¼
P h

i¼1ðrai � raÞ � ðrui � ruÞffiP
h
i¼1ðrai � raÞ2 �

P
h
i¼1ðrui � ruÞ2

q ð5Þ

between users a and u, where in our case h ¼ Iauj j is the amount of assets having been
rated by both users, rai is user a’s weight for asset i and ra ¼ average ra1; ra2; . . .; rahð Þ.

Having calculated the correlation coefficients of a user with other users, collabo-
rative filtering analysis can provide a prediction, rating her relevance with an asset j,
based on other users’ relevance for the specific asset and their correlation:

paj ¼ ra þ
P g

u¼1ðruj � ruÞ � cauP g
u¼1cau

ð6Þ

where g is the number of users that consumed j and Paj is the predicted rating of
relevance for user a.

4.3 Personalised Recommendations

The results of the analysis processes described above for every user is two-fold:

• A rated list of root assets, consisted of pairs of videos and relevancy scores for the
user, similar to top-k ranking approach presented in [16].

• A rated list of sub-assets of any root asset (appearing as widgets in second screen),
consisted of pairs of widgets and relevancy scores for the user.

Efficient Context Management and Personalized User Recommendations 109

Thus, personalized recommendations can be provided to first and second screen
Syndicator component, to prioritize or even disappear irrelevant movies and related
widgets of a movie upon consumption.

This results into the following two-level recommendation mechanism that provides:

• Smart recommendations of root assets (videos) to user.
• Smart recommendations of second screen widgets to user, while watching a

Smart TV program on first screen.

5 Experiments and Evaluation

5.1 Dataset and Configuration

The presentation of the analysis methods above makes the performance advantages of
the graph-based approach evident. For example, when retrieving for users having
consumed a specific asset in the graph, Neo4j just returns the neighbours of the cor-
responding node, in contrast with the latency resulting from a respective SQL query.
To acquire a meaningful and extended dataset, in order to form the SAM experimental
Context Management graph, the authors decided to search online for available related
data (users, movies, keywords, likes etc.).

Our experimental dataset is comprised of a big movie rating dataset found online
[23], comprising a huge database of movies and user ratings, as well as keywords
linked with those movies. To get most correlated users and movies in order to make a
meaningful graph collaborative filtering and analysis, we selected the 30 most popular
movies, in terms of number of ratings, rated by 619 users (overall 7038 ratings) and the
5 most popular keywords for each movie. This sampling assures that many common
keywords exist between movies, so that the aforementioned graph weighting will
apply. The dataset imported was interpreted into the SAM logic, directly importing
SAM users and assets (movies and keywords) into the graph. Unfortunately the original
dataset does not contain real life user interaction data, thus ratings were used to sim-
ulate comment sentiments and likes/dislikes based on their values, without any other
interactions (scroll, fullscreen etc.) captured in the graph. With no widgets and relevant
interactions existing, the current evaluation results are limited only to the first screen.
The analysis in the context of the current experiments results into a movie relevance
evaluation, which can then produce movie recommendations (one level evaluation) for
users based on their movie relevance.

The dataset was split into training and testing sets (70% and 30% of the original
rating respectively), with the first one to be fed into various data analysis algorithms
and the later to be used as ground truth. Experiments conducted mostly focused on the
accuracy of the aforementioned technique, in contrast with mainstream machine
learning approaches, for estimating users’ relevance with movies of the testing set. The
graph analysis, supported by the Pearson Collaborative filtering presented above, was
applied and compared with a k-nearest neighbours (K-NN) algorithm run over Neo4j4,

4 https://neo4j.com/graphgist/8173017/.

110 F. Aisopos et al.

https://neo4j.com/graphgist/8173017/

as well as various machine learning algorithms (SVM, C4.5, MLP etc.) employed in
Weka software, version 3.75, taking the initial dataset as an .arff file input. Experiments
operated on a desktop machine with Intel Core TM i5-3400 Processor 2.80 GHz and
12 GB of RAM memory, running 64-bit Windows 10 Pro.

5.2 Experimental Results

In Table 2 an analytical report of results per approach is provided, for predicting users’
relevance to the assets (movies) of the training set. The mean errors refer to the
difference between the calculated values and the real original ratings, ranging from −1
to 1, which represent the current evaluation’s ground truth.

Note that time comparison between algorithms running in batch mode that do not
connect to a database and algorithms that return results on-demand, like the one we
implement in SAM, is irrelevant. For example the Naive Bayes approach trains its
model instantly but requires the full dataset available in memory. When considering
our dataset of 7038 ratings this is feasible, however it is apparent that this is not a
scalable solution. The motivation behind the decision to get metrics from

Table 2. Accuracy and mean errors of SAM predictions, compared to State-of-the-Art machine
learning techniques.

Mean absolute
error

Root mean squared
error

Mean percentage
error

SVM with linear kernel 0.1099 0.3315 5.5%
C4.5 w/10 Bagging 0.1253 0.2688 6.3%
Best-first decision tree 0.1274 0.2626 6.4%
Logistic regression 0.1269 0.2612 6.4%
LAC lazy associative
classifier

0.1306 0.2563 6.5%

Bayes net with K2 search 0.1263 0.2559 6.3%
Naive Bayes 0.1283 0.2551 6.4%
Naive Bayes tree 0.1334 0.2652 6.7%
MLP 100 neurons 0.1324 0.2632 6.6%
CNN 100 neurons 0.1269 0.2530 6.4%
CNN 1000 neurons 0.1202 0.2578 6.0%
Hoeffding tree 0.1499 0.2684 7.5%
Hidden Markov model 0.1653 0.2875 8,3%
K-nearest neighbour on
Neo4j

0.3226 0.4108 16,1%

SAM
(graph + CollabFiltering)

0.1312 0.2604 6.6%

5 http://www.cs.waikato.ac.nz/ml/weka/.

Efficient Context Management and Personalized User Recommendations 111

http://www.cs.waikato.ac.nz/ml/weka/

state-of-the-art machine learning algorithms is mainly to evaluate the accuracy of our
proposed algorithm.

As can be observed in the experimental results, SAM’s approach scores relatively
well, taking into account the low performance cost introduced by the graph database, as
well as its multilevel capabilities. The authors compared our graph-based analysis
approach with variations of some known algorithms. In particular, we used Breiman’s
Bagging technique [24] with 10 iterations (C4.5) and also tried different neural network
models (Convolutional Neural Network with 100 and 1000 neurons, Multi-layer Per-
ceptron). Probabilistic models (Logistic Regression, Naive Bayes, Bayesian network
with K2 search algorithm) and simple tree implementations (C4.5, Best-first) were also
used, yielding competitive results. In terms of mean absolute error the SVM with a
linear kernel was superior but with a weak root mean squared error, for which the 100
neurons CNN produced the best results. We approached the problem as a classification
problem because the dataset has discrete values in ratings (1–5); however we report the
error metrics because in our case we are interested in how close the predictions were to
the ground truth. Since our data is ordinal and have an inherent order, it is a safer metric
to ensure generalization of models.

Beyond comparing SAM Context Management approach with other machine
learning techniques in terms of effectiveness, we also present a comparison of the two
algorithms running on top of the graph database (SAM, K-NN) time-wise. Resulting
from those algorithms, SAM’s Context Management component exposed two recom-
mendation web services respectively. Stress-testing our approach performance, as a
commercial deployed service, we used JMeter [25] to generate requests for all ratings
of the testing set to those services. The response times of the first 1000 requests can be
seen in Fig. 3:

SAM Recommendation Web Service evidently outperforms K-NN, one of the most
popular clustering approaches for recommendations using graphs. Results above val-
idate the current model’s low complexity and illustrate its scalability. Results can be
explained by the locality of the data needed for SAM. In both recommendations levels

Fig. 3. A time performance comparison between K-NN and SAM recommendation web
services.

112 F. Aisopos et al.

the algorithms start from the user’s node and travel in his near neighbours to find
interactions without the need of prior knowledge that is needed in the K-NN case.

6 Conclusions

In this paper, we presented an efficient Context Management approach for Social TV
users, collecting context-related data and actions to provide personalized multi-level
recommendations via a hybrid method combining graph paths analysis and Pearson
collaborative filtering. Experiments used a real movie rating dataset found online and
illustrated promising results in one level recommendations, in terms of accuracy and
performance. The effectiveness of the current model will be more evident with the
addition of an extended user interaction dataset, which can be aggregated from the
SAM second screen listeners during the final trials of the project in the upcoming
months. Thus, in the future the authors plan to aggregate Social TV-related datasets, in
order to evaluate the current model end to end in both levels (first and second screen).
The validity of the results will be better illustrated using more diverse datasets, in terms
of user relevance scores, thus training sets where ratings are distributed more widely
must be included, so that correlation techniques can generate more concrete and
meaningful user clusters. Lastly, as long as such a solution will go commercial,
privacy-related issues should be also tackled, employing user anonymisation and
privacy-preserving item-based collaborative filtering [26].

Acknowledgements. This work has been supported by the SAM project and funded from the
European Union’s 7th Framework Programme for research, technological development and
demonstration under grant agreement no 611312.

References

1. Heino, N., Tramp, S., Auer, S.: Managing web content using linked data principles-
combining semantic structure with dynamic content syndication. In: Computer Software and
Applications Conference (COMPSAC), pp. 245–250. IEEE (2011)

2. Socialising Around Media (SAM) Project: Dynamic Social and Media Content Syndication
for 2nd Screen. http://samproject.net/

3. Vicknair, C., et al.: A comparison of a graph database and a relational database: a data
provenance perspective. In: Proceedings of the 48th Annual Southeast Regional Conference.
ACM (2010)

4. Holzschuher, F., Peinl, R.: Performance of graph query languages: comparison of cypher,
gremlin and native access in Neo4j. In: Proceedings of the Joint EDBT/ICDT 2013
Workshop (2013)

5. Miller, J.J.: Graph database applications and concepts with Neo4j. In: Proceedings of the
Southern Association for Information Systems Conference, Atlanta, GA, USA, March 2013

6. Demovic, L., et al.: Movie recommendation based on graph traversal algorithms. In: 2013
24th International Workshop on Database and Expert Systems Applications (DEXA). IEEE
(2013)

Efficient Context Management and Personalized User Recommendations 113

http://samproject.net/

7. Menychtas, A., Tomás, D., Tiemann, M., Santzaridou, C., Psychas, A., Kyriazis, D.,
Vidagany, J.V., Campbell, S.: Dynamic social and media content syndication for second
screen. Int. J. Virtual Communities Soc. Netw. (IJVCSN) 7, 50–69 (2015)

8. Santzaridou, C., Menychtas, A., Psychas, A., Varvarigou, T.: Context management and
analysis for social tv platforms. In: eChallenges e-2015 (2015)

9. Sarwar, B.M., et al.: Recommender systems for large-scale e-commerce: scalable
neighborhood formation using clustering. In: Proceedings of the Fifth International
Conference on Computer and Information Technology, vol. 1 (2002)

10. Wei, K., Huang, J., Fu, S.: A survey of e-commerce recommender systems. In: 2007
International Conference on Service Systems and Service Management. IEEE (2007)

11. Zhao, Z., et al.: Improving user topic interest profiles by behavior factorization. In:
Proceedings of the 24th International Conference on World Wide Web (2015)

12. Krauss, C., George, L., Arbanowski, S.: TV predictor: personalized program recommen-
dations to be displayed on smarttvs. In: Proceedings of 2nd International Workshop on Big
Data, Streams and Heterog. Source Mining: Algorithms, Systems, Programming Models and
Applications (2013)

13. Kim, E., Pyo, S., Park, E., Kim, M.: An automatic recommendation scheme of TV program
contents for (IP) TV personalization (2011)

14. Schafer, J.Ben, Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender
systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol.
4321, pp. 291–324. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72079-9_9

15. Tserpes, K., Aisopos, F., Kyriazis, D., Varvarigou, T.: Service selection decision support in
the internet of services. In: Altmann, J., Rana, O.F. (eds.) GECON 2010. LNCS, vol. 6296,
pp. 16–33. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15681-6_2

16. Chen, H., Cui, X., Jin, H.: Top-k followee recommendation over microblogging systems by
exploiting diverse information sources. Future Gener. Comput. Syst. 55, 534–543 (2016)

17. Salter, J., Antonopoulos, N.: CinemaScreen recommender agent: combining collaborative
and content-based filtering. IEEE Intell. Syst. 21(1), 35–41 (2006)

18. Kwon, H.-J., Hong, K.-S.: Personalized smart TV program recommender based on
collaborative filtering and a novel similarity method. IEEE Trans. Consum. Electron. 57(3),
1416–1423 (2011)

19. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM (2008)

20. Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative filtering recommender systems.
Found. Trends Hum. Comput. Interact. 4(2), 81–173 (2011)

21. Koren, Y.: Collaborative filtering with temporal dynamics. Commun. ACM 53(4), 89–97
(2010)

22. SAM deliverable D6.9.2 – Context Analysis & Dynamic Creation of Social Communities
Public Report (second version). http://samproject.net/sam-community/

23. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans.
Interact. Intell. Syst. (TiiS) 5(4) (2015). Article 19

24. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
25. Apache JMeter, an open source Java application designed to load test functional behavior

and measure performance. http://jmeter.apache.org/
26. Li, D., Chen, C., Lv, Q., Shang, L., Zhao, Y., Lu, T., Gu, N.: An algorithm for efficient

privacy-preserving item-based collaborative filtering. Future Gener. Comput. Syst. 55, 311–
320 (2016)

114 F. Aisopos et al.

http://dx.doi.org/10.1007/978-3-540-72079-9_9
http://dx.doi.org/10.1007/978-3-642-15681-6_2
http://samproject.net/sam-community/
http://jmeter.apache.org/

When Culture Trumps Economic Laws:
Persistent Segmentation of the Mobile

Instant Messaging Market

Maria C. Borges(&), Max-R. Ulbricht, and Frank Pallas

Information Systems Engineering Group, TU Berlin, Berlin, Germany
{m.borges,mu,fp}@ise.tu-berlin.de

Abstract. This paper discusses the general characteristics of the mobile instant
messaging market from a competition point of view. Positive feedback and
indirect network effects, which strongly influence the mobile instant messaging
market, tend to facilitate the development of one quasi-monopoly. Even after
several years of market maturation, however, no mobile instant messaging
application has yet established such a monopoly, seemingly contradicting eco-
nomic theory. In order to resolve this contradiction, this paper deconstructs the
global instant messaging landscape using theoretical insights into local bias and
distinct cultural needs. We find that differences between high- and low-context
cultures provide the most compelling explanation for market fragmentation and
derive possible strategies for single applications’ global market expansion.

Keywords: Instant messaging � Network economics � Information economics �
Monopoly � Shared market

1 Introduction

Instant messaging, often abbreviated simply to IM, first became popular in the late
1990s with desktop applications like ICQ, AIM, or MSN Messenger. Recently, due to
the widespread use of smartphones and the increasing diffusion of mobile Internet
access [1], mobile IM has become predominant.

Instant messaging applications are, according Shapiro and Varian’s definition [2],
information goods. They are software that can be encoded into a stream of bits which is
costly to produce but involves very low marginal costs. They are also products driven by
the network economy, where the number of users directly and indirectly affects utility
and thus consumer adoption, resulting in a so-called positive feedback loop [3, 4].
Markets with such characteristics, in turn, are usually so called winner-takes-all markets
which tend to tip in favor of the company or technology that is ahead [2, 5]. In other
digital markets such as social networks or the e-commerce market, such near-
monopolies obviously occur [6, 7].

In the mobile instant messaging market, however, we are not able to identify one
service that is dominating the market on a global level even almost 11 years after the
first mobile IM service, Blackberry Messenger (BBM), launched in 2005. Instead, the
mobile IM landscape is still a highly fragmented space, with multiple applications
offering similar value propositions, competing to increase their market share.

© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 115–126, 2017.
DOI: 10.1007/978-3-319-61920-0_9

When the necessary mobile technologies became widely available, the market al-
lowed for a lot of new competitors to enter the market. WhatsApp, LINE, WeChat,
Kakao Talk, Snapchat and Viber all entered the market after 2009, while veterans like
Facebook Messenger or Tencent QQ successfully transition to mobile as well. Today,
there are more than 10 different mobile IM applications with more than 100 million
users1, and while not all of them grow at the same rate, market competition shows no
signs of slowing down.

From a global perspective, WhatsApp currently leads, having recently reported
more than one billion users2. It may thus appear as the frontrunner and the foreseeable
monopolist to most. The Asia-Pacific market, however, has demonstrated itself
impenetrable for the application. Similarly, LINE and WeChat are also having trouble
expanding beyond their respective regional markets.

This paper seeks to explain the apparent discrepancy between economic theory and
the observed structure of the mobile IM market. The instant messaging market lacks
any significant objective data, which companies try to leverage for competition reasons.
Accordingly, instead of a quantitative analysis, we strive to find compelling explana-
tions using theoretical insights. For this aim, we first analyze how (direct and indirect)
network effects influence the instant messaging market in Sect. 2. We then briefly
introduce the most important mobile IM applications and their specific characteristics
in Sect. 3 and illuminate global and local market structures of mobile IM in Sect. 4. On
top of that, we provide possible explanations for the observable market fragmentation
in defiance of network effects in Sect. 5. In particular, we see variables like local bias
and different cultural givens to significantly moderate competition in network markets.
Finally, we discuss possible strategies for overcoming cultural obstacles to market
expansion pursued by different mobile IM players in Sect. 6. Section 7 concludes.

2 Networks Effects in Instant Messaging

Network economics largely rest upon four main concepts: direct network effects,
indirect network effects, switching costs, and lock-ins [8]. In order to establish a
common ground for our discussion, these concepts shall be described and applied to the
instant messaging market in brief.

2.1 Direct Network Effects

In a network subject to direct network effects, the value of connecting to it depends on
the number of people already connected [2]. Communication networks are the prime
example for such network effects, since the user can’t extract any use from the product
if the network isn’t there [9]. According to Metcalfe’s law, the value of the commu-
nication network increases as the square of the number of users. The more users a

1 WhatsApp, LINE, WeChat, Kakao Talk, Snapchat, Viber, Kik, Tango, Facebook Messenger,
Tencent QQ and iMessage have all individually reported having more than 100 million users .

2 https://blog.whatsapp.com/616/One-billion.

116 M.C. Borges et al.

https://blog.whatsapp.com/616/One-billion

network already has, in turn, the more will it attract further users. This so-called
positive feedback, where a system feeds itself to become stronger, is ignited once
technologies reach a certain threshold of users – the so-called critical mass [2]. As
different players in a market try to reach this critical mass at, a battle between them
ensues. Markets with strong positive feedback usually tend to tip in favor of the
company or technology that is ahead [2], while players that lag behind eventually
slump. These are so-called winner-takes-all markets. Figure 1 shows the typical evo-
lution of such markets.

Mobile IM is in its very nature a telecommunication technology. Users can com-
municate with others who use the same instant messaging application and consequently
build a communication network subject to strong direct network effects and positive
feedback. The value of a mobile IM application to the individual user depends on how
many potential communication partners already use the same application or a com-
patible one.

Wang et al. [3] proved that the perceived number of users in instant messaging
networks directly influences behavioral intention to use. Other research [4, 11] provides
similar results.

2.2 Indirect Network Effects

Indirect network effects refer to the dependency between the size of a network and the
availability of complementary products and services [8]. When the size of a network
increases, more complementary goods are developed as producers see more potential in
the market. The availability of more complementary goods, in turn, makes more users
want to join the network.

In the mobile IM market, complementary goods particularly exist in the form of
so-called “stickers”, which are digital images that can be obtained as “add-ons” used in
conversation to express emotions. They are usually developed by third-party designers
or advertisers and therefore subject to indirect network effects: more stickers will be
developed with increasing size of the network, which in turn makes the network more
attractive to users considering adoption. This positive in instant messaging applications
has been shown in [4]. Other examples for complementary products in instant mes-
saging are in-app games or additional services.

Fig. 1. Evolution of a winner-takes-all market over time, according to [2, 10].

When Culture Trumps Economic Laws 117

2.3 Switching Costs and Lock-in

Switching costs and lock-ins refer to the disadvantages (in terms of monetary costs or
effort, for example) that a user faces if he decides to switch to a new technology [9].
Complementary products typically heighten these switching costs as long as they are
not transferable across different networks. When the switching costs are so high that
they keep the user from switching at all, then the user is locked-in [2].

Switching costs are especially critical for instant messaging applications, as most
applications cost nothing to download and join. Users can run multiple applications on
their phones, but have to deal with the burden of managing multiple apps simultane-
ously. As continuous use is a prerequisite for these applications to make profit at all,
applications try to lock-in their users in order to ensure loyalty. Besides complementary
products, switching obstacles for instant messaging applications include the user’s
established relations with other users in the network, the user’s chat history or any other
data that binds the user to the application, and possible relearning and retraining costs
regarding the applications usability. Deng et al. [12] proved that switching costs
directly influence customer loyalty to mobile IM applications.

3 Applications

Most mobile IM applications share the same basic features, but as competition in the
market increased, established players and new entrants started offering new services
and value propositions. While it is clear that people use mobile IM applications to
communicate with other people, the features that mediate the communication differ. In
the following, we will thus introduce some of the most popular mobile IM applications
and identify their defining features.

3.1 WhatsApp

WhatsApp launched in 2009. It is a simple and straightforward app that relies heavily
on the basic chatting functionality and cross-platform compatibility. Users can com-
municate through text and simple Unicode emojis. They can share contact information,
images, video, audio, documents and their location, just like in all of the other apps
mentioned below. WhatsApp also provides group chat functionality and recently
introduced the ability to make voice calls.

3.2 Facebook Messenger

Facebook Messenger spun out of the company’s desktop messenger, Facebook Chat,
which launched in 2008. In April 2014, Facebook removed the messaging feature from
the main app, in order to force users to the separate Messenger application. Since then,
it has evolved into a feature-rich application. In addition to WhatsApp’s features,
Messenger also has “stickers” and GIFs that can be used in conversations. Moreover,
the mobile version has recently added a third-party app platform. Furthermore, users
can also chat with businesses and organizations that have a Facebook page.

118 M.C. Borges et al.

3.3 WeChat

WeChat has basically the same features as Facebook Messenger: it also offers stickers
and allows users to chat with official business and organization pages. WeChat’s
platform is, however, significantly more advanced. It offers payment services and
businesses can run whole e-commerce shops on the platform.

3.4 LINE

LINE first launched in Japan in 2011, as a response to the damaged telecommunica-
tions infrastructure in Japan caused by an earthquake. Since then, it has evolved into a
rich platform that provides many multimedia features, similar to WeChat. It allows
users to talk to strangers in the same way, and also enables business to connect to users
through the app.

3.5 Kakao Talk

Kakao Talk offers a rich user experience. The messaging app has expanded into a social
platform that provides not only the messaging feature, but also games,
social-network-like user feeds, music-streaming and e-commerce. It was an innovator
when it came to expanding the platform to integrate new features.

Table 1 summarizes how the aforementioned apps differentiate each other in terms
of features. What is noteworthy is the extreme simplicity of WhatsApp, as well as the
richness of the Asian applications. Facebook Messenger also provides some of the
features of its Asian competitors, though they only adopted them after the features had
shown success in the Asian market (e.g. stickers in instant messaging took off in 2012
when LINE introduced them. Facebook Messenger followed in 2013).

4 Local Markets and the Global Instant Messaging
Landscape

As already laid out above, markets with strong positive feedback usually end up tipping
and become so-called winner-take-all markets. Shared markets on the other hand, don’t
tip and competitors share the market with predictable market shares [5]. Furthermore,

Table 1. Distinguishing features of the top applications.

Features WhatsApp Facebook Messenger WeChat LINE Kakao Talk

Stickers ✓ ✓ ✓ ✓

Business pages ✓ ✓ ✓ ✓

Third-party apps ✓ ✓ ✓ ✓

User feed (Facebook) ✓ ✓ (KakaoStory)
Share location ✓ ✓ ✓ ✓ ✓

Group chat ✓ ✓ ✓ ✓ ✓

Payments ✓ ✓ ✓ ✓

When Culture Trumps Economic Laws 119

we also showed in Sect. 2 that the mobile IM market is strongly influenced by positive
feedback. Accordingly, one provider should eventually emerge as the winner and
conquer the global market for mobile IM. Nonetheless, almost 11 years have passed
since the first market entry (BBM in 2005) and there is still no winner in sight.
WhatsApp leads in matters of the total number of users and recently passed the 1
billion milestone but, as Fig. 2 shows, other applications like Facebook Messenger and
WeChat also continue to gain users at comparable speeds.

At closer inspection, it turns out that different mobile IM applications prevail in
different regions of the world: WhatsApp controls the European market, as well as the
South American market. In countries like Spain, Germany, Italy and the Netherlands, it
is hugely popular. However, WhatsApp has barely had any traction in the Asia-Pacific
region4. The application failed to attracts a substantial share of the market in key
countries like Japan, Taiwan, Thailand and South Korea. It is the only popular foreign
application not forbidden by the Chinese government, but the application has not found
much of a user base there either (aside from Hong Kong). After failing to cooperate
with a criminal investigation, WhatsApp saw its services temporarily banned in Brazil,
a move that left many users scrambling for alternatives.

Fig. 2. Evolution of the instant messaging market over the last 3 years3.

3 Numbers according to https://www.techinasia.com/wechat-697-million-monthly-active-users,
http://www.forbes.com/sites/niallmccarthy/2016/02/02/whatsapp-reaches-one-billion-users-
infographic/#244ac6a8520b, http://fortune.com/2016/04/07/facebook-messenger-900-million/,
https://www.techinasia.com/line-annual-revenue-2015.

4 https://ondeviceresearch.com/blog/messenger-wars-how-facebook-climbed-number-one.

120 M.C. Borges et al.

https://www.techinasia.com/wechat-697-million-monthly-active-users
http://www.forbes.com/sites/niallmccarthy/2016/02/02/whatsapp-reaches-one-billion-users-infographic/#244ac6a8520b
http://www.forbes.com/sites/niallmccarthy/2016/02/02/whatsapp-reaches-one-billion-users-infographic/#244ac6a8520b
http://fortune.com/2016/04/07/facebook-messenger-900-million/
https://www.techinasia.com/line-annual-revenue-2015
https://ondeviceresearch.com/blog/messenger-wars-how-facebook-climbed-number-one

In fact, governmental regulations also shaped the Chinese Market considerably.
WeChat, in turn, currently has more than 700 million users, the majority of which are
from mainland China. The app has benefitted from China’s increasing smartphone
penetration and the relative lack of competition in the market. A variety of laws and
regulations prevent several websites and applications from functioning, which leads to
the development and popularity of their domestic products [13].

LINE dominates the markets of Japan, where it first launched, Taiwan and Thailand.
The application recently made a big push into the Indonesian market, and managed to
attract a significant share of the market (see also Sect. 6), though BBM still dominates
there. The application managed to attract a large user base in the first year, and intro-
duced stickers less than a year after launch, a feature that has shown to be very popular
and profitable in the Japanese market.

Facebook Messenger has recently reached 900 million users. The application is
especially popular in North America, where it is for example the most downloaded
Android app after Facebook’s main app5.

Kakao Talk, a Korean product, is South Korea’s market leader in the instant mes-
saging market. South Korea is currently ranked as the country with the highest smart-
phone penetration in the world6, which makes them an interesting, mature and
developed market for mobile-instant messaging services. With more than 38 million
monthly active users in the country in 2015, Kakao Talk reports a penetration of more
than 97%7. That figure becomes even more remarkable when compared to the pene-
tration rate of other applications. Facebook Messenger has less than half of Kakao
Talk’s market share, and WhatsApp barely exists in South Korea with a 1% install rate8.

Altogether, market structures of mobile IM significantly differ across the world.
Instead of one single global monopoly, we see different regions to be dominated by
different mobile IM players: WhatsApp in South America and Europe, Facebook
Messenger in North America, Kakao Talk in South Korea, LINE in Japan, Taiwan and
Thailand, and WeChat in China.

5 Explanation Approaches

As we see, the market for mobile IM is much more fragmented than suggested by
economic network theory. A possible approach for resolving this discrepancy between
theory and the observable situation in mobile IM markets lies in the local-bias-theory
laid out by Lee et al. [14]. According to this theory, local bias occurs when a user only
maintains relationships with a small number of acquaintances that do not adopt the
leading technology, but rather one of the lagging competitors, thus preventing a
winner-takes-all market from actually developing. If all friends of a certain user live in

5 https://www.quettra.com/research/mobile-app-landscape-2015-q3-report/.
6 http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-
climb-in-emerging-economies/.

7 http://www.kakaocorp.com/en/pr/pressRelease_view?page=2&group=1&idx=8255.
8 https://www.quettra.com/research/mobile-app-landscape-south-korea-insights-NOVEMBER-2015/.

When Culture Trumps Economic Laws 121

https://www.quettra.com/research/mobile-app-landscape-2015-q3-report/
http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/
http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/
http://www.kakaocorp.com/en/pr/pressRelease_view%3fpage%3d2%26group%3d1%26idx%3d8255
https://www.quettra.com/research/mobile-app-landscape-south-korea-insights-NOVEMBER-2015/

South Korea and use Kakao Talk, for example, the user could be unaffected by the
network effects of WhatsApp or another big network, as he doesn’t perceive value in
connecting to a network not adopted by his peers. Local bias tends to be preserved in
highly clustered networks, but if many links between the clusters exist, then the effect
of local bias is usually damped down [14].

As established in Sect. 4, instant messaging popularity tends to differ significantly
according to geographical location. Different countries or cultures thus build different
clusters. However, many opportunities for links between the clusters exist: the world is
becoming gradually more interconnected as people increasingly tend to interact across
the boundaries of such clusters (that is, communicate with people from other regions of
the world where other mobile IM applications prevail). This would speak against the
prospect of local bias persisting in the mobile IM market. The social network market is
a good example: It is relatively similar to the mobile IM market and it is also a market
fueled by network effects. As opposed to mobile IM, however, the social networking
market eventually tipped in favor of Facebook, even in countries where there had been
an established local alternative (studiVZ in Germany, Mixi in Japan). While it may
moderate the market to some degree, local bias is therefore not a powerful enough
variable to fully explain the current state and evolution of the mobile IM market.

Another variable that moderates a market’s likelihood to tip is different customer
needs. When different users have very different requirements, then the market is less
likely to tip [2]. In this regard, different communication styles are an important factor in
the mobile IM market. Hall’s theory of high and low context cultures [15] may thus be
another valuable explanation approach. It attempts to categorize cultural orientations
and represents the extent to which different cultures contextualize information.
High-context cultures rely heavily on situational information such as nonverbal
behavior or the relationship between participants to facilitate understanding [16]. As
much of the communicative content is already given by the respective context and thus
does not need to be codified explicitly, communication tends to be economical, efficient
and satisfying [15]. Low-context cultures, on the other hand, typically communicate
primarily through verbal information [16].

Putting this dichotomy in relation to mobile IM, several studies have shown that
stickers or emojis are highly important for users in high-context cultures [16, 17] as
they allow users to express certain feelings or emotions that cannot be easily articulated
in words. Both, emojis and stickers originated in Japan. They tend to be really popular
in high-context cultures like Japan, Taiwan, South Korea and China. LINE claims that
its users send close to two billion stickers a day9. In cultures where languages tend to
have thousands of characters and tricky input methods, it’s not hard to understand how
applications that offer stickers got so big.

The distinction between high- and low-context cultures and the resulting differ-
ences in communication style may thus provide an explanation for the lack of traction
of some mobile IM applications in specific low-context markets. Applications like

9 https://nmk.co.uk/2014/03/19/next-in-line-for-mobile-messaging-interview-with-line/.

122 M.C. Borges et al.

https://nmk.co.uk/2014/03/19/next-in-line-for-mobile-messaging-interview-with-line/

WhatsApp, that do not provide the necessary support for visual or non-verbal com-
munication are not suited for that communication style and thus fail to attract users.

Shapiro and Varian [2] also identified the legacy of an earlier system and the ten-
dency to favor domestic firms as possible reasons that might keep a global market from
tipping. The latter certainly seems to be the case in some local markets, for example in
South Korea. Tang and Lee [18] theorize that Kakao Talk’s success might be due to
Korean’s loyalty to domestic products or services. They favor Korean search engine
Naver overGoogle, Samsung and LG phones over Sony and iPhones,while also favoring
Korean social network services like KakaoStory and NaverStory over Facebook.

Across Europe, in turn, WhatsApp seems to have attracted a large user base because
its simplistic and straightforward design caters to the more low-context communication
style of cultures like Germany, Netherlands and the Scandinavian countries. But that
doesn’t tell the whole story. WhatsApp now benefits from its legacy. BlackBerry
Messenger preceded it four years, yet Whatsapp was the first one to offer cross-platform
compatibility, which gave them a considerable advantage in Europe’s very diverse
mobile OS market. In the first year after launching in 2009, WhatsApp was already
available on Apple, Android, BlackBerry and Symbian phones. Furthermore, the cre-
ators made the application available not just to smartphone users, but also for Nokia
feature-phones, who at the time still controlled a considerable share in the European
market. BBM is another example of a legacy system having a lasting effect on the mobile
IMmarket. The application dominates in Indonesia, where historically BlackBerry held a
large share of the device market. Because the app came preinstalled, Indonesians started
using it, and when they switched to modern smartphone brands like Samsung, they
continued to use the app (which was ported to other platforms in 2013) there.

Lock-in and Apple’s legacy also has significant repercussions for the mobile IM
market. iMessage is an instant messenger service integrated almost seamlessly in
iPhone’s traditional SMS and MMS application. iOS users usually start using the
application by default and are therefore less likely to seek other instant messaging
applications like WhatsApp, which ranks consistently higher in the US’s Android
application store than in the iOS store.

As shown in Sect. 2, lock-in and switching costs are a powerful driver for user
loyalty to IM applications. The legacy systems mentioned above have secured high
switching costs and lasting lock-in effects for their users. This suggests a certain inertia
in the market, where switching costs may be too high to overcome.

Altogether, we can thus identify different communication needs in high- vs.
low-context cultures as the most compelling explanation for the observed fragmenta-
tion of the mobile IM market in defiance of what economic network theory suggests. In
addition, the structure of the smartphone market in a given region may have a sig-
nificant indirect effect on the local instant messaging market, as legacy systems have
managed to hold on to the lock-in associated with their IM application. The local bias
theory, however, does not satisfy as the only explanation for the segmentation of the
market, even though it may influence the market to some degree.

When Culture Trumps Economic Laws 123

6 Strategies and Implications

Given the above analysis, it is crucial to recognize different cultural environments
within various local markets for companies looking to expand beyond their established
region. In the literature (e.g. [19]) on market internationalization, two general strategies
have emerged: globalization and localization. Globalization involves selling the same
products or services in the same way everywhere, while localization involves operating
in a number of countries and adjusting products and practices accordingly [20]. In the
following, we will discuss both strategies for the mobile IM market.

6.1 Globalization

Pursing globalization as a strategy has many advantages. For one, providers are able to
save costs, because they don’t have to adapt the product according to local markets.
The product also benefits from stronger network externalities, as a network with more
users has a higher perceived value. On the other hand, globalization also faces chal-
lenges: no local market is like any other, so adaptation to local needs may be necessary
to attract more users and maximize profits.

Facebook Messenger is perhaps the application that is most aggressively pursuing
the global market. From 2013 onwards, Facebook Messenger started to venture away
from its messaging core capabilities and also introduced stickers and platform features –
with the obvious intention of making the app more appealing to the Asia-Pacific market.

Western markets seem unaffected by Facebook Messenger’s feature expansion, as
users continue to use the app. The move proved to be successful in the Philippines,
where it is the most frequently used mobile IM app10. However, its diversification
efforts haven’t yielded promising returns in South Korea, Japan and Taiwan, where
local applications still dominate. Perhaps users don’t see a reason to switch, as the
applications they’re using already provide the features Facebook is now implementing.
As Facebook Messenger shows, expanding an existing application with features
addressing specific needs of multiple cultures can be a viable strategy for expanding
market share in yet unexploited regions.

6.2 Localization

The localization strategy is associated with higher marketing costs, as it requires
product customization and extensive market research, but may prove to be advanta-
geous in the instant messaging market, which, as established in Sect. 5, has to cater to
very distinct cultural needs. LINE’s expansion into the Indonesian market is a fine
example of this.

The company developed stickers that show characters fasting and celebrating
Ramadan, which appeals to the country’s large Muslim population. LINE also made

10 http://thenextweb.com/asia/2014/07/09/facebook-messenger-outguns-whatsapp-asias-chat-apps-
philippines/#gref.

124 M.C. Borges et al.

http://thenextweb.com/asia/2014/07/09/facebook-messenger-outguns-whatsapp-asias-chat-apps-philippines/#gref
http://thenextweb.com/asia/2014/07/09/facebook-messenger-outguns-whatsapp-asias-chat-apps-philippines/#gref

their application available for the BlackBerry operating system, as they recognized the
large number of users who still had a BlackBerry device. Recently, though, there has
been some backlash regarding some stickers in the app depicting LGBT themes.
Indonesia is a very socially conservative nation. After governmental ban, LINE
removed LGBT-themed stickers from the app, which shows how important it is to cater
to the market’s culture.

While the localization strategy can thus also prove viable in general, LINE’s
expansion to new markets has been comparably slow and the company is struggling to
grow their user base further (see Fig. 2). This raises doubts about whether, in a market
as dynamic as mobile IM, the costly and time-consuming localization strategy may be
suitable.

7 Conclusion

Altogether, mobile IM applications operate in a market driven by network economics.
Economic theory tells us that such markets should eventually tip and become
winner-takes-all markets. This is what finally ended up happening with the social
network market: after market entry in 2004 and global launch in 2006, Facebook first
controlled the North American market, but eventually managed to dominate in local
markets where other applications once ruled.

The same tippyness would be expected of the mobile IM market. However, as
shown in Sect. 4, the market still seems very fragmented. Insights into cultural dif-
ferences suggest that one of the reasons the market hasn’t tipped yet is the distinct
communication style of different cultures. Lock-ins and a tendency to favor domestic
firms have also been observed in the instant messaging market. Basically, two different
strategies can be pursued for addressing these factors in order to open up new markets:
a globalization strategy, where different culture-specific features are joined in one
product, and a localization strategy, where culturally different markets are targeted
individually. In the mobile IM market, both strategies can currently be observed, with
the globalization approach appears to be more agile and successful.

It will be interesting to see how the same cultural challenges will be addressed in
other markets beyond mobile IM in the future. In particular, the market for business
messaging faces comparable challenges. Internationalization and remote work has
increased interculturality within companies. Players in the business messaging world
thus also have to address barriers in cross-cultural communication.

References

1. Smith, A.: Mobile Access 2010. Pew Internet & American Life Project, Washington, DC
(2010)

2. Shapiro, C., Varian, H.: Information Rules. Harvard Business School Press, Boston (1999)
3. Wang, C., Hsu, Y., Fang, W.: Acceptance of technology with network externalities: an

empirical study of Internet instant messaging services. J. Inf. Technol. Theor. Appl. (JITTA)
6(4), 15–28 (2005)

When Culture Trumps Economic Laws 125

4. Zhou, T., Lu, Y.: Examining mobile instant messaging user loyalty from the perspectives of
network externalities and flow experience. Comput. Hum. Behav. 27(2), 883–889 (2011)

5. Arthur, W.: Positive feedbacks in the economy. Sci. Am. 262(2), 92–99 (1990)
6. Haucap, J., Heimeshoff, U.: Google, Facebook, Amazon, eBay: is the Internet driving

competition or market monopolization? IEEP 11(1–2), 49–61 (2013)
7. Baran, K., Fietkiewicz, K., Stock, W.: Monopolies on Social Network Services (SNS) mar-

kets and competition law. In: 14th International Symposium on Information Science (ISI
2015), pp. 424–436 (2015)

8. Katz, M., Shapiro, C.: Network externalities, competition, and compatibility. Am. Econ.
Rev. 75, 424–440 (1985)

9. Shy, O.: The Economics of Network Industries. Cambridge University Press, Cambridge
(2001)

10. Dietl, H., Royer, S.: Management virtueller Netzwerkeffekte in der Informationsökonomie.
Zeitschrift Führung und Organisation 69(6), 324–331 (2000)

11. Lin, C., Bhattacherjee, A.: Elucidating individual intention to use interactive information
technologies: the role of network externalities. Int. J. Electron. Commer. 13(1), 85–108
(2008)

12. Deng, Z., Lu, Y., Wei, K., Zhang, J.: Understanding customer satisfaction and loyalty: an
empirical study of mobile instant messages in China. Int. J. Inf. Manage. 30(4), 289–300
(2010)

13. Deans, P., Miles, J.: A framework for understanding social media trends in China. In: Paper
Presented at the 11th International DSI and APDSI Joint Meeting, pp. 12–16 (2011)

14. Lee, E., Lee, J., Lee, J.: Reconsideration of the winner-take-all hypothesis: complex
networks and local bias. Manage. Sci. 52(12), 1838–1848 (2006)

15. Hall, E.: Beyond Culture. Anchor Books, New York (1976)
16. Kayan, S., Fussell, S., Setlock, L.: Cultural differences in the use of instant messaging in

Asia and North America. In: Proceedings of the 2006 20th Anniversary Conference on
Computer Supported Cooperative Work - CSCW 2006, pp. 525–528 (2006)

17. Lim, S.: On stickers and communicative fluidity in social media. Soc. Media + Soc. 1(1),
1–3 (2015)

18. Tang, N., Lee, Y.: A comparative study on user loyalty of mobile-instant messaging
services. In: Proceedings of the 17th International Conference on Electronic Commerce 2015
- ICEC 2015 (2015)

19. Coskun Samli, A., Wills, J., Jacobs, L.: Developing global products and marketing
strategies: a rejoinder. J. Acad. Mark. Sci. 21(1), 79–83 (1993)

20. Levitt, T.: The globalization of markets. Harvard Bus. Rev. 61(3), 92–102 (1983)

126 M.C. Borges et al.

Energy Consumption

Energy Efficiency Support Through Intra-layer
Cloud Stack Adaptation

Karim Djemame1(B), Richard Kavanagh1, Django Armstrong1,
Francesc Lordan2, Jorge Ejarque2, Mario Macias2, Raül Sirvent2,

Jordi Guitart2,3, and Rosa M. Badia2,4

1 School of Computing, University of Leeds, Leeds, UK
{k.djemame,r.kavanagh,d.j.armstrong}@leeds.ac.uk
2 Barcelona Supercomputing Center, Barcelona, Spain

3 Universitat Politecnica de Catalunya, Barcelona, Spain
4 Artificial Intelligence Research Institute (IIIA) - Spanish

National Research Council (CSIC), Barcelona, Spain

Abstract. Energy consumption is a key concern in cloud computing.
The paper reports on a cloud architecture to support energy efficiency
at service construction, deployment, and operation. This is achieved
through SaaS, PaaS and IaaS intra-layer self-adaptation in isolation. The
self-adaptation mechanisms are discussed, as well as their implementa-
tion and evaluation. The experimental results show that the overall archi-
tecture is capable of adapting to meet the energy goals of applications
on a per layer basis.

Keywords: Cloud computing · Energy efficiency · Self-adaptation ·
Programming models

1 Introduction

The rapid growth of cloud computing and the use of the Internet have produced a
large collective electricity demand which is expected to increase by 60% or more by
2020 as the online population steadily increases [9]. Although currently moderate
energy consumers, cloud data centres are continuously increasing their energy con-
sumption share as compared to other sectors. Cloud computing offers the potential
for energy saving through centralisation of computing and storage technologies
at large data and computing centres. Some mechanisms are exploited to reduce
energy consumption (e.g. server consolidation) but mainly operate at the data
centre, hardware and virtual infrastructure level and do not include the platform
and software application in their energy reduction approaches.

Previous work has characterised the factors which affect energy efficiency in
the design, construction, deployment, and operation of cloud services [8]. The
approach focused firstly on the identification of the missing functionalities to
support energy efficiency across all cloud layers (SaaS, PaaS and IaaS), and
secondly on the definition and integration of explicit measures of energy require-
ments into the design and development process for software to be executed on
c© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 129–143, 2017.
DOI: 10.1007/978-3-319-61920-0 10

130 K. Djemame et al.

a cloud platform. This paper adds the capabilities required in the architecture
in order to achieve dynamic energy management for each of the cloud layers
thanks to adaptation, which is supported by an intra-layer approach. The key
research challenge is the ability to take adaptive actions based upon factors such
as energy consumption, cost and performance within each layer of the archi-
tecture and examine the effect that these have upon the running applications.
Therefore, the paper’s main contribution are:

1. an energy efficiency aware cloud architecture, which is discussed in the context
of the cloud service life cycle: construction, deployment, and operation.

2. an intra-layer self-adaptation methodology tailored for: (1) the SaaS Pro-
gramming Model to make use of advanced scheduling techniques that consider
different versions of an application’s Core Elements, target platform and con-
sumption profile; (2) the Self-Adaptation Manager that manages applications
at runtime and maintains performance and energy efficiency at the PaaS layer,
and (3) the Self-Adaptation Manager that performs re-scheduling of Virtual
Machines (VMs) to maintain energy efficiency and performance at the IaaS
layer.

The remainder of the paper is structured as follows: Sect. 2 describes a pro-
posed architecture to support energy-awareness. Section 3 explains how self-
adaptation is supported within the SaaS, PaaS, and IaaS layers of the architec-
ture. Section 4 presents the experimental design, and Sect. 5 discusses the eval-
uation results of intra-layer self-adaptation within the layers. Section 6 reviews
some related work. In conclusion, Sect. 7 provides a summary of the research
and plans for future work.

2 Energy Efficient Cloud Architecture

Methods and tools that consider energy efficiency are needed to manage the
life cycle of cloud services from requirements to run-time through construction,
deployment, operation, and their adaptive evolution over time. Their availabil-
ity will result in an implementation of a software stack for energy efficient-aware
clouds. Thus, an architecture supporting energy efficiency and capable of self-
adaptation while at the same time aware of the impact on other quality char-
acteristics of the overall cloud system such as performance is proposed in [8].
Figure 1 provides an overview of this architecture, which includes the high-level
interactions of all components, is separated into three distinct layers and follows
the standard cloud deployment model.

In the SaaS layer a set of components interact to facilitate the modelling,
design and construction of a cloud application. The components aid in evaluating
energy consumption of a cloud application during its construction. A number
of plug-ins are provided for a frontend Integrated Development Environment
(IDE) as a means for developers to interact with components within this layer.
A number of packaging components are also made available to enable provider
agnostic deployment of the constructed cloud application, while also maintaining

Energy Efficiency Support Through Intra-layer Cloud Stack Adaptation 131

Fig. 1. Energy-aware architecture.

energy awareness. The Programming Model Plug-in (PM plug-in) provides a
graphical interface to use the Programming Model and supporting tools to enable
the development, analysis and profiling of an application in order to improve
energy efficiency. On the other hand, the Programming Model provides the service
developers with a way to implement services composed of source code, legacy
applications executions and external Web Services [11].

The PaaS layer provides middleware functionality for a cloud application and
facilitates the deployment and operation of the application as a whole. Compo-
nents within this layer are responsible for selecting the most energy appropriate
provider for a given set of energy requirements and tailoring the application to
the selected provider’s hardware environment. The Application Manager (AM)
manages the user applications that are described as virtual appliances, formed by
a set of interconnected VMs. Application level monitoring is also accommodated
for here, in addition to support for Service Level Agreement (SLA) negotiation.

In the IaaS layer the admission, allocation and management of virtual resource
are performed through the orchestration of a number of components. The Virtual
Machine Manager (VMM) is responsible for managing the complete life cycle of
the virtual machines that are deployed in a specific infrastructure provider. The
IaaS layer monitors the energy consumed by the virtual machines, and is able to
aggregate them by application. These infrastructure-level information is used to
optimize the energy consumption at a VM level (by means of server consolidation
mechanisms), and gathered to the PaaS level in conjunction with application-level
metrics provided from software probes installed in the VMs.

The Energy Awareness provision is an important step in the architecture
implementation plan as it concentrates on delivering energy awareness in all
system components. Monitoring and metrics information are measured at IaaS
level and propagated through the various layers of the cloud stack (PaaS, SaaS).
The Cloud Stack Adaptation with regard to energy efficiency will focus on the

132 K. Djemame et al.

addition of capabilities required to achieve dynamic energy management per
each of the cloud layers, in other words intra-layer self-adaptation. Inter-layer
self-adaptation is the subject of future work.

3 Intra-layer Self-adaptation

This sections explains how dynamic energy management is achieved by the indi-
vidual cloud layers (SaaS, PaaS and IaaS) through a self-adaptive intra-layer
approach.

3.1 SaaS Layer

The Programming Model (PM) is based on the COMPSs Model [5]. This
architectural component enables applications including a single Core Element
(CE) to have different implementations together with the possibility of imple-
menting energy-aware policies in the PM Runtime. Details on these techniques
can be found in [11] where a greedy policy is provided as a proof-of-concept.

To support self-adaptation at the SaaS layer more complex policies are imple-
mented as optimization algorithms to adapt the execution of the application at
run time. The algorithm is an optimization of one parameter, but filtering out
the options that surpass the boundaries defined for the rest of parameters and
searches for a local optimal in the discrete search space in every scheduling step.
As will be shown in Sect. 6, self-adaptation at software development level has
already been considered in other frameworks, but have not taken into account
the three parameters considered here for optimization: energy, performance and
cost. Therefore, the scheduling policies at application-level to optimize these
three parameters are the key novelty in this layer. More precisely, the policies
proposed are: (1) Minimise energy consumption (total Wh used) of the applica-
tion run, with instant boundaries for price (EUR/h) and performance (s per CE);
(2) Minimise cost (total EUR spent) of the application run, with boundaries for
power (W) and performance (s per CE), and (3) Maximise performance (total
execution time) of the application run, with boundaries for power (W) and price
(EUR/h).

The three parameters are dynamic during the execution of an application
when they are calculated for a specific CE. This is especially important in the
case of cost because a fixed price would not allow any optimisations. In the
proposed architecture in Fig. 1 the IaaS Pricing Modeller implements a dynamic
pricing scheme, where the price of a physical host is divided between its running
VMs and applications, allowing the PM runtime to optimize it. More specifically,
the price of a host is divided between the VMs running there at the same time,
the price of a VM is divided between the applications running together on that
VM, and in the PM case the application price can be even divided among all
CEs running.

Instant boundaries, such as maximum power, maximum EUR/hour and max-
imum execution time for a CE are considered for the adaptation. This is due to

Energy Efficiency Support Through Intra-layer Cloud Stack Adaptation 133

the nature of the PM applications. Depending on the application the complete
workflow may not always be available to make the scheduling plan in advance.
In addition, service-like applications as opposed to batch-like applications do
not have a clear completion time. These boundaries will drive the optimization
of either: energy, performance or cost, which will be specified by the end user
before the execution of the application. It is also worth mentioning that these
optimization algorithms mixed with the versioning capabilities presented in [11]
enable interesting options for deciding how to execute an application in a set of
resources, thus, not only having different machine choices to make that optimiza-
tion, but also different pieces of software implementing the same functionality.

3.2 PaaS Layer

The PaaS Self-Adaptation manager (PaaS SAM) is the principle compo-
nent in the PaaS layer for deciding on the adaptation required to maintain SLAs.
The overall aim of this component is to manage the trade-offs between energy,
performance and cost during adaptation at runtime. The PaaS SAM is notified
of the need to take an adaptation by the SLA manager, see Fig. 1.

In this the PaaS SLA Manager, detects a breach of the SLA terms. It then
notifies the PaaS SAM of the SLA breach. Notifications of SLA breaches princi-
pally contain the following information: (1) Time: the timestamp of the detected
violation; (2) Type of violation message: This is either a “violation” if the vio-
lation is detected, or “warning” message if the guarantee is near the violation
threshold; (3) SLA Agreement Term: used to distinguish between different con-
straint terms, and (4) SLA Guaranteed State: provides information on the border
conditions of the SLA: (1) Guarantee Id: the metric to be monitored; (2) Oper-
ator: such as greater than, less than, equal, and (3) Guaranteed Value: the value
of the threshold.

The adaptation rules then run in two stages. The first stage indicates the
type of adaptation to make such as: add/remove VMs by assessing the causes
of the SLA breach. This runs as a match making process by which the noti-
fication of the SLA term is matched against the adaptation rules. The PaaS
SAM thus matches the decision rules that map between the event notifica-
tions and the potential actuators. In its most basic mode of operation a tuple
of <Agreement Term, Direction, Response Type> is utilised in a match
against the SLA violation notification to determine the form of adaptation to
take, e.g. <energy usage per app,LT, REMOVE VM>. The types of events that
the PaaS SAM can respond to are for the guarantees on the application’s power
consumption and the overall energy consumption of an application.

The rules includes an overall threshold value, which determines how many
events are required before a rule fires, assuming that temporary reporting of
SLA breaches can be ignored. An example of this would be if VM power was
to become too high due to a short burst of CPU utilisation. This setting of
this threshold value depends on the rate at which the SLA Manager reports
SLA violations events and upon how responsive the PaaS SAM is required to
be to these violations. A history of recent adaptations is also recorded to ensure

134 K. Djemame et al.

that the PaaS SAM will not react a second time in short succession to the
same violation event, this history is kept for a shortwhile and once a recent
log of adaptation has timed out the PaaS SAM is able to respond again to
the same SLA term been violated. This thus puts important limits upon how
quickly the PaaS SAM will perform adaptation. In a more advanced mode of
operation fuzzy logic is used with the following input parameters: (1) Current
metric difference: between the guaranteed value and the actual measured value;
(2) Trend difference: between the first detected breaches value and the current
detected breaches value, and (3) Energy usage/power usage per Application:
counts the number of times the event has fired.

The second stage indicates the exact nature of this adaptation such as what
type of VM to add or which VM should be deleted. The principal actuators
made available to the PaaS SAM are the ability to: (1) add and remove VMs
from an application; (2) scale the VM vertically in terms of its allocated memory
and CPUs, and (3) terminate the application as a whole. The engine that makes
the decision of the scale of adaptation can be varied but is required to look
at the application’s Open Virtualization Format (OVF) document to determine
constraints such as the minimum and maximum allowed VMs of a given image
type. It then needs to make the selection of which VM to modify or which new
type of VM to start.

3.3 IaaS Layer

The VMM is the component responsible for the deployment and life cycle of
the VMs, as well as for their disk images. It also allows the IaaS layer to select
different scheduling policies such as: energy-aware, cost-aware, distribution and
consolidation of VMs.

The policies are implemented as scoring functions that evaluate an allocation
scenario towards the desired policies. The scorers are injected in the OptaPlanner
constraint optimisation solver [4], which applies heuristics to decide in a reason-
able time which is the best allocation for a set of VMs in the available nodes. The
administrator can choose the local search heuristic from Simulated Annealing,
Hill Climbing, and Late Acceptance [3]. The ability to self-adapt at operation
time which is supported by the Self-Adaptation Manager (SAM) is needed
to keep the cloud infrastructure in an optimal state during its operation. To
maximise the objective scores while keeping acceptable performance, the VMM
needs to be able to live migrate VMs. To effectively enable live migration it is
required that the VM images are stored in a shared disk space that is accessible
by the source and destination hosts. For memory-intensive applications it is also
required a fast local network infrastructure (e.g. 100GbE or Infiniband) to allow
copying the main memory without having to stall the VM.

The migration decision takes into account information about the infrastruc-
ture and comes from several architectural components: the Energy Modeller,
the Pricing Modeller, the Infrastructure Monitoring, and the SLA Manager (see
Fig. 1). The information from the aforementioned is used as input into the scoring
functions used by OptaPlanner.

Energy Efficiency Support Through Intra-layer Cloud Stack Adaptation 135

The VMM administrator can choose which scoring function will be used by
OptaPlanner as a heuristic to perform a local search through all the possible
VM/host allocations. Currently, four policies are supported:

Distribution. The VMs are distributed equally along all the available hosts.
This policy maximises the performance of the applications but minimises the
energy efficiency.

Consolidation. The VMs are allocated to the minimum number of hosts (with-
out overselling resources). This policy is energy-efficient but does not consider
the particularities of the applications that must coexist in the hosts, and how
the VMs can interfere between them.

Energy-Efficiency. The VMM asks to the Energy Modeller [8] about the pre-
dicted consumption for a VM into a given host, and chooses the allocation that
minimises such consumption.

Price Minimisation. Similar to the Energy-Efficiency policy, but asking to the
Price Modeller for the allocation whose price is the lowest. The Price Modeller
gets a prediction of the energy from the Energy Modeller and ponders it with
the expected energy prices for a given time range.

4 Experimental Design

This section presents the experimental design. The objective of the experiments
is to ascertain that the self-adaptation at SaaS, PaaS and IaaS when monitoring
a service in an operation achieves dynamic energy management in each of the
cloud layers.

Application. Two applications are used: (1) a compute intensive simulation
application of buildings to optimize their energy, thermal quality and indoor
comfort and thus achieve a sustainable design. This is performed by the jEPlus
application [2], which is the EnergyPlus [1] simulation manager, a well-known
simulation tool in the real estate sector. The jEPlus application implements a
parameter-sweep algorithm which performs large scale executions of the Energy-
Plus simulator with several configurations to find out the optimal setup, and (2)
a 3-tier Web application comprising of 5 VMs: one MySQL database VM, one
HA Proxy load balancing VM, 2 JBoss Instances/worker nodes and one JMeter
based VM that acts as a set of users inducing load onto the system.

Metrics and KPIs. A number of metrics and KPIs are used to drive the intra-
layer self-adaptation: (1) Application Run Time: KPI which the PM tries to
optimise when an application is deployed in a Performance mode; (2) Applica-
tion Energy Consumption: KPI which the PM optimises when an application is
deployed in a energy efficient mode. At PaaS level, the proposed architecture
is able to provide the current energy consumption of a deployed application by
monitoring the total energy consumed by the different VMs, see Application
Monitor in Fig. 1; (3) Application Execution Cost: KPI which is optimized when

136 K. Djemame et al.

the PM deploys an application in a cost efficient mode. The PaaS layer also
provides the current application total cost thanks to the Pricing Modeller, see
Fig. 1. Other metrics include: (1) Estimated Task Execution Time by the PM
Runtime based on historic data of executions; (2) Estimated Task Execution
Power/Energy Consumption by the PaaS Energy Modeller; (3) Estimated Task
Execution Price/cost by PaaS Pricing Modeller, see Fig. 1. At the IaaS level,
KPIs include: (1) VM power, (2) physical host power and (3) Datacentre power,
as the spot measurement in watts for VM, host and the whole data centre.

Cloud Testbed. The cloud testbed is located at the Technische Universität
Berlin. The computing cluster consists of 32 nodes with the following attributes:
Quadcore Intel Xeon CPU E3-1230 V2 3.30 GHz, 16 GB RAM, 3x1TB HD and
2x1 GBit Ethernet NIC. Each node is connected to a storage area network
usage where storage nodes are accessible through a Distributed File Systems,
CephFS. Virtual Infrastructure Management is supported through an OpenStack
Ice House distribution with Neutron and the OpenDaylight software-defined net-
working (SDN) controller. Power consumption on each node is measured thanks
to identical energy-meters to guarantee comparative measurements. The actual
devices are Gembird EnerGenie Energy Meters that share their measurements
in the local network. These devices can measure power up to 2,500 W with an
accuracy of ±2% and are able to deliver two measurements per second.

5 Results

5.1 SaaS Layer

In order to evaluate the new functionality implemented in the Programming
Model (PM), we executed the same jEPlus calculation with different configura-
tions. The selected jEPlus calculation generates 100 Energy+ runs executed in 5
VMs with 8 vCPUS (equivalent to a 4 real cores) an 8 GB of RAM which allows
to run 20 tasks in parallel. Each experiment run has been repeated several times
to ensure its statistical significance, and no large standard deviations have been
found. Firstly, we executed the application with the original COMPSs-based PM
which is used as the baseline for comparisons. The execution is then repeated
adding the different PM improvements (the efficient execution mechanism, task
versioning support and multi-mode self-adapted scheduling capabilities). In the
first part of the experiment, we executed the application twice: one with the
sequential version of the Energy+ task and another one with a threaded version
as the original PM runtime does not support task versioning. Table 1a shows
the KPIs obtained for each of these baseline executions. The minimum elapsed
time achieved with the baseline is 750 s, minimum cost is 68 Euro-cents and
the minimum energy consumption is 93.10 Wh. While the execution time metric
for the CEs is controlled directly by the PM, the power and energy values are
requested to the PaaS Energy Modeller component, and the price and cost val-
ues to the PaaS Pricing Modeller. Essentially the energy/power is obtained from
real measurements, mapped to VMs, applications, and CEs, and the cost/price

Energy Efficiency Support Through Intra-layer Cloud Stack Adaptation 137

Table 1. Application KPI measurements with different configurations.

(a) Measurements without ASCETiC PM Improvements.

Execution Elapsed Time Energy Consum. Cost
Only Threaded Tasks 750 seconds 108.70 Wh 68 Euro-cents
Only Sequential Tasks 1152 seconds 93.10 Wh 72 Euro-cents

(b) Measurements with efficient execution improvements.

Execution Elapsed Time Energy Consumption Cost
Only Threaded Tasks 662 seconds (-11.7%) 95.70 Wh (-12%) 60 Euro-cents(-11.8%)
Only Sequential Tasks 1008 seconds (-12.5%) 81.10 Wh (-12.9%) 63 Euro-cents (-12.5%)

(c) Single Task metrics estimations.

Task Version Mean Exec. Time Estim. Mean Power Estim. Energy Consum. Estim. Cost
Threaded 125 seconds 26.10 W 0.90 Wh 0.57 Euro-cents
Sequential 193 seconds 14.47 W 0.78 Wh 0.60 Euro-cents

(d) Measurements with self-adaptation.

Deployment Mode Elapsed Time Energy Consumption Cost
Performance Mode 735 seconds 94.37 Wh 61 Euro-cents
Energy-efficiency Mode 882 seconds 83.80 Wh 63 Euro-cents
Cost-efficiency Mode 751 seconds 94.45 Wh 61 Euro-cents

(e) Application Execution KPI comparison.

Execution Elapsed Time Energy Consum. Cost
(w/o ASCETiC) (w/o ASCETiC) (w/o ASCETiC)

Only Threaded 662 secs (750 secs) 95.70 Wh (108.70 Wh) 0.60 Euros (0.68 Euros)
Performance +9.9% (-2%) -1.4% (-13.2%) +1.7% (-10.3%)
Energy-efficiency +25% (+15%) -12.9% (-22.9%) +5% (-7.3%)
Cost-efficiency +11.8% (0%) -1.3% (-13.1%) +1.7% (-10.3%)
Only Sequential 1008 secs (1152 secs) 81.10 Wh (93.10 Wh) 0.63 Euros (0.72 Euros)
Performance -27% (-36.2%) +14%(+1.3%) -3.2% (-15.27%)
Energy-efficiency -12.5% (-23.4%) +3.2% (-9.9%) 0% (-12.5%)
Cost-efficiency -25.5% (-34.8%) +14.1% (+1.4%) -3.2% (-15.27%)

is calculated using fixed factors, and variable factors, such as the cost of the
energy used. Afterwards, we introduced the efficient execution improvements in
the PM runtime which includes the non-blocking I/O communication and per-
sistent workers. We ran the same executions and measured the same KPIs which
are shown in Table 1b. A general gain of 12% in all KPIs can be observed.

With the architecture tools, we are also able to extract the monitored metrics
for each type of executed tasks (duration, power, energy and cost). The values
obtained for these metrics are shown in Table 1c. In this table, the threaded
version is shorter, but consumes more power and energy. In the case of cost,
it is calculated by a combination of the resource usage, duration and energy
consumption. As the duration term is the one which has more effect in this
cost calculation, the threaded version is cheaper. These metrics are used by the
PM runtime to perform the application level self-adaptation. In the last part
of the experiment, we introduced the task versioning and the multi-mode self-
adapted scheduling. In this case, we have executed the application in the three
possible modes: the Performance mode, where the elapsed time is optimized;

138 K. Djemame et al.

the Energy-efficient mode, where the energy consumption is optimized; and the
Cost-efficient mode, where the cost of the execution is optimized. For each of
these runs, we measured the same KPIs which are shown in Table 1d. We can
observe that the Performance mode gives the smaller elapsed time, the Energy-
efficient mode gives the best energy consumption and the Cost-efficient mode
gives the cheaper. Note that, cost and performance gives almost the same values
because the sequential version has a similar behavior for duration and cost.
Therefore, the solution found by the PM runtime in both cases is almost the
same.

Finally, Table 1e compares the KPI values obtained in the different exper-
iments with baseline. When we compare the versions with the improved PM,
we can observe the cost of using the self-adaptation mechanisms. The Only
Threaded execution is the most efficient for the Elapsed time and Cost because
it only uses the version which has the best performance and cost. In contrast, the
Only Sequential execution is the most energy-efficient because it only executes
the version with the best energy consumption. When we compare with the values
obtained with Performance, Energy-efficient and Cost-efficient modes, we can
see that the KPI are degraded by a 9.9%, 3.2% and 1.7% respectively. This is due
to the initial execution of different versions to obtain the first metric values. If
we compare the results with the ones obtained without the PM improvements,
we can observe that this overhead has been mitigated with the general gain
obtained by the efficient execution mechanism. It is important to highlight that
all the different improvements are obtained only by doing actuations at the SaaS
layer, which means distributing the tasks execution in the available VMs, with-
out changing either VMs or physical hosts, and we are able to improve some of
the metrics even up to a 36%. In addition, the mechanisms give an extra degree
of freedom to users, who can decide in advance if their application run will be
done chasing minimum execution time, energy or cost.

5.2 PaaS Layer

The PaaS SAM listens for notification events of SLA violation breaches. These
events arrive over an ActiveMQ interface. Messages can be submitted to the
appropriate queue causing the PaaS SAM to invoke adaptation. This is achieved
by calling either the Application manager or in the case of the experimentation
below the Virtual Infrastructure Manager Open Nebula via a connector interface
that invokes the required changes. A 3-tier Web application is used to perform
the experimentation. It comprises of 5 VMs: one MySQL database VM, one
HA Proxy load balancing VM, 2 JBoss Instances/worker nodes and one JMe-
ter based VM that acts as a set of users inducing load onto the system. The
experiment is structured in such that 5 VMs are started initially, then during
the course of the experimental run, violation notification events are submitted to
the PaaS SAM. This in turn causes the PaaS SAM to invoke adaptation which
causes one of the VMs to be shutdown. The PaaS SAM is required to decide
what action to take and when multiple messages are received it is expected to
only make an adaptation to the application once, within a short space of time.

Energy Efficiency Support Through Intra-layer Cloud Stack Adaptation 139

Fig. 2. VMs Trace - 30 s time units division (top); Count of successful service request
by JMeter (bottom).

The PaaS SAM as part of the experimentation used its rule based threshold
system, with the threshold set to first event arriving would trigger adaptation.
This threshold could be configured to be higher, especially in cases where the
IaaS layer is also expected to adapt. Thus the PaaS SAM could wait n time
intervals of warnings from the SLA manager, thus giving the IaaS layer time to
adapt before the PaaS intervenes. It has a poll interval of 5 s in which it observes
the message queue for new events as well as cleans up any historical log of past
events that had become too old to consider as still relevant. The PaaS SAM
keeps a history of events that last 30 s. This time-span is relatively short but it
allows the experiment to run smoothly without multiple adaptation events tak-
ing place simultaneously. This also limits the time to wait until any additional
adaptation can be demonstrated. The PaaS SAM on deciding to remove a VM,
in the mode of operation selected for the experiment removes the last VM that
was created of the appropriate type. This is done to ensure which VM to be
removed is predictable.

In Fig. 2 (top), the JMeter and HAProxy instances can be seen to be very
stable in their overall power consumption. The SQL database is less stable in its
measured values. The total application power initially is around 276 W. It then
increases at time unit 10 under increased system load by the JMeter instance
to 327 W. This is then reduced by the removal of one of the VMs at time unit
36 to 243 W where the JBoss instance is turned off due to the arrival of several
SLA violation notification events. At time unit 56 the load is stopped and the
power goes to 221 W. This demonstrates how the PaaS SAM can invoke change
which can result in a reduced power consumption thus saving energy. The count
of successful service requests is shown in Fig. 2 (bottom). It can be seen in
the initial phase a short loading period where the induced load increases. In

140 K. Djemame et al.

time interval 36 when the VM is switched off the amount of service requests
is drastically reduced from an average of 294 service requests to 42 per every
30 s block. This therefore demonstrates a trade-off in combination by showing
that although power consumption can be reduced there is an associated loss in
performance.

5.3 IaaS Layer

The main purpose of this form of self-adaptation management is to demonstrate
how the VMM uses the advantages of migration capabilities to reorganize the
VMs at runtime, periodically or after events that could leave the testbed in a
sub-optimal status to achieve the required policies, such as VM deployment or
removal.

Two jEPlus experiments are performed to test the Self-Adaptation Manager
capabilities. In the first experiment, three 8-CPU nodes (wally159, wally162,
wally163) progressively start a 12 VMs with 2 CPUs, 1 GB RAM and, 1 GB Disk
executing a 4-thread CPU load generator that performs floating-point matrix
multiplications. The VMM is configured with a consolidation policy to deploy
the VMs on the lowest number of physical nodes. The OptaPlanner component
is configured to look for the optimum allocation by means of Hill Climbing algo-
rithm, though with a reduced number of hosts any other local search algorithm
would quickly converge to an optimum solution. The intention is to save energy
when it is combined with mechanisms to turn off the idle physical nodes and
turn them on again when they are required. Every 5 min, a VM from a physical
host (selected alternatively) is destroyed and the self-adaptation policy is trig-
gered to re-consolidate the other VMs. The second experiment is simulated using
an Energy Modeller. A set of 30 VMs are deployed progressively in 10 physi-
cal hosts and then destroyed. The objective is to compare the same execution
with three policies: Consolidation (but without self-adaptation), Power-Aware
(allocate VMs in the host that the Energy Modeller predicts it will consume less
energy) and Power-Aware with runtime self-adaptation.

First Experiment. Figure 3 shows the effects of self-adaptation in the three
physical nodes. In the first third of the experiments, the energy consumption
of the three physical serves generally decreases as VMs are removed. In some
points, the energy is slightly increased because the policy calculations decide
that is more efficient to migrate a VM to such host. In the second third (from
16:38 to 16:42), all the running VMs fit in two hosts. Consequently, the VMM
decides that is better to consolidate all the VMs in two physical hosts. This is
the reason for wally163 to have a plain, low consumption from that time. Such
consumption would be near 0 if the testbed had available a mechanism for remote
sleep/wakeup. Analogously, in the last third of the experiments, only 4 VMs are
in the system, and all are consolidated in wally162. The IaaS layer demonstrated
the feasibility of live migration for generic VMs in order to maximize the overall
performance of the system in terms of energy efficiency. The VM migration
process typically took 10–20 s.

Energy Efficiency Support Through Intra-layer Cloud Stack Adaptation 141

Fig. 3. Historic of power consumption for the three servers.

Second Experiment. Figure 4 shows the evolution of the overall power con-
sumption since the beginning of the experiment, with no VMs deployed, until the
end, where all the VMs have been undeployed. The measured results show that
Power-Aware policy consumes 21% less energy than Consolidation. Savings are
higher during the first half of the experiment and later, when the VMs are unde-
ployed, the system becomes non-optimal since the VMs are not consolidated.
With Power-Aware with Self Adaptation policy, the system status is optimized
when the VMs are destroyed. The overall power consumption is 16% lower with
self adaptation with respect to Power-Aware without self-adaptation.

Fig. 4. Overall power consumption for three different policies.

142 K. Djemame et al.

Cost of migrations must not be underestimated. Migrations of memory-
intensive VMs are expensive in terms of network and memory usage for the
physical nodes. 10–20 s is not significant for batch applications, but may decrease
the QoS for web services. Future versions of the self-adaptation policy penalise
migrations in the scoring functions. To maximise energy efficiency, nodes should
provide remote sleep/wake up to allow energy saving when a host becomes idle
thanks to consolidation.

6 Related Work

Research effort has targeted energy efficiency support at various stages of the
cloud service lifecycle (construction, deployment, operation). Regarding self-
adaptation capabilities at software development level, tools such as Green-
Pipe [13] consider energy as a parameter to be optimised, but it is provided
by the user and tailored for a particular type of applications. The PaaS SAM
is similar to the SHoWA framework’s recovery planner [12]. The recovery plan-
ner is likened to a disease database, with a set of rules on how to treat certain
anomalies in performance. The PaaS SAM manager goes further and specifies
conditions such as the recent violations of a similar nature and recent adapta-
tion responses. It also avoids pure thresholds and utilises fuzzy logic in order to
give a more refined response during adaptation. The Synthesis of Cost-effective
Adaptation Plans (SCOAP) framework [15] is a similar PaaS/application ori-
ented adaptation framework which focuses on the economic costs of utilising
Cloud infrastructures under various pricing models. Mistral [10] is a controller
framework that optimizes power consumption, performance benefits as well as
the impact of adaptations but with a focus on the IaaS layer. In the service oper-
ation stage, energy efficiency has been extensively studied and has focused for
example on approaches towards energy management for distributed management
of VMs in cloud infrastructures, where the goal is to improve the utilization of
computing resources and reduce energy consumption under workload indepen-
dent quality of service constraints. This approach has been faced during VM
allocation [6] and runtime migration [7,14].

7 Conclusion

This paper has described an energy-aware cloud architecture along side an intra-
layer self-adaptation methodology tailored for SaaS, PaaS and IaaS. The self-
adaptation implementation has been showcased in two applications and results
show that dynamic energy management is achieved for each of the Cloud layers.
Future work focuses on the inter-layer self-adaptation where each layer moni-
tors relevant energy efficiency status information locally and shares this with the
other layers, assesses its current energy status and forecasts future energy con-
sumption as needed. Self-adaptation actions can then be decided and executed
according to this assessment in a coherent and consistent way.

Energy Efficiency Support Through Intra-layer Cloud Stack Adaptation 143

Acknowledgements. This work is partly supported by the European Commission
underFP7-ICT-2013.1.2 contract 610874 (ASCETiCproject), by theSpanishGoverment
under contract TIN2015-65316-P and BES-2013-067167 and by the Generalitat de
Catalunya under contract 2014-SGR-1051. Thanks to GreenPreFab Italia for providing
the jEPlus application and TU Berlin for their technical support.

References

1. EnergyPlus Building Energy Simulation Program. https://energyplus.net/
2. JEPlus: EnergyPlus Simulation Manager for Parametrics. http://www.jeplus.org/
3. OptaPlanner User Guide, July 2016. http://docs.jboss.org/optaplanner/release/6.

4.0.Final/optaplanner-docs/html/index.html
4. OptaPlanner Web Site, May 2016. http://www.optaplanner.org
5. Badia,R.M.,Conejero, J.,Diaz,C., Ejarque, J., Lezzi,D., Lordan,F.,Ramon-Cortes,

C., Sirvent, R.: Comp superscalar, an interoperable programming framework. Soft-
wareX 3, 32–36 (2015)

6. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Future Gener.
Comput. Syst. 28(5), 755–768 (2012)

7. Dargie, W.: Estimation of the cost of VM migration. In: 23rd International Con-
ference on Computer Communication and Networks (ICCCN), pp. 1–8 (2014)

8. Djemame, K., Armstrong, D., Kavanagh, R., et al.: Energy efficiency embedded
service lifecycle: towards an energy efficient cloud computing architecture. In: Pro-
ceedings of the 2nd International Conference on ICT for Sustainability 2014, vol.
1203, Stockholm, Sweden, pp. 1–6, August 2014

9. Greenpeace: clicking clean: how companies are creating the green internet, April
2014

10. Jung, G., Hiltunen, M.A., Joshi, K., Schlichting, R., Pu, C.: Mistral: dynami-
cally managing power, performance, and adaptation cost in cloud infrastructures.
In: 2010 IEEE 30th International Conference on Distributed Computing Systems
(ICDCS), pp. 62–73 (2010)

11. Lordan, F., Ejarque, J., Sirvent, R., Badia, R.M.: Energy-aware programming
model for distributed infrastructures. In: Proceedings of the 24th Euromicro Inter-
national Conference on Parallel, Distributed, and Network-Based Processing (PDP
2016), Heraklion, Greece, February 2016

12. Magalhaes, J.P., Silva, L.M.: A framework for self-healing and self-adaptation of
cloud-hosted web-based applications. In: Proceedings of the 5th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), pp. 555–
564 (2013)

13. Mao, Y., et al.: GreenPipe: a Hadoop based workflow system on energy-efficient
clouds. In: 26th International Parallel and Distributed Processing Symposium
Workshops, pp. 2211–2219. IEEE (2012)

14. Murtazaev, A., Oh, S.: Sercon: server consolidation algorithm using live migration
of virtual machines for green computing. IETE Tech. Rev. 3(28), 1–8 (2011)

15. Perez-Palacin, D., Mirandola, R., Calinescu, R.: Synthesis of adaptation plans for
cloud infrastructure with hybrid cost models. In: Proceedings of the 2014 40th
EUROMICRO Conference on Software Engineering and Advanced Applications,
pp. 443–450 (2014)

https://energyplus.net/
http://www.jeplus.org/
http://docs.jboss.org/optaplanner/release/6.4.0.Final/optaplanner-docs/html/index.html
http://docs.jboss.org/optaplanner/release/6.4.0.Final/optaplanner-docs/html/index.html
http://www.optaplanner.org

Energy-Aware Pricing Within Cloud
Environments

Alexandros Kostopoulos(&), Eleni Agiatzidou, and Antonis Dimakis

Network Economics and Services Research Group, Department of Informatics,
Athens University of Economics and Business,
76 Patission Street, 10434 Athens, Greece

{alexkosto,agiatzidou,dimakis}@aueb.gr

Abstract. The Adapting Service lifeCycle towards EfficienT Clouds (ASCE-
TiC) project aims to provide novel methods and tools to support software
developers aiming to optimize energy efficiency resulting from designing,
developing, deploying and running software at the different layers of the cloud
stack architecture, while maintaining other quality aspects of software to meet the
agreed levels. The Pricing Modeler is a component within the ASCETiC
architecture, which is responsible for the price estimation and billing of cloud
applications or Virtual Machines (VMs) based on their energy consumption. In
this paper, we propose a set of novel energy-aware pricing schemes implemented
within the Pricing Modeler component, as well as a set of envisaged service plans
which aim to facilitate the gradual adoption of the ASCETiC architecture.

Keywords: Cloud economics � Pricing � Energy efficiency

1 Introduction

The ASCETiC project [1] complements cloud computing developments by addressing
the energy efficiency of the software, which runs on cloud infrastructures. Although
energy use is of relevance across all software development phases from design and
implementation, we make specific reference to energy used during cloud-based service
operations. The emergence of cloud computing with its emphasis on shared software
components which are likely to be used and reused many times in many different
applications makes it imperative for cloud service software to be developed in the most
energy-efficient and eco-aware manner.

The ASCETiC approach focuses firstly on the identification of the missing func-
tionality to support energy efficiency across all cloud layers and secondly on the defi-
nition and integration of explicit measures of energy and ecological requirements into
the design and development process for software to be executed on a cloud platform.

Our main goal is to characterize the factors, which affect energy efficiency in
software development, deployment and operations. The main novel contribution is the
incorporation of an approach that combines energy-awareness related to cloud envi-
ronments with the principles of requirements engineering and design modelling for
self-adaptive software-intensive systems. This way, the energy efficiency of both cloud

© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 144–159, 2017.
DOI: 10.1007/978-3-319-61920-0_11

infrastructure and software is taken into consideration in the cloud service development
and operation lifecycle.

Therefore, ASCETiC addresses the total characterization of software energy with
respect to the impact of the software structure on energy use, which is not incorporated
into any current models. It is this gap in the research agenda, which ASCETiC
addresses. Determining the relationship between software structure and its energy use
allows the definition of a set of software energy metrics similar in concept to those for
hardware. By associating these metrics with software components and libraries, it is
possible to populate a software development framework with information to predict the
energy requirements of applications, thereby allowing alternative selections of software
components to be made, using energy as a selection criterion.

The proposed architecture measures how software systems actually use cloud
resources, with the goal of optimizing consumption of these resources. In this way, the
awareness of the amount of energy needed by software will help in learning how to
target software optimization where it provides the greatest energy returns. To do so, all
three layers in cloud computing, namely Software, Platform and Infrastructure, will
implement a MAPE (Monitor, Analyse, Plan and Execute) loop. Each layer monitors
relevant energy efficiency status information locally and shares this with the other
layers, assesses its current energy status and forecasts future energy consumption as
needed. Actions can then be decided and executed according to this assessment. Hence,
ASCETiC intends to make significant contributions to software engineering, pro-
gramming models and adaptive architectures for clouds.

One solution for accomplishing energy efficiency could be the adoption of
energy-aware pricing by the cloud service providers. Charging cloud services based on
energy, will provide the necessary incentives to the customers for achieving a more
efficient resource usage. In response to this challenge, the Pricing Modeler component,
incorporated within the ASCETiC architecture, is responsible for providing
energy-aware price estimation and billing related to the operation of applications or
VMs associated with them.

In this paper, we propose novel pricing schemes and charging services based on
actual consumption and energy efficiency of cloud resources. The energy models and
the real-time monitoring mechanisms and measurements by ASCETiC make possible
the creation of new pricing schemes that will charge users based on their actual con-
sumption and energy efficiency of cloud resources. Our aim is to adapt existing pricing
schemes, as well as develop new ones, thus creating an energy-efficient and at the same
time economically sustainable ecosystem.

The paper is organized as follows. Section 2 gives a brief overview of the
three-layer ASCETiC architecture. Section 3 provides a cloud market analysis with
respect to the pricing schemes adopted by the cloud providers. In Sect. 4, we propose a
set of novel energy-aware pricing schemes implemented within our Pricing Modeler
component. Section 5 introduces a set of envisaged service plans intending to facilitate
the gradual adoption of the ASCETiC architecture. We conclude our remarks and
present our future work in Sect. 6.

Energy-Aware Pricing Within Cloud Environments 145

2 ASCETiC Architecture

In this Section, we provide an overview of the ASCETIC Architecture. It complies with
the standard cloud architecture [2] and considers the classical Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS) layers,
supporting a wide range of components, including the Pricing Modeler component.

Fig. 1. Overview of the ASCETIC architecture.

146 A. Kostopoulos et al.

In the SaaS Software Development Kit (SDK) layer, a collection of components
interact to facilitate the modelling, design and construction of a cloud application. The
components assist in evaluating energy consumption of a cloud application during its
constructions. A number of plug-ins are provided for a frontend Integrated Develop-
ment Environment (IDE) as a means for developers to interact with components within
this layer. Lastly, a number of packaging components are made available that enable
provider-agnostic deployment of the constructed cloud application, while also main-
taining energy awareness.

The PaaS layer provides middleware functionality for a cloud application and
facilitates the deployment and operation of the application as a whole. Components
within this layer are responsible for selecting the most energy appropriate provider for a
given set of energy requirements and tailoring the application to the selected provider’s
hardware environment.

Finally, in the IaaS layer, the admission, allocation and management of virtual
resources are performed through the orchestration of a number of components. Energy
consumption is monitored, estimated and optimized using translated PaaS level met-
rics. These metrics are gathered via a monitoring infrastructure and a number of
software probes.

Figure 1 provides an overview of the ASCETiC architecture [3]. It includes the
high-level interactions of all components, is separated into three distinct layers and
follows the standard cloud deployment model.

A fully functional architecture demands the existence of a component that is
dedicated to support the financial operations of the provider. Such a component focuses
on the cost function and the pricing schemes of the cloud provider. Hence, as part of the
presented architecture, we implement two different Pricing Modeler components.

The PaaS Pricing Modeler is situated in the PaaS layer of the cloud stack, and its
main functionality is to estimate the price per hour and charges of an application before
deployment, as well as to calculate its charges after its operation.

The Iaas Pricing Modeler is situated in the IaaS layer of the cloud stack, and it is
used to estimate the price per hour and the charges of a VM before deployment, as well
as to calculate its charges after its operation. The goal of the IaaS Pricing Modeler is to
provide energy-aware price estimation related to different IaaS level operations that
may be envisioned in order to take the most energy-efficient course of action.

A variety of cost functions and pricing models can be implemented within the
Pricing Modeler components. A cost function calculates the costs that a provider faces
during its operation in order to offer his services. It is a mathematical formula asso-
ciated with a certain action. The providers forecast their expenses associated with their
services, to determine what pricing strategies to use in order to achieve the desired
profit margins. A pricing scheme is another mathematical function that dictates the way
of making revenues from the customers. For the determination of the right pricing
strategy, the decision on the objectives of the strategy and good market knowledge are
a necessity. The prices resulting from the model are used as part of the Service Level
Agreement (SLA) that is contracted with the customer. Thus, they are needed both
during the negotiation phase with the customer and during the billing phase.

Energy-Aware Pricing Within Cloud Environments 147

The basic purpose of the Pricing Modeler components is to enable the use of
appropriate cost and price functions for the provider of the corresponding cloud layer.
The cost function of a PaaS provider differs from that of an IaaS one, which is
straightforward. A PaaS provider neither pays the electricity bill, nor owns any physical
machine. However, a PaaS provider could act as a broker providing cloud services
from different IaaS providers. Thus, the costs of a PaaS provider are based on the
contract that he has with the IaaS provider(s), and the licenses of the operation systems
and administration operations. We envision that our proposed energy-aware pricing
schemes (Sect. 4) and service plans (Sect. 5) make sense mainly for the IaaS providers,
since there are direct cash flows between them and energy providers, but at the same
time motivate the upper layers to become energy-efficient.

3 Adopted Pricing Schemes

Let us provide a brief overview of the current pricing schemes adopted within the cloud
market. We studied twelve well-known worldwide providers that offer cloud services.
Most of them are IaaS providers but many of them are also PaaS. The most common
pricing scheme is the “pay-as-you-go” one, but monthly or yearly subscriptions can be
found too. Furthermore, Amazon provides one different scheme; the “spot instances”.

In the “pay-as-you-go” scheme the customer pays only for the resources that he
uses. There is no minimum fee and the total price that the customer pays depends on
the resources needed, as well as on the operating system used on top. The charge is
made per hour, while usually 740 h correspond to one month. When the
“pay-as-you-go” scheme is used, the customer can choose the amount of a variety of
characteristics that will compose his VMs. The basic characteristics of the VMs are the
capacity of the CPU and the memory. Depending on the service that the customer is
running, more resources can be purchased. Such resources may be storage, data transfer
and the operating system, depending on the provider. The pricing is done differently
per resource. Usually, the capacity is charged per hour, while the data transfer and the
storage per GB per month. Some companies also charge for each request, or per
million I/O requests, or per HTTP request, or per GB of data processed. The latter
scheme is used mostly when the applications running are short-term and their work-
loads are unpredictable or changing over time.

The other popular scheme used is the periodic payment (e.g., monthly, semester,
yearly subscriptions, etc.) or pre-payment. The customers pay or pre-pay the use of
specific resources, having a discount on the hourly charges. Usually under these
schemes, if the needs of the customer change, the resources reserved for him cannot be
returned and the amount is not refunded. But on the other hand, if the customer needs
more resources, he can always purchase under the “pay-as-you-go” scheme.

It is worth noting that some providers offer an on-line cost calculator to their
potential customers. Such tools allow on-the-fly addition of the type and amount of
resources needed and the upper bound of the amount of money that the customer will
pay at the end of the month under 100% utilization of the resources and the
“pay-as-you-go” scheme (or the exact amount on the monthly one). The estimates for

148 A. Kostopoulos et al.

the “pay-as-you-go” scheme are done based on 730–750 h per month. This scheme is
used mostly for applications with more predictable usage patterns.

Most of the IaaS/PaaS providers nowadays use the “pay-as-you-go” scheme. AT&T
is a representative example. The customer may choose the size of the processing
capacity, the memory and the system storage that will compose his VM. For AT&T’s
PaaS, the customer selects a package based on his needs, builds his application and
begins using it. The packages may include networking tools, email, web-based support
and the option to add mobile users. The customer pays a per-device per-month fee [4].
GoGrid is an IaaS provider of computing, network and storage resources. It offers
hourly, monthly, and annual cloud server pricing. Under the hourly “pay-as-you-go”
option, there is no commitment, and the customer pays per hour for the resources used.
The resources can be increased or decreased depending on the needs. Monthly or annual
cloud server plans provide discounts in hourly charges, since the customer commits to a
specific period of time of resource use [5]. In Terremark also the hourly price depends on
the virtual processors (VPUs), the memory, the system storage configuration, and the
operating system used [6].Microsoft charges its VMs by the minute. In case of a monthly
or yearly subscription the discount can fluctuate from 20 to 32%. Microsoft also offers a

Table 1. Comparison of cloud providers’ pricing schemes.

Provider Pricing scheme Provided cloud services

Amazon [9] On-Demand Instances,
Reserved Instances, Spot
Instances

Standard, Second Generation, Micro,
High Memory, High CPU, Cluster
Compute, High Memory Cluster, High
I/O, High Storage, and according to the
operating system

RackSpace [10] Pay-as-you-go Cloud Servers: Size, Disk, vCPUs,
Public/Internal Network, operating
system

GoGrid [5] Hourly, monthly,
semiannual, and annual
cloud

RAM, Cores, Storage

Microsoft [7] Pay-as-you-go, semester,
year

CPU, RAM

Terremark [6] Pay-as-you-go Memory, VPU
AT&T [4] Pay-as-you-go Capacity, memory and system storage
Google [11] Pay-as-you-go Virtual Cores, Memory, Local disk
OpScource [8] Pay-as-you-go, monthly Size, Disk, vCPUs, Public/Internal

Network, operating system
SoftLayer [12] Pay-as-you-go, monthly Core, RAM, storage, operating system
HP [13] Pay-as-you-go Core, RAM, storage, operating system
Engine Yard [14] Pay-as-you-go Core, RAM, storage
Acquia [15] Pay-as-you-go Core, RAM, storage

Energy-Aware Pricing Within Cloud Environments 149

larger discount under the pre-paid monthly fee [7]. Opsource bills the customer only
when the server is actually running [8]. For servers that are in a non-running state
(stopped), the customer pays only for the storage that the server is using.

“On-demand instances” of Amazon correspond to the “pay-as-you-go” pricing
scheme mentioned before. The customers pay for compute capacity by the hour with no
long-term commitments. The notion behind the “reserved instances” is the reservation
of the resources before their use for a specific amount of time. The customers can make
a low, one-time payment for each instance that they reserve and in turn receive a
significant discount on the hourly charge for that instance. Amazon provides three
types of instances; for light, medium, and heavy utilization.

However, Amazon also provides the “spot instances” scheme. The customer buys
the unused Amazon EC2 capacity and runs it until the price of the instances bought
becomes higher than his bid. The spot price changes periodically based on supply and
demand, and customers whose bids meet or exceed it, gain access to the available spot
instances [9].

In the following table we present the providers examined, the employed pricing
scheme, as well as the different VM features that the customer pays for (Table 1).

4 Energy-Aware Pricing

In this section, we propose novel pricing schemes for charging services based on their
actual consumption to ensure energy efficiency of cloud resources. The energy models
and the real-time monitoring mechanisms and measurements by ASCETiC make
possible the creation of new energy-aware pricing schemes.

4.1 Why Energy-Based Pricing?

In Sect. 3, we observed that cloud IaaS providers mainly charge for their resources —
which come in the form of VMs with specific performance characteristics— on the
basis of fixed rates per unit of time. The rate levels depend on specific VM charac-
teristics, such as CPU speed, memory, network bandwidth, etc. In certain cases, the
pricing varies dynamically in time and depends on bids made by other IaaS customers.
In any case, IaaS prices do not depend on energy usage —at least not explicitly, since
IaaS providers strive to recover their factor (e.g., energy) costs through the appropriate
selection of pricing levels—.

At the same time, applications take decisions which can have an important impact
on both energy consumption and performance. An example of such a decision is the
level of parallelism in the event of multiple tasks scheduled on many different VMs: the
application has the choice of the parallel execution of a number of tasks on many
different VMs instead of using only a few. Choosing a large number may prevent server
consolidation from reaping all the potential energy gains. Actually, since pricing is not
energy-dependent as discussed above, applications would go after the maximum level
of parallelization possible, i.e., they will utilize all available VMs (or, at least it will not
be in their interest not to do so). Thus, even though the great level of parallelism makes

150 A. Kostopoulos et al.

an application to have unnecessary low latency, it may incur unnecessarily high energy
costs (by requiring a large number of physical servers to host the VMs). These
increased energy costs are carried over to increased IaaS prices and so lower profit
levels for the IaaS providers.

We propose to use IaaS prices which dynamically depend on the energy usage of
applications. Under such a scheme the applications will be aware of the economic impact
of their decision and so they will have the incentive to take energy costs into account,
e.g., when they decide on the level of parallelism. Applications will themselves trade
energy for performance according to their preferences, and not let other entities such as
IaaS providers do it instead (through server consolidation) on the basis of guesswork
about their preferences. Indeed, task scheduling at the application level may be more
energy and performance effective than server consolidation by the IaaS providers since it
is the applications which know what should be run in parallel and what should not.

Another reason that makes energy usage based prices desirable is that it is common
for energy prices to vary in time for various reasons (e.g., varying availability of energy
sources, time-of-day pricing, demand-response schemes).

4.2 Energy-Aware Pricing Schemes

In Table 2, we define some useful notions to be used in what follows:

The pricing schemes we present below are based on the costs of an IaaS Provider
during its operation or on predicted charges based on estimates of future usage. Such
costs take into account the energy consumption of a VM.

Table 2. Terminology for energy-aware pricing.

Term Description

Price The (time) average charge incurred by a VM (or an application) per unit of
time measured in euros per hour

Charge The total charges incurred by a VM (or an application) measured in euros
Energy
price

The price per a unit of energy, in euros per Watt seconds

Static price The portion of price not explicitly depending on energy consumption; usually
it depends on the static characteristics of a VM (e.g., CPU speed, Memory,
maximum network bandwidth, etc.). It could be also the result of a market
mechanism, e.g., auction for computing resources

Static
charge

The total charge due to static prices

Billing The calculation of a price or charge incurred by a specific VM based on past
usage

Prediction The calculation of a price or charge estimate concerning the future usage of a
specific VM, given a prediction of its energy (or power) consumption

Pricing
scheme

A formula for computing the price

Energy-Aware Pricing Within Cloud Environments 151

4.2.1 Two-Part Tariff Pricing
The actual form of IaaS price could be comprised by two parts: a fixed one, a,
depending only on static information of a VM, and a dynamic one, b which depends on
the average power usage. As an example we have the following simple scheme: a is a
fixed part based on static VM characteristics, and b is the average power usage mul-
tiplied with the price per watt-hour (Wh).

Thus, the price p of a VM (starting at time 0 and up to time T) is computed by the
formula

p ¼ 1
T

ZT

0

pstatic VM; tð Þdtþ 1
T

ZT

0

penergy tð ÞW tð Þdt ð1Þ

where,

VM: a parameter identifying the characteristics of the VM
pstatic VM; tð Þ : the static price of VM at time t
penergy tð Þ : the energy price at time t
W tð Þ : the power usage of the VM at time t:

We assume that the energy price changes only at the time instants T0 ¼
0\T1\T2\. . .; and let the energy consumption during the corresponding time period
be as given by the red curve in Fig. 2.

Then the total charges C Tð Þ ¼ RT
0
penergy tð ÞW tð Þdt incurred up to time T can be

calculated from C Tkð Þ as

C Tð Þ ¼ C Tkð Þþ penergy Tkð Þ
ZT

Tk

W tð Þdt ð2Þ

Thus, in order to be able to calculate the charge for any VM one must keep track of
C Tkð Þ, i.e., the charges incurred up to the last price change, the current energy price

penergy Tkð Þ and the energy RTk
0
W tð Þdt consumed (by this VM) up to the last price change.

Then the energy consumption
RT
Tk

W tð Þdt appearing in (1) can be computed as the

difference
RT
0
W tð Þdt � RTk

0
W tð Þdt. Hence, on a price change one must iterate through all

the VMs in the infrastructure and update C Tkð Þ; RTk
0
W tð Þdt. The energy price p is

computed from the total charge C Tð Þ as p ¼ C Tð Þ=T .

152 A. Kostopoulos et al.

The term 1
T

RT
0
pstatic VM; tð Þdt represents the static price of the VM based on its own

characteristics. If the static price does not vary in time, i.e., p VM; tð Þ is constant in the
time parameter t then no time averaging is necessary. If it does vary then similarly to

the above analysis, the total static charge
RT
0
p VM; tð Þdt up to time T can be written as

RTk
0
p VM; tð Þdtþ p VM; Tkð Þ T � Tkð Þ, i.e., the total static charges incurred up to time Tk

plus the static charges from that point onwards. Thus, in order to keep track of the static
charges incurred by any VM, the total static charge up to the last static price change1

should be stored (for each VM). Consequently, every time the static prices changes one
must update the static charges for each VM in the infrastructure. The static price up to

time T is computed from the static charges as
RT
0
p VM; tð Þdt=T .

4.2.2 Two-Part Tariff with Energy Saving Discounts
A disadvantage of the dynamic usage price presented in Sect. 4.2.1 is that the actual
energy that an application may use is not known by the developers at the time the SLA
is established. A simple alternative is to pay a lump sum and then apply a discount
based on the actual power consumption. Hence, we could use the following two-part
price: a is a fixed price based on static info of a VM which also incorporates energy
costs through the historical average power consumption, and b is a price discount
depending on the level of power savings below the historical average. In this way it is
not possible to pay more than the lump sum initial payment.

Fig. 2. Recursive calculation of energy charges C Tð Þ up to time T by the energy charges C Tkð Þ
and the energy charge during the time period from Tk up to T, where Tk is the last instant the
energy price changed prior to T (Color figure online).

1 For example, if the static price is the spot price of a market mechanism.

Energy-Aware Pricing Within Cloud Environments 153

More specifically, the price p is computed by the formula

p ¼ 1
T

ZT

0

pstatic VM; tð Þdtþmin
1
T

ZT

0

penergy tð ÞW tð Þdt � 1
T

ZT

0

penergy tð ÞWnominaldt; 0

8<
:

9=
; ð3Þ

where, Wnominal: the nominal average power consumption, i.e., the power consumption
already accounted for in the static price. Any average power consumption above
Wnominal does not increase price above the (time average) static price. Deviations below
Wnominal result into a proportional discount.

4.3 Linearly Increasing Energy-Based Pricing

In both aforementioned pricing schemes, we assumed that the price of energy could
potentially vary in each epoch. However, such schemes do not consider any direct
relation between the energy price and the total energy consumption. Let us consider an
energy provider facing energy consumption bursts (e.g., during summer) that he rea-
sonably would like to avoid. A traditional pricing scheme adopted by the majority of
the energy providers, is to provide a lower price per energy unit during the less bursty
periods (e.g., day/night).

Motivated by this approach, we investigate how an IaaS provider could provide the
necessary incentives to his customers in order to shift their energy demand to less
bursty periods. In this scheme, we assume the price per energy unit based on the total
consumed energy to be a linear increasing function.

It should be mentioned here that other approaches (e.g., exponential function) may
also be applied, in order to capture the notion of setting a higher price per energy unit,
as more energy is consumed during an epoch. The slope of the charging function will
be set by the IaaS provider based on the factors affecting his own cost function (e.g.,
charging scheme or/and SLAs between IaaS and energy provider).

For the linear assumption, penergy can be written as cW tð Þ, assuming that c is a
constant parameter set by the IaaS provider, showing how aggressively penergy will
increase with respect to the total energy consumption. In order to prevent IaaS provider
to charge arbitrarily high prices, we set an upper bound, such that cW tð Þ� penergy upper .

Thus, the price p is computed by the formula

p ¼ 1
T

ZT

0

pstatic VM; tð Þdtþmin
1
T

ZT

0

cW2 tð Þdt; 1
T

ZT

0

penergy upper tð ÞW tð Þdt
8<
:

9=
; ð4Þ

154 A. Kostopoulos et al.

4.4 95th Percentile Rule

The 95th percentile rule is a widely used pricing scheme in telecommunications for
charging the transit traffic sent by lower-tier ISPs. By employing this scheme, transit
ISPs intend to penalize lower-tier ISPs in case of traffic bursts.

A similar pricing scheme could be employed by IaaS providers for penalizing
bursts of the consumed energy. To implement this scheme, it is assumed that the energy
consumption within the infrastructure of an IaaS provider is measured or sampled and
recorded (e.g., log file)2. At the end of each billing cycle (e.g., every month), the energy
consumption samples are sorted from highest to lowest, and the top 5% of data is
thrown away. The next highest measurement is the 95th%, and the customer will be
billed based on that energy consumption.

We let l� tð Þ denote the 95th% measurement of the energy consumed by the cus-
tomer at time t. Then, l� is defined as max ljP W [lð Þ� 0:05f g.

Thus, the price p is computed by the formula

p ¼ 1
T

ZT

0

pstatic VM; tð Þdtþ 1
T

ZT

0

penergy tð Þl� tð Þdt ð5Þ

5 Service Plans

In this section, we introduce service plans for the IaaS/PaaS provider to facilitate the
evaluation of opportunity costs by offering multiple mutually exclusive service plans to
its customers. The plans are intended to form the basis of business level contracts
between layers by clearly specifying the responsibilities between the participating
layers. Service plans is just one example of a method which IaaS/PaaS providers may
use to facilitate energy-aware adoption, and others may exist. They are given here to
complement the discussion on ASCETiC adoption implied by the energy-based pricing
schemes proposed in Sect. 4.

The proposed service plans are intended to form the basis of business level con-
tracts between cloud layers by clearly specifying the responsibilities between the
participating layers. These responsibilities are the combination of

a. an SLA agreement,
b. a pricing scheme, and
c. a clear understanding of adaptation semantics, i.e., a specification of the originator

and the means of corrective actions on the event of an SLA violation or just before it
happens.

It is important to note that the plans need not be part of the ASCETiC architecture
as such, as they are defined by combinations of instances of (a, b, c) above.

2 For example, in the ASCETiC framework, the IaaS Energy Modeler component is the principle
component for predicting energy usage and generating historic logs of usage [3].

Energy-Aware Pricing Within Cloud Environments 155

On the other hand, the service plans are essential in evaluating opportunity costs and
therefore affect business and technological decisions.

A key idea is that multiple plans should be offered at the same time, with multiple
choices existing along two axes: the degree of adoption of energy-aware functionality,
and the level of service performance.

Adoption axis: A successful adoption strategy should include plans similar to the ones
offered in legacy architectures in order to not exclude customers (i.e., layers, appli-
cations) which

i. do not want to change method they are charged with to an energy-based one,
and/or

ii. are not capable of exploiting the additional features of an energy-aware
architecture.

Non-legacy plans which take information on energy into account, i.e., when either
constituent of (a, b, c) involves energy-related terms, should be offered alongside with
legacy ones. This coexistence will allow the gradual adoption of energy-aware ele-
ments of the architecture. The menu of plans offered should accommodate all customer
types in respect to their adoption degree. For example, we could identify three degrees
of adoption:

(1) legacy customers, i.e., described by (i, ii) above,
(2) non-legacy customers which prefer legacy payments, i.e., described by (i) but not

(ii), and
(3) non-legacy customers which do not belong to either (i) or (ii), i.e., they have fully

adopted the architecture and energy-aware payment models.

Performance axis: The second axis along which customers are categorized is per-
formance. If multiple performance measures exist, such as response delay and relia-
bility then the second axis is actually multidimensional. Higher performance means
lower latency and/or higher throughput and is normally associated with costlier plans,
while low performance is a budget option.

Figure 3 depicts these two axes along with five illustrative service plans which
intend to cover most of the space defined by the axes:

HiPerf: geared towards high performance legacy customers. Normally it is associated
with SLAs with performance-related terms. As these customers are not energy aware,
the lower layer is solely responsible for adaptation actions.

Budget: a budget plan for legacy customers, which usually comes with loose or no
performance guarantees specified in the SLA. Again the lower layer is solely
responsible for adaptation.

Vegan: a budget plan for type (2) customers, i.e., non-legacy customers with legacy
payment plan. SLA terms impose strict limits on maximum power usage (within a
specific time window). The lower layer is responsible for ensuring these limits are
never violated. Other than that, the customer is free to adapt in order to make best use

156 A. Kostopoulos et al.

of system resources without exceeding the power limits. As the payment plan is legacy
(i.e., not depending on energy consumption) the customer has the incentive of doing
the most out of its energy-aware capabilities for the amount of price it is paying.

Green: a more high-end plan than Vegan, for type (2) customers. The share of
responsibilities is the same as Vegan the only differences being that the power limits
are higher at a higher price. Because the power limits are higher, this plan can be used
by customer seeking higher performance.

Energy-Aware: a plan for non-legacy customers with energy aware payments. Since
energy consumption is charged by the lower layer, it is the sole responsibility of the
customer to make good use of energy-efficient actions. SLA terms could prevent
overcharging due to excessive energy consumption, by either limiting the maximum
power usage or maximum energy-related charge. (In the case the latter is exceeded the
provision of service by the lower layer could temporarily be suspended until energy
charges drop below the limit.) Both high and low performance can be accommodated
under this plan, as the performance/cost tradeoff is determined by the customer’s
adapting actions.

These plans are defined such that they span most of the space defined by the two
axes. This is to ensure that as many customers as possible are accommodated within a
system employing this architecture. The existence of intermediate adoption degrees
(customer type (2)) also allows gradual adoption in smaller steps, instead of a single big
one. This reduces the adoption costs at each step and makes full adoption more likely.

Finally, the pricing strategy, i.e., the selection of prices in the pricing schemes,
should be such that services higher in the adoption degree axis are more competitive
than lower ones. In other words, the pricing of service plans should provide incentives
for adoption of energy-aware technologies by the customer. Thus the service plan price
differences could offset part of the adoption costs and act as subsidies by the IaaS/PaaS
provider. Of course pricing should also consider competition with legacy clouds.

As an example of an adoption path towards full energy-awareness, consider an
application which does not require small response times and desires a low cost service.

Fig. 3. Adoption degree of service plans with respect to the charging method and performance.

Energy-Aware Pricing Within Cloud Environments 157

Initially it subscribes to the Budget service plan as the closest match. Since low cost is
important for the application, it has the choice of subscribing to the “Vegan” plan at a
smaller but still fixed price. If the application does not employ any energy-aware
capabilities through e.g., energy-aware scheduling of requests on VMs, then soon the
tight bounds on power consumption of the “Vegan” plan will be violated and so
performance will degrade. The only way of avoiding this to happen is for the appli-
cation to develop energy awareness. Of course this involves extra “ASCETiC adop-
tion” costs as explained before, but the lower “Vegan” price should offset these.

Once the application develops energy-awareness, it could evaluate if the
“Energy-aware” plan is better. It may be a better solution than “Vegan” since there will
be times, e.g., cloud-wide congestion, which significantly degrades performance. In
these situations, through the “Energy-aware” plan, the application can avoid big per-
formance drops by being able to use more resources at will at a temporarily higher cost.

6 Conclusions and Future Work

The ASCETiC project aims to provide novel methods and tools to support software
developers aiming to optimize energy efficiency at the different layers of the cloud
stack. The Pricing Modeler is a component within the ASCETiC architecture, which is
responsible for providing energy-aware cost estimation related to the operation of
applications, as well as billing information.

From our market analysis on cloud service pricing, we observed that cloud pro-
viders mainly charge for their resources on the basis of fixed rates per unit of time,
without taking explicitly into account the energy usage. In response, we proposed four
novel energy-aware pricing schemes to enhance IaaS providers choosing their optimal
pricing strategy, reflecting also our target for incentivizing the customers to be
energy-efficient. The proposed pricing schemes differ in terms of aggressiveness with
respect to the charging of energy consumption bursts. Furthermore, we presented a set
of envisaged service plans intending to facilitate the gradual adoption of the ASCETiC
architecture.

Our future work will focus on proposing new energy-aware pricing schemes, as
well as evaluating them based on different scenarios. For example, each pricing scheme
could be selected by a cloud operator based on the type of the applications running
within its infrastructure. Another dimension of our research is to investigate and
evaluate scenarios assuming competition among cloud providers employing different
pricing schemes, as well as consider the equilibriums (if any) in the cloud market.

Acknowledgements. This work is partly supported by the European Commission under
FP7-ICT-2013.1.2 contract 610874 - Adapting Service lifeCycle towards EfficienT Clouds
(ASCETiC) project.

158 A. Kostopoulos et al.

References

1. ASCETiC, EU FP-7 project. http://ascetic-project.eu/
2. Mell, P., Grance, T.: The NIST definition of cloud computing. Nat. Inst. Stand. Technol.

53(6), 50 (2009)
3. ASCETiC Deliverable D2.2.3 Architecture Specification – Version 3, Public Deliverable,

December 2015
4. AT&T Cloud Services website. http://www.business.att.com/enterprise/Portfolio/cloud
5. GoGrid website. http://www.gogrid.com
6. Terramark website. http://vcloudexpress.terremark.com
7. Microsoft Windows Azure website. http://www.windowsazure.com/en-us/pricing/calculator
8. Opsource website. http://www.opsource.net
9. Amazon Elastic Compute Cloud website. http://aws.amazon.com
10. Rackspace website. http://www.rackspace.com/cloud
11. Google Cloud Pricing website. https://developers.google.com/storage/pricing
12. Softlayer website. http://www.softlayer.com
13. HP cloud website. http://www.hpcloud.com/pricing
14. Engine Yard website. https://www.engineyard.com/products/cloud
15. Acquia website. http://www.acquia.com/cloud-pricing

Energy-Aware Pricing Within Cloud Environments 159

http://ascetic-project.eu/
http://www.business.att.com/enterprise/Portfolio/cloud
http://www.gogrid.com
http://vcloudexpress.terremark.com
http://www.windowsazure.com/en-us/pricing/calculator
http://www.opsource.net
http://aws.amazon.com
http://www.rackspace.com/cloud
https://developers.google.com/storage/pricing
http://www.softlayer.com
http://www.hpcloud.com/pricing
https://www.engineyard.com/products/cloud
http://www.acquia.com/cloud-pricing

Energy Prediction for Cloud
Workload Patterns

Ibrahim Alzamil1,2(&) and Karim Djemame1

1 School of Computing, University of Leeds, Leeds, UK
{sc11iaa,K.Djemame}@leeds.ac.uk

2 College of Science and Humanities, Majmaah University,
Alghat, Kingdom of Saudi Arabia

I.Alzamil@mu.edu.sa

Abstract. The excessive use of energy consumption in Cloud infrastructures
has become one of the major cost factors for Cloud providers to maintain. In
order to enhance the energy efficiency of Cloud resources, proactive and reactive
management tools are used. However, these tools need to be supported with
energy-awareness not only at the physical machine (PM) level but also at virtual
machine (VM) level in order to enhance decision-making. This paper introduces
an energy-aware profiling model to identify energy consumption for heteroge-
neous and homogeneous VMs running on the same PM and presents an
energy-aware prediction framework to forecast future VMs energy consumption.
This framework first predicts the VMs’ workload based on historical workload
patterns using Autoregressive Integrated Moving Average (ARIMA) model. The
predicted VM workload is then correlated to the physical resources within this
framework in order to get the predicted VM energy consumption. Compared
with actual results obtained in a real Cloud testbed, the predicted results show
that this energy-aware prediction framework can get up to 2.58 Mean Percentage
Error (MPE) for the VM workload prediction, and up to −4.47 MPE for the VM
energy prediction based on periodic workload pattern.

Keywords: Cloud computing � Energy efficiency � Energy-aware profiling �
Energy prediction � Workload prediction � Cloud workload patterns

1 Introduction

With the wide adoption of Cloud Computing, energy consumption has become one of
the main issues for Cloud providers to maintain. A Cloud infrastructure along with its
cooling resources consume a large amount of energy in order to operate, which may
cause ecological and economic issues. The ICT industry is responsible for about 2
percent of the global CO2 emission, which is similar to the amount caused by the
aviation industry, as stated by Gartner [1]. For economic aspects, a data centre may
consume about 100 times more energy compared to a typical office with the same size
[2]. In terms of maintenance, Cloud providers consider energy consumption as one of
the largest cost factors [3] with a big impact on the operational cost of a Cloud
infrastructure [4]. Therefore, various energy efficient techniques have been introduced
recently to help the Cloud providers reduce the energy consumption cost of their

© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 160–174, 2017.
DOI: 10.1007/978-3-319-61920-0_12

infrastructure, which can then lead to reducing the cost of operational expenditure
(OPEX) and having less impact on the environment.

The impact of energy consumption is not only dependent on the efficiency of the
physical resources, but also on the efficiency of the tools deployed to manage these
resources as well as the efficiency of the applications running on these resources [5].
Different methods have been used to efficiently manage the Cloud resources, all of
which can be based on certain thresholds, called reactive, or based on prediction, called
proactive. For example, once exceeding a certain threshold, 80% of CPU utilisation,
some actions take place by reactive methods to add more resources and avoid per-
formance degradation. With prediction, proactive methods have the advantage of
taking some actions at earlier stages to avoid getting that threshold and maintain the
expected performance. To enable such optimisation and the energy efficient design of
Cloud applications, the applications’ designers and developers should be provided with
energy-aware information to support their programming decisions. Also, the deploy-
ment tools should incorporate energy-ware information to make energy-efficient
decisions when deploying these applications on the Cloud resources. As discussed in
[6], having appropriate tools for energy monitoring and profiling is essential to get
better energy-awareness and then help for energy optimisation at all layers of such
large-scale system. Also, predicting the workload of a Virtual Machine (VM) can help
make effective deployment strategies and energy efficient resource allocation methods
[7]. Thus, managing the Cloud paradigm in all different levels and reducing the energy
consumption has been an active area of research as it can result in reduction of OPEX
costs for the Cloud providers.

Cloud applications can experience different workload patterns based on the users’
usage behaviours, and these workload patterns are depicted by the utilisation of the
resources hosting these applications. As stated in [8], there are mainly five Cloud
workload patterns, namely: static workload experiencing the same and stable resource
utilisation over a period of time; periodic workload experiencing repeated resource
utilisation peaks in time intervals; continuously changing workload experiencing a
resource utilisation that continuously decreases or increases over time; unpredicted
workload experiencing a resource utilisation randomly over time, and once-in-a-life-
time workload experiencing a resource utilisation peak once over time. These different
workload patterns consume energy differently based on the resources they utilise. Thus,
it is important to have reactive and proactive methods to efficiently manage these
resources when being utilised. In order to do that, current energy usage for physical and
virtual resources has to be profiled so that such reactive methods can rely on it.
Consequently, future energy usage can be predicted so that such proactive methods
make use of. Energy consumption can be directly measured at the Physical Machine
(PM) level, but it is difficult and not directly measured at the VM level. Thus, enabling
energy-awareness at different levels is a key aspect towards efficiently managing the
Cloud paradigm.

In our previous work [9], we proposed and implemented a system architecture to
enable energy-aware profiling for Cloud infrastructure resources at both physical and
virtual levels. In this paper, we extend our work to consider heterogeneity when pro-
filing energy consumption for different sizes of VMs running on a single PM. Also, we
extend this architecture to enable energy prediction for the VMs requested to run Cloud

Energy Prediction for Cloud Workload Patterns 161

applications by considering previously profiled and stored data as well as the incoming
workload’s characteristics before service deployment. The outcomes of this work can
help and add value to enhance the energy efficiency of Cloud environment by feeding
into other deployment models or scheduling strategies to enable energy efficient
management of Cloud resources, which can lead to lowering the cost of OPEX for
Cloud providers. This paper’s main contributions are:

• Energy-aware profiling model that enables energy-awareness for homogeneous and
heterogeneous VMs in Clouds.

• Energy-aware prediction framework that forecasts the future energy usage for VMs
prior to deployment.

This paper is structured as follows: a discussion of the related work is summarised
in the next section. Section 3 presents the system architecture followed by a discussion
of the energy-aware profiling model for attributing PM’s power consumption to
heterogeneous and homogeneous VMs, and a discussion of the energy-aware predic-
tion framework for forecasting the future VMs’ energy usage before their deployment.
Section 4 discusses the experimental set up followed by results and evaluation in
Sect. 5. Finally, Sect. 6 concludes this paper and discusses future work.

2 Related Work

Djemame et al. [10] emphasised the importance of optimising the energy efficiency of
the Cloud paradigm at different layers and proposed an architecture that addresses
energy efficiency at all Cloud layers and all through Cloud application life-cycle.
Monitoring and profiling as well as forecasting the energy consumption is a key step
towards enhancing and optimising the energy efficiency in the Cloud paradigm.
However, VMs’ energy consumption cannot be measured and profiled directly as they
do not have direct hardware interfaces. Therefore, their energy information can be
indirectly identified via modelling the energy consumed by the servers in which they
are hosted [9, 11–13].

Further, uncertainty issues associated with the Cloud environment makes it more
difficult to do such prediction, like predicting job runtime. Tchernykh et al. [14] have
emphasised the difficulty of dealing with uncertainty in Cloud environment especially
since its workload can change dramatically over time. So, they have reviewed and
classified the uncertainty issues associated with a Cloud environment and discussed
some approaches to mitigate them. For example, some looked at the historical data of
applications to predict the runtime job of similar applications to be executed [15].

Tchernykh et al. [16] have presented an experimental study for several online
scheduling strategies in a Cloud environment with different workloads. In the experi-
mental results, they used and analysed eight allocation strategies based on three group
categories, namely, knowledge-free, energy-aware, and speed-aware. The energy
model used in their work simply considers summing up the machine’s idle power and
the extra variable power, which depends on the workload. However, they do not
consider the workload in their model when calculating the variable power consump-
tion. Also, the workload used in their work is based on HPC jobs for parallel and grid

162 I. Alzamil and K. Djemame

environments and not precisely on real Cloud environments that should also consider
the complexity of virtualisation aspects.

Some work focuses on predicting power consumption based on historical data while
others use performance counters, which are queried from chips or OS. But, relying on
performance counters would not work appropriately in heterogeneous environments
with different server’s characteristics, as argued by Zhang et al. [17]. Therefore, they
presented a best fit energy prediction model BFEPM that flexibly selects the best model
for a given server based on a series of equations that consider only CPU utilisation [17].
Dargie [18] proposed a stochastic model to estimate the power consumption for a
multi-core processor based on the CPU utilisation workload and found out that the
relationship between the workload and power is best estimated using a linear function in
a dual-core processor and using a quadratic function in a single-core processor. Further,
Fan et al. [19] have introduced a framework to estimate the power consumption of
servers based on CPU utilisation only and argued with their results that the power
consumption correlates well with the CPU usage. As their framework produced accurate
results, they argued that it is not necessary to use more complex signals, like hardware
performance counters, to model power usage. Their work also indicates that the activity
of other system components, other than CPU, may have either small effect on power
usage or their activity correlates well with the CPU activity.

In terms of future prediction based on historical data, estimating the energy con-
sumption of a Cloud application prior to deployment on VMs would require under-
standing the characteristics of the underlying physical resources, like idle power
consumption and variable power under different workload, and the projected virtual
resources usage, as stated in [20]. Thus, it is essential to get the predicted VMs’
workload first in order to get their predicted energy. Some work has predicted future
workload in a Cloud environment based on Autoregressive Integrated Moving Average
(ARIMA) model [21–24]; nonetheless, their objectives do not consider predicting the
energy consumption. For example, Calheiros et al. [24] introduced a Cloud workload
prediction module based on the ARIMA model to proactively and dynamically pro-
vision resources. They define their workload as the expected number of requests
received by the users, which are then mapped to predict the number of VMs needed to
execute users’ requests and meet the Quality of Service (QoS).

Compared with the work presented in this paper, ARIMA model is used to predict
the VM workload, defined as VM CPU utilisation, which is then mapped within the
energy-aware prediction framework to get the forecasted VM energy consumption for
the next time interval. Then, having predicted the VM workload and its energy con-
sumption, other methods can rely on this information to help introduce a proactive
resource provisioning and scheduling that aim to not only utilise resources efficiently
and meet the demands, but also consider the energy efficiency aspects as well. This can
drive towards a cost reduction of the energy consumption and OPEX for Cloud service
providers.

Energy Prediction for Cloud Workload Patterns 163

3 Energy-Aware Profiling and Prediction

Enabling energy-awareness in the Cloud paradigm is a key step towards optimising its
energy efficiency. An energy-aware profiling model is introduced for Cloud infras-
tructures where the service operation takes place in order to understand how the energy
has been consumed; this profiled information can then be used to help the software
developers and reactive management tools make energy-efficient decisions when
optimising the applications and efficiently managing the Cloud resources. Also, an
energy-aware prediction framework is proposed to predict the energy consumption of
VMs, requested to execute the application, prior to service deployment, which can help
and facilitate such proactive deployment tools with energy-awareness to efficiently
manage the Cloud resources. The overall system architecture of this work will be
discussed in the next subsection, followed by a detailed discussion of the energy-aware
profiling and prediction within this architecture.

3.1 System Architecture

The system architecture is aimed at enabling energy-awareness at the deployment and
operational levels of the Cloud paradigm. As depicted in Fig. 1, this architecture
consists of a number of components, mainly, the Resource Monitoring Unit (RMU),
Energy-aware Profiling Unit (EPU), Reporting and Analysis Unit, and Energy-aware
PREdiction Unit (EPREU). The highlighted components, EPU and EPREU, are the
main focus of this paper.

Starting at the bottom layer when the Cloud infrastructure is operating to run the
Cloud services, the resources’ usage and physical energy consumption along with the
number of assigned VMs to each PM are dynamically collected by RMU. EPU has an
appropriate energy model that takes as input the monitored data from RMU and outputs.

Fig. 1. System architecture.

164 I. Alzamil and K. Djemame

The attribution of the energy consumption to each VM based on the energy con-
sumption of their physical hosts. Then, EPU profiles and populates these measurements
to a knowledge database, which can be further used by the Reporting and Analysis Unit
to provide energy-aware reports to the application developers to help them learn how
their applications consume energy and make such energy-efficient decisions accord-
ingly to optimise their applications. Also, these measurements can be very useful for
such resource management tools by enhancing their energy-awareness and making
energy-efficient decisions when, for example, scheduling the tasks and balancing the
workload. Further, this energy-related information of VMs, which can be used by
different customers and run on the same PM, can help the service providers introduce a
new pricing mechanism that charge the customers based not only on their IT resources
usage, but on their energy usage as well.

Moving up to the middle layer when the Cloud services are about to be deployed,
EPREU has a framework consisting of a number of models that predict the energy
consumption of VMs prior to service deployment by considering the type of these VMs
and their historical data. The predicted energy consumption for VMs can help other
deployment strategies make energy-efficient decisions proactively.

3.2 Energy-Aware Profiling Model

The energy consumption of PMs can be directly measured and mainly consists of two
parts, idle and active. The idle energy is consumed when the PM is turned on but not
running any workload. The active energy is the extra energy added to the idle when the
PM is busy and running some workload. As the case with the PM, the total energy
consumption of the VM equals its idle energy consumption plus its active energy
consumption. Yet, the energy consumption of VMs is difficult to identify and not
directly measured.

In our previous work [9], we introduced an energy-aware profiling model that
attributes the PM’s energy consumption to VMs. It attributes the PM’s idle energy
evenly among the number of VMs running on it, and attributes the active energy based
on VM CPU utilisation mechanism. This model enables a fair attribution of a PM’s
energy consumption to homogeneous VMs.

In this paper, we extend our work and introduce a new energy-aware profiling
model that fairly attributes the energy consumption to homogeneous and heterogeneous
VMs running on the same PM. This new model works by fairly attributing the PM’s
idle energy to VMs based on the number of Virtual CPUs (VCPUs) assigned to each
VM, and the active energy to VMs based on the VM CPU utilisation mechanism as
well as the number of VCPUs assigned to each VM.

As shown in Eq. 1, VMxPwr is the power consumption of the targeted VM;
PMIdlePwr is the idle power consumption of the PM where the VMs are hosted; VMxVCPU
and VMxUtil are the number of assigned VCPUs and the CPU utilisation of that VM;
VMCount is the number of VMs running on the same PM; VMyVCPU and VMyUtil are the
number of assigned VCPUs and the CPU utilisation of a member of the VMs set hosted
by the same PM, and the active power consumption of the PM is the total PM’s power
PMPwr minus its idle power.

Energy Prediction for Cloud Workload Patterns 165

VMxPwr ¼ PMIdlePwr � VMxVCPUPVMCount
y¼1

VMyVCPU

þ PMPwr � PMIdlePwrð Þ

� VMxUtil�VMxVCPUPVMCount
y¼1

VMyUtil�VMyVCPUð Þ
ð1Þ

Hence, the new energy-aware profiling model can now fairly attribute the idle and
active energy consumption of a PM to the same or different sizes of VMs in terms of
the allocated VCPUs for each VM. For instance, when both a small VM with 1 VCPU
and a large VM with 3 VCPUs are being fully utilized on the same PM, the large VM
would have triple the value in terms of energy consumption as compared to the small
VM; so that the energy consumption can be fairly attributed based on the actual
physical resources used by each VM.

3.3 Energy-Aware Prediction Framework

As measuring the current energy consumption is difficult and cannot be performed
directly at the VM level, predicting the future energy consumption is even more
difficult at this level because it would rely on the estimated PM’s energy to be used.
Therefore, an energy-aware prediction framework that aims to forecast the energy
consumption for the new VMs prior to service deployment is presented. This frame-
work includes a model that first predicts the workload at the VM level. After that, this
predicted VM workload is correlated to physical workload in order to estimate the new
PM energy consumption, from which the predicted VM energy consumption would be
based on. As depicted in Fig. 2, this energy-aware prediction framework includes four
main steps in order to forecast the VMs’ energy consumption.

Step 1: This framework starts by receiving from the deployment environment pre-
requisite information, which is the requested number of VMs along with their capacity
in terms of VCPUs to execute the application, before such deployment process takes
place. Then, by using the ARIMA model, the VM workload, which is VM CPU
utilisation, is predicted based on historical static and periodic workload patterns.

Fig. 2. Energy-aware prediction framework.

166 I. Alzamil and K. Djemame

The ARIMA model is a time series prediction model that has been used widely in
different domains, including finance, owing to its sophistication and accuracy; further
details about the ARIMA model can be found in [25]. Unlike other prediction methods,
like sample average, ARIMA takes multiple inputs as historical observations and
outputs multiple future observations depicting the seasonal trend. It can be used for
seasonal or non-seasonal time-series data. The type of seasonal ARIMA model is used
in this work as the targeted workload patterns are reoccurring and showing seasonality
in time intervals. In order to use the ARIMA model for predicting the VM workload in
our work, the historical time series workload data has to be stationary, otherwise
Box and Cox transformation [26] and data differencing methods are used to make these
data stationary. The model selection can be automatically processed in R package [27]
using the auto.arima function, which selects the best fit model of ARIMA based on
Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) value.

Step 2: Once the VM’s workload is predicted, the next step is to understand how this
workload would be reflected on the physical resources and predict the new PM’s
workload, which is PM CPU utilisation, with consideration of its current workload as
the PM may be running another VM already. Therefore, the relationship between the
number of VCPUs and the PM’s CPU utilisation is characterised for each PM in the
Leeds Cloud testbed (this testbed is discussed in Sect. 4). For instance, Fig. 3a shows a
linear relation between the number of VCPUs and CPU utilisation for a single physical
host. Thus, using this relation equation can help estimate the new increment of PM’s
CPU utilisation based on the used ratio of the requested VCPUs for the VM,
VMxReqVCPUs, identified by the predicted VM CPU utilisation, VMxPredUtil. This new
increment of PM’s utilisation would be also added to the current PM’s CPU utilisation,
PMxCurrUtil, in order to identify the new total of the predicted PM’s CPU utilisation,
PMxPredUtil, as described in Eq. 2. The PM’s idle CPU utilisation, PMxIdleUtil, is sub-
tracted from the current because the relation equation already considers this idle value.

Fig. 3. (a) On the left: Number of VCPUs vs. CPU utilisation for a single host. (b) On the right:
CPU utilisation vs. power consumption for a single host.

Energy Prediction for Cloud Workload Patterns 167

PMxPredUtil ¼ 23:993� VMxReqVCPUs � VMxPredUtil
100

� �þ 4:5347
� �

þ PMxCurrUtil � PMxIdleUtilð Þ ð2Þ

Step 3: After predicting the PM’s workload, the next step is to predict the PM’s energy
consumption based on the correlation of this predicted workload with PM energy
consumption. For example, Fig. 3b shows a linear relation between the power con-
sumption and the CPU utilisation on the same physical host.

Considering this relation, Eq. 3 is used to predict the PM’s power consumption,
PMxPredPwr, based on the predicted PM’s CPU utilisation.

PMxPredPwr ¼ 0:7254� PMxPredUtil þ 53:88 ð3Þ

Step 4: The final step within this framework is to profile and attribute the predicted
PM’s energy consumption to the new requested VM and to the VMs already running
on that physical host based on the energy-aware profiling model introduced in
Sect. 3.2. Hence, the energy consumption for the new VM prior to deployment will be
predicted for the next interval time using Eq. 1, but substituting the VMxVCPU with
VMxReqVCPU , PMPwr with PMxPredPwr, and VMxUtil with VMxPredUtil.

4 Experimental Set up

This section describes the environment and the details of the experiments conducted in
order to evaluate the work presented in this paper. In terms of the environment, the
experiments have been conducted on the Leeds Cloud testbed, discussed in details in
[9]. Briefly, this testbed includes a cluster of commodity Dell servers, and one of these
servers with a four core X3430 Intel Xeon CPU was used. The server has a WattsUp
meter [28] attached to directly measure the energy consumption and push it to Zabbix
[29], which is also used for resources usage monitoring purposes. This testbed currently
uses OpenNebula [30] version 4.10 as the Virtual Infrastructure Manager (VIM), and
KVM [31] hypervisor for the Virtual Machine Manager (VMM).

In terms of the experiments’ design, the aim is to evaluate that the new
energy-aware profiling model presented in this paper is capable of fairly attributing the
PM’s energy consumption to homogeneous and heterogeneous VMs. Thus, one sce-
nario is designed to show how the energy consumption would be attributed when two
small VMs with 1 VCPU for each are running on the same PM, and another scenario is
designed to show how the energy consumption would be attributed when a small VM
with 1 VCPU and a large VM with 3 VCPUs are running on the same PM. Secondly,
the aim is also to evaluate that the energy-aware prediction framework is capable of
predicting the energy consumption of the VM prior to service deployment based on
historical static and periodic workload. Thus, a number of direct experiments have been
conducted on the testbed to synthetically generate static and periodic workload by
stressing the CPU on different types of VMs, like a small VM with 1 VCPU and a large
VM with 3 VCPUs. The generated workload of each VM type has four time intervals
of 30 min each. The first three intervals will be used as the historical data set for

168 I. Alzamil and K. Djemame

prediction, and the last interval will be used as the testing data set to evaluate the
predicted results. The prediction process starts by firstly predicting the VM workload
offline using the auto.arima function in R package [27] and then completing the cycle
of this framework and considering the correlation between the physical and virtual
resources to predict energy consumption of the VM prior to deployment on a single
PM. This single PM is expected to host this VM only, so this VM would have the same
energy consumption as the PM.

5 Results Discussion and Evaluation

Starting with evaluating the capability of the energy-aware profiling, Figs. 4a and b
show the results of attributing the PM’s energy consumption to two homogeneous and
heterogeneous VMs. The first part of Figs. 4a and b shows the attribution of the PM’s
idle energy when the VMs are running but not generating any workload, and the
second part shows the attribution of the PM’s total energy when the VMs are running
the same workload at 80% of CPU utilisation.

Figure 4a shows the results of attributing the PM’s energy consumption to two
homogeneous small VMs, each with 1 VCPU. Based on the results shown on Fig. 4a,
both of the VMs have the same energy consumption as they are homogeneous and have
the same usage of the actual physical resources. Figure 4b shows the attribution of
PM’s energy consumption to heterogeneous VMs, one small with 1 VCPU and another
large with 3 VCPUs. As having triple the size in terms of VCPUs, the large VM’s
energy consumption during the idle and active states is three times larger than the
energy consumption of the small VM. Overall, the results show that the energy-aware
profiling model is capable of fairly attributing PM’s energy consumption to homoge-
neous and heterogeneous VMs based on their utilisation and size, which reflect the
actual physical resources’ usage.

In terms of evaluating the energy-aware prediction framework, Fig. 5 presents the
predicted results for a large VM based on a historical static workload pattern at 80% of

Fig. 4. Energy consumption of a single host attributed to two homogeneous VMs shown on the
left (a) and to two heterogeneous VMs shown on the right (b).

Energy Prediction for Cloud Workload Patterns 169

CPU utilisation, and Fig. 6 presents the predicted results for a large VM based on a
historical periodic workload pattern with two utilisation peaks.

For the prediction based on the historical static workload pattern, Fig. 5a shows the
results of the predicted versus the actual VM workload. Figure 5b shows the results of
the predicted versus the actual VM energy consumption over a time period.

As discussed previously, the VM workload prediction within the proposed
framework uses the ARIMA model to forecast the next 30 min period of workload, as
shown in Fig. 5a, based on three historical intervals of workload. Overall, the predicted
VM workload results closely match the actual workload owing to the sophistication of
the ARIMA model. Based on this predicted workload, the VM energy consumption is
predicted using the remaining models, as previously discussed, within the proposed
framework (see Sect. 3.3). Figure 5b shows the predicted VM energy consumption
results, which have a small variation as compared to the actual energy consumption.
The reason of this variation is because there is an accumulation of error from the
previous steps within the framework, especially when correlating the PM CPU utili-
sation to PM power consumption. As seen on Fig. 5b, the actual energy consumption
increases in the first part of the interval; this may be due to the thermal energy, which is
not captured in this work, causing the machine’s fan to run faster and thus leading to an
increase of PM energy, which is then attributed to the VM. Despite this accumulation
of error, the proposed framework can predict the VM energy consumption accurately.

In terms of prediction accuracy, a number of metrics, as summarised in Table 1, are
used to evaluate the predicted VM workload and energy consumption based on static
workload. As previously discussed in Sect. 4, the actual data of the VM workload and
energy consumption are used as the testing data set for evaluation purposes.

As shown in Table 1, the accuracy of the predicted VM workload is very high as its
metrics’ values are close to zero. The predicted VM energy consumption is less
accurate as compared with the predicted VM workload, but still achieves a good
prediction accuracy, with −1.89 of MPE. The reason of the predicted VM energy
consumption being less accurate than the predicted workload when compared to the
actual data is due to the accumulated error when correlating this VM workload to
physical resources.

Fig. 5. Prediction results for a large VM based on static workload pattern. (a) On the left: results
of workload prediction. (b) On the right: results of energy prediction.

170 I. Alzamil and K. Djemame

In terms of prediction based on the historical periodic workload pattern, Fig. 6a
shows the results of the predicted versus the actual VM workload. Figure 6b shows the
results of the predicted versus the actual VM energy consumption over a period of time.

Despite the periodic utilisation peaks, the predicted VM workload results are clo-
sely matched with the actual results, which reflect the capability of the ARIMA model
to capture the historical seasonal trend and give a very accurate prediction accordingly.
The proposed framework is also capable of predicting the energy consumption of the
VM with only a small variation as compared to the actual. As shown in Fig. 6b, the
actual VM energy consumption in the middle of the interval has a small peak, which
was not followed by the predicted VM energy consumption. This is again can be due to
the thermal energy which is not considered in the proposed framework.

For evaluating the accuracy of the predicted VM workload and energy consumption
based on periodic workload, different accuracy metrics are used, as shown in Table 2.

Despite the high variation of the workload utilisation in the periodic pattern, the
accuracy metrics, as shown in Table 2, indicate that the predicted VM workload
achieves a good accuracy, with 2.58 of MPE. As previously discussed, the accumulated
error when correlating the predicted VM workload to the physical resources in order to
get the energy affects the accuracy of the predicted VM energy consumption.

Fig. 6. Prediction results for a large VM based on periodic workload pattern. (a) On the left:
results of workload prediction. (b) On the right: results of energy prediction.

Table 1. Prediction accuracy for a large VM based on static workload pattern.

Accuracy metric Predicted VM
workload

Predicted VM energy
consumption

Mean Error (ME) −0.11 −1.75
Root Mean Squared Error (RMSE) 0.42 3.28
Mean Absolute Error (MAE) 0.33 3.04
Mean Percentage Error (MPE) −0.14 −1.89
Mean Absolute Percentage Error
(MAPE)

0.42 3.17

Energy Prediction for Cloud Workload Patterns 171

Therefore, the predicted VM energy consumption is less accurate as compared with the
predicted VM workload, but still achieves a good prediction accuracy, with −4.47 of
MPE.

6 Conclusion and Future Work

This paper has presented and evaluated a new energy-aware profiling model that
enables a fair attribution of a PM’s energy consumption to homogeneous and hetero-
geneous VMs based on their utilisation and size, which reflect the physical resource
usage by each VM. Also, it has proposed an energy-aware prediction framework to
forecast the energy consumption of the VM prior to service deployment. A number of
direct experiments were conducted on the Leeds Cloud testbed to evaluate the capa-
bility of the energy prediction. Overall, the results show that the proposed
energy-aware prediction framework is capable of forecasting the energy consumption
for the VM with a good prediction accuracy for static and periodic Cloud workload
patterns.

The application of the proposed work is providing energy-awareness which can be
used and incorporated by other reactive and proactive management tools to make
enhanced energy-aware decisions and efficiently manage the Cloud resources, leading
towards a reduction of energy consumption, and therefore lowering the cost of OPEX
for Cloud providers and having less impact on the environment.

In future work, we aim to facilitate the proposed prediction framework and make an
online modeller on the Leeds testbed to make the prediction process dynamic. Also, we
will consider the scalability aspects with different prediction scenarios to further show
the capability of the proposed work, like predicting the energy usage for a number of
VMs to be run on a single or multiple PMs already hosting other running VMs, and
predicting the energy usage for these VMs to run all together. Further, we aim to
consider the thermal energy and its impact on the energy consumption. With the
evolving technologies of containers, further work will investigate the applicability of
using this research in that context and consider attributing the system’s energy con-
sumption to container instances instead of VM instances.

Table 2. Prediction accuracy for a large VM based on periodic workload pattern

Accuracy metric Predicted VM workload Predicted VM energy consumption

ME −0.02 −3.04
RMSE 1.51 5.76
MAE 0.81 4.61
MPE 2.58 −4.47
MAPE 5.30 6.43

172 I. Alzamil and K. Djemame

References

1. Gartner: Gartner Estimates ICT Industry Accounts for 2 Percent of Global CO2 Emissions.
http://www.gartner.com/newsroom/id/503867

2. Scheihing, P.: Creating energy-efficient data centers. In: Data Center Facilities and
Engineering Conference, Washington, DC, 18 May 2007

3. Mukherjee, T., Dasgupta, K., Gujar, S., Jung, G., Lee, H.: An economic model for green
cloud. In: Proceedings of the 10th International Workshop on Middleware for Grids, Clouds
and e-Science - MGC 2012, pp. 1–6 (2012)

4. Conejero, J., Rana, O., Burnap, P., Morgan, J., Caminero, B., Carrión, C.: Analyzing hadoop
power consumption and impact on application QoS. Futur. Gener. Comput. Syst. 55, 213–
223 (2016)

5. Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A.Y.: A Taxonomy and Survey of
Energy-Efficient Data Centers and Cloud Computing Systems. CoRR. abs/1007.0 (2010)

6. Bagein, M., Barbosa, J., Blanco, V., Brandic, I., Cremer, S., Karatza, H.D., Lefevre, L.,
Mastelic, T., Oleksiak, A.: Energy efficiency for ultrascale systems: challenges and trends
from nesus project. Supercomput. Front. Innov. 2, 105–131 (2015)

7. Jheng, J.-J., Tseng, F.-H., Chao, H.-C., Chou, L.-D.: A novel VM workload prediction using
Grey Forecasting model in cloud data center. In: 2014 International Conference on
Information Networking (ICOIN), pp. 40–45 (2014)

8. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Patterns.
Springer, Wien (2014)

9. Alzamil, I., Djemame, K., Armstrong, D., Kavanagh, R.: Energy-aware profiling for cloud
computing environments. Electron. Notes Theor. Comput. Sci. 318, 91–108 (2015)

10. Djemame, K., Armstrong, D., Kavanagh, R., Juan Ferrer, A., Garcia Perez, D., Antona, D.,
Deprez, J.-C., Ponsard, C., Ortiz, D., Macías Lloret, M., Guitart Fernández, J., Lordan
Gomis, F.-J., Ejarque, J., Sirvent Pardell, R., Badia Sala, R.M., Kammer, M., Kao, O.,
Agiatzidou, E., Dimakis, A., Courcoubetis, C., Blasi, L.: Energy efficiency embedded
service lifecycle: Towards an energy efficient cloud computing architecture. In: Joint
Workshop Proceedings of the 2nd International Conference on ICT for Sustainability 2014,
pp. 1–6. CEUR-WS.org (2014)

11. Kavanagh, R., Armstrong, D., Djemame, K.: Towards an energy-aware cloud architecture
for smart grids. In: 12th International Conference on Economics of Grids, Clouds, Systems,
and Services, Cluj-Napoca, Romania, pp. 1–14 (2015)

12. Gu, C., Huang, H., Jia, X.: Power metering for virtual machine in cloud
computing-challenges and opportunities. IEEE Access. 2, 1106–1116 (2014)

13. Yang, H., Zhao, Q., Luan, Z., Qian, D.: iMeter: an integrated VM power model based on
performance profiling. Futur. Gener. Comput. Syst. 36, 267–286 (2014)

14. Tchernykh, A., Schwiegelsohn, U., Alexandrov, V., Talbi, E.: Towards understanding
uncertainty in cloud computing resource provisioning. Procedia Comput. Sci. 51, 1772–1781
(2015)

15. Ramírez-Alcaraz, J.M., Tchernykh, A., Yahyapour, R., Schwiegelshohn, U., Quezada-Pina,
A., González-García, J.L., Hirales-Carbajal, A.: Job allocation strategies with user run time
estimates for online scheduling in hierarchical grids. J. Grid Comput. 9, 95–116 (2011)

16. Tchernykh, A., Lozano, L., Schwiegelshohn, U., Bouvry, P., Pecero, J.E., Nesmachnow, S.,
Drozdov, A.Y.: Online bi-objective scheduling for IaaS clouds ensuring quality of service.
J. Grid Comput. 14, 5–22 (2016)

Energy Prediction for Cloud Workload Patterns 173

http://www.gartner.com/newsroom/id/503867

17. Zhang, X., Lu, J., Qin, X.: BFEPM: best fit energy prediction modeling based on CPU
utilization. In: 2013 IEEE Eighth International Conference on Networking, Architecture, and
Storage, pp. 41–49 (2013)

18. Dargie, W.: A stochastic model for estimating the power consumption of a processor. IEEE
Trans. Comput. 64, 1311–1322 (2015)

19. Fan, X., Weber, W.-D., Barroso, L.A.: Power provisioning for a warehouse-sized computer.
In: Proceedings of the 34th Annual International Symposium on Computer Architecture,
pp. 13–23. ACM, New York (2007)

20. Armstrong, D., Kavanagh, R., Djemame, K.: ASCETiC Project: D2.2.2 Architecture
Specification - Version 2 (2014)

21. Fang, W., Lu, Z., Wu, J., Cao, Z.: RPPS: a novel resource prediction and provisioning
scheme in cloud data center. In: 2012 IEEE Ninth International Conference on Services
Computing (SCC), pp. 609–616 (2012)

22. Han, Y., Chan, J., Leckie, C.: Analysing virtual machine usage in cloud computing. In: 2013
IEEE Ninth World Congress on Services (SERVICES), pp. 370–377 (2013)

23. Huang, Q., Su, S., Xu, S., Li, J., Xu, P., Shuang, K.: Migration-based elastic consolidation
scheduling in cloud data center. In: 2013 IEEE 33rd International Conference on Distributed
Computing Systems Workshops (ICDCSW), pp. 93–97 (2013)

24. Calheiros, R.N., Masoumi, E., Ranjan, R., Buyya, R.: Workload prediction using ARIMA
model and its impact on cloud applications’ QoS. IEEE Trans. Cloud Comput. 3, 449–458
(2015)

25. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control.
John Wiley & Sons, Hoboken (2008)

26. Box, G.E.P., Cox, D.R.: An analysis of transformations. J. R. Stat. Soc. Ser. B. 26, 211–252
(1964)

27. R Core Team: R: A Language and Environment for Statistical Computing. https://www.r-
project.org/

28. Watts Up? Plug Load Meters. www.wattsupmeters.com
29. ZABBIX: The Enterprise-Class Monitoring Solution for Everyone. http://www.zabbix.com/
30. Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: IaaS cloud architecture: from

virtualized datacenters to federated cloud infrastructures. Computer (Long. Beach. Calif.) 45,
65–72 (2012)

31. KVM: Kernel-based Virtual Machine. http://www.linux-kvm.org/

174 I. Alzamil and K. Djemame

https://www.r-project.org/
https://www.r-project.org/
http://www.wattsupmeters.com
http://www.zabbix.com/
http://www.linux-kvm.org/

An Energy Aware Cost Recovery Approach
for Virtual Machine Migration

Muhammad Zakarya1,2(B) and Lee Gillam1

1 Department of Computer Science, University of Surrey, Guildford, UK
{mohd.zakarya,l.gillam}@surrey.ac.uk

2 Abdul Wali Khan University, Mardan, Pakistan

Abstract. Datacenters provide an IT backbone for today’s business
and economy, and are the principal electricity consumers for Cloud com-
puting. Various studies suggest that approximately 30% of the running
servers in US datacenters are idle and the others are under-utilized, mak-
ing it possible to save energy and money by using Virtual Machine (VM)
consolidation to reduce the number of hosts in use. However, consol-
idation involves migrations that can be expensive in terms of energy
consumption, and sometimes it will be more energy efficient not to con-
solidate. This paper investigates how migration decisions can be made
such that the energy costs involved with the migration are recovered, as
only when costs of migration have been recovered will energy start to
be saved. We demonstrate through a number of experiments, using the
Google workload traces for 12,583 hosts and 1,083,309 tasks, how dif-
ferent VM allocation heuristics, combined with different approaches to
migration, will impact on energy efficiency. We suggest, using reasonable
assumptions for datacenter setup, that a combination of energy-aware
fill-up VM allocation and energy-aware migration, and migration only
for relatively long running VMs, provides for optimal energy efficiency.

Keywords: Datacenters · Resource management · Server consolidation

1 Introduction

Cloud service providers are looking for opportunities to make cost-effective use
of energy [1]. Costs of operating large datacenters are substantial, largely due to
energy costs, and are suggested to be in the billions of dollars per year for all
datacenters in the United States [2]. There are also environmental reasons for
decreasing the amount of energy used by datacenters, with predictions that the
ICT industry will be accountable for an estimated 2–3% of the global CO2 emis-
sions by 2020 [3]. Both environmental and economic reasons motivate scholars
and industrialists to explore effective methods for saving energy in datacen-
ters. This is more profound for Cloud service providers who have large numbers
of such datacenters. In Infrastructure Clouds, datacenters comprise large num-
bers of hosts that cloud customers can use in the amounts they require for as
long as they are willing to pay. When a cloud customer makes a request for
c© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 175–190, 2017.
DOI: 10.1007/978-3-319-61920-0 13

176 M. Zakarya and L. Gillam

(part of) a host, a VM is launched on a host selected by the Cloud service
provider. The user decides how long to run the VM for. The unpredictability
of users in such on-demand environments can lead to a number of hosts either
being idle or running a minimal VM loading – in principle, wasting energy as
an idle host may still consume 60% of its peak power usage [4]. When hosts
are not needed because demand is low, it may be possible to switch hosts off
or enable lower energy states. However, hosts would need to be powered back
on, or up, quickly when demand spikes. Switching hosts off has the potential
to offer operational cost savings with some resource management efforts, but a
researcher from one Cloud provider [5] suggests it is unreasonable to switch hosts
off due to demand variation. Power cycling a host also carries costs in energy
and may cause performance degradation if the boot time is quite long. Simi-
larly, if the workload demand for resources (CPU) is low, then running a host in
a lower energy state, for example using Dynamic Voltage and Frequency Scal-
ing (DVFS), can reduce energy consumption but with non-trivial performance
loss [6]. Those paying for Cloud services are unlikely to be keen on resources of
diminished performance, unless costs are correlated with performance.

Virtualization allows several VMs to be run on a single host, making
server consolidation possible [7], and virtualization is a key component of
most Infrastructure Clouds. Taken over a number of hosts, server consolidation
attempts to find a minimum number of hosts that would still be able to run all
of the VMs in the datacenter, offering further potential to make energy savings.
In [8] the authors show that in Google’s cluster [9], hosts are not highly uti-
lized and some significant power can be saved through consolidation techniques.
Similarly, task runtime distributions show that the majority of tasks run only
for a short duration − which could lead to unnecessary migrations that should
be avoided. Server consolidation is similarly achieved through server (here, VM)
migration. However, server migration also has a cost and may impact on Ser-
vice Level Agreements (SLAs). Further, with unpredictable VM runtimes in an
on-demand environment it is possible that the cost is never recovered through
increased efficiency if the VM is terminated during, or even just after, migration.

In this paper, we investigate how migration decisions can be made such that
the energy costs involved with the migration are recoverable, after which energy
is saved. We explore the impact on energy efficiency of VM allocation heuristics
such as Round Robin (RR), Random (R), Best Resource Selection (BRS) [10],
Minimum Power Difference (MPD) [11], First Fit (FF) and Fill Up (FU) when
combined with different approaches to migration. Key to this exploration is the
recovery of costs incurred by a migration. This exploration is conducted through
simulations that use the Google workload traces for 12,583 hosts and 1,083,309
tasks [9] in combination with CloudSim [12].

The rest of the paper is organized as follows. In Sect. 2 we explain VM
migration, its energy overhead, and how to measure (virtualized) host efficiency.
In Sect. 3, we discuss server consolidation as a binpacking problem, and pro-
pose as Consolidation with Migration Cost Recovery (CMCR) technique that
avoids migrating VMs which would not recover the energy used in migration.

An Energy Aware Cost Recovery Approach for Virtual Machine Migration 177

We validate CMCR using real workload traces from Google cluster in Sect. 4
and show that CMCR can reduce the migration energy overhead with reduced
numbers of migrations, and that the majority of migrated VMs now recover
their migration cost and continue to save energy and therefore cost. We offer an
overview of related work in Sect. 5, and Sect. 6 concludes the paper.

2 Background

The migration of a VM may happen for a number of reasons within a data-
center, including host maintenance or load balancing. Migrations can still be
useful where renewable energy is used to reduce datacenter energy costs and
CO2 footprint. Energy sources like solar and wind are intermittent and require
policies to tackle the variability in supply [13]. There are at least three bene-
fits: (i) all oversupply of renewables allows for more energy to be provided back
to the electricity grid; (ii) low supply of renewables means lessened demand on
non-renewable sources from the electricity grid; (iii) lessened reliance on means
to store renewable energy reduces the costs of management and replenishment
of storage mechanisms, such as batteries, and extending the life of these mech-
anisms.

During VM migration, the running VM is moved from one host to another.
This means migrating memory pages and, depending on the underlying app-
roach to storage, data on disk. This leads to two kinds of migration: (i) live/on-
disk migration, where a VM image is run from shared storage, for example in
Amazon’s Elastic Block Storage (EBS), and only memory is copied; (ii) block
live/over-Ethernet migrations, where a VM image is run from a local disk, for
example Amazon’s Instance Store, and both memory and disk are copied. Since
the VM image may itself be large, this latter form of migration may take rather
longer.

If we perform migrations for reasons of energy efficiency, there will be an
energy cost in the additional VM running on the source host for the duration of
migration. The cost will relate to the source host’s power profile P . We assume
P of each host is a linear function of its utilization level – the more the host
is utilized, the more energy it will consume, according to the power model pro-
posed in [14]. The relationship of CPU utilization to power consumption can be
expressed as shown in Eq. (1).

P (u) = Pidle + (Pmax − Pidle).u (1)

where P (u) is the estimated power consumption, Pidle is static power consumed
when host is idle, Pmax is the power consumed when the host is fully utilized,
and u is the current CPU utilization. The portion (Pmax − Pidle).u is called
dynamic power consumption, and is treated as a linear function of utilization.
This simplified model predicts non-virtualized host power consumption with less
than 5% error, but requires modification to account for virtualization. In the first
part of this section, we extend this power model to address virtualized hosts; in
the second part we discuss measuring the migration energy cost.

178 M. Zakarya and L. Gillam

2.1 Comparing Hosts Efficiencies

Our work explores migration cost recovery, which is only possible if two con-
ditions are both met: (i) a VM is migrated to a more efficient target host; (ii)
the migrated VM then runs for a sufficient length of time on the target host.
In this section we discuss measuring the efficiency of hosts in order to address
these conditions.

In non-virtualised platforms, if one host consumes less power than another
to execute a specific workload, it is more efficient. However, efficiency should
be addressed across a range of workloads as there may be other workloads that
run less efficiently. In virtualised environments, multiple VMs can be running
different workloads on a single host, and so several factors must be considered
in order to compare power efficiency; we consider, first, division of the host to
VMs and so the total power consumption of a virtualized host is characterised
by:

Phost = Pidle +
n∑

i=1

P vm
i (2)

where P is the total power consumed by the host, n is the number of active VMs
on host, Pidle is the host static power consumption and P vm

i is the dynamic power
consumption of VM i which is calculated by the linear power model discussed
in Sect. 2:

Pvm = Wvm.Pdynamic (3)

where Wvm is the fraction of host total CPU allocated to the VM. This allows us
to simplify concerns by considering each VM equivalent with respect to a host;
in an Infrastructure Cloud, VM size may be equally divided by the number of
allocated (hyperthreaded) cores out of m cores on the host, or by allocation of
an amount of memory. For simplicity, we use the number of (hyperthreaded)
cores.

Wvm =
coresvm

m
(4)

Including static power, the total power consumed by a single VM will be given by:

Pvm =
Pidle

n
+ Wvm.(Pmax − Pidle).u (5)

where n is the total number of VMs running on host, u is the utilization level
of vm. Hence, efficiency of a host can be related to the number of VMs that are
allocated to it and, if need be, to their individual efficiencies.

In this model, due to Pidle, the energy used in order to run a single VM
is going to be at its highest, and the more VMs that are run on the host, the
more power efficient each VM is. We also make use of the notion of VM density,
used elsewhere both to address the number of VMs running on a host, and
the maximum number that can be run whilst avoiding resource starvation; we
combine these to understand VM density as the present fraction of the maximum
for a host.

An Energy Aware Cost Recovery Approach for Virtual Machine Migration 179

Suppose there are n VMs allocated to host H1 and m VMs allocated to host
H2. Each VM is utilizing 100% of its proportional resources allocated. The per
VM power consumption of each VM on H1 and H2 are PH1

vmi=1:n
and PH2

vmj=1:m

respectively according to above equation. The total power consumption of each
host H1 and H2 is given by PH1 =

∑n
i=1 P vm

i and PH2 =
∑m

j=1 P vm
j respectively.

For a VM vmk selected for migration from H1, with sufficient space to allocate
on H2, and provided that PH1

vmk
> PH2

vmk
, then H2 is more power efficient than

to H1 with a factor of Ef given by:

Ef =
PH1

PH2

(6)

2.2 The Migration Model

During a live VM migration [15], an extra VM is created on the target host and is
progressively synchronized. Once synchronized, the VM is started on target host
and its copy is terminated on the source host. This means that a migration costs
roughly double the resources for the duration of migration. If the VM terminates
during the migration process, or before this resource cost is recovered, this effort
is wasted. A number of studies [7,11,16] discuss consolidation but appear to
ignore the cost that is due to the migration energy overhead, and with the
notable exception of [17] this is rarely addressed. The migration cost is dictated
by the cost of the most expensive VM (at source host) running for the duration
of migration, plus any associated network cost during migration. The overhead
also includes some marginal extra costs of migration Cm if this requires changes
in power state of either or both hosts [18].

For homogeneous hosts, the time required for a migration can be given by:

tmig =
Vmem + Vdisk

B
(7)

where tmig is dependent on VM memory size Vmem, VM ephemeral disk image
Vdisk (in case of block live migration) and the available network bandwidth B for
data transfer. For live migration, Vdisk is zero and Vmem is calculated using the
VM memory size and the dirty pages that are continuously copied in multiple
rounds n, during the migration process. If the VM is idle then the dirty pages
are zero and hence the network traffic is only equal to Vmem measured in MB,
otherwise:

Vmem =
n∑

i=0

Vi (8)

Vi = D.Ti−1 (9)

where i denotes the round, D is the rate at which the memory pages are being
dirtied in MB/s, T is round duration in seconds and V represents the size of
dirty pages in MB. In our experiments, VM load remains the same, hence D
is constant. However, if D varies for a VM, it may be more realistic to sim-
ulate using a distribution around a mean or with reference to historical data.

180 M. Zakarya and L. Gillam

Two migration models as offer alternatives, based on (i) average (AVG) and (ii)
history based (HIST), are proposed and validated in [19] with 90% accuracy.
The migration energy overhead Costmig is given by:

Costmig = tmig.(Psource + Pnet) + Cm (10)

where Cm denotes the marginal cost needed to switch on/off hosts, Pnet is the
network power consumption and Psource is the cost of the most expensive VM
running at source host. For the present paper, we simplify concerns by Cm = 0;
subsequently we would need address this as part of the overall energy use. The
amount of data transferred datat = Vmem +Vdisk has a significant effect on tmig.
In [17], the authors have validated a model for measuring the energy consumption
of a live migration with 0.993 R2 value, which is proportional to datat.

Costmig = 0.512 ∗ datat + 20.165 (11)

Based on experimental results, the authors claim that migration is I/O intensive
with energy mostly consumed in data transfer. Because of this simplicity and
accuracy, we use this directly to compute migration cost. Another approach is
proposed in [20], which offers a linear relationship between Vmem and B, hence
the energy consumed is equal to α.Vmem + β.B + C. This model does not take
load into account, so only suits scenarios when the migrating VM is idle.

3 Problem Description

Server consolidation with migration can be considered as a multidimensional bin-
packing problem that tries to minimize the number of hosts needed to accom-
modate a set of VMs [7]. Such NP-complete problems are typically solved using
Linear Programming (LP) or heuristics. Dynamic consolidation is typically sug-
gested to be an improvement on doing nothing, allowing: (a) to switch off the
underutilized host if the accommodated VMs can be relocated to other hosts; (b)
to withdraw hosts from an overloaded state if the sum of accommodated VMs
becomes larger than its capacity [15]. Besides the trade-off involved between
migrating VMs and decreasing the number of hosts to accommodate VMs, live
VM migration can be completed without needing downtime, and ideally without
impacting performance (and, specifically, SLAs).

If every VM can first recover the migration cost, and then continues to run
on the energy efficient host, then the migration is effective in energy saving and
hence in cost reduction. Dynamic consolidation can be considered as an opti-
mization problem in minimizing the amount of energy consumed by avoiding
migrations. We describe the problem as CMCR, further explained in Sect. 3.1,
and address it by exploring the effect of VM runtimes. In an on-demand envi-
ronment, VM runtimes are unknown, so we can only consider the past runtime
Rpast in order to decide on migration.

An Energy Aware Cost Recovery Approach for Virtual Machine Migration 181

3.1 CMCR

We consider migrations for the purpose of consolidating to fewer hosts to min-
imize the cost of energy consumption. The migration cost must be considered
as part of the migration decision. If the target host is similar or less energy effi-
cient than the source host, based on the total number of accommodated VMs,
then the migration cost cannot be recovered. Otherwise the migration cost will
eventually be earned. Using the efficiency factor of the source and target hosts,
we can find a time point toff on the target host at which the VM has earned
back the cost of migration Costmig and will now be saving energy if it continues
to run.

Consider a VM vm1 that runs on source host H1. A migration decision is
triggered to target host H2 at time t. Assume that we know H2 is more energy
efficient than H1 with a factor of Ef . If there are no VMs running on both hosts,
then the host with less static power consumption is considered more energy
efficient. If there are some VMs running on source and target hosts then the
efficiency of each host depends on the number of running VMs (n VMs on source
host and m VMs on target host). The Ef as explained in Sect. 2.1, can be
computed as:

Ef =
PVMsource

PVMtarget

(12)

If Ef = 1, it means that the power profile is identical and we cannot recover the
migration cost. If Ef < 1, the target host is less efficient. The offset of migration
cost and further savings can only be made if Ef > 1. Costmig is measured in

Fig. 1. CMCR technique description.

Watts per hour and is computed as explained in Sect. 2.2. The difference between
the power consumption values of both source and target hosts is:

�x = PVMsource
− PVMsource

Ef
= PVMsource

− PVMtarget
(13)

And so toff is given by:

toff =
tmig.Costmig

�x
(14)

For vm1 with past runtime Rpast on source host, and migration to target host
started at time t, migration completes in time tmig as shown in Fig. 1. vm1 total

182 M. Zakarya and L. Gillam

runtime on the source host is r1 = Rpast + tmig, and the remaining runtime
on target host is r2 = Rtotal − (t − tmig) = Rtotal − r1. If r2 > toff , then it
means vm1 has recovered Costmig and subsequently runs more efficiently to
save energy. The remaining runtime of vm1 on the target host after the toff , is
given by:

ts = r2 − toff (15)

The savings Psavings with an energy efficient migration are then only:

Psavings = ts.�x (16)

Hence the minimum value for r1+r2 (Fig. 1) which is sufficient to offset Costmig

at time t is Roffset = tmig + toff . For any VM running for Rpast, the Roffset is
given by:

Roffset = Rpast + tmig + toff (17)

If Roffset ≥ toff , then the migration is energy efficient. If the vm1 is terminated
before toff , migration cost is not recovered. If Roffset is not sufficient to recover
Costmig then t can be estimated to make a migration efficient, using t = t− toff
and Rpast = Rpast − toff .

In the above formulation Rtotal denotes the time for which the VM will run,
which is unknown. To make the scenario realistic for on-demand systems, we
only consider the past runtime Rpast of VMs in order to determine if a VM is a
suitable candidate for migration.

4 Performance Evaluation

Bin-packing problems are solved using various heuristics which may not ensure
optimal results but are fast enough to deal with large problems [7]. It is possible
to consider an analogous VM packing problem as moving from a given datacenter
state to an ideal state, which should be one using fewest hosts. We achieve a
datacenter state by implementing scheduling heuristics (RR, R, BRS, MPD, FF,
FU, as initially stated in Sect. 1), with VM packing then needing to guarantee
energy efficiency is assured (as explained in Sect. 2.1) and migration cost can
be recovered. To evaluate the effect of this, we consider (i) no migration; (ii)
dynamic consolidation (all possible migrations); and (iii) CMCR (runtime-based
migration).

4.1 Experimental Setting

We use real workload traces from Google to study the feasibility of our approach
within the event driven simulator CloudSim [12]. The Google dataset comprises
12,583 hosts in one datacenter and 1,083,309 tasks and as explained in [9] a task
runs in a Linux container (Sect. 4.2), its CPU requirements are measured in core
seconds per second, and the values are normalized to the maximum cores host
available in the Google’s cluster.

An Energy Aware Cost Recovery Approach for Virtual Machine Migration 183

To address a Cloud context, each task is assigned a single, notional, VM that
maps to Google instance types. We assume that hosts are comparable by a single
measure which allows for performance ranking, for which we adopt CloudSim’s
use of Million of Instructions Per Second (MIPS) as a proxy; we would not
endorse this as a good performance indicator for real systems for a number of
CPU architecture and workload comparability reasons. One approach is to assign
a VM as a single core for the maximum value 1, half a core (hyperthread) for
0.5, and assume that higher VM gearing leads to a quarter of a core for 0.25.
But to address allocation more flexibly, along lines of certain Cloud providers,
we map CPU frequency for the hosts given to Google Compute Engine Units
(GCEUs) as: 2 GHz CPU, 1.25GB RAM, giving types A1 (0.5 GCEU), B1 (0.25
GCEU) and C1 (1 GCEU). The GCEU then maps MIPS for consistency with
CloudSim, and we assume that every instance needs at most 1 GCEU. Memory
requirements then also map to these types, as shown in Table 1.

Table 1. Instance types.

Class Instance name GCEUs Memory (GB)

A1 a1.tiny 0.5 0.03

a1.xtiny 0.5 0.06

a1.micro 0.5 0.12

a1.small 0.5 0.25

a1.medium 0.5 0.5

a1.large 0.5 0.75

a1.xlarge 0.5 0.97

B1 b1.small 0.25 0.25

C1 c1.medium 1.0 0.5

c1.large 1.0 1.0

When a task is submitted, the task scheduler finds the most suitable instance
type and the allocation policy places it on a host: RR allocation policy places the
VM on the next available host; R allocation policy selects a suitable host ran-
domly; MPD [11] is a modified Best Fit Decreasing (BFD) off-line heuristic that
(at 1 second interval – to mimic on-line behavior) sorts all VMs in decreasing
order of CPU utilization and allocates each VM to a host that increases energy
consumption the least – selecting the most energy efficient host first, based on
the linear power model (Sect. 2, Eq. 1); BRS [10] places a VM on a host with
the least free capacity to maximize resource utilization; FF and FU are both
on-line heuristics and place the VM on the first available host, with FU select-
ing the most efficient host based on the model proposed in Sect. 2.1. The host
efficiency model and the on-line behavior of FU differentiate it from MPD. The
task scheduler implements a First In First Out (FIFO) mechanism to dispatch
submitted tasks for execution. A cluster of 12,583 heterogeneous hosts, which

184 M. Zakarya and L. Gillam

consists of three different architectures and characteristics as shown in Table 2,
is available. The heterogeneous hosts available in datacenter are set up based on
assumptions that Google had certain kinds of commonly available machines in
their datacenters in May 2011, when the trace was captured [21].

The power consumption values for these hosts are taken from SPEC power
benchmarks [22]. The tasks are submitted according to arrivals in the Google
dataset. When VMs terminate, slots are made available to the scheduler and
are also available for migrations. The migration policy regularly (every 5 min)
checks all host utilizations, and if a host utilization level goes below a predefined
lower threshold value e.g. 20%, VMs can be migrated to other hosts to consol-
idate the current demand on fewer hosts to save energy. In principle, if host
utilization exceeds a predefined upper threshold value i.e. 100%, some VMs are
migrated from the overloaded host to less utilized hosts to avoid SLA violations.
We assume, here, that sensible ways of addressing VM density will not lead to
overloading. A migration decision is based on only the lower utilization thresh-
old value, current state of the datacenter (consolidation opportunities) and other
constraints as explained in Sect. 3.1. If several VMs are selected for migration,
the list is sorted in decreasing order of their past runtimes, and migrated in order
until all VMs in the list are migrated. For the sake of simulation, migration dura-
tion is computed by dividing the VM memory size by network bandwidth (set
at 1Gbps) as discussed in Sect. 2.2. The migration energy overhead and host
efficiency factor is calculated as discussed in Sect. 2, Eq. 7.

4.2 Experimental Results

The simulated infrastructure is composed of 12,583 hosts with configuration
shown in Table 2. We first run the simulation with a single day of data from
the Google trace. We assume that the VM workload is homogeneous and so it
does not change even when a VM is migrated from one host to another. The
selected trace (day 2) comprises 1,083,309 tasks with average arrival rate of
12.54 tasks per second and terminations at 12.24 tasks per second. After each
5 min interval, CMCR checks for consolidation opportunities, and selects VMs

Table 2. Host characteristics and number suggested to be in Google’s cluster in May
2011 [21].

Host type Host name Speed
(GHz)

No. of
cores

No. of
GCEUs

Memory
(GB)

PIDLE

(Wh)
PMAX

(Wh)
Amount

A Intel Xeon
E3110

3.0 2 3 4 75.2 117 4,195

B Intel Xeon
X3470

2.9 4 5.75 8 41.6 113 4,194

C Intel Xeon
E5540

2.5 8 10 8 67.0 218 4,194

An Energy Aware Cost Recovery Approach for Virtual Machine Migration 185

running for longer times from a list of migration possibilities. Each experiment
was performed with five different values for past VM runtime given in hours
[0, 0.5, 1, 2, and 4], where 0 means migrate all – dynamic consolidation – and
0.5 means migrate only those VMs which are running for 30 min or longer, 1
means running for 1 h, and so on.

Metrics. The metrics are the number of migrations, average number of hosts
used to run the VMs and total datacenter energy consumed. An overall calcula-
tion of datacenter efficiency, D measures the efficiency of a scheduling approach
on datacenter level. This accounts for the load proportion (% slots filled i.e. VM
density – explained in Sect. 2.1), the number of hosts ‘switched on’, the number
of idle hosts that still consumes significant energy (idle power consumption), and
factor of energy efficiency in respect to whether more or less efficient hosts were
in use.

V Mdensity =
V MsonHost

Hostcapacity
(18)

D =
∑

hosts V Mdensity ∗ Ef

Hostsused
+

∑
hosts HostsunUsed ∗ Ef

HostsunUsed
(19)

The host efficiency model presented in Sect. 2.1, is used to calculate Ef for each
host. Lower values for D represent efficient datacenter resource management
with maximum VMs running on a minimum number of the most efficient hosts,
and hence also offers potential for hosts to be powered off in the second term.

Discussion. Figure 2 presents the results obtained from running the Google
cluster’s tasks submitted on day 2 using different scheduling heuristics. The
results show that efficient scheduling techniques would be more economical than
consolidation techniques. For example, without migration a 52.43% decrease in
energy consumption was achieved using FU instead of RR. But using FU, only
3.04% decrease in energy consumption was achieved with dynamic consolidation.
The metric D shows an average decrease of 16.10% in energy consumption for
FU compared to R scheduler. Similarly for CMCR, FU is on average 0.49% more
cost efficient as compared to FF scheduler. We also note that no migration can
be more economical than the dynamic consolidation if an efficient scheduling
approach is used. CMCR beats both techniques as it allocate VMs to the most
efficient hosts first, minimizes the total number of migrations (runtime-based
migration) and increases the probability that a VM recovers its migration cost.

Table 3 shows the mean number of hosts in use, and datacenter utilization,
measured in 5 min intervals. For each allocation policy, CMCR have reduced the
total number of migrations and migration energy. The D value (Sect. 4.2) shows
that in terms of scheduling approach, FU is effective in using a minimum number
of most efficient hosts: FU did not allocate VMs to host type A which has larger
idle power consumption and is less energy efficient compared to types B & C.
As MPD is an off-line heuristic, higher D values confirm inability to address
online problems. For each scheduling approach, cost savings are compared to a

186 M. Zakarya and L. Gillam

Fig. 2. Power consumption & no. migrations for Google trace day 2.

Table 3. Experimental mean results for different approaches (5 min interval).

Scheduling
approach

Consolidation
technique

Total hosts used Avg
used
hosts

Datacenter
Util (%)

D (KWh) Cost
savings
(%)

A B C

RR No migration 4,195 4,194 3,351 3,157 24.81 870.7 0

Dynamic 4,195 4,194 2,750 2,228 47.40 859.64 25.77

CMCR 4,195 4,194 2,750 2,228 47.40 859.64 25.77

RANDOM No migration 4,195 4,194 3,835 3,005 25.18 870.14 0

Dynamic 4,195 4,194 3,713 2,148 48.64 860.95 23.75

CMCR 4,195 4,194 3,713 2,148 48.64 860.95 23.75

BRS No migration 2,664 2,662 2,667 1,157 50.31 861.58 0

Dynamic 2,504 2,888 2,658 1,095 69.61 860.41 5.87

CMCR 2,612 2,899 2,683 1,089 62.95 859.82 6.04

MPD No migration 4,195 4,194 1,908 2,412 28.21 858.17 0

Dynamic 4,195 4,194 2,227 1,965 33.09 861.08 9.96

CMCR 4,195 4,194 2,581 1,984 34.84 856.68 10.66

FF No migration 2,665 2,664 2,666 1,212 51.61 860.45 0

Dynamic 2,619 2,790 2,620 1,219 61.22 859.85 1.69

CMCR 2,636 2,790 2,635 1,190 61.64 859.4 2.85

FU No migration 0 4,194 2,700 1,241 48.61 855.75 0

Dynamic 0 4,194 2,700 1,167 67.21 855.26 2.96

CMCR 0 4,194 27,00 1,166 66.74 855.19 3.04

baseline no-migration policy. On average, CMCR reduces the number of hosts
in use, with a reduced number of migrations. The runtime of VMs migrated
depends on the scheduling heuristics. RR scheduler equally distributes VMs
among the available hosts, keeping all the hosts active and less-utilized most
of the time – making more consolidation opportunities. Similarly, R scheduler
al-mostly selects a different host for VM placement randomly, which results in

An Energy Aware Cost Recovery Approach for Virtual Machine Migration 187

more energy consumption and increased number of migrations – as all hosts are
switched on but less utilized. The optimal value for these two algorithms is always
achieved with dynamic consolidation, i.e. past runtime ≥ 0 min. BRS, MPD and
FF were able to give minimum power consumption results by migrating VMs
with past runtime ≥ 30 min. The most efficient heuristic, FU, produces optimal
results by migrating VMs with past runtime ≥ 60 min.

The data and migration statistics produced in Table 4, show that combining
CMCR and FU means only 1.1% of VMs are migratable and 99.5% of these
were able to recover their migration cost. For FU with dynamic consolidation,
1.71% VMs were migrated with 98.98% of recovering migration cost. The migra-
tion statistics given in Table 4, also include multiple entries for VMs that were
migrated multiple times during their lifetime. If we now assume a PUE [23] of
1.2 and energy cost of $0.08kWh, dynamic consolidation would save $47.38 per
hour for this cluster (a little over $1.1k per day) in comparison to a no-migration
approach. Using above assumptions, CMCR would further save $18.85 per hour
compared to dynamic consolidation. Hence, CMCR makes total savings of $66.23
per hour (almost $1.6 k per day) as compared to a no-migration approach. Over a
year, this suggests a saving of some $0.58m annually, which compares favourably
to a maximum projected usage of the same 12,583 hosts cluster of $1.58m/year.

For 5,48,584 tasks submitted on the first day of Google trace [9], with the
same simulation, we see that no-migration technique would be more economical
than dynamic consolidation if efficient VM scheduling heuristics are used. Our
second finding is that migrating relatively long running VMs to more energy
efficient hosts to recover their migration cost, are more economical and energy
efficient.

Table 4. Cost recovery with Dynamic Consolidation (DC) & CMCR.

Scheduling
approach

RR R BRS MPD FF FU

DC CMCR DC CMCR DC CMCR DC CMCR DC CMCR DC CMCR

Migratable
VMs (%)

33.2 33.2 29.6 29.6 8.5 4.2 6.9 5.3 11.0 5.6 1.71 1.1

VMs recov-
ered
Costm (%)

98.9 98.9 98.6 98.6 98.5 99.0 98.5 99.5 98.5 99.4 99.0 99.5

5 Related Work

Researchers elsewhere have addressed various aspects of energy savings, mind-
ful in some cases that idle hosts consume up to 60% of the power of the fully
loaded host. Khanna et al. [15] perform migration to avoid overloading leading
to SLA violations, and also to switch of underloaded hosts. The specification of

188 M. Zakarya and L. Gillam

a compute unit such as GCEU should help to avoid overcommitting resources
and avoid overloading, except where resource contention exists. Our datacentre
measure offers a means to measure the gain by switch off. Wood et al. offer Sand-
piper [24], a system to monitor and detect hotspots, also remap and reconfigure
VMs when required. The proposed system migrates VMs based on high memory,
network and CPU loads; again, not overcommitting should help to avoid migra-
tions in the first place. Bobroff et al. [25] investigate estimating demand based on
historical data in order to address dynamic server consolidation. Revisiting this
work with respect to the Google data could certainly offer interesting insights
for pre-empting demand, and help to reduce costs incurred due to unnecessary
power state changes, which is beyond the scope of the present paper. Beloglazov
[26] discusses adaptive thresholds for VM consolidation, but this does not address
the migration cost, and nor does Tiagos [7] work on minimizing the number of
VM migrations by not migrating VMs with steady usage, which might be con-
sidered a counterpoint to our findings. Similar to our approach, Dabbagh [27]
proposed an energy-efficient migration framework which uses the model in [17]
plus the marginal migration cost (host switch on) to decide a migration (migrate
a VM with minimum energy cost), but these authors do not address host effi-
ciency and migration cost recovery. Rather than for overall efficiency reasons,
the migration policy in [28] selects a VM for migration based on its load, and
‘scattered’ [29] migrates VMs to underutilized hosts to mitigate host overload;
but neither addresses the energy consumed in migration nor the need for cost
recovery. Speitkamp [16] describes static and dynamic server consolidation and
introduces segregation based VM placement through migration which does not
guarantee energy efficiency [30], nor address migration cost.

All of these techniques are focused on live migration, but power consumed in
migration and its recovery through runtime is not addressed. When a significant
proportion of tasks are relatively short-lived, as is the case in the Google data,
the inability to recover such costs would appear quite detrimental. The ReCon
system [31] and pMapper [32] are notable exceptions in addressing migration
costs, and this should motivate further appraisal of their techniques with respect
both to short-lived tasks and also to block/live migration.

6 Conclusion and Future Work

Consolidation with migration is often claimed to increase the energy efficiency
in datacenters. Analysis of Google workload data shows that most tasks run
only for a short time, and allowing all possible migrations could create addi-
tional costs in energy. In this paper, we considered combinations of scheduling
approaches and consolidation methods with knowledge of the past runtime of
VMs to investigate energy saving potential. Under certain circumstances, we
found that not migrating would be more energy-efficient than using dynamic
consolidation, and the best approach overall limits migrations to 1.1% of VMs,
of which 99.5% recover their migration cost.

The immediate priority is to investigate whether these findings would be
consistent over time by evaluating using the whole Google trace (29 further days).

An Energy Aware Cost Recovery Approach for Virtual Machine Migration 189

We also need to be able to account for both heterogeneous hosts, which cause
variability in runtimes for a workload, and the impact of the marginal energy
costs involved due to power state changes in respect to unused hosts.

Acknowledgements. This work is supported by Department of Computer Science,
University of Surrey, UK and Abdul Wali Khan University, Mardan, Pakistan.

References

1. Garg, S.K., Buyya, R.: Green cloud computing and environmental sustainability.
Harnessing Green IT: Principles and Practices, pp. 315–340 (2012)

2. NRDC. America’s Data Centers Are Wasting Huge Amounts of Energy: critical
action needed to save billions of dollars and kilowatts. IB:14-08-A, pp. 1–6 (2014)

3. Zeadally, S., Khan, S.U., Chilamkurti, N.: Energy-efficient networking: past,
present, and future. J. Supercomput. 62(3), 1093–1118 (2012)

4. Meisner, D., Gold, B.T., Wenisch, T.F.: Powernap: eliminating server idle power.
ACM Sigplan Not. 44, 205–216 (2009)

5. https://www.youtube.com/watch?v=7MwxA4Fj2l4. Accessed 3 Oct 2015
6. Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A., et al.: A taxonomy and survey of

energy-efficient data centers and cloud computing systems. Adv. Comput. 82(2),
47–111 (2011)

7. Ferreto, T.C., Netto, M.A.S., Calheiros, R.N., De Rose, C.A.F.: Server consolida-
tion with migration control for virtualized data centers. Future Gener. Comput.
Syst. 27(8), 1027–1034 (2011)

8. Reiss, C., Tumanov, A., Ganger, G.R.: Towards understanding heterogeneous
clouds at scale: Google trace analysis. . . . Center for Cloud . . . (2012)

9. Reiss, C., Wilkes, J., Hellerstein, J.L: Google cluster-usage traces: format+ schema.
Google Inc., Mountain View, CA, USA, Technical report (2011)

10. do Lago, D.G., Madeira, E.R.M., Bittencourt, L.F.: Power-aware virtual machine
scheduling on clouds using active cooling control and DVFS. In: Proceedings of
the 9th International Workshop on Middleware for Grids, Clouds and e-Science,
pp. 2:1–2:6 (2011)

11. Beloglazov, A., Buyya, R.: Managing overloaded hosts for dynamic consolidation
of virtual machines in cloud data centers under quality of service constraints. IEEE
Trans. Parallel Distrib. Syst. 24(7), 1366–1379 (2013)

12. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.:
CloudSim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Softw. Pract. Experience 41(1),
23–50 (2011)

13. Stewart, C., Shen, K.: Some joules are more precious than others: managing renew-
able energy in the datacenter. In: Proceedings of the Workshop on Power Aware
Computing and Systems, pp. 15–19. IEEE (2009)

14. Fan, X., Weber, W.-D., Barroso, L.A.: Power provisioning for a warehouse-sized
computer. ACM SIGARCH Comput. Architect. News 35, 13–23 (2007). ACM

15. Khanna, G., Beaty, K., Kar, G., Kochut, A.: Application performance management
in virtualized server environments. In: 2006 IEEEIFIP Network Operations and
Management Symposium NOMS 2006, vol. 20(D), pp. 373–381 (2006)

16. Speitkamp, B., Bichler, M.: A mathematical programming approach for server
consolidation problems in virtualized data centers. IEEE Trans. Serv. Comput.
3(4), 266–278 (2010)

https://www.youtube.com/watch?v=7MwxA4Fj2l4

190 M. Zakarya and L. Gillam

17. Liu, H., Jin, H., Xu, C.-Z., Liao, X.: Performance and energy modeling for live
migration of virtual machines. Cluster Comput. 16(2), 249–264 (2011)

18. Luiz André Barroso and Urs Hölzle: The case for energy-proportional computing.
Computer 40(12), 33–37 (2007)

19. Akoush, S., Sohan, R., Rice, A., Moore, A.W., Hopper, A.: Predicting the perfor-
mance of virtual machine migration. In: 2010 IEEE International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
pp. 37–46. IEEE (2010)

20. Strunk, A., Dargie, W.: Does live migration of virtual machines cost energy? In:
2013 IEEE 27th International Conference on Advanced Information Networking
and Applications (AINA), pp. 514–521 (2013)

21. Google-cluster-data. https://groups.google.com/. Accessed 7 May 16
22. Lange, K.-D.: Identifying shades of green: the specpower benchmarks. IEEE Com-

put. 42(3), 95–97 (2009)
23. Belady, C., Rawson, A., Pfleuger, J., Cader, T.: Green Grid Data Center Power

Efficiency Metrics: PUE and DCIE (2008)
24. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Sandpiper: black-box and

gray-box resource management for virtual machines. Comput. Netw. 53(17), 2923–
2938 (2009)

25. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for
managing SLA violations. In: 10th IFIP/IEEE International Symposium on Inte-
grated Network Management 2007, IM 2007, pp. 119–128 (2007)

26. Beloglazov, A., Buyya, R.: Adaptive threshold-based approach for energy-efficient
consolidation of virtual machines in cloud data centers. In: Proceedings of the 8th
International Workshop on Middleware for Grids, Clouds and e-Science, December
2010, p. 6 (2011)

27. Dabbagh, M., Hamdaoui, B., Guizani, M., Rayes, A.: Efficient datacenter resource
utilization through cloud resource overcommitment. In: 2015 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), pp. 330–335.
IEEE (2015)

28. Andreolini, M., Casolari, S., Colajanni, M., Messori, M.: Dynamic load manage-
ment of virtual machines in cloud architectures. In: Avresky, D.R., Diaz, M., Bode,
A., Ciciani, B., Dekel, E. (eds.) CloudComp 2009. LNICSSTE, vol. 34, pp. 201–214.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-12636-9 14

29. Zhang, X., Shae, Z.-Y., Zheng, S., Jamjoom, H.: Virtual machine migration in
an over-committed cloud. In: 2012 IEEE Network Operations and Management
Symposium, pp. 196–203. IEEE (2012)

30. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.:
Large-scale cluster management at Google with Borg. In: Proceedings of the Tenth
European Conference on Computer Systems - EuroSys 2015, pp. 1–17 (2015)

31. Mehta, S., Neogi, A.: ReCon: a tool to recommend dynamic server consolidation in
multi-cluster data centers. In: IEEE/IFIP Network Operations and Management
Symposium: Pervasive Management for Ubiquitous Networks and Services, NOMS
2008, pp. 363–370 (2008)

32. Verma, A., Ahuja, P., Neogi, A.: pMapper: power and migration cost aware
application placement in virtualized systems. In: Issarny, V., Schantz, R. (eds.)
Middleware 2008. LNCS, vol. 5346, pp. 243–264. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-89856-6 13

https://groups.google.com/
http://dx.doi.org/10.1007/978-3-642-12636-9_14
http://dx.doi.org/10.1007/978-3-540-89856-6_13

Resource Allocation

The Design and Evaluation of a Heaviness
Metric for Cloud Fairness and Correct Virtual

Machine Configurations

Patrick Poullie(B) and Burkhard Stiller

Communication Systems Group (CSG), Department of Informatics (IfI),
University of Zürich, Binzmühlestrasse 14, 8050 Zürich, Switzerland

{poullie,stiller}@ifi.uzh.ch

Abstract. Fairness problems in data centers have been pointed out fre-
quently over the last years. To enforce fairness in data centers, the appli-
cation of job/Virtual Machine (VM) scheduling impels the traditional
solution. Scheduling determines the order in which VMs/jobs are started.
However, it is insufficient to enforce fairness, when jobs/VMs run over
long periods and/or their PR utilization is highly fluctuant. Clouds form
a special case of data centers in which this can be observed.

To overcome this shortcoming, previous work suggested to enforce fair-
ness by handicapping VMs of heavy users and prioritizing VMs of light
users during runtime. The Greediness Metric (GM) was developed and
shown to be a well suited heaviness measure for that purpose. This work
here defines an allocation to be GM Fair (GMF) if all users have the same
greediness and resources are allocated efficiently. GM is refined such that
enforcing GMF provides incentives to users to configure virtual resources
of their VMs in-line with the VMs’ subsequent resource PR utilization
allowing cloud providers to schedule these VMs more efficiently. Finally,
this work here proves that GMF provides for the same desirable char-
acteristics as Dominant Resource Fairness, including especially sharing
incentive, strategy proofness, envy-freeness, and Pareto-efficiency.

Keywords: Fairness · Multi-resource · Resource allocation · Incentives ·
Cloud · Data center

1 Introduction

Cloud Computing enables data centers to provide their combined computing
power to numerous users, such as end-users and companies, in a highly flexible
manner. To process a workload, cloud users start Virtual Machines (VM) that
(i) process the users’ workloads, (ii) are defined by Virtual Resources (VR), e.g.,
virtual CPU and virtual RAM [1,5], and (iii) are hosted by the cloud’s nodes.
Since cloud nodes are shared by VMs of different users, users contend for the
nodes’ Physical Resources (PR), such as CPU time, RAM, disk I/O, and net-
work access. In commercial clouds Service Level Agreements (SLA) [3] prescribe
c© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 193–207, 2017.
DOI: 10.1007/978-3-319-61920-0 14

194 P. Poullie and B. Stiller

the performance a VM has to deliver. Therefore, conflicts over PRs are ruled
such that these SLAs are not violated. However, private clouds, clusters, grids,
and other data center types are often commodities that are shared without any
contracts, wherefore, no (legal) guidelines on how scarce PRs must be allocated
exist. This allows heavily loaded VMs to impair the performance of other VMs
on the same node. In order to ensure fairness in such case, it is desirable to
limit VMs of heavy users to prioritize VMs of more moderate users. Such pri-
oritization scheme, would also allow for introducing novel charging schemes for
commercial clouds, such as cloud flat rates [14], where SLAs apply per user and
not per VM.

Cloud resources are allocated in two steps that are conducted continuously
and in parallel. The first step is termed scheduling. In this step the cloud’s
orchestration layer decides which VM is started next and which node hosts
this VM. Also live migrating VMs, i.e., moving running VMs between nodes,
is part of scheduling. The second step is termed runtime prioritization. In this
step, each node allocates its PRs to the hosted VMs. In particular, CPU time,
disk I/O, and network access are time-shared, wherefore runtime prioritization
allows to efficiently allocate these PRs. Thus, the second step allows to flexibly
change the performance of running VMs by altering VM priorities and, thus,
PR allocation. For example, a VM scheduled to a powerful node may perform
worse than when scheduled to a weak node, if the weak node prioritizes this VM.
Runtime prioritization is particularly useful to control the resource allocation,
when VMs run over long periods. The reason is that the longer VMs run, the
less effective scheduling becomes to alter the allocation, as it only allows for
influencing the resource allocation before VMs’ (long) runtime.

The best known approach to (multi-resource) data center fairness, Dominant
Resource Fairness (DRF) [7], introduces fairness via scheduling. DRF defines
how fair allocations look like under the simplifying assumption that resources
are required in static ratios, i.e., Leontief utility functions are assumed (a user’s
utility function maps each bundle to a number quantifying the user’s valuation
for the bundle). This work here differentiates itself from DRF, as it focuses on
fair runtime prioritization (and not scheduling) and is, therefore, complemental
to DRF. While even during scheduling ratios in which resources are required
may change, this is even more likely during runtime prioritization, where utility
functions are highly fluctuant or even unavailable due to technical or privacy
constraints.

Therefore, in contrary to DRF, the fairness approach taken in this paper
avoids any assumptions about utility functions entirely by defining fairness as
the procedure of “handicapping VMs of heavy users during runtime to allocate
more PRs to VMs of light users”. Developing the best suited definition of heav-
iness for this purpose is the core contribution of this paper. The contribution
is achieved by refining the Greediness Metric (GM) [14], which maps multi-
resource utilization profiles to heaviness/greediness scalars. An allocation is GM
Fair (GMF), if (i) all users have the same greediness, (ii) the utility of no user
can be increased by allocating resources that are currently not allocated, and

The Design and Evaluation of a Heaviness Metric 195

(iii) no user c receives resources that c could release without decreasing c’s util-
ity. Enforcing GMF provides the configuration incentive, which means that it
is always best for users to chose the VRs of their VMs such that the VRs best
match the VMs subsequent PR utilization. Furthermore, the uncertainty incen-
tive provided by enforcing GMF ensures that even in case cloud users are unable
to precisely predict the PR utilization of their VMs, they still have incentive to
configure VMs to the best of their knowledge (and not tend to configure VMs
with too many or too few VRs). Due to these incentives, VMs’ VRs become
a good predictor of the VMs’ upcoming PR utilization. This allows the cloud
operator to determine the best suited host for a VM during scheduling. Although
GMF is developed for runtime prioritization, the avoidance of utility functions
allows GMF to achieve a much wider range of application cases. Therefore, just
like DRF, GMF can be enforced during scheduling.

The remainder of this paper is structured as follows: Sect. 2 discusses related
work leading to the problem statement. Section 3 introduces GM and discusses its
refinement such that GMF provides the configuration and uncertainty incentive.
Section 4 evaluates GMF by simulations and proves that under the assumptions
made by DRF, GMF has the same desirable properties as DRF. Finally, Sect. 5
summarizes and concludes the paper.

2 Related Work and Problem

The most prominent definitions of data center fairness are DRF [7] and BBF
[4]. Especially DRF motivated many follow up works, which are not referenced
here due to space constraints, and comes with many desirable properties under
simplifying assumptions. A third approach to data centers fairness is the exten-
sion of Proportional Fairness to multiple resources [2]. All three approaches
assume that resources are required in static ratios. Thus, these approaches can-
not be applied to runtime prioritization of VMs, as here resource dependencies
are unpredictable. Only [15] describes how to theoretically achieve BBF among
running processes with varying demands on a node but is unsuited to be applied
to coordinate PR allocation across nodes.

Because resources during runtime have to be allocated by assigning priorities
to VMs, functions that map (multi-resource) utilization vectors to (priority)
scalars are better suited. [9,10] present such priority functions and apply these
functions to scheduling. Although these functions are generally applicable to
runtime prioritization, they do not allow taking VRs of VMs into account, as
they only operate on utilization vectors but not VR vectors. However, taking
VRs into account is important to give incentive to users to configure their VMs
correctly and, thereby, allow for most efficient cloud utilization.

[11] Allows users to trade resources with other users and adapt their VM
runtime priorities. The adopted fairness notion is asset fairness. [11] requires
trading mechanisms and VM demand prediction.

Thus, those existing approaches either (i) make assumptions on utility func-
tions that are unrealistic for runtime prioritization, (ii) prohibit giving incentives

196 P. Poullie and B. Stiller

to users to configure VMs properly, or (iii) require multiple complex mechanisms.
These three aspects are addressed by [12,14].

2.1 Previous Work

[14] conducts a questionnaire among more than 600 individuals to investigate
an intuitive understanding of fairness and to show that the greediness of users
can be defined and quantified based on their multi-resource self-servings. The
questionnaire specified real-life scenarios in terms of three questions Q1, Q2, and
Q3 to not distract participants by technical terms and let them fully concentrate
on the question of fairness and greediness. Q1 and Q3 were relevant to design-
ing GM. Q1 presented four allocations A11, A12, A13, and A14 as illustrated
in Table 1 and participants had to select the allocation they regarded as “most
fair”. A11 and A14 were selected by 0.4% and 1.1% of participants, respectively.
A12 and A13 were selected by 30.0% and 68.5%. Q3 described three scenarios,
where common heterogenous resources are split among individuals with different
demands by letting them serve themselves. This implies mutual trust and poses
the question of how individuals, who could try to exploit the system, can be
identified, that is, how disproportionate utilization can be defined. The transfer-
ability to clouds is evident, where VMs serve themselves from their node’s PRs.
The portions individuals had served themselves were presented to participant,
who had to rank individuals according to their perceived greediness. GM was
developed to formalize the most frequent participant reasoning in both questions.
Accordingly GM identifies A13 in Q1 as most fair allocation and also results in
the most frequently selected user ranking for each of the three scenarios of Q3.
No other metric, including the price and dominant-resource metric, achieves this
favorable result.

Table 1. The four options A11, A12, A13, and A14 of the questionnaire [14] to allocate
two resources r1 and r2 to three users c1, c2, and c3.

User A11 A12 A13 A14

r1 r2 r1 r2 r1 r2 r1 r2

c1 2 0 3 0 4 0 5 0

c2 0 2 0 3 0 4 0 5

c3 4 4 3 3 2 2 1 1

[12] implements an OpenStack service called nova-fairness, which practically
achieves GMF by runtime prioritization. In particular, nova-fairness periodically
(i) quantifyies the heaviness of VMs by GM, (ii) sums up the heaviness of each
user’s VMs to calculate the user’s heaviness, and (iii) assigns priorities to VMs
inversely proportional to the heaviness of their owner. CPU, disk I/O, network
access andRAMare the resourceswhich aremonitored to calculate the heaviness in

The Design and Evaluation of a Heaviness Metric 197

(i) and for which priorities are assigned in (iii). The libvirt API is used for both of
these activities, making nova-fairness compatible with a multitude of hypervisors.
The performance overhead of nova-fairness is mainly determined by the frequency
with which the three steps are conducted and the number of VMs on a node and
sublinear in both parameters.

2.2 Basics

A cloud budgets a certain amount of PRs for a VM based on the VM’s VRs.
Therefore, during scheduling, a node to host the VM will be selected that can
best serve the budgeted PRs. For example, placing “small” VMs on nodes with
less remaining capacity increases the utilization of these nodes and leaves nodes
with more remaining capacity free to accommodate “large” VMs that cannot
be hosted by nodes with less remaining capacity. Accordingly, a VM with a
PR utilization that strongly deviates from what is budgeted based on the VM’s
VRs, leads to either over-loaded or under-utilized PRs on the VM’s host, i.e.,
higher stress for the cloud. Therefore, the heaviness of a VM must increase,
when the VM’s VRs are chosen poorly with respect to its PR utilization, such
that users aiming to minimize their heaviness have incentive to configure their
VMs properly. This is referred to as the configuration incentive. However, users
are not always able to precisely predict the PR utilization of their VMs or the
PR utilization will be fluctuant. In order to give incentive to users to configure
their VMs to the best of their knowledge in such case, a heaviness metric must
neither give incentive to configure a VM with too many or too few VRs in case
of uncertainty. This is referred to as the uncertainty incentive.

2.3 Problem Statement

Besides GMF’s ability to support cloud resource allocation in terms of runtime
prioritization (and not scheduling), the relaxation of assumptions on utility func-
tions being available leads to a much broader application range, especially to
cover scheduling. Thus, the question on how GMF performs compared to the
state-of-the-art of fair scheduling (typically considered to be DRF) leads to the
problem statement:

1. Extend GM [14] to provide configuration and uncertainty incentives, i.e., a
GMF allocation must not only be intuitively fair, but users also must receive
the more resources, the better their VMs’ VRs conform with these VMs’ PR
utilizations.

2. Compare GMF to DRF in terms of major properties (i) strategy proofness, (ii)
envy freeness, (iii) Pareto efficiency, and (iv) sharing incentives. Especially,
prove that GMF achieves these properties under exactly similar assumptions
made to prove these properties for DRF.

198 P. Poullie and B. Stiller

3 Greediness

A cloud consists of a set of users U = {u1, u2, . . . , uu}, a set of nodes N =
{n1, n2, . . . , nn}, and a set of VMs V = {v1, v2, . . . , vv}. A VM is owned by a
user and hosted by a node, whereat the cloud’s scheduling policy (and not the
user) decides which node hosts the VM. Function o : U → P(V) maps user u ∈ U
to the set of VMs u owns and n : V → P(V) maps v ∈ V to the set of VMs that
run on v’s host. VMs share their host’s PRs, such as CPU time, RAM, disk I/O,
and network access. Let R = {r1, r2, . . . , rr} be the set of PRs to be considered
for a fair allocation. VMs are defined by VRs, which are often chosen from a
range of flavors, i.e., a VM flavor is a set of VRs that a VM of that flavor has.
Especially in private clouds, resources may be managed by quotas, i.e., each
user has a quota that defines a maximum of VRs that the user’s VMs may have
in total. Function r : V ∪ N ∪ U → R

m
≥0 maps (i) VMs to their VRs, (ii) nodes

to their PRs, and (iii) users to their quota. Function u : V → R
m
≥0 maps VMs to

the PRs they utilize (at a distinct point in time). Function e : V → R
m
≥0 maps

a VM to its endowment, which is the amount of PRs that are budgeted for the
VM. The endowment is determined by the VM’s VRs and the clouds overcommit
ratios. In particular, the more VRs a VM has, the more PRs are budgeted for
the VM, and the higher the overcommit ratios in the cloud are, the fewer PRs
are budgeted for the VM. In general, e(vj) ≤ r(vj) holds. It is assumed that the
supply of every PR in the cloud is normalized to 1, i.e.,

∑n
j=1 r(nj)i = 1 for

every 1 ≤ i ≤ r. Arithmetic operations on vectors are applied point-wise.

3.1 User Greediness

For ui ∈ U , the user greediness metric gu : U → R quantifies ui’s heaviness by

gu(ui):=

⎛

⎝
∑

vj∈o(ui)

gv(vj)

⎞

⎠ −
r∑

l=1

(∑n
j=1 r(nj)

∑u
k=1 r(uk)

· r(ui)

)

l

. (1)

The minuend in Eq. 1 sums up the greediness of ui’s VMs, which is defined in
Sect. 3.2. The subtrahend is ui’s share of the cloud’s PRs that is proportional to
ui’s quota (the sum of user quotas may exceed the cloud’s PRs). The reason that
this quota is subtracted is that cloud users are heterogenous in terms of their
quota. In particular, depending on the payment of users or other differentiation
criteria, users can have different quotas. Let two users u1, u2 ∈ U operate iden-
tical VMs. Let u1 have a greater quota than u2. Then, gu(u2) must be greater
than gu(u1), as u1 and u2 produce the same stress on the cloud but u2 has a
smaller entitlement to the cloud’s resources.

3.2 VM Greediness

The VM greediness metric is stated in Eq. 2 and defines the greediness of a VM
vj depending on u(vj), r(vj) or rather e(vj), and these two parameters of the
VMs that run on the same node as vj .

The Design and Evaluation of a Heaviness Metric 199

gv(vj):=
r∑

i=1

e(vj)i + (u(vj)i − e(vj)i)·
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β if u(vj)i ≥ e(vj)i,

γ ·

Dynamic Ceding Factor (DCF)

min
(
1,

∑
vk∈n(vj)

max
(
0, u(vk)i − e(vk)i

)

∑
vk∈n(vj)

max
(
0, e(vk)i − u(vk)i

)
)

else.

(2)

The generic structure of this definition is motivated in all detail in [14]. The first
summand e(vj)i inside the sum function of Eq. 2 ensures that gv(vj) increases
with vj ’s VRs, independent of vj ’s PR utilization.

In case vj ’s PR utilization exceeds vj ’s endowment, the difference is scaled
by factor β > 1 and added to gv(vj) (if-part). This scaling of the difference
is necessary, because otherwise, gv(vj) were minimized by configuring vj with
as few VRs as possible, as this would minimize the first summand. Thus, it is
important that exceeding the endowment increases gv(vj) more than increasing
vj ’s endowment by that difference.

In case vj ’s utilization of a PR remains under vj ’s endowment, vj ’s greediness
is decreased by the amount that is ceded to other VMs scaled by 0 ≤ γ ≤ 1
(else-part). The amount that is ceded to other VMs is determined by the
Dynamic Ceding Factor (DCF). In particular, the DCF sums up the amount
by which VMs running on vj ’s host exceed their endowments and divides this
number by the amount that VMs running on vj ’s host do not utilize of their
endowment. The mimimization of this fraction and 1 is necessary, as it is pos-
sible that the endowments of VMs do not partition the node’s PRs entirely. If
this were the case and the minimization were not in place, ceding a PR could be
“rewarded” stronger than what is actually ceded of the PR. The introduction of
γ is motivated by findings in [14] and it is necessary to counter balance β (cf.
Sect. 3.3).

3.3 Choosing β and γ to Provide Appropriate Incentives

Due to the first summand inside the sum function of Eq. 2, vj ’s greediness
increases linearly with vj ’s endowment. Let ri ∈ R. If vj ’s utilization of ri exceeds
vj ’s endowment to ri, vj ’s greediness increases by the according difference scaled
by β. That is, if u(vj)i > e(vj)i, vj ’s greediness increases by β · (u(vj)i − e(vj)i).
Because β > 1, vj ’s greediness were less, if vj ’s endowment to ri were increased.
However, increasing vj ’s endowment to ri such that it exceeds vj ’s utilization of
ri is unfavorable: if vj ’s endowment to ri is greater than vj ’s utilization of ri, vj ’s
greediness decreases by the according difference scaled by γ and DCF. That is,
if e(vj)i > u(vj)i, vj ’s greediness decreases by γ ·DCF ·(e(vj)i)−u(vj)i). Because
γ ·DCF ≤ 1, vj ’s greediness were less (or at least not greater), if vj ’s endowment
to ri were decreased. It follows that gv(vj) is minimized, if vj ’s PR utilization is
equal to vj ’s endowment, i.e., e(vj) = u(vj), in which case gv(vj) =

∑r
i=1 u(vj)i.

It follows that Eq. 2 provides the configuration incentive.

200 P. Poullie and B. Stiller

To measure how well vj is configured, the Unnecessary Greediness Increase
(UGI) of vj is defined as the difference between the greediness of vj and the
lowest greediness possible given vj ’s PR utilization, i.e.,

UGI(vj) = gv(vj) −
r∑

i=1

u(vj)i. (3)

Assume that, when vj ’s PR utilization remains z% under vj ’s endowment,
the UGI is z and, when vj ’s PR utilization exceeds vj ’s endowment by z%, the
UGI is 2 · z. Thus, configuring vj with z% too few VRs is twice as “costly” than
configuring vj with z% too many VRs. Thus, users have incentive too configure
VMs too large, if they are uncertain about the PR utilization. Consequently, the
uncertainty incentive is not provided, as the uncertainty incentive requires, that
configuring a VM with z% too many or too few VRs results in the same UGI.

Without loss of generality, assume that there is one resource r and that the
DCF is α with 0 ≤ α ≤ 1. Let x > y > 0. Let v̂ ∈ V with e(v̂) = x and
u(v̂) = x + y, i.e., v̂ exceeds its endowment of x by y. Then gv(v̂) = x + β · y
and UGI(v̂) = y · β − y holds. Let v̌ ∈ V with e(v̌) = x and u(v̌) = x − y,
i.e., v̌ leaves y of its endowment of x unutilized. Then gv(v̌) = x − γ · α · y and
UGI(v̌) = y − γ ·α · y holds. In order to provide the uncertainty incentive, β and
γ must be determined, such that UGI(v̂) = UGI(v̌). This is the case for

β = 2 − γ · α. (4)

3.4 Determining Concrete Values for β and γ

The GM was designed based on results of the questionnaire presented in [14]. In
this section concrete values for γ and β are determined based on these results
as well. In particular, the results of Q1 are chosen to determine γ and β. As
A13 was the most frequent choice and was selected by roughly twice as many
participants (cf. Sect. 2.1), as the second frequent choice A12, the dependency
of γ and β is determined, such that the greediness metric qualifies A13 as twice
as fair as A12, whereat fairness of an allocation is quantified by the (maximal)
difference of user greediness for this allocation.

Because the questionnaire specified real-life scenarios, no endowments were
specified. Thus, to apply GM, all endowments (function e in Eq. 2) are defined
as (2, 2), as this is the share, when all resources are split equally.

For A12, GM results in gv(c1) = gv(c2) = β − 2γ and gv(c3) = 2β. For A13,
GM results in gv(c1) = gv(c2) = 2β − 2γ and gv(c3) = 0. Thus, for A12 the
greediness range is β + 2γ and for A13 it is 2β − 2γ.

Accordingly, β and γ must be determined, such that the greediness range of
A12 is twice the greediness range of A13, i.e.,

β + 2γ = 2 · (2β − 2γ). (5)

Inserting Eq. 4 into Eq. 5 yields

β =
4

α + 2
and γ =

2
α + 2

. (6)

The Design and Evaluation of a Heaviness Metric 201

When β and γ are determined according to Eq. 6, α determines how strongly a
deviation of PR utilization and endowment is penalized: For α = 0, ceding is
rewarded most strongly (γ is maximized) and, accordingly, exceeding the endow-
ment is also penalized most strongly (β is maximized). The opposite holds for
α = 1.

α has to be estimated based on the cloud’s overcommit ratios. In particu-
lar, the higher overcommit ratios are, the more likely it is that PRs are ceded.
Accordingly, estimates of α, which represents the DCF, increase with the cloud’s
overcommit ratios.

Because Eq. 6 is deduced from Question 1 of the questionnaire, the GMs
conformance with all other relevant results of the questionnaire was verified
numerically, when β and γ are determined by Eq. 6 for any 0 ≤ α ≤ 1. The
results show GMs perfect compliance also with these other questionnaire results.
Subsequently, gxu and gxv denote that β and γ of the GM are determined by Eq. 6
for α = x.

3.5 GM Filling

GMF allocations for Leontief utility functions are determined by a progressive
filling algorithm, termed GM filling. However, GMF is not constrained to Leontief
utility functions but has a much broader application range.

4 Evaluation

Different GMF allocations are analyzed in order to prove that GMF gives incen-
tive to correctly configure VMs and to show how different values of β and γ affect
GMF allocations and encourage different VM configuration strategies. Further-
more, a proof of GMF’s desirable properties is presented. It is assumed that (i)
all resources are provided by one monolithic node n, (ii) users have Leontief util-
ity functions with strictly positive demands for every resource, and that (iii) all
overcommit ratios are 1. Therefore, the sum of quotas is at most as large as n’s
resources and for every VM v, r(v) = e(v) holds. These simplifying assumptions
are made to ease the discussion and clearly show that the extension of GMF
developed in this paper has the designated effects. However, GMF is neither
restricted to the case that all resources are provided by one node nor that users
have Leontief utility functions. A numerical evaluation of GMF for the assump-
tion that resources are provided by different nodes and users operate different
numbers of VMs on these nodes is provided in [13]. Furthermore, [12] evaluates
GMF by experiments, where (i) users operate different numbers of VMs, (ii) the
VMs are hosted by different nodes, (iii) the VMs utilize different amounts of
CPU time and disk I/O, and (iv) the PR utilization varies over time.

4.1 Incentives

The ratio scenario presented in this section shows how the GM provides incen-
tives to users to configure VMs correctly. Let q mod 3 = 0. There are q+1 VMs

202 P. Poullie and B. Stiller

v0, v1, v2, . . . , vq and two PRs r1 and r2. Every VM requests an infinite amount
of PRs in ratio 2:1, i.e., every VM requests twice as much of r1 than of r2. The
VRs of VM vj are r(vj) = (j, q − j) and r(n) = (q

2−q
2 , q2−q

2) =
∑q

j=0 r(vj) =
∑q

j=0 e(vj), i.e., the VMs’ endowments completely partition the host’s PRs. Each
VM belongs to a different user. All users have the same quota, wherefore the
results presented below are independent of the amount of this quota.

Fig. 1. GMF allocations for the ratio scenario for different numbers of VMs (q).

Figure 1 illustrates the GMF allocations for q ∈ {3, 6, 9}. While the choice of
α influences the absolute greediness of VMs, it does not influence the allocation.
For example, for q = 6, g0v(vj) = 0.920, g0.25v (vj) = 0.818, g0.5v (vj) = 0.736,
g0.75v (vj) = 0.669, g1v(vj) = 0.614 for all vj ∈ V holds. This reflects that for
smaller α, deviating from the endowment increases the greediness stronger.

Although all VMs have the same sum of VRs, Fig. 1 shows that VMs receive
different amounts of PRs, because the ratios of their VRs are different. In par-
ticular, the better a VM’s VR ratio is aligned with the actual PR requirement,
the more PRs the VM receives. Accordingly, r(v0) = (0, q) is the worst configu-
ration to request PRs in ratio (2, 1) and, thus, v0 receives the least PRs for all q.
In contrast, VM v2q/3’s VRs have the perfect ratio, wherefore v2, v4 and v6
receive the most PRs for q = 3, 6, 9, respectively. Although v0 and vq have one
VR configured with 0, vq receives significantly more PRs than v0, because it has
a high endowment to the stronger requested PR.

4.2 Effects of β and γ

The strategy scenario presented in this section compares two strategies to con-
figure VMs and demonstrates the effects of different values of β and γ. Node n
provides one PR r in quantity 2, i.e., r(n) = 2. Node n is shared by two users ua

and ub, who have a quota of 1, i.e., r(ua) = r(ub) = 1. Both users have four VMs
running on n and a different strategy to configure these VMs. ua’s entire quota
is partitioned to ua’s VMs va

1 , va
2 , va

3 , va
4 , i.e., r(va

x) = 0.25 for 1 ≤ x ≤ 4. ub’s
VMs vb

1, v
b
2, v

b
3, v

b
4 are configured 80% smaller than ua’s VMs, i.e., r(vb

x) = 0.05

The Design and Evaluation of a Heaviness Metric 203

for 1 ≤ x ≤ 4. The PRs that the two users attempt to utilize are equal. In par-
ticular, the first VM of both users attempts to utilize as much of r as possible.
These VMs are referred to as busy VMs. The six other VMs each attempt to
utilize 0.05 of r and are, therefore, referred to as idle VMs. Furthermore, this
PR utilization matches exactly the VRs of ub’s VMs.

Fig. 2. GMF allocations for the strategy scenario to align the greediness of users for
different α.

Table 2. GM values for GMF allocations of Fig. 2.

Allocate for α = 0 α = 0.5 α = 1 α ∈ {0, 0.5, 1}
va
1 vb

1 va
1 vb

1 va
1 vb

1 va
2,3,4 vb

2,3,4

Allocation 0.90 0.80 0.85 0.85 0.80 0.90 0.05 0.05

g0
v 1.55 1.55 1.45 1.65 1.35 1.75 0.05 0.05

g0.5
v 1.29 1.25 1.21 1.33 1.13 1.41 0.09 0.05

g1
v 1.12 1.05 1.05 1.12 0.98 1.18 0.12 0.05

ua ub ua ub ua ub

Allocation 1.05 0.95 1.00 1.00 0.95 1.05

g0
u 0.70 0.70 0.60 0.80 0.50 0.90

g0.5
u 0.56 0.40 0.48 0.48 0.40 0.56

g1
u 0.47 0.20 0.40 0.27 0.33 0.33

Figure 2 (backed by full numerical details as of Table 2) shows those GMF
allocations that align g0u, g0.5u , and g1u of both users. The figure shows that all
idle VMs are allocated all requested PRs. However, PRs allocated to the two
busy VMs differ depending on α.

Figure 2a shows that for α = 0, va
1 receives more PRs than vb

1. The reason
is that DCF = 1 = γ and, therefore, the over-configuration of va

2 , va
3 , va

4 is not
penalized. Accordingly, Table 2 shows that the idle VMs of both users have the
same g0v values. However, r(va

1) = 5 · r(vb
1), wherefore, va

1 receives more PRs
than vb

1. When α increases, the over-configuration of ua’s idle VMs is penalized

204 P. Poullie and B. Stiller

stronger and the under-configuration of ub’s busy VM is penalized less. Accord-
ingly, Fig. 2b and Table 2 show that α = 0.5 is the tipping point, where the VMs
of both users receive the same amount of PRs. Table 2 shows that α = 1 maxi-
mizes the greediness of ua’s idle VMs. Accordingly, va

1 receives less PRs than vb
1

to align the greediness of both users.
The strategy scenario can be altered in two dimension: the number of idle

VMs and the amount of PRs the idle VMs request (while adapting the VRs of
ub’s VMs accordingly). Let s ∈ N≥1 be the number of VMs that each user owns
and 0 ≤ t ≤ 1, such that t/s is the PR utilization of all idle VMs and the VRs of
ub’s VMs. For example, in the scenario discussed above s = 4 and t = 0.2. The
difference between what va

1 and vb
1 receive under a GMF allocation is

u(va
1) − u(vb

1) =

(
(γ − 1) · s + γ

) · (
1 − t

)

s · β
. (7)

The derivation of Eq. 7 is not presented here due to space constraints. The for-
mula shows that wether ua’s or ub’s strategy is superior depends on a combina-
tion of α (which determines β and γ) and s, whereat, increasing s and α make
ub’s strategy preferable. Notably, t only changes the difference in the allocations
but does not influence, which strategy is superior. Furthermore, for α = 0 the
first factor of the dividend is always positive, which reflects that ua’s strategy is
always superior (as over-configuring VMs is not penalized).

4.3 Properties Achieved

GM filling is (i) strategy prove and the resulting GMF allocation is (ii) envy
free, (iii) Pareto efficient, and (iv) provides sharing incentive, as proven in this
section. To simplify the discussion, it is assumed that every user uj starts one
VM vj with r(uj) = r(vj), i.e., vj is configured with uj ’s entire quota. Therefore,
gu(uj) = gv(vj).

Sharing Incentive. Sharing incentive demands that each user u has a utility
that is at least as high as when u had exclusive access to the resources that
correspond to u’s quota. Assume GM filling results in an allocation that does
not provide sharing incentive. Then a VM vp exists that receives strictly less of
every resource than vp’s VRs, i.e., u(vp) < r(vp). Because (i) u(vp) < r(vp), (ii)
γ > 0, and (iii) at least one resource is saturated, gv(vp) < 0. As β > γ, the
sum of VM/user greediness is at least zero. Accordingly, a VM vs exists with
gu(us) = gv(vs) > 0 > gv(vp) = gu(up). Then the greediness of users is not
equal.

Pareto-Efficiency. Because Leontief utilties are assumed and at least one
resource is saturated, this characteristic is trivially achieved [8].

The Design and Evaluation of a Heaviness Metric 205

Strategy Proofness. Assume that lying about vj ’s requirement vector, i.e.,
the vector that specifies the ratio in which VM filling allocates resources to vj ,
can increase uj ’s utility. Because strictly positive Leontief utility functions are
assumed, vj has to receive more of every resource, in order to increase uj ’s utility.
Because GM filling provides sharing incentive, v receives at least its endowment
of at least one resource r. Receiving more of r increases vj ’s greediness. Since GM
filling aligns the greediness, the greediness increase caused by receiving more of r
has to be compensated by receiving less of another resource r′. Thus, in order to
receive more of r, uj has to request/receive less of r′. Then uj ’s utility decreases.

Envy-Freeness. Envy-freeness only has to hold among users with the same
quota. In particular, the configuration incentive demands to allocate VMs dif-
ferent amounts of resources, depending on their VR, i.e., envy is unavoidable
between VMs with different VRs. Thus, assume two VMs va and vb have the
same VRs. Assume ua envies vb’s resource allocation. Then vb receives strictly
more than va of at least one resource. Since both VMs have the same greedi-
ness, vb has to receive strictly less than va of another resource. However, because
progressive VM filling is strategy prove, ua has stated the true requirement of
va. Therefore, when vb receives less of a resource than va, ua cannot envy the
resources vb receives.

4.4 Assumptions and Practice

Leontief utility functions model dependencies among time shared resources well.
For example, when the bandwidth of a server is reduced, the server’s disk I/O
utilization decreases equivalently, as requests reach the server slower and, thus,
stored data is fetched at a lower rate. In contrast, the dependency between
time shared resources and RAM, which is space shared, is often different. For
example, assume a program has a fixed number of variables that are stored in
RAM. Allocating more CPU time will execute to the program faster, while the
number of variables and, thus, required RAM remains constant. What further
complicates depedencies among PRs are substitutabilities: For example, (i) pag-
ing reduces RAM requirements by use of CPU time or (ii) compression saves
storage or bandwidth by use of CPU time [4]. Consequently, Leontief utility
functions do not cover the whole range of PR dependencies. However, because
GMF is defined without access to utility functions, GMF is well suited to be
enforced, when complex resource dependencies apply.

VMs’ PR utilization may follow well defined but bursty patterns. For exam-
ple, databases usually write in periodic large bursts to disk. However, users can-
not specify this burstiness, as they only configure VRs of their VMs. Nonethe-
less, nova-fairness (cf. Sect. 2.1) does not penalize bursty PR utilization, when
enforcing GMF. The reason is that nova-fairness measures the cumulated PR
utilization over a customizable period x. Therefore, it does not matter, if within
a period resource are utilized smoothly or in bursts. Only when the inter-burst
time is greater than x, bursts are penalized.

206 P. Poullie and B. Stiller

5 Summary and Conclusions

This paper has applied GM to achieve fair runtime prioritization in clouds. GM
has been backed by a survey among more than 600 individuals, to ensure that,
when the greediness of different users is aligned, the resulting allocation is intu-
itively fair [14]. Accordingly, the newly defined GMF determines allocations that
align the greediness of all users and are efficient. Enforcing GMF during runtime
prioritization provides incentives to cloud users to configure their VMs, such
that the VMs’ VR conform with the VMs’ subsequent PR utilization. Therefore,
a VM’s VRs become a predictor for this VM’s upcoming PR utilization and,
accordingly, allows cloud operators to place VMs efficiently on nodes.

GMF’s practical applicability has been proven in practice in [12] by the nova-
fairness service, which extends the OpenStack implementation. Since GMF lever-
ages runtime prioritization, GMF is complementary to cloud fairness approaches,
which introduce fairness by scheduling. And since GMF was defined on purpose
without the knowledge of any utility functions, GMF offers a very wide appli-
cation range, especially including scheduling. Therefore, GMF was proven to
provide for (i) strategy proofness, (ii) envy freeness, (iii) Pareto efficiency, and
(iv) sharing incentives, which are the four main assets of the state-of-the-art fair
scheduling policy DRF.

Resources, a cloud user effectively utilizes, depend on the PR utilization of the
user’s VMs. Accordingly, even when users have instantiated VMs with the same
VRs, PRs these users utilize effectively can be different. Contrary to scheduling
schemes, runtime prioritization and, therefore, GMF especially allows for man-
aging and, thus, streamlining this amount of utilized PRs. Therefore, GMF is
more effective to establish fairness between cloud users than existing scheduling
schemes, especially, when VMs run over long periods. Since resource allocations
in private clouds are typically not guided by Service Level Agreements, as it
is the case in commercial clouds, fairness and GMF become very important in
private clouds. Nevertheless, GMF may also be deployed to define fair cloud flat
rate payment schemes to enable renting a quota in a commercial cloud [14] from
which VMs are instantiated. This defines in particular a very practical approach,
since the telecommunications sector has shown that customers often prefer flat
rates over volume based pricing models due to their predictability.

Acknowledgements. This work was supported partially by the FLAMINGO [6]
project, funded by the EU FP7 Program under Contract No. FP7-2012-ICT-318488.

References

1. Arcangeli, A., Eidus, I., Wright, C.: Increasing memory density by using KSM. In:
2009 Linux Symposium, vol. 1, pp. 19–28, July 2009. http://landley.net/kdocs/
ols/2009/ols2009-pages-19-28.pdf

2. Bonald, T., Roberts, J.: Multi-resource fairness: objectives, algorithms and perfor-
mance. In: 2015 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems SIGMETRICS 2015, New York, NY, USA,
pp. 31–42, June 2015. http://doi.acm.org/10.1145/2745844.2745869

http://landley.net/kdocs/ols/2009/ols2009-pages-19-28.pdf
http://landley.net/kdocs/ols/2009/ols2009-pages-19-28.pdf
http://doi.acm.org/10.1145/2745844.2745869

The Design and Evaluation of a Heaviness Metric 207

3. Breitgand, D., Dubitzky, Z., Epstein, A., Glikson, A., Shapira, I.: SLA-aware
resource over-commit in an IaaS cloud. In: 8th International Conference on Network
and Service Management (CNSM) and 2012 Workshop on Systems Virtualization
Management (SVM), Las Vegas, NV, USA, pp. 73–81, October 2012

4. Dolev, D., Feitelson, D.G., Halpern, J.Y., Kupferman, R., Linial, N.: No justified
complaints: on fair sharing of multiple resources. In: 3rd Innovations in Theoreti-
cal Computer Science Conference, ITCS 2012, Cambridge, MA, USA, pp. 68–75,
January 2012

5. Etsion, Y., Ben-Nun, T., Feitelson, D.G.: A global scheduling framework for virtu-
alization environments. In: 2009 IEEE International Symposium on Parallel Dis-
tributed Processing, IPDPS 2009, pp. 1–8, May 2009

6. FLAMINGO Consortium: FLAMINGO: Management of the Future Internet,
December 2014. http://www.fp7-flamingo.eu/

7. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-
inant resource fairness: fair allocation of multiple resource types. In: 8th USENIX
Conference on Networked Systems Design and Implementation, NSDI 2011, Berke-
ley, CA, USA, pp. 323–336, March 2011

8. Gutman, A., Nisan, N.: Fair allocation without trade. In: 11th International Con-
ference on Autonomous Agents and Multiagent Systems, AAMAS 2012, Valencia,
Spain, vol. 2, pp. 719–728, June 2012

9. Klusáček, D., Rudová, H.: Multi-resource aware fairsharing for heterogeneous sys-
tems. In: Cirne, W., Desai, N. (eds.) JSSPP 2014. LNCS, vol. 8828, pp. 53–69.
Springer, Cham (2015). doi:10.1007/978-3-319-15789-4 4

10. Klusáček, D., Rudová, H., Jaroš, M.: Multi resource fairness: problems and chal-
lenges. In: Desai, N., Cirne, W. (eds.) JSSPP 2013. LNCS, vol. 8429, pp. 81–95.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43779-7 5

11. Liu, H., He, B.: F2C: enabling fair and fine-grained resource sharing in multi-tenant
IaaS clouds. IEEE Trans. Parallel Distrib. Syst. 27(9), 2589–2602 (2015)

12. Poullie, P., Mannhart, S., Stiller, B.: Defining and enforcing fairness among cloud
users by adapting virtual machine priorities during runtime. Technical report, IFI-
2016.04, Universität Zürich, Zurich, Switzerland, March 2016. https://files.ifi.uzh.
ch/CSG/staff/poullie/extern/publications/IFI-2016.04.pdf

13. Poullie, P., Stiller, B.: Cloud flat rates enabled via fair multi-resource consump-
tion. Technical report, IFI-2015.03, Universität Zürich, Zurich, Switzerland, Octo-
ber 2015. https://files.ifi.uzh.ch/CSG/staff/poullie/extern/publications/IFI-2015.
03.pdf

14. Poullie, P., Stiller, B.: Cloud flat rates enabled via fair multi-resource con-
sumption. In: Badonnel, R., Koch, R., Pras, A., Drašar, M., Stiller, B. (eds.)
AIMS 2016. LNCS, vol. 9701, pp. 30–44. Springer, Cham (2016). doi:10.1007/
978-3-319-39814-3 3

15. Zeldes, Y., Feitelson, D.G.: On-line fair allocations based on bottlenecks and global
priorities. In: 4th ACM/SPEC International Conference on Performance Engineer-
ing, ICPE 2013, pp. 229–240, April 2013. http://doi.acm.org/10.1145/2479871.
2479904

http://www.fp7-flamingo.eu/
http://dx.doi.org/10.1007/978-3-319-15789-4_4
http://dx.doi.org/10.1007/978-3-662-43779-7_5
https://files.ifi.uzh.ch/CSG/staff/poullie/extern/publications/IFI-2016.04.pdf
https://files.ifi.uzh.ch/CSG/staff/poullie/extern/publications/IFI-2016.04.pdf
https://files.ifi.uzh.ch/CSG/staff/poullie/extern/publications/IFI-2015.03.pdf
https://files.ifi.uzh.ch/CSG/staff/poullie/extern/publications/IFI-2015.03.pdf
http://dx.doi.org/10.1007/978-3-319-39814-3_3
http://dx.doi.org/10.1007/978-3-319-39814-3_3
http://doi.acm.org/10.1145/2479871.2479904
http://doi.acm.org/10.1145/2479871.2479904

A History-Based Model for Provisioning EC2
Spot Instances with Cost Constraints

Javier Fabra1(B), Sergio Hernández1, Pedro Álvarez1, Joaqúın Ezpeleta1,
Álvaro Recuenco2, and Ana Mart́ınez2

1 Department of Computer Science and Systems Engineering,
Aragón Institute of Engineering Research (I3A),

Universidad de Zaragoza, Zaragoza, Spain
{jfabra,shernandez,alvaper,ezpeleta}@unizar.es

2 Health and Code Software Solutions, Zaragoza, Spain
{amartinez,arecuenco}@healthandcode.com

Abstract. The increasing demand of computing resources has boosted
the use of cloud computing providers. This has raised a new dimension
in which the connection between resource usage and costs has to be con-
sidered from an organizational perspective. As a part of its EC2 service,
Amazon introduced spot instances (SIs) as a cheap public infrastruc-
ture, but at the price of not ensuring reliability of the service (hired
SIs can be terminated by the service when necessary). The interface
for managing SIs is based on a bidding strategy that depends on non-
public Amazon pricing strategies, which makes complicated for users to
apply any scheduling or resource provisioning strategy based on such
(cheaper) resources. Although it is believed that the use of the EC2 SIs
infrastructure can reduce costs for final users, a deep review of literature
concludes that their characteristics and possibilities have not yet been
deeply explored. In this work we present and evaluate a framework for
the analysis of the EC2 SIs infrastructure that uses the price history of
such resources in order to generate a provisioning plan by means of a
simulation algorithm considering cost constraints.

Keywords: Cloud computing · Provisioning · Spot instances · Amazon
EC2 · Cost constraints

1 Introduction

The cloud-computing paradigm has changed the traditional way in which soft-
ware systems are built by means of the introduction of a new model in which
infrastructures, platforms, applications and services are served on demand [1].
The consolidation of this new approach in the industry as well as in research
and academic environments has arisen the need to reconsider the way technolog-
ical resources are used in organizations, integrating cloud-computing along with
these resources [2–5].

c© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 208–222, 2017.
DOI: 10.1007/978-3-319-61920-0 15

A History-Based Model for Provisioning EC2 Spot Instances 209

The cloud-computing approach promotes an on-demand model for the pro-
visioning of resources: virtual servers, services or an application platform, for
instance. This model is being adopted because of the features it offers, such as
elasticity, flexibility or pay-per-use. At the same time, Infrastructure-as-a-Service
(IaaS) providers have introduced some additional variables related to price, per-
formance and reliability in the resources located on the cloud. These providers
deploy cloud resource management systems in data centers distributed world-
wide. Some of these providers also offer a special type of computing resource in
order to take advantage of unused cycles on their datacenters looking at maxi-
mizing their benefits. The price of these resources varies over time, representing
important savings with respect to the corresponding on-demand alternative. The
most well known cases of this practice are Google Cloud Preemptible Virtual
Machine (VM) Instances and Amazon EC2 Spot Instances (EC2 SI). In this
work we will focus on the Amazon EC2 SI approach.

Amazon Spot instances are offered through an auction mechanism. The user
must specify the maximum price that he is willing to pay (this is, the bid price)
as well as other constraints such as the instance type and the deployment data
center (the availability zone in AWS notation). In case the specified instance is
available and the bid price is greater than the current spot price, the request
is immediately fulfilled and the instance is launched. Otherwise, the request is
postponed until both conditions are fulfilled.

The Spot instances created will run until either they are terminated by the
user or there is a Spot instance termination, this is, Amazon EC2 must terminate
them because of Spot Market fluctuations. AWS continuously evaluates how
many Spot instances are available in each Spot instance pool, monitors the bids
that have been made for each pool, and provisions the available Spot instances
to the highest bidders. The Spot price for a pool is set to the lowest fulfilled bid
for that pool. Therefore, the Spot price is the price above which you must bid
to fulfill a Spot request for a single Spot instance immediately. Note that there
is a maximum number of available Spot instances in a Spot instance pool. If the
size of the pool drops to zero, then all the Spot instances from that pool would
be interrupted.

There are three situations in which Amazon EC2 can perform a Spot instance
termination: when the Spot price rises above the user’s bid price, when the
demand for Spot instances rises or, finally, when the supply of Spot instances
decreases. Once a Spot instance has been marked for termination, a SI termina-
tion notice is sent. This is a two-minute warning window before it terminates.
The user is responsible for programming a checkpointing mechanism that pre-
vents processes and data been executed in the instance to be lost.

Although Spot instances do not provide users either reliable execution, a
good analysis and offer strategy can drastically reduce the execution costs of
systems when comparing to on-demand costs (between a 50% and a 90%) [6].
The capacity and performance of applications could be increased with the same
budget, or even allow the use of new applications or configurations that were
previously discarded because of economic reasons.

210 J. Fabra et al.

The use of spot instances perfectly fits on a vast variety of scientific com-
puting experiments, from genomic sequence analysis to data distribution, physic
simulations or bioinformatics, for instance. From an enterprise’s point of view,
there also exist some companies that take advantage of the use of spot instances.
DNAnexus is an application case that bases their systems on the use of spot
instances to carry out genomic analysis and clinical studies on a highly scalable
environment [7]. Netflix is also a well-known case on the multimedia industry.
They use spot instances in order to improve the broadcast of billion of data on
their content network [8].

In this work we propose the analysis of Amazon EC2 Spot Instances mech-
anisms to provide a history-based model allowing final users to deploy a provi-
sioning strategy for a given cost constraint. To this end, we have built a system
that analyzes price variations on all regions and zones where SIs are offered.
Given a deadline and cost constraints, the system provides the user with a com-
plete overview of the suitability of using spot instances for the deployment of an
experiment. We have used this system to construct and execute real provisioning
plans in different regions and moments. We have also detected the existence of
certain patterns in this variation that can be used to obtain a significant cost
reduction. To the best of our knowledge, this is the first study to propose a
user-oriented framework with such features.

The remainder of this paper is structured as follows. Section 2 presents related
work on the analysis of EC2 Spot instances. The framework developed for the
analysis of the EC2 SI infrastructure is introduced in Sect. 3. This framework is
used to generate different provisioning plans with cost constraints by means of
the experimentation depicted in Sect. 4. Finally, Sect. 5 enumerates some con-
clusions and future work.

2 Related Work

Some previous research has focused on the use of EC2 Spot instances to reduce
computing costs when dealing with complex problems [9,10]. In [9], authors are
especially sensitive with the reliability of spot instances, and manage check-
pointing strategies to avoid data loss when instances are terminated because of
overbidding. The economics of adding additional resources to dedicated clusters
during peak periods was studied in [10]. Authors defined different provisioning
policies based on the use of Amazon Spot instances and compared them to on-
demand instances in terms of cost savings and total breach time of tasks in the
queue.

Spot instances price variation over time has been deeply studied in [11,12],
although authors have not given specific conclusions. [11] considers that price
varies on real time and there is not a pattern for this variation. On the other
hand, a reverse engineering technique is used in [12] in order to build a price
model based on auto-regression techniques. The relation between Cloud Service
Brokers and pricing is analised in [13], where authors discuss how performance
variation in virtual machines of the same type and price raises specific issues for
end users, which in the end affects to the final price for resource allocation.

A History-Based Model for Provisioning EC2 Spot Instances 211

There are few papers that achieve a statistical analysis as well as a modeling
of price variations of Spot instances. A very interesting approach is presented
in [14,15], where authors conducted an analysis of SI price and its variations
limited to four specific regions of Amazon EC2. All different types of SIs in
terms of spot price and the inter-price time (time between price changes) as well
as the time dynamics for spot price in hour-in-day and day-of-week were stud-
ied. Authors proposed the characterization of this behavior through a statistical
model and evaluated it by means of simulation techniques.

With respect to the generation of Spot instances provisioning, authors pro-
pose in [16] a decision-based model to improve performance, costs and reliability
under the restrictions imposed by a SLA. In [17] the use of spot instances is
also proposed to improve a map-reduce execution system, and a Markov chain
model is proposed to predict the lifetime of a running spot instance. Authors
focus on fail situations and propose provisioning policies for these cases, which
is also the base for the work presented in [10]. Similarly, in [18] a Constrained
Markov Decision Process (CMDP) is formulated in order to derive an optimal
bidding strategy. Based on this model, authors obtain an optimal randomized
bidding strategy through linear programming. Finally, in [19] Markov spot price
evolution is also analyzed. A job is modeled as a fixed computation request with
a deadline constraint in order to formulate the problem of designing a dynamic
bidding policy that minimizes the average cost of job completion.

Finally, the analysis of the bidding system of Amazon Spot instances and
the consequences of instance termination has been the focus of the research
presented in [9,20–22].

Most research has focused on the impact of Spot instance termination and
other aspects such as reliability. Other authors have concentrated their efforts
to study general price variations in the Spot Market, considering specific Avail-
ability Regions and instance types. In this work, we aim at the analysis of SI
prices considering costs and time constraints. As a result, our work focuses on
the building of a provisioning plan for the final user, providing it with different
options and results and allowing to decide the best option fitting his require-
ments/constraints.

Our framework considers all available data for every Availability Region and
computing zones as well as every instance type and operating system. The devel-
oped framework is easy to use, ready to be integrated with other software com-
ponents by means of its Web-service interface. Currently, this framework is inte-
grated in the enterprise software infrastructure of Health and Code Software
Solutions, allowing their system architects to generate provisioning plans using
Spot instances and significantly reducing the costs of their computing infrastruc-
ture.

3 A Framework for the Analysis of the EC2 SI
Infrastructure

Let us now briefly describe the developed framework. The architecture of the
system is depicted in Fig. 1. The EC2 SI Data Retrieval component downloads

212 J. Fabra et al.

price variations for all instance types of every EC2 region and zone. To do that,
it uses the Amazon Elastic Compute Cloud API (API version 2015-10-01). This
component is periodically executed (once per week), so only the data missing
in the system is retrieved. Also, this allows us to keep the system updated with
EC2 SI prices up to last week. The Data Retrieval component is connected
to the History Record component, which keeps track of downloaded data and
possible failures. In case the data retrieval fails (for a loss of connectivity, for
instance), the history record marks a dataset as failed and then communicates
this situation to the Error Handler. This component interacts with the Data
Retrieval component in order to retry downloading the lost data. This process
can be repeated up to three times before the data is marked as non-available.
Non-available data are not used for further processing or simulation.

Fig. 1. Main architecture of the framework.

When data are successfully downloaded, they are stored in the Database
component. This component implements a high input/output performance util-
ity for data persistency, storing all the information related to a price entry: date
and time, instance type, region, zone, price variation and absolute price. These
price variations are then used by the SI Analysis component, which performs
an analysis of price variations over time considering different variables. For the
sake of simplicity, in this work we will focus on the analysis that this component
does considering the maximum price the SI reached at each hour. This is done

A History-Based Model for Provisioning EC2 Spot Instances 213

to ensure that the simulator is getting the highest price the instance got at each
time period.

The Spot Instances Analysis component also allows us to perform a deep
study of price variations in each region and zone for any specific instance type, as
it provides us with some statistical information such as mean deviation, average
price and peaks on variations, among others.

The Provisioning Maker component is responsible of proposing a provisioning
plan that consists of a list of feasible time instants at which a specific instance
type can be requested. Given a deadline, an EC2 region, an instance type, the
number of execution hours and the maximum price per hour, the provisioning
maker uses an internal simulator to generate all feasible hours at which a bid
could be placed in the EC2 SI bidding interface with a price lower or equal to the
maximum specified before the specified deadline expires. A feasible hour means
that the simulation process estimates that the bid will succeed and, therefore, we
would be able to create a SI of the requested type without it being preempted.

Obviously, the price specification is one of the key values on this process. The
Bidding Calculator component is the one in charge of determining the best price
at each moment for a specific instance type in a specific region. This component
calculates a suitable bidding price by means of the use of weighted averages and
hysteresis techniques.

Finally, all the functionalities of the framework are exposed using a Web
services interface based on REST technology. This interface receives the user’s
constraints (described in JSON) and connects with the internal components in
order to serve a Spot price analysis or a provisioning plan. The framework can be
easily integrated with another applications or with a graphical user interface, as
it is the case of the GUI component. For the experimentation conducted in this
paper we used the REST API to generate an automated battery of experiments,
but the framework is used everyday through its GUI.

The framework has been used to track Spot instances data since June 2015.
Although Amazon provides a Spot Bid Advisor [23], the range of information
that it offers is quite limited and it is restricted to a few weeks. We have collected
more than 74 million price variations in 18 different zones that are categorized
in the EC2 Availability Regions. Currently, we add 2.5 million new entries every
week to the system.

4 Generation of a Provisioning Plan

Let us now depict how the presented framework works by means of a use case. We
had to execute different processes that required running during one, three, six
and, finally, ten hours. These processes were related to small tasks (one and three
hours) and more complex ones – accounting tasks – (six and ten hours). The
software to execute had to be deployed in an m3.xlarge EC2 instance requiring
Linux as operating system. Due to customer’s requirements, these processes had
to be executed at least one time in the last week of January 2016. Our aim was
to determine whether that processes could be executed by half the price of a
regular on-demand instance and, if so, to proceed.

214 J. Fabra et al.

We used the framework to generate a provisioning plan considering these
constraints. We also performed an analysis of the lowest SI price that we could
pay with the previous requirements.

The framework requires specifying all our constraints as an input using the
REST interface or the graphical interface (we used the last one). As we did not
have any reason to execute the software in a specific region or zone, we first
analyzed SI price variation in every Availability Zone. Figure 2 depicts how we
used the Spot Instances Analysis component of the framework to get a detailed
analysis for the previous months (December 2015 and January 2016). The para-
meters for the analysis are set on the top configuration area. Once they are have
been set, the Search button launches the process and the evolution of SI price
(Y-axis, in dollars) is displayed over time (X-axis).

Fig. 2. Spot Instances Analysis component.

As a result from the data obtained by the SI Analyzer, we selected two
different regions to conduct the experimentation. On the one hand, the EU-West-
1 region represented a stable region, which may prevent strong fluctuations in the
Spot Market, but with higher prices as a counterpart. Figures 3 and 4 depict the
price variation graph for the December 2015–January 2016 period. The analysis
of the number of price variations during these months was low: 13,524 records. It
was the region with less variance and standard deviation. Mean price was 0.041$
for the three zones in EU region. Maximum price varied from 0.042$ in EU-
West-1c, 0.050$ in EU-West-1b and 0.044$ in EU-West-1a. Minimum prices were
from 0.040$ for zones EU-West-1c and EU-West-1b to 0.041$ in EU-West-1a.

A History-Based Model for Provisioning EC2 Spot Instances 215

The standard deviation was quite small, being 0.001 in EU-West-1a and EU-
West-1b zones.

Fig. 3. Price variation (Y-axis, dollars) in EU-West-1 region during December 2015
(X-axis).

On the other hand, the US-East-1 region showed the highest price variation
and standard deviation in both months. Prices were the lowest ones, but the
risk of market fluctuations (and then the termination of SIs) was higher. For
the region of US-East-1 153,178 records were stored from the analyzed months.
In this case, the mean price ranged from 0.038$ in US-East-1b and US-East-1c
up to 0.039$ in US-East-1a or the higher 0.066$ in US-East-1e. Figures 5 and 6
depict price variation for zones US-East-1a to US-East-1c. Zone US-East-1e was
excluded from Fig. 5 because prices were too high compared to the other zones.
Mean deviation was 0.003 on a, b and c zones, whereas this value was 0.034 in
zone US-East-1e. Also, standard deviation ranged from 0.005–0.007 in zones
US-East-1a, 1b and 1c to 0.094 in US-East-1e.

We concluded that US-East-1 region seemed to be the cheapest one for the
period of time analyzed. On the other hand, EU-West-1 region seemed to be
the more stable one. We then used the framework to generate the provisioning
plan for an m3.xlarge instance on these two regions, running a Linux operating
system and for 1, 3, 6 and 10 consecutive hours of execution. As the processes
had to be executed on a week as a deadline, we got a provisioning plan covering
seven days.

Therefore, we had to execute the simulations considering the week start-
ing on January 24th 2016 with some price variations. To do that, we used the
Provisioning Maker Simulator.

We set up all the specified constraints: region and zone, instance type, operat-
ing system, maximum price to pay, number of hours and strategy to use in order

216 J. Fabra et al.

Fig. 4. Price variation (Y-axis, dollars) in EU-West-1 region during January 2016 (X-
axis).

Fig. 5. Price variation (Y-axis, dollars) in US-East-1 region during December 2015
(X-axis).

to calculate the price in the simulator. Figure 7 depicts the graphical interface
of the simulator, where all these constraints were set on the top. The simulation
is then started by pressing the Simulate button. Once it has finished, results are
shown. First, a table shows the number of slots with success ratios of 100% and
60–99% for every zone in every region simulated. After that, a graph shows the
percentage of job success over time. Finally, the simulation process displays a
table with the average price obtained in every slot for the constraints set.

A History-Based Model for Provisioning EC2 Spot Instances 217

Fig. 6. Price variation (Y-axis, dollars) in US-East-1 region during January 2016 (X-
axis).

The simulator provides with three strategies for price calculation: maximum
price, minimum price and mean price. The Spot price can change several times
within an hour. The maximum price strategy considers the highest one to set
the Spot price in a specific hour during simulation. The minimum price strategy
considers the lowest one. Finally, the mean price option calculates the average of
all data within the hour. Selecting the maximum price we are ensuring that the
highest prices are used, so the result of the simulation should avoid termination
because of price overbidding.

The simulator proceeds to calculate if a Spot instance could be created con-
sidering that the bid cannot exceed (maximum price/number of hours)$. This
is done for every hour in the period specified in the input to the simulator. For
each hour, the simulator calculates the Spot price as a weighted average of the
corresponding prices stored in the system in the last eight weeks (two months).
The most recent week has a weight of 30%, and the consequent ones 20%, 15%,
10%, 8%, 6%, 4% and, finally, the oldest week is weighted with a 2%. The prices
are obtained according to the selected strategy.

As a result of the simulation, we got a detailed overview of the success/fail of
placing a bid of half the on-demand price for an m3.xlarge instance on each hour
every day during the week. The result of the simulation considered that once the
bid has been placed, in case it is accepted and the instance is launched, it will
execute during one, three, six or ten consecutive hours (we carried out a simula-
tion for each region and number of execution hours required). The results indi-
cated that the best suitable day for execution using Spot instances was January
the 24th.

218 J. Fabra et al.

Fig. 7. Graphical interface of the simulator depicting the parameters configuration and
the results of the process.

To analyze the correctness of the results from the simulation process, we
decided to place several bids at various moments marked as success in both EU
and US regions. We placed ten bids for each execution time at different times at
Jan 24, so a total of 80 bids were used. We monitored the bidding process and
the instance execution. All the bids were successful and we were able to perform
the execution of each process four times without termination. From an economic
perspective, the cost of each execution was less than half the price of on-demand
instances, as the bidding price established by the Spot Market was below our
bids.

4.1 Analysis of the Lowest SI Price

After the simulation analysis of the obtained results, we decided to carry out a post-
simulation varying the bids in order to obtain the lowest cost we could have got.

A History-Based Model for Provisioning EC2 Spot Instances 219

We studied the success of the simulator results comparing them with the real Spot
price at the time the bid would have been placed. We varied the price from the usual
one (100% of the price) and progressively decreased it in ranges of a 5%. With this
variation, we simulated the success of our input and got a provisioning plan that
indicated that success on each possible slot of time.

Figure 8 depicts the results for region EU-West-1 along with the price varia-
tion considering the EC2 on demand price in January 24th 2016. Note that we
merged successful moments from all zones inside the same region. Provisioning
plans gave us a 100% of success (168 success/0 failures) in all possible times of
the week until we bid under the 12% of the EC2 price (0.0348$). This behavior
repeated for the different allocation options (from one to ten hours).

Fig. 8. Results for region EU-West-1 along with the price variation considering the
EC2 on demand price on January 24th 2016.

For these experiments we bid a 15% (0.0435$/hour) for the different length
configuration in all the possible time slots. After collecting the results, we found
that the provisioning plan was correct and 100% of the bids were allowed to
instantiate a machine in the EC2 infrastructure.

Figure 9 depicts the results for US-East-1 region on January 24th 2016.
Results were similar to the ones obtained for EU-West-1 region, although here
the bid had to go above 20% (0.054$/hour) in order to guarantee a 100% success
getting the required instance running for the specified number of hours.

Fig. 9. Results for region US-East-1 along with the price variation considering the EC2
on demand price on January 24th 2016.

220 J. Fabra et al.

This experimentation was performed considering alternative times achiev-
ing similar results. It is important to remark some conclusions. First, the use
of SI allows reducing EC2 prices much more than the expected 50%. In our
experimentations we found that normally a 15–25% of the EC2 price could be
used to instantiate a SI machine. However, at certain moments there was a high
variation trend on some regions. In these cases, bidding a 50% of the EC2 price
guaranteed that the machine would be instantiated in most situations. Secondly,
certain zones inside a region are much more prone to price variations. A good
bidding strategy must consider merging all zones in order to place bids in those
zones that have less variations at a specific moment. Thirdly, there is a common
pattern that repeats among zones and regions: price variations are stronger in
Sunday and Monday. It is common that most fails are obtained during these
days. On the other hand, Friday and Saturday are the days in which fewer vari-
ations are concentrated (indeed, January 24th was Saturday). Finally, a detailed
analysis of the price variation revealed that a cheaper region should not be con-
sidered the best candidate for the deployment and execution of an experiment
when dealing with price constraints and Spot instances. In this work, we found
that the final price for experimentation was cheaper on EU-West-1 region, which
normally is more expensive than US-East-1 region for EC2 on demand instances.

5 Conclusions

The use of Spot instances can drastically reduce the deployment and execution
costs of systems in a cloud-based infrastructure. However, the low reliability
in the use of this approach suggests the need for a system that could assist the
user when dealing with pricing analysis and termination possibilities. In the case
of the Amazon Spot Instances, such system must be able to propose the best
suitable moments in which a bid can be placed in terms of the maximum price
the user wants to spend on it. In this work we have introduced a framework for
the analysis of the Amazon EC2 Spot instance infrastructure. We have used it
to generate a provisioning plan for the deployment of a specific instance in two
different regions of the EC2 cloud (the one at which more price variations have
been observed and the one with fewer ones). Results have shown than savings
up to 88% can be obtained in some cases.

Currently, a very interesting and recent aspect we are studying is the new
Spot Block Model, released on October 2015. This new SI model allows to bid for
defined-duration workloads. Also, we are dealing with the automatic generation
of bidding prices in base to history variations and specific times. To do that, we
are working on the combination of SI prices at previous hours and the simulation
using different analysis techniques such as hysteresis and step-variation. We are
also considering the automation of the deployment process once the user has
selected the most suitable time (or period) to launch the required instances.

Finally, we are studying the integration of Google Cloud Preemptible Vir-
tual Machine (VM) Instances in our proposal. Preemptible VMs offer the same
machine types and options as regular compute instances and last for up to 24 h.

A History-Based Model for Provisioning EC2 Spot Instances 221

They are up to 70% cheaper than regular instances, but differently to Amazon
Spot instances, their pricing is fixed. This avoids variable market pricing and
opens an interesting research line by means of the integration of both Spot
instances and Preemptible VMs, which is being currently addressed.

Acknowledgements. This work has been supported by research projects TIN2014-
56633-C3-2-R, granted by the Spanish Ministry of Science and Innovation, and JIUZ-
2015-TEC-04, granted by the University of Zaragoza.

References

1. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging it platforms: vision, hype, and reality for delivering it services as the
5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

2. Warneke, D., Kao, O.: Exploiting dynamic resource allocation for efficient parallel
data processing in the cloud. In: TPDS, pp. 985–997 (2011)

3. de Assuncao, M.D., di Costanzo, A., Buyya, R.: Evaluating the cost-benefit of
using cloud computing to extend the capacity of clusters. In: HPDC 2009, pp.
141–150 (2009)

4. Ben-Yehuda, O., Schuster, A., Sharov, A., Silberstein, M., Iosup, A.: Expert:
pareto-efficient task replication on grids and a cloud. In: IPDPS, pp. 167–178 (2012)

5. Fölling, A., Hofmann, M.: Improving scheduling performance using a q-learning-
based leasing policy for clouds. In: Kaklamanis, C., Papatheodorou, T., Spirakis,
P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 337–349. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32820-6 34

6. Amazon Spot Instances. https://aws.amazon.com/ec2/spot/. Accessed June 2016
7. CHARGE Project. https://www.dnanexus.com/usecases-charge. Accessed June

2016
8. AWS Case Study: Netflix. https://aws.amazon.com/es/solutions/case-studies/

netflix/. Accessed June 2016
9. Yi, S., Kondo, D., Andrzejak, A.: Monetary cost-aware checkpointing and migra-

tion on amazon cloud spot instances. In: IEEE Transactions on Services Comput-
ing, pp. 236–243 (2011)

10. Mattess, M., Vecchiola, C., Buyya, R.: Managing peak loads by leasing cloud
infrastructure services from a spot market. In: 12th IEEE International Confer-
ence on High Performance Computing and Communications, pp. 180–188 (2010)

11. Wee, S.: Debunking real-time pricing in cloud computing. In: 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, CCGrid, pp.
585–590 (2011)

12. Ben-Yehuda, O.A., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: Deconstructing
Amazon EC2 spot instance pricing. In: 3rd IEEE International Conference on
Cloud Computing Technology and Science, pp. 304–311 (2011)

13. O’Loughlin, J., Gillam, L.: Performance evaluation for cost-efficient public
infrastructure cloud use. In: Altmann, J., Vanmechelen, K., Rana, O.F. (eds.)
GECON 2014. LNCS, vol. 8914, pp. 133–145. Springer, Cham (2014). doi:10.1007/
978-3-319-14609-6 9

14. Javadi, B., Thulasiram, R.K., Buyya, R.: Characterizing spot price dynamics in
public cloud environments. J. Future Gener. Comput. Syst. 29(4), 988–999 (2013)

http://dx.doi.org/10.1007/978-3-642-32820-6_34
https://aws.amazon.com/ec2/spot/
https://www.dnanexus.com/usecases-charge
https://aws.amazon.com/es/solutions/case-studies/netflix/
https://aws.amazon.com/es/solutions/case-studies/netflix/
http://dx.doi.org/10.1007/978-3-319-14609-6_9
http://dx.doi.org/10.1007/978-3-319-14609-6_9

222 J. Fabra et al.

15. Javadi, B., Thulasiramy, R.K., Buyya, R.: Statistical modeling of spot instance
prices in public cloud environments. In: Fourth IEEE International Conference on
Utility and Cloud Computing (UCC) (2011)

16. Andrzejak, A., Kondo, D., Yi, S.: Decision model for cloud computing under sla
constraints. In: 18th IEEE/ACM International Symposium on Modelling, Analysis
and Simulation of Computer and Telecommunication Systems, pp. 257–266 (2010)

17. Chohan, N., Castillo, C., Spreitzer, M., et al.: See spot run: using spot instances
for mapreduce workflows. In: 2nd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud10, pp. 7–13 (2010)

18. Tang, S., Yuan, J., Li, X.Y.: Towards optimal bidding strategy for Amazon EC2
cloud spot instance. In: IEEE 5th International Conference on Cloud Computing
(2012)

19. Zafer, M., Song, Y., Lee, K.-W.: Optimal bids for spot vms in a cloud for dead-
line constrained jobs. In: IEEE 5th International Conference on Cloud Computing
(2012)

20. Chaisiri, S., Kaewpuang, R., Lee, B.S., Niyato, D.: Cost minimization for provision-
ing virtual servers in amazon elastic compute cloud. In: 19th IEEE International
Symposium on Modeling, Analysis Simulation of Computer and Telecommunica-
tion Systems, MASCOTS, pp. 85–95 (2011)

21. Zhang, Q., Gurses, E., Boutaba, R., Xiao, J.: Dynamic resource allocation for spot
markets in clouds. In: 11th USENIX Conference on Hot Topics in Management
of Internet, Cloud, and Enterprise Networks and Services, Hot-ICE11, USENIX
Association, Berkeley, CA, USA, pp. 1–6 (2011)

22. Rahman, M.R., Lu, Y., Gupta, I.: Risk aware resource allocation for clouds. Tech-
nical report 2011-07-11, University of Illinois at Urbana-Champaign, July 2011

23. Spot Bid Advisor. https://aws.amazon.com/ec2/spot/bid-advisor/. Accessed June
2016

https://aws.amazon.com/ec2/spot/bid-advisor/

Work in Progress on Resource
Allocation

Enabling Business-Preference-Based
Scheduling of Cloud Computing Resources

Azamat Uzbekov(&) and Jörn Altmann

Technology Management, Economics, and Policy Program,
Department of Industrial Engineering, College of Engineering,

Seoul National University, Seoul, South Korea
batukasss@snu.ac.kr, jorn.altmann@acm.org

Abstract. Although cloud computing technology gets increasingly sophisti-
cated, a resource allocation method still has to be proposed that allows providers
to take into consideration the preferences of their customers. The existing
engineering-based and economics-based resource allocation methods do not take
into account jointly the different objectives that engineers and marketing
employees of a cloud provider company follow. This article addresses this issue
by presenting the system architecture and, in particular, the business-preference-
based scheduling algorithm that integrates the engineering aspects of resource
allocation with the economics aspects of resource allocation. To show the
workings of the new business-preference-based scheduling algorithm, which
integrates a yield management method and a priority-based scheduling method,
a simulation has been performed. The results obtained are compared with results
from the First-Come-First-Serve scheduling algorithm. The comparison shows
that the proposed scheduling algorithm achieves higher revenue than the
engineering-based scheduling algorithm.

Keywords: Cloud computing � Resource allocation � FCFS � Yield
management � Scheduling � Pricing � Economics-based resource allocation �
System architecture

1 Introduction

Cloud computing, which has become the infrastructure for ICT services, is even on its
way to become a household utility, for which the processes of using cloud services and
making payments are similar to other household utilities (e.g., water, electricity) [1,
14]. As for any household utilities, cost is most important. This fact makes an efficient
resource allocation vital for cloud service providers (CSP).

Although many aspects of resource allocation have already been discussed in liter-
ature [2], resource allocation for cloud computing still allows new possibilities [1, 3–5],
such as cloud service pricing strategies and scheduling algorithms [6, 7].

In detail, looking at existing research on resource allocation, a partition into two
types of methods can be observed: (a) engineering-based resource allocation methods,
which consider utilization, response time, and throughput for allocating CPU,
memory, and storage [8–10]; and (b) economics-based resource allocation methods,

© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 225–236, 2017.
DOI: 10.1007/978-3-319-61920-0_16

which consider profit, revenue, and cost for allocating resources [11–13]. Up to now,
these two types of methods are not combined or integrated yet. This is the case despite
the fact that CSPs aim at maximizing their profit, which can be achieved by considering
the market demand and the cost of the engineering system used. Therefore, CSPs need
to consider simultaneously the engineering aspects and the economics aspects of
resource allocation [15].

Therefore, the objective of this article is to outline a system architecture that allows
a CSP to integrate economics aspects of resource allocation with engineering aspects of
resource allocation. The research questions, which can be derived from this objective,
are: How does the system architecture look that can integrate economics aspects of
resource allocation with engineering aspects of resource allocation? How does an
integrating resource allocation method operate, combining an economics-based
resource allocation method and an engineering-based resource allocation method?
What is the performance of this integrated scheduling algorithm (i.e., business-
preference-based scheduling algorithm)?

To answer these research questions, we conduct the following steps: First, based on
a solid literature research on system architectures and resource allocation methods, we
propose a cloud computing resource allocation architecture that integrates economics-
based resource allocation and engineering-based resource allocation. Second, using this
architecture, the integrating scheduling algorithm, which is called business-
preference-based scheduling, is designed. Third, for showing the workings of the pro-
posed architecture, one scenario with two demand-depending cases are simulated and
analyzed. The first case represents normal demand for computing resources and the
second case represents high demand for computing resources. The simulation results
show that the performance of the business-preference-based scheduling algorithm is
better than a FCFS scheduling algorithm with respect to the CSP revenue generated.

The contribution of this article is a new resource allocation architecture, which
enables the integration of economics-based resource allocation and engineering-based
resource allocation. This integration of these two types of resource allocation methods
is missing in existing system architectures [16]. The core of the architecture is the
business-preference-based scheduling algorithm, which allows expressing CSP busi-
ness strategy parameters by adjusting the ready queue of the tasks. It combines yield
management and priority-based scheduling.

The remainder of the paper is organized as follows: In the next section, an overview
of related work on resource allocation is given. Section 3 introduces the proposed
system architecture with a focus on the business-preference-based scheduling algo-
rithm. The application of the architecture is evaluated through simulations in Sect. 4.
Section 5 concludes the paper with a discussion.

2 Background

2.1 Cloud Computing Resource Allocation

Resource allocation methods can be divided into two types: economics-based methods
and engineering-based methods [16]. To determine the intersection of both resource

226 A. Uzbekov and J. Altmann

allocation methods (Fig. 1), relevant articles have been reviewed in the following
paragraphs.

Engineering-based methods allocate resources based on task parameters (e.g., time
of arrival, length of task, importance of task) and system objectives (e.g., maximization
of throughput). The classical algorithms of this type are: First-Come-First-Serve
(FCFS), Shortest-Job-First (SJF), Priority Scheduling (PS), and Round-Robin
(RR) [17, 18]. In the last decade, each of these methods has been modified and
enhanced. For example, RR was improved to use the optimal time quantum [8, 19, 20].
PS and SJF Scheduling have been adapted for cloud-based software systems [21].
CloudSim-based simulations of a generalized priority scheduler, which sets priorities
not only for tasks but also VMs, showed good results with respect to execution times
[22]. These algorithms, which focus only on engineering aspects, require technical
skills but do not require an understanding of the interaction of the provider with the
customer [23].

Economics-based resource allocation methods distribute cloud resources to users
according to their preferences by using pricing [17–20, 28]. These methods can further
be subdivided into fixed-price methods and dynamic-price methods. The fixed-price
methods are implemented by major CSPs [29–31]. An example of the fixed-price
method is the pay-per-use method, which assigns a fixed price to each resource. In [32],
the authors consider the pay-per-use method, to propose a set of policies that allocate
VMs according to the QoS purchased by the user. The article discusses cloud resources
as a virtual pool of the physical infrastructure without giving detailed resource speci-
fications. Another example of fixed-price methods is the subscription method, under
which any number of cloud resources can be used for a fixed price for a certain period
of time. With respect to the dynamic-price methods, Al-Roomi et al. used dynamic
pricing to allow CSPs or users to change the price depending on pertinent factors [31].
Auctions and yield management are dynamic-price methods [33]. An example of a
sealed-bid uniform price auction is Amazon EC2’s spot instance. However, these
economics-based methods do not consider any engineering aspects.

Fig. 1. Classification of resource allocation methods into engineering-based methods and
economics-based methods.

Enabling Business-Preference-Based Scheduling 227

2.2 Yield Management

Yield management, as an example of a dynamic-price method, takes into account
demand, prices, and resource availability [37]. It implements basic principles of supply
and demand economics in a way to generate incremental revenues [16]. Yield man-
agement, which has been applied in the airline industry, helps selling resources to
consumer at a specific time at the highest possible price [34]. The possibility of using
yield management in computing grids has been studied in detail [34–36], outlining the
requirements for applying yield management to computing grids and showed how the
tools based on yield management could be executed. In our previous work [16], yield
management has been applied as one of the resource allocation algorithms within a
CSP business support framework. However, all yield management applications did not
specify the engineering details for mapping yield management allocations efficiently
onto ICT resources.

2.3 Demand Estimation

An issue in resource allocation is demand forecasting. Studies of the Internet and media
workloads indicate that customer demand is highly variable (i.e., the peak-to-mean
ratio is an order of magnitude or more), and it is not economical to overprovision the
system using peak demands [38, 39]. Gmach, who has illustrated the peak-to-mean
behavior for 139 enterprise application workloads [40], showed that an understanding
of enterprise workloads burstiness could help choosing the right tradeoff between
quality of service and the resource pool capacity requirements. The ability to plan and
operate in the most cost-efficient way is a critical competitive advantage [40]. For this
article, we consider historical data to estimate the demand.

3 Techno-Economic System Architecture

3.1 Proposed System Architecture

The system architecture (Fig. 2), which we propose for integrating an engineering-
based resource allocation method and an economic-based resource allocation method
(Fig. 1), comprises the following two stakeholders and three modules:

User: The user (customer), who is one of the two stakeholders, negotiates with the
cloud service provider about the service level agreement (SLA) on cloud resources
needed to execute an application.

Cloud Service Provider (CSP): This stakeholder interacts with the user (customer), in
order to negotiate a service level agreement (SLA) that meets the users’ needs and the
provider’s economic objective (e.g., profit maximization, revenue maximization, or
social welfare maximization). The SLA determines the resources (e.g., VM) that the
user can access and the pricing plan associated with the resources.

228 A. Uzbekov and J. Altmann

Pricing Module: The pricing module allows specifying and applying different pricing
plans that the CSP might want to offer in the market to attract customers.
Yield-management-based pricing plan is an example of such a pricing plan.

Resource Allocation Integration Module: This module admits tasks and sets the
order of tasks (i.e., VMs) in the ready queue, using information about VM prices paid
by users and about the engineering-based resource allocation method used by the
scheduler.

Scheduler: With the help of this module, tasks from the ready queue are allocated to
the hardware (e.g., CPU). The scheduler can be implemented with any engineering-
based resource allocation method. The ready queue is an ordered list of tasks (i.e.,
VMs) that are ready to be executed through the hardware.

3.2 Resource Allocation Process Between User and Cloud Service
Provider

The resource allocation process from a user’s first request about cloud resource
availability to the execution of the VM on a hardware within the proposed system
architecture can be described in ten steps (Fig. 2): (1) The user sends a request for VM
prices to the CSP; (2) The CSP calculates the VM price with the pricing module, which
also considers the status of the ready queue. The pricing module can run different
economics-based resource allocation methods, depending on CSP’s business strategy;
(3) The ready queue status is obtained from the resource allocation integration module;
(4) The CSP communicates the VM price (as part of a SLA) to the user; (5) If the user

Fig. 2. Proposed techno-economic system architecture for integrating engineering-based and
economics-based resource allocation methods.

Enabling Business-Preference-Based Scheduling 229

agrees to the price (SLA), the user makes a purchase request to the CSP; (6) If the CSP
acknowledges the request, the SLA is established [26, 27]; (7) The user submits a task
(VM) to the CSP; (8) The CSP informs the resource allocation integration module
about the established SLA, the user profile information (e.g., customer status, demand
history), and the task; (9) The information from the scheduler about the
engineering-based resource allocation method used and the status of the queue is
requested from the scheduler by the resource allocation integration module. (10) Based
on the information from the scheduler and the CSP, the resource allocation integration
module calculates the position of the task in the ready queue. Then, it enlists the VM in
the ready queue. Continuously, the scheduler picks the VM from the top of the queue
and allocates the VM to the hardware.

3.3 Comparison with Existing System Architectures

The novelty of the proposed system architecture is the resource allocation integration
module, which is situated between the engineering-based resource allocation and the
economics-based resource allocation of the CSP. This module takes into consideration
business aspects of the CSP (e.g., pricing and user profile) as well as the engineering
requirements (e.g., engineering-based resource allocation) coming from managing the
cloud infrastructure. It also forwards information about the ready queue to the pricing
module, such that the pricing module can calculate the optimal pricing plan.

To show the novelty of the proposed system architecture, it is compared with four
existing system architectures that have been identified in the literature. All system
architectures have been classified according to four criteria, namely type of system
architecture, resource allocation method used, stakeholder interactions, and objective.
The results of the classification are shown in Table 1.

Table 1 depicts that the resource allocation methods used and the objectives for the
design of the system architectures vary widely.

With respect to the type of system architectures, however, two types can be dis-
tinguished. The first type designs marketplaces for users and CSPs, to negotiate the
price of services [25, 33]. The second type provides middleware, in which the
economics-engineering functions are integrated [13, 23].

With respect to stakeholder interactions, all system architectures address the
interaction between users and provider businesses [13, 23, 25, 33], focusing on
assisting CSPs in setting prices. One middleware architecture also focuses on infor-
mation forwarding from engineering-based scheduling to provider business [23]. Only
the proposed system architecture also considers stakeholder interaction to provider
scheduling.

Based on this comparison between the existing architecture and the proposed
system architecture, it can be stated that the proposed system architecture represents the
first step towards the development of a system architecture for optimizing scheduling
based on business preferences. It interconnects the business aspects with engineering
aspects.

230 A. Uzbekov and J. Altmann

4 Architecture Validation

4.1 Simulation Scenario

In order to demonstrate through simulations the workings of the proposed system
architecture and, in particular, the business-preference-based scheduling, a scenario is
assumed that considers two types of users with different preferences. Having different
preferences makes the scenario applicable for economics-based resource allocation. In
detail, the scenario considers a CSP, who offers two classes of services, namely, a
premium service and a standard service. Users, who accept some delays in their task
executions, can buy standard services (low-priced services), while users, who expect to
experience no delay in any of their task executions, purchase premium services
(high-priced services). If the aggregated demand of both types of users for resources is
low (i.e., below the capacity of the executing hardware), both types of users get the
same amount of resources for their tasks. If the aggregated demand for resources
increases beyond the capacity, premium users get priority for obtaining resources, and
standard users have to wait for tasks of premium users to finish. Therefore, standard
users might experience delays or rejections of their task submissions.

To simplify the scenario, a few assumptions are made: Each task (i.e., VM) requires
the same amount of resources; The hardware capacity handles up to 100 VMs/h
without quality degradation (i.e., the ready queue length is limited to 100 VMs/h). If
the number of VMs per hour exceeds 100 VM/h, quality degradation is experienced by
users; The actual demand per hour is generated through two normal distributions.

Table 1. Comparison of existing system architectures with the proposed system architecture.

Type of
system
architecture

Resource allocation
method

Literature
reference

Stakeholder
interactions

Objective of
system
architecture

Marketplace Different types of auctions Wang
et al. [33]

User to
provider-business

Identification of
auction
implementation
issues

Marketplace Combinatorial double
auction

Samimi
et al. [25]

User to
provider-business

Feasibility
study

Middleware Business analytics
algorithms

Altmann
et al. [23]

Provider-scheduling
to provider-business

Price setting
considering
scheduling

Middleware QoS negotiation platform Buyya
et al. [13]

User to
provider-business

Combining
market-based
objectives and
computing

Middleware Business-preference-based
scheduling

This
article

User to
provider-business to
provider-scheduling

Scheduling that
considers
business
preferences

Enabling Business-Preference-Based Scheduling 231

To understand how the proposed system architecture operates at different levels of
demand, two cases are distinguished: (a) the normal demand case, in which the number
of VMs per hour is the sum of the draw from a normal distribution with a mean of
70 VM/h (premium users) and from a normal distribution with a mean of 30 VM/h
(standard users); (b) the high demand case, in which the number of VMs per hour is the
sum of the draw from a normal distribution with a mean of 80 VM/h (premium users)
and the draw from a normal distribution with a mean of 40 VM/h (standard users).
Figure 3 shows the VM demand in both cases for 60 time periods. For the normal
demand case, the demand is above the hardware capacity (i.e., 100 VM/h) in 27 time
periods only. For the high demand case, all time periods but one are above the hard-
ware capacity.

The VM allocation integration technique, which is applied to the ready queue, is
called expected marginal seat revenue (EMSR) and has been developed by Belobaba
[24, 41]. The probability density function fi() for the number of service requests di in
each service class i (i.e., i = 1 (premium service) or i = 2 (standard service)) is
determined by using historical data. The EMSR takes the form of Eq. 1, where Fi() is
the cumulative distribution function for the total number of VM requests Ci in service
class i. C1 indicates the number of VM requests for service class 1 that will be accepted
(i.e., C1 ready queue slots are allocated to service class 1). The number of ready queue
slots C2 allocated to service class 2 is the maximum ready queue length C minus C1.

Fi Cið Þ ¼ ZCi

0

fi dið Þ@di ð1Þ

Using Eq. 1, the aim is to determine the optimal number of ready queue slots that
should be allocated to the two service classes, such that the total revenue is maximized.
In other words, the protection level (PL) for the premium services must be determined,
as the booking limit (BL) for the standard services is calculated as BL = C − PL. The
protection level for the premium services is the maximum value of C1 that satisfies the
condition:

Fig. 3. Generated VM demand of premium users and standard users for the two cases: (a) the
normal demand case; (b) the high demand case

232 A. Uzbekov and J. Altmann

A � ð1� F1ðC1ÞÞ�B ð2Þ

The variables A and B represent the full price and the discounted price, respec-
tively. In this scenario, the CSP charges a full price of A = 0.05$/h and a discounted
price of B = 0.01$/h. Based on these prices, the generated demand data (Fig. 3), and
Eq. 2, PL and BL are calculated. For allocating the resources, the new
business-preference-based scheduling algorithm is used:

Step1: Based on price A,price B,and the cumulative
probability functions for both VM classes, the
protection levelPL and the booking limit BL
are calculated;

Step2: d1(t) = 0; d2(t) = 0; C(t) = 0;
Step3: WAIT for VM service request from user;
Step4: IF(C(t) d1(t) + d2(t))THEN {

reject request /* ready queue is full;
GOTO Step3}

Step5: IF(VMrequest is from the standard service
class&&d2(t) < BL)THEN {

addVM request to ready queue at time t;
d2(t) = d2(t) + 1;
GOTO Step3}

Step6: If(VM requestis from the premium service
class&&d1(t) < PL)THEN {

addVM request to ready queue at time t;
d1(t) = d1(t) + 1}

Step7: GOTO Step3;

4.2 Simulation Results

The total simulation time covers 5 days, which is split up into 60 time periods, rep-
resenting one hour time slots. For demonstrating the effectiveness of the
business-preference-based scheduling algorithm, the revenue generated through the
algorithm during the 60 time periods was calculated and compared with the revenue of
a FCFS scheduling algorithm (Fig. 4). Based on the results of the comparison, it can be
stated that the proposed algorithm generates more revenue than the FCFS algorithm.
With respect to the normal demand case, the proposed algorithm generates revenue
equal to $497, while the FCFS algorithm achieves revenue of $494. The difference of
$3 in revenue represents only a 0.74% increase in revenue. With respect to the high
demand case however, a more significant improvement in revenue is achieved. The
proposed business-preference-based scheduling achieves revenue of $534, compared to
revenue of $502 for the FCFS algorithm. This corresponds to an improvement of 6.4%.

Consequently, it can be stated that the proposed business-preference-based algo-
rithm can optimize resource allocation based on the business strategy of a

Enabling Business-Preference-Based Scheduling 233

CSP. Moreover, it can be stated that the idea of interconnecting engineering-based
resource allocation with the economics-based resource allocation is viable.

5 Conclusion

Although cloud computing has established itself as a beneficial technology,
economics-based resource allocation and engineering-based resource allocation are still
separated. To address this source of inefficiency, this article proposes a system archi-
tecture for cloud computing that allows integrating economics aspects and engineering
aspects in resource allocation. The integration of economics-based resource allocation
and engineering-based resource allocation allows optimization at different levels.

The central module of the system architecture is the resource allocation integration
module, which translates different pricing schemes (i.e., economics-based resource
allocation method) into engineering-based scheduling by manipulating the ready
queue. The module, which uses yield management as the economics-based resource
allocation method, considers historical data to calculate the optimal protection level for
deciding on the admittance of tasks to the ready queue. We name this scheduling
algorithm as business-preference-based scheduling algorithm.

Our simulation results of the business-preference-based scheduling show that the
proposed architecture generates higher revenue compared with a FCFS scheduling
algorithm. This is very positive, as the current simulation considers only static pricing
strategy with two price classes.

Our future work aims at extending this research, so that more complicated cases
with a greater applicability in the real world can be modeled and assessed.

Acknowledgements. This research was conducted within the project BASMATI (Cloud Bro-
kerage Across Borders for Mobile Users and Applications), which has received funding from the
ICT R&D program of the Korean MSIP/IITP (R0115-16-0001) and from the European Union’s
Horizon 2020 research and innovation programme under grant agreement no. 723131.

Fig. 4. Revenue of the business-preference-based scheduling algorithm compared with the
revenue of the FCFS scheduling algorithm for (a) the normal demand case and (b) the high
demand case.

234 A. Uzbekov and J. Altmann

References

1. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility.
Futur. Gener. Comput. Syst. 6, 599–616 (2009)

2. Altmann, J., Kashef, M.M.: Cost model based service placement in federated hybrid clouds.
Futur. Gener. Comput. Syst. 41, 79–90 (2014)

3. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. J. Internet Serv. Appl. 1, 7–18 (2010)

4. Rimal, B.P., Choi, E., Lumb, I.: A taxonomy and survey of cloud computing systems. In:
IMS IDC, pp. 44–51 (2009)

5. Jeferry, K., Kousiouris, G., Kyriazis, D., Altmann, J., Ciuffoletti, A., Maglogiannis, I., Nesi,
P., Suzic, B., Zhao, Z.: Challenges emerging from future cloud application scenarios.
Procedia Comput. Sci. 68, 227–237 (2015)

6. Risch, M., Altmann, J., Guo, L., Fleming, A., Courcoubetis, C.: The gridecon platform: a
business scenario testbed for commercial cloud services. In: International Workshop on
GECON, pp. 46–59 (2009)

7. Teng, F., Magoules, F.: Resource pricing and equilibrium allocation policy in cloud
computing. In: International Conference on Computer and Information Technology,
pp. 195–202 (2010)

8. Mishra, M.K., Rashid, F.: An improved round robin CPU scheduling algorithm with varying
time quantum. Int. J. Comput. Sci. Eng. Appl. 4, 1 (2014)

9. Buyya, R., Murshed, M.: Gridsim: a toolkit for the modeling and simulation of distributed
resource management and scheduling for grid computing. Concurr. Comput. Pract. Exp. 14,
1175–1220 (2002)

10. Dong, F., Akl, S.G.: Scheduling algorithms for grid computing: state of the art and open
problems. Technical report (2006)

11. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree
compared. In: Grid Computing Environments Workshop, pp. 1–10 (2008)

12. Osterwalder, A.: The business model ontology: a proposition in a design science approach
(2004)

13. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: vision, hype, and
reality for delivering IT services as computing utilities. In: International Conference on High
Performance Computing and Communications, pp. 5–13 (2008)

14. Mell, P., Grance, T.: The NIST definition of cloud computing (2011)
15. Haile, N., Altmann, J.: Value creation in software service platforms. Futur. Gener. Comput.

Syst. 55, 495–509 (2016)
16. Kashef, M.M., Uzbekov, A., Altmann, J., Hovestadt, M.: Comparison of two yield

management strategies for cloud service providers. In: Park, James J.(Jong Hyuk), Arabnia,
Hamid R., Kim, C., Shi, W., Gil, J.-M. (eds.) GPC 2013. LNCS, vol. 7861, pp. 170–180.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38027-3_18

17. Khankasikam, K.: An adaptive round robin scheduling algorithm: a dynamic time quantum
approach. Int. J. Adv. Comput. Technol (2013)

18. Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Characterization of
backfilling strategies for parallel job scheduling. In: Workshops at International Conference
on Parallel Processing, pp. 514–519 (2002)

19. Sirohi, A., Pratap, A., Aggarwal, M.: Improvised round robin (CPU) scheduling algorithm.
Int. J. Comput. Appl. 99, 40–43 (2014)

20. Alam, B.: Fuzzy round robin CPU scheduling algorithm. J. Comput. Sci. 9, 1079–1085 (2013)

Enabling Business-Preference-Based Scheduling 235

http://dx.doi.org/10.1007/978-3-642-38027-3_18

21. Ru, J., Keung, J.: An Empirical investigation on the simulation of priority and
shortest-job-first scheduling for cloud-based software systems. In: Australian Software
Engineering Conference, pp. 78–87 (2013)

22. Agarwal, D., Jain, S.: Efficient optimal algorithm of task scheduling in cloud computing
environment. arXiv Prepr. arXiv:1404.2076 (2014)

23. Altmann, J., Hovestadt, M., Kao, O.: Business support service platform for providers in open
cloud computing markets. In: International Conference on Networked Computing, INC,
pp. 149–154 (2011)

24. Kjeldsen, A.H., Meyer, P.: Revenue Management - Theory and Practice. Master Thesis,
Technical University of Denmark (2005)

25. Samimi, P., Teimouri, Y., Mukhtar, M.: A combinatorial double auction resource allocation
model in cloud computing. Inf. Sci. (Ny) 357, 201–216 (2014)

26. Breskovic, I., Maurer, M., Emeakaroha, V.C., Brandic, I., Altmann, J.: Towards autonomic
market management in cloud computing infrastructures. In: CLOSER, pp. 24–34 (2011)

27. Breskovic, I., Altmann, J., Brandic, I.: Creating standardized products for electronic markets.
Futur. Gener. Comput. Syst. 29, 1000–1011 (2013)

28. Altmann, J., Courcoubetis, C., Risch, M.: A marketplace and its market mechanism for
trading commoditized computing resources. Ann. des Télécommunications 65, 653–667
(2010)

29. Weinhardt, C., Anandasivam, A., Blau, B., Borissov, N., Meinl, T., Michalk, W., Stößer, J.:
Cloud computing - a classification, business models, and research directions. Bus. Inf. Syst.
Eng. 1, 391–399 (2009)

30. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun.
ACM 53, 50–58 (2010)

31. Al-Roomi, M., Al-Ebrahim, S., Buqrais, S., Ahmad, I.: Cloud computing pricing models: a
survey. Int. J. Grid Distrib. Comput. 6, 93–106 (2013)

32. Hamsanandhini, S., Mohana, R.S.: Maximizing the revenue with client classification in
Cloud Computing market. In: International Conference on Computer, Communication and
Informatics, ICCCI, pp. 1–7 (2015)

33. Wang, H., Tianfield, H., Mair, Q.: Auction based resource allocation in cloud computing.
Multiagent Grid Syst. 10, 51–66 (2014)

34. Jallat, F., Ancarani, F.: Yield management, dynamic pricing and CRM in telecommunica-
tions. J. Serv. Mark. 22, 465–478 (2008)

35. Kimes, S.E.: The basics of yield management. Cornell Hotel Restaur. Adm. Q. 30, 14–19
(1989)

36. Anandasivam, A., Neumann, D.: Managing revenue in Grids. In: 42nd Hawaii International
Conference on System Sciences, pp. 1–10 (2009)

37. Netessine, S., Shumsky, R.: Introduction to the theory and practice of yield management.
INFORMS Trans. Educ. 3, 34–44 (2002)

38. Cherkasova, L., Gupta, M.: Analysis of enterprise media server workloads: access patterns,
locality, content evolution, and rates of change. ACM Trans. Netw. 12, 781–794 (2004)

39. Arlitt, M.F., Williamson, C.L.: Web server workload characterization: the search for
invariants. ACM SIGMETRICS Perform. Evalu. Rev. 24, 126–137 (1996)

40. Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Workload analysis and demand
prediction of enterprise data center applications. In: 10th International Symposium on
Workload Characterization, pp. 171–180 (2007)

41. Belobaba, P.P.: Survey paper-airline yield management an overview of seat inventory
control. Transp. Sci. 21, 63–73 (1987)

236 A. Uzbekov and J. Altmann

https://arxiv.org/abs/1404.2076

Bazaar-Score: A Key Figure Measuring Market
Efficiency in IaaS-Markets

Benedikt Pittl(B), Werner Mach, and Erich Schikuta

Faculty of Computer Science, University of Vienna, Vienna, Austria
{benedikt.pittl,werner.mach,erich.schikuta}@univie.ac.at

Abstract. Today’s economy creates the need for dynamic, adaptive and
autonomous building of enterprise value chains consisting of arbitrary
virtualized computing resources, as hardware and software services. The
current key technology for service provisioning is the cloud computing
framework. In the course of this development digital service markets are
becoming business reality.

Consumers in these digital markets apply typically the classical
“take-it-or-leave-it” supermarket approach, which limits market perfor-
mance. A solution to this problem is the so called Bazaar-based market,
which extends the classical supermarket approach by enabling multi-
round negotiation processes. Hereby business strategies of providers and
consumers can be reflected in the negotiation processes to allow for
smarter and more effective agreements in the market. In this paper we
present a novel genetic algorithm based multi-round negotiation strat-
egy between providers and consumers of services. This approach is real-
ized within a Bazaar-Extension for CloudSim. To compare the market
efficiency of resource allocations we introduce a novel key figure, the
Bazaar-Score metric, which allows the evaluation of different business
strategies.

Keywords: Service negotiation · Negotiation simulation · CloudSim

1 Introduction

A digital service market is the culmination point of stake-holders with integration
of services along a value chain. Services are mainly traded directly for fixed
prices from provider to consumer [1]. However, digital services are negotiated
and contracted in a consumer-producer manner resulting in added value today.
As for example Amazon’s EC2 spot market shows that such service markets
became business reality today. In the course of our research we introduced a
generic multi-round negotiation framework for consumer provider contracting of
web services [6], referenced in [2].

Cloud computing by its characteristic of metered services described by nego-
tiable Service Level Agreements (SLAs) paves the way to the realization of these
digital service markets [3,5]. In the following we consider IaaS (Infrastructure as
a Service) as an example of a cloud service. Thus we use the terms IaaS provider
c© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 237–249, 2017.
DOI: 10.1007/978-3-319-61920-0 17

238 B. Pittl et al.

and cloud provider synonymously. Usually cloud providers run datacenters and
sell their resources to other enterprises in the form of virtual machines (VMs).
Consumers are represented by brokers on the market. We use the term resource
for all possible resources of a provider which can be offered in form of virtual
machines. A resource allocation mechanism defines the mechanism determining
how providers and consumers sell and buy resources. Business strategies used
by consumers and providers have significant influences on the resulting resource
allocation of markets. The Bazaar-Score introduced in this paper is an eco-
nomical key figure to compare efficiency of resource allocations. It represents
the consumers surplus as well as the providers surplus of a resulting resource
allocation. Virtual machines are goods characterised by the following descrip-
tors: processing power, storage, RAM, and price. Specifically, processing power
is provided by processing units and measured in million instructions per second
(MIPS). Simulation frameworks like CloudSim use MIPS as measure for process-
ing power which helps to calculate the exact utilization. RAM as well as storage
are measured in Megabytes (MB). Thus, the remainder of the paper is organized
as follows: The next Sect. 2 gives an overview over the used negotiation approach.
Section 3 presents the negotiation mechanism based on genetic algorithms. The
Bazaar-Score is introduced in Sect. 4. For a better readability of this section we
created an appendix in [10]. A justifying negotiation scenario is implemented in
Sect. 5. The paper is closed with the conclusion in Sect. 6.

2 Background and Assumptions

Figure 1 illustrates a simplified overview of the initial negotiation strategy which
we use in this paper. In a typical bilateral negotiation scenario two negotiation
partners such as provider and consumer exchange messages in an alternating
way: each negotiation partner sends counteroffers, then it receives counterof-
fers to which it can respond again. This message sequence leads to a tree-based
structure. The initial offer is called template and is usually published by the
provider. We use the term offer for both, templates and counteroffers. An offer
always contains a description of a VM and so we use them synonymously. Theo-
retically, a negotiation partner can create an arbitrary number of counteroffers in
response to received offers. For more information about the negotiation sequence
please see [9]. Consumer and provider usually receive several offers at the same
time. Usually received offers are ranked by utility functions [9]. Based on this
ranking it is decided how to respond to received offers. A high ranked offer will
be accepted while a low ranked offer will be rejected. Further offers which are
neither accepted nor rejected require the creation of counteroffers. The coun-
teroffer mechanism introduced in this paper is based on genetic algorithms. Its
purpose is to create Pareto efficient offers for negotiation scenarios where nego-
tiation partners do not know the preferences of the other negotiation partners.
The genetic algorithm is used for consumer as well as for providers. Negotia-
tion between two negotiation partners is finished after an agreement was created
or after all received counteroffers are rejected. After market participants have

Bazaar-Score: A Key Figure Measuring Market Efficiency in IaaS-Markets 239

Fig. 1. Overview over negotiation strategy.

terminated negotiations the resulting resource allocation is evaluated using the
Bazaar-Score to analyse market efficiency.

Each consumer and provider adheres to a business strategy. The created
counteroffers should increase the utility of the consumer/provider according to
the given strategy. As a strategy contains elements like risk assessment or con-
siderations of partner relationships an analytical based optimization will be dif-
ficult and time intensive. Heuristic approaches can minimize the algorithmic
complexity of calculating the utility of all possible counteroffers. Initially we
considered the usage of different techniques from knowledge engineering for cre-
ating counteroffers like neural networks. However, genetic algorithms seem to be
appropriate for our problem because their behaviour can be easily influenced by
modifying the fitness function. So no training phase is required and counteroffers
are created as byproduct as shown in the following. Our current implemented
genetic algorithm does not consider history.

3 Genetic Algorithm Based Negotiation

Genetic algorithms were the focus of some research in the negotiation domain:
The author of [8] uses a genetic algorithm for creating successful negotiation
strategies for a specific and simplified domain. The population consists of a set
of strategies whereby each strategy consists of a set of predefined rules. In [12] the
approach of [8] was reworked. For the highly dynamic service markets dynamic
strategies seem to be more successful than strategies with predefined rules.

In [4] a genetic algorithm was used for optimal assignments from sellers to
buyer. The algorithm was described with an example of a product characterised
with five attributes. Each attribute has a predefined value domain. Buyers and
sellers assign a value to each attribute i. It is described that possible attributes
may be the color of a product or the delivery date. An assignment of a buyer
to a seller is optimal if they have the same valuation. The so called match
value vi for an attribute i forms the final fitness value and is calculated as
follows vi = 1 − |bi − si|. bi represents the value of attribute i for the buyer
while si represents the value of the attribute for the seller. This equation shows
the greater the difference of the valuation of buyer and seller the lower is the
match value. We are not following this approach because of the following assump-
tions: (i) A consumer does not know the valuation of a provider and vice versa.
(ii) Utility functions are eligible to present consumer and provider valuations.

240 B. Pittl et al.

Utility values resulting from different utility functions are not comparable. Thus
the difference of the consumer and provider valuation can not be calculated.

Our implementation is based on the idea of [4] which considers the valuation
of negotiation partners in the fitness function. Thus we map business strategies
to simplified utility functions introduced in [9].

Population, Fitness Function, Crossover and Mutation form the anatomy of
genetic algorithms. The population of the genetic algorithm consists of VMs
representing the individuals. VMs are described using vectors of the form
(a1, a2, a3, a4) where the first element represents the storage (GB), the second
element the processing power (MIPS), the third element RAM (GB) and the last
element the price (e.g. measured in $). An offer contains a description of a VM.
We identified two basic strategies for creating the initial individual population.
(I) The received offer is ignored and the initial population is created randomly.
(II) The received offer is used as the basis for creating the initial population.
An individual of the initial population is created by modifying one of the four
characteristics of a VM. For example, an individual differs in processing power
from received offer whereas another individual differs in RAM from the received
offer. The required size of the initial population determines how many different
modifications were executed. For example one individual will have 10% more
RAM than the received offer while another one will have 5% less RAM. After
some generations the individuals of the population have less similarity to the
received offer. But the similarity is higher to the received offer than it would be
by using a random initial population.

Offers received usually have a high utility for its sender. So we decided to
create the population by using option (II) based on the received counteroffer.
Individuals resulting from a random created initial population using option (I)
may have no utility for the negotiation partner. An offer which may lead to an
agreement has to have a high utility for consumer and provider. The used fitness
functions represent this goal. Hence each fitness function has two components.
The first component is the utility function used by the sender for evaluating
offers. The second component is an estimation utility function representing the
utility for the negotiation partner. An estimation of the utility function of the
negotiation partner is necessary because we do not assume complete information.
Thus individuals having a high fitness value usually have a high utility for both
consumer and provider. Finding an estimated utility function is a complex task
which may require heuristic approaches, like genetic programming. This is part
of our further research. In this paper we use predefined utility functions. The
estimated utility function which represents the utility of the negotiation partner
may be imprecise. Thus an offer with a high fitness value does not imply that
this offer has a high utility for the negotiation partner. The high fitness value
may result from the imprecise estimated utility function representing the second
component of the fitness function. By using strategy (II) for creating the initial
population we keep the resulting counteroffer closer to the received offer. In other
words, strategy (II) uses the received offer as guideline for creating counteroffers.
This reduces the risk of creating offers which have a high fitness value but a low

Bazaar-Score: A Key Figure Measuring Market Efficiency in IaaS-Markets 241

utility for the receiver. Equation (1) shows the basic structure of the fitness func-
tions used by consumer and provider. The fitness function used by the consumer
Fconsumer considers its utility function as well as an estimated utility function
of the provider Ūprovider. Similarly, the fitness function of the provider considers
its utility function and an estimated utility function of the consumer Ūconsumer.
The weights w represent a impact factor of the negotiation partner. The higher
w the stronger is the consideration of the negotiation partner:

Fconsumer = Uconsumer + Ūprovider · w,Fprovider = Uprovider + Ūconsumer · w (1)

Elitism is used for creating newly generations by taking over the best individ-
uals regarding fitness of the old generation. The other individuals are generated
by crossover and mutation operations. For the parent selection in the crossover
operation we used the Roulette Wheel Selection. The selection probability is
proportional to the fitness of an individual: Pi = Fi∑p

n=0 Fn
. Pi is the selection

probability of an individual i, Fi is the fitness of the individual i and p is the
population size. The individual is created by taking randomly two characteris-
tics of the first parent and the other characteristics of the other parent. The new
generated individual may be mutated by modifying one of its characteristic. The
best offers created by the algorithm are used as counteroffers.

For evaluation we executed some tests, where Table 1 shows the setup para-
meters. U is the utility function of the consumer, Ū is the estimated utility
function of the provider. The utility function of the provider is based on the
profit contribution so the numbers in Ū represent the prices. For example a MB
RAM costs 0.001$. Consumer fitness functions are created on concepts used in
economical consumer theory. For example the used log function represents sat-
uration. The utility functions were taken from [9] and are examples. A quick
counteroffer generation is necessary during negotiation. Therefore we considered
a small iteration and population size for the tests. For all tests it was assumed
that the offer (200, 10000, 7, 30) is received. Eight parameter setups S1 − S8
were used for running the genetic algorithm (see Table 2). For four setups 50
generations (iterations) were generated while the other setups 100 generations
(iterations) were generated. Each setup was evaluated using the average fitness
value as suggested by [11]: each setup was executed 1000 times. After each exe-
cution the fitness of the best individual was stored. The average fitness value of
best individuals is shown in the Table 2. Figure 2 visualizes the performance of
setups. The first line represents the fitness value of the received offer. The initial
offer has a fitness of 132338.8. The boxplots represent fitness values of the setups
by executing each algorithm with each setup 1000 times. The median of the best
fitness values of all experiments exceeds the fitness value of the received offer.
Mutation as well as Elitism have obviously a positive impact. S5 seems to be the
best setup. For the negotiation scenario presented in Sect. 5 we used the setup of
S5 for counteroffer generation. The values in the offers have to be integers. By
using the genetic algorithm we implicitly relaxed the problem to a non integer
problem: As we measure storage in MB and processing power in MIPS we can
round the numbers without loss of precision.

242 B. Pittl et al.

Table 1. Genetic algorithm setup summary (see [9] for utility functions).

Parameters Values Parameters Values

Population size 96 Mutation probability 5%

Received VM (200,10000,7,30) Elitism Best 5%

Fitness function

Ux =

{
log(x) x ≥ Minx

−∞, x < Minx

x ∈ {RAM,Storage, Proc.Power}

UPrice =

{
log(MaxPrice − Price + 1) Price ≤ MaxPrice

−∞, P rice > MaxPrice

U = 1 · UPrice + 1 · URAM + 1 · UStorage + 1 · UProc.Power + 100000

Ū = Price − RAM · 0.001 − Storage · 0.0005 − Proc.Power · 0.001

w = 25

Fig. 2. Genetic algorithm scenarios.

Table 2. Genetic algorithm scenarios and results.

Iterations

50 100

With Mutation/Elitism S1 -134453.7 S5 -134669.3

Without Mutation with Elitism S2 -134134.7 S6 -134142.9

With Mutation without Elitism S3 -133058.9 S7 -133006.6

Without Mutation/Elitism S4 -132831.4 S8 -132654.6

4 Bazaar-Score

For evaluation of our different negotiation strategies we have to find a key-
figure which is able to answer the following questions: (i) How efficient is the
resulting resource allocation? (ii) How big is the market surplus for consumers
and providers in a given scenario? (iii) Is the market scenario with the used
negotiation strategies beneficial for the consumers or for the providers?

Our first intention was to use utility values for comparing resource alloca-
tions. Consider a simplified example in which all consumers use the same utility
function and all providers use the same utility function. Using utility values of
the consumers allows to compare the happiness of consumers in different market
scenarios. Using utility values of the providers allows to compare the happiness
of providers in different market scenarios. However utility values are inappro-
priate to answer the first and the third question. Utility values resulting from
different utility functions are not comparable because of their ordinal scale. Fur-
ther, instead of using the same utility function for all consumers and for all
providers, different market participants may use different utility functions. As
utility values from different utility functions are incomparable, utility values are
not appropriate for comparing the efficiency of resource allocations.

Bazaar-Score: A Key Figure Measuring Market Efficiency in IaaS-Markets 243

In appendix [10] a market efficiency figure introduced in [7] is presented. In
the proposed market model only one good is traded for which all participants
pay/charge a single price. The goods traded on IaaS-markets are VMs. VMs are
no commodities as they have several characteristics such as RAM or storage.
Therefore there is no single price for buying a VM. The price consumers are
willing to pay depends on VM characteristics. Similarly, the cost of a provider
depend on the resources delivered in form of a VM. Thus, the above described
market model [7] cannot be directly applied to IaaS-markets. In summary, we
can not apply the concept because we have no market price. The goal of the
Bazaar-Score is to apply the concept introduced in [7] for IaaS-markets.

Thus, to make different resource allocations comparable, we define the
Bazaar-Score. Similarly to the surplus described in [7], the Bazaar-Score mea-
sures the difference between the price paid and the maximum/minimum price at
which the consumer/provider is willing to buy/sell. Hence, there is a consumer
as well as a provider Bazaar-Score. The maximum price a consumer is willing to
pay for a VM represents the consumers value of the VM. The minimum price
at which a provider is willing to sell its VM represents the providers lower price
range like cost or a profit contribution level. We used a profit contribution of 0
as lower price range in our simulation examples introduced in this paper.

Consumers and providers use utility functions as described in [9] for evalu-
ating received offers (including the price). If an offer has a high utility for its
receiver, then the receiver tries to form an agreement. The utility limit of a
receiver trying to form an agreement is called utility acceptance threshold. If
the utility value of an offer exceeds the utility acceptance threshold then the
receiver tries to make an agreement. An agreement contains the characteristics
of a VM including the price. Usually an increasing price reduces the consumers
utility. So if the price for the VM described in the agreement is increased, the
utility of the VM for the consumer is decreased. The price at which the utility of
the agreement is equal to the utility acceptance threshold is called upper price
limit, as shown in Fig. 3a. At this price limit the consumer will be undecided
between buying and not buying the VM. The utility of the VM priced with the
price limit is equal to the utility acceptance threshold.

Fig. 3. Bazaar-Score calculation.

244 B. Pittl et al.

The difference between the price stated in the agreement and the upper price
limit at which the utility of the VM equals the utility acceptance threshold is
the consumer Bazaar-Score, as shown in the following equation:
Consumer Bazaar-Score = price limit − price. Our consumer strategy has two
utility acceptance thresholds. (i) Accept request threshold. If an offer is received,
which has a utility exceeding the accept request utility threshold, the receiver
sends an accept request to the negotiation partner. However, the partner needs
not to accept the request. (ii) Agreement threshold. If an accept request is
received which exceeds the agreement utility threshold, an agreement is formed
then. If an offer is received exceeding the agreement utility threshold, the con-
sumer responds with usual counter offers. The agreement threshold is only con-
sidered if an accept request message arrives. It is always smaller or equal than
the accept request threshold. If an accept request is received then the receiver
can directly form an agreement. The risk of not finding an agreement can be
avoided by accepting a lower utility.

An example is shown in Fig. 3b. The receiver of offer 2 responds with an
accept request as the utility of the offer exceeds the accept request thresh-
old; whereas the receiver of offer 1 responds with an usual offer. However, if
offer 1 would be an accept request then it would be accepted by the receiver.
Both thresholds may be modified during negotiation depending on the num-
ber of negotiation partners or negotiation duration. The Bazaar-Score uses the
agreement threshold at the time of agreement for calculating the price limit.
The agreement threshold is the lower utility limit at which a VM is accepted.
Therefore it is comparable to the value of the offer for the consumer. Simi-
larly to the consumer Bazaar-Score the provider Bazaar-Score is calculated. The
provider evaluates offers with its utility function. Generally, the utility of the offer
increases for a provider with increasing price. So, the provider Bazaar-Score is
calculated by decreasing the price of the agreement until its utility is equal to
the agreement threshold. The Bazaar-Score is calculated as follows, where the
price limit is a lower price limit: Provider Bazaar-Score = price − price limit.
The total surplus is calculated by summing up consumer and provider Bazaar-
Score. Bazaar-Score = Consumer Bazaar-Score + Provider Bazaar-Score. The
utility function measures the subjective happiness of a consumer/provider while
the Bazaar-Score measures the total surplus which is the difference between
value/cost and paid price/received price. The Bazaar-Score can be measured in
monetary units e.g. dollar or euro. Therefore comparability of different scenarios
is possible.

Usually a consumer has a higher Bazaar-Score if the characteristics of a VM
meet its requirements and so its value is high. A provider’s Bazaar-Score is not
necessary decreased if the consumers Bazaar-Score increases. This is because con-
sumer and provider have different preferences as shown by the following example:
Consider that the offer (300, 4000, 5, 10) was received by a consumer. The con-
sumer wants more RAM. So it creates a counteroffer based on the proposed offer:
(300, 4000, 7, 11). The consumer increased the RAM and price. Nevertheless, the
utility of the new offer is higher for the consumer: the consumer is willing to pay

Bazaar-Score: A Key Figure Measuring Market Efficiency in IaaS-Markets 245

more than 1$ for 1 GB RAM. However, the consumer offers the provider 1$ for
2 GB RAM in the counteroffer. In case an agreement is formed its Bazaar-Score
is increased by 1$. The provider evaluating the offer has lower cost than 1$ for
the two additional GB RAM. So the new offer is better than the old one for both
negotiation partners. Both have a larger Bazaar-Score.

5 Simulation Scenario

In this section a simulation scenario is introduced using the Bazaar-Extension we
developed and using the Genetic-Algorithm as well as the Bazaar-Score described
in this paper. In the scenario a consumer is represented by a broker. These terms
are used synonymously.

During the development of the negotiation strategy we assumed a compet-
itive market. Hence, we created a scenario consisting of 20 consumers and 30
datacenters. For the ease of simulation we assumed that a datacenter is able to
host all consumers. All consumers respectively all datacenters use the same strat-
egy. Setup parameters are shown in Table 4. The minuspoints shown in the table
are used by the providers. If no acceptable offer is received from a consumer,
the accept request threshold U threshold

accept request is decreased by the minuspoints for
this negotiation. Thus the chance of receiving an acceptable offer is increased
for further offers sent by the consumers and received by the provider. The util-
ity functions described in Table 1 are used. So we assume that estimated utility
function Ū in the Table 1 is the utility function used by the provider. However,
instead of 0.001, 0.0005 and 0.001 the following cost are used: (i) price per MIPS:
0.0001 (ii) price per MB Ram: 0.0001 (iii) price per MB storage: 0.00004.

Table 3. Negotiation simulation
scenarios.

Scenario w for Ūconsumer w for Ūprovider

Scenario 1 9.6 25

Scenario 2 8.8 23

Scenario 3 12.8 40

Table 4. Negotiation setup summary.

Parameters Values

consumer Uthreshold
accept request utility of template+100

consumer Uthreshold
agreement 0.9 · Uthreshold

accept request

consumer Ureject 0

provider Uthreshold
accept request 58000

provider Uthreshold
agreement 0.9 · Uthreshold

accept request

provider Ureject 26500

provider minus points 2000

The consumer has the weight 1 for each parameter and its maximal accept-
able price is 100$. Consumers negotiate with all datacenters at the same time.
However, an accept request is never sent to two or more datacenters at the
same time to avoid winning the required VM several times. Both, consumer
and provider, use the genetic algorithm described above. The setup of the most
successful setup S5 described in Sect. 3 was used.

246 B. Pittl et al.

Negotiation scenarios use different fitness functions. As described above, each
fitness function consists of the used utility function and an estimated utility
function representing the negotiation partner. The consideration of the estimated
utility function representing the negotiation partner with a certain weight should
lead to offers which have utility for sender and receiver of the offer. In the
negotiation scenarios the participants use the following fitness functions:

Consumer Fitness Function. The consumers fitness value is basically the
consumer utility and estimated provider utility Ūprovider weighted with w. w is
a factor for balancing the utility values resulting from different utility functions:

Fitness Total = Uconsumer + Ūprovider · w (2)
For the scenario we assume the estimated function with

Ūprovider = Price − Ram · 0.001 − Storage · 0.0005 − Processing Power · 0.001 (3)
(i) price per MIPS processing Power: 0.001 (ii) price per MB Ram: 0.001 (iii)
price per MB storage: 0.0005.

Provider Fitness Function. Similar to the consumer the providers fitness
function uses a weighted estimated consumer utility.

Fitness Total = Uprovider + Ūconsumer · w (4)
The estimated utility function used within the scenario is

Ūconsumer = Ram · 0.03 + Storage · 0.005 + Processing Power · 0.01 − Price · 100 (5)

Fig. 4. Scenario results

The template offered by providers is (200,10000,7,30) in all scenarios. In the
following we implement three negotiation scenarios (see Tabe 3). In each scenario
the weights w used by provider and consumer (see Eqs. (2) and (4)) differ. The
best four offers created by the genetic algorithm are used as counteroffers.

Bazaar-Score: A Key Figure Measuring Market Efficiency in IaaS-Markets 247

Scenario Setup. As shown in Table 3 negotiation partners are taken into
account more strongly in Scenario 3 than in Scenario 2 and Scenario 1. The
Bazaar-Scores are depicted in Fig. 5a. Scenario 2 has a Bazaar-Score of 83$, Sce-
nario 1 has a Bazaar-Score of 1213$ which is a bit lower then the Bazaar-Score
of Scenario 3 of 1328$.

Scenario 2 which has the lowest impact factor factors delivers the lowest
Bazaar-Score. Only two brokers form an agreement in this scenario. Conse-
quently the total Bazaar-Score is low. The consumers as well as the providers
do not consider the negotiation partner strong enough due to the small impact
factor. Consequently the generated offers have no value for the receiver leading
to rejects. Only the two brokers 13 and 29 form an agreement in Scenario 2.

Fig. 5. Plots created during the scenarios.

Scenario 3 seems to be the most efficient scenario. However, the used impact
factor is unrealistic. This is because the consumer creates offers which have high
utility for the provider but low utility for itself. All brokers form an agreement.
Compared to Scenario 1 the consumer utilities of the agreements are smaller
than in Scenario 3. However, the utilities of the providers shown in Fig. 4a are
significant higher than in Scenario 1. One provider can serve several consumers.
Thus some provider do not serve consumers. All providers and consumers use
the identical strategy. So the random variables used in the genetic algorithm for
counteroffer generation determines which provider forms agreements and hosts
the VMs. In Scenario 3 the consumers and providers are very obliging. As the
consumer creates generous offers for the provider it boosts the Bazaar-Score
of the scenario. For the total Bazaar-Score it does not matter if the consumer
renounces to improve the provider. The provider has also a big impact factor
too. However, the consumer makes such good offers in response to the template
so that they are never considered, as the provider tries to form an agreement
based on the offers created by the consumers.

The impact factors used in Scenario 1 seem to be more realistic, as each
negotiation partner tries to improve its utility. Figure 5b visualizes the negoti-
ation between a consumer and a provider in Scenario 1. The red dot marked
with Template is the template. Both consumer and provider create offers and
counteroffers. All these offers and counteroffers have a better utility for both the

248 B. Pittl et al.

consumer and the provider than the template. The big red dot marked with an
Agreement is the agreement. All offers created within a negotiation iteration are
represented as points with the same color. For example the yellow points repre-
sent offers created by the consumer in response to the template. In Fig. 5b the
black points represent the approximate Pareto-border. By using the genetic algo-
rithm for counteroffer generation the agreements are close to the Pareto-border.
The thresholds and all the other parameters can be tuned to find a solution
closer to the Pareto-border. Figure 4b shows the difference of the Bazaar-Scores
of Scenario 1 and 3. For each participant the Bazaar-Score reached in Scenario
3 was subtracted from the Bazaar-Score reached in Scenario 1. C is an acronym
for consumer and P is an acronym for Provider. Nearly all brokers have a higher
Bazaar-Score in Scenario 1. However, Bazaar-Score for the providers is much
higher in Scenario 3 than in Scenario 1. In Scenario 3 consumers give up their
Bazaar-Score to increase the one of the providers.

6 Conclusion

In this paper we introduce a strategy using offer generation based on genetic
algorithms enabling the creation of approximately Pareto-optimal offers. To this
end we defined the Bazaar-Score, a key figure based on economical utility theory
enabling comparison of different resource allocations. We simulated different
multi-round negotiation strategies by a novel Bazaar-Extension for CloudSim.

References

1. Bonacquisto, P., Modica, G.D., Petralia, G., Tomarchio, O.: A strategy to optimize
resource allocation in auction-based cloud markets. In: 2014 IEEE International
Conference on Services Computing (SCC), pp. 339–346. IEEE (2014)

2. Hani, A.F.M., Paputungan, I.V., Hassan, M.F.: Renegotiation in service level
agreement management for a cloud-based system. ACM Comput. Surv. (CSUR)
47(3), 51 (2015)

3. Haq, I.U., Schikuta, E., Brandic, I., Paschke, A., Boley, H.: SLA validation of
service value chains. In: International Conference on Grid and Cloud Computing,
pp. 308–313. IEEE (2010)

4. Ludwig, S.A., Schoene, T.: Matchmaking in multi-attribute auctions using a
genetic algorithm and a particle swarm approach. In: Ito, T., Zhang, M., Robu,
V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-Based Complex Automated
Negotiations. SCI, vol. 383, pp. 81–98. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-24696-8 5

5. Mach, W., Pittl, B., Schikuta, E.: A forecasting and decision model for successful
service negotiation. In: 2014 IEEE International Conference on Services Computing
(SCC), pp. 733–740. IEEE (2014)

6. Mach, W., Schikuta, E.: A generic negotiation and re-negotiation framework for
consumer-provider contracting of web services. In: Proceedings of the 14th Inter-
national Conference on Information Integration and Web-Based Applications &
Services, pp. 348–351. ACM (2012)

http://dx.doi.org/10.1007/978-3-642-24696-8_5
http://dx.doi.org/10.1007/978-3-642-24696-8_5

Bazaar-Score: A Key Figure Measuring Market Efficiency in IaaS-Markets 249

7. Mankiw, N.: Principles of Economics. Cengage Learning, January 2014
8. Oliver, J.R.: On artificial agents for negotiation in electronic commerce. In: Pro-

ceedings of the Twenty-Ninth Hawaii International Conference on System Sciences,
vol. 4, pp. 337–346. IEEE (1996)

9. Pittl, B., Mach, W., Schikuta, E.: A negotiation-based resource allocation model
in iaas-markets. In: Utility and Cloud Computing (UCC) (2015)

10. Pittl, B., Mach, W., Schikuta, E.: Appendix for gecon paper (2016). http://
homepage.univie.ac.at/a1347629/geconappendix.pdf

11. Sugihara, K.: Measures for performance evaluation of genetic algorithms (Extended
Abstract). In: Proceedings of the 3rd Joint Conference on Information Sciences
(JCIS 1997), pp. 172–175 (1997)

12. Tu, M.T., Wolff, E., Lamersdorf, W.: Genetic algorithms for automated negotia-
tions: a fsm-based application approach. In: Proceedings of the 11th International
Workshop on Database and Expert Systems Applications, pp. 1029–1033. IEEE
(2000)

http://homepage.univie.ac.at/a1347629/geconappendix.pdf
http://homepage.univie.ac.at/a1347629/geconappendix.pdf

Understanding Resource Selection Requirements
for Computationally Intensive Tasks

on Heterogeneous Computing Infrastructure

Jeremy Cohen1(B), Thierry Rayna2, and John Darlington1

1 Department of Computing, Imperial College London, London, UK
{jeremy.cohen,j.darlington}@imperial.ac.uk
2 Novancia Business School Paris, Paris, France

trayna@novancia.fr

Abstract. Scientists and researchers face challenges in efficiently con-
figuring their scientific computing tasks so that they can be run in a
timely and cost-effective manner. While the increasing availability of
different types of computing platforms provides many opportunities to
users, it can further complicate the job configuration process. In this
paper we present work-in-progress to develop an approach to assist with
identifying the most suitable computing platform and configuration for a
computational task based on a user’s financial and temporal constraints,
using a decision support system. We use Nekkloud, a web-based tool
for running computations via the Nektar++ spectral/hp element frame-
work, as an exemplar and build a table that scores a range of properties
for four example computing platforms to help select the most suitable
platform for a job. We demonstrate our approach using three sample
task scenarios.

Keywords: Resource selection · Decision support · Heterogenous plat-
forms

1 Introduction

Computing platforms have evolved significantly over recent years with the emer-
gence of multi-core processors containing increasingly large core counts and
many-core architectures such as those used in GPUs. In addition, new mod-
els of accessing resources, such as the pay-per-use, on-demand access provided
by Infrastructure-as-a-Service (IaaS) clouds, offer individuals additional oppor-
tunities for access to significant computational power.

While the capability to make use of new and different types of resources to
undertake computations can offer scientists and researchers greater flexibility, it
also presents a range of challenges. From a user perspective, these include select-
ing the most suitable resource(s) to use and correctly specifying the complex
parameters and configuration files that are often required to run high perfor-
mance scientific codes. Computing platforms have different costs, availability and
c© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 250–262, 2017.
DOI: 10.1007/978-3-319-61920-0 18

Understanding Resource Selection Requirements 251

reliability and choosing the most suitable platform is a complex matter because
it necessarily implies that trade-offs have to be made. Yet, it is not just an issue
of ‘time vs money’ and there is most likely not a straightforward continuum
of preferences that could be used to simply determine the most suitable plat-
form considering the characteristics of the project at hand. The large number of
parameters that are often involved in configuring High Performance Computing
(HPC) codes mean that standard optimisation approaches can be impractical.
This difficulty is compounded by the availability of multiple platforms and col-
laboration between different groups of individuals with different expertise when
specifying task parameters. In this paper we describe work-in-progress to develop
an alternative approach, relying on the expertise of those undertaking the job
configuration and supporting this with a decision support framework that can
assist in making the most appropriate decisions in a timely manner. We present
the first stage of our research into approaches to help users in selecting a suitable
target platform for running HPC jobs in environments where multiple resource
types are available. Our use case is based on the Nekkloud [8] tool which, in
combination with another tool, TemPSS [6], provides a web-based application
for running spectral/hp element [12] computations via the Nektar++ [5] soft-
ware. Using example scenarios, we demonstrate the challenges users can face in
selecting a suitable target platform for their research computations. We then
introduce the decision support framework, which will be implemented in the
second stage of the research, and show, using the same scenarios, how it may
be applied to help users in selecting suitable computational platforms for their
tasks. As this work develops, we consider that the main contribution will be the
ability to offer users of the Nekkloud tool, and others that adopt the decision
support framework, recommendations of the most suitable computational plat-
form to use to undertake their scientific HPC tasks. Ultimately we aim to enable
automated selection of resources to support a user’s required task configuration.

Related work is presented in Sect. 2 and we then introduce the HPC code
and tools that provide our use case in Sect. 3. Section 4 presents and ranks four
example computing platforms based on a set of properties. Section 5 presents the
user scenarios and Sect. 6 discusses the properties of a decision support system to
assist in efficient resource selection and looks at its application to the scenarios.
We present our conclusions and details of future work in Sect. 7.

2 Related Work

Resource management and queuing systems such as TORQUE [1] and Grid
Engine R© [24] are widely used on HPC clusters to handle queuing and schedul-
ing of jobs, and extensive work has been undertaken looking at approaches to
job scheduling and resource management/selection. The emergence of computa-
tional grids raised additional challenges and [13] provides a survey of resource
managers that support grid computing environments. Systems such as these
handle a job when a platform has been chosen and the job submitted to it. As
new models and hardware for undertaking computations have emerged, such as

252 J. Cohen et al.

Infrastructure-as-a-Service (IaaS) cloud platforms, GPUs and other accelerators,
users have more opportunities to access computing power but also more chal-
lenges in understanding how best to select the most suitable platform(s) for their
tasks. Our work focuses on the process of assisting users in selecting a suitable
platform in an environment where multiple platforms are available.

Nekkloud users are currently required to select their chosen platform,
resource type and related properties before running a job. However, it is often
challenging for users to identify what they consider to be optimal and the level
of risk they are willing to accept to achieve this. This is demonstrated in [4]
which shows that where individuals have freedom of choice they take advantage
of this even when its clear that the evaluation costs are high, possibly resulting
in an inferior outcome compared to a case where choice is not available.

Describing platform capabilities and task requirements can be particularly
challenging. Condor ClassAds [18], developed as part of the Condor work-
load management system [23], provide an approach to describing and matching
requirements and capabilities. An extension of this mechanism, described in [15],
provides a resource selection framework. In more complex heterogeneous envi-
ronments, automating resource selection becomes especially challenging and [9]
presents an algorithm that is designed to tackle this problem in a scalable man-
ner. While it focuses on services, the SDL-NG framework [21] provides an alter-
native example of an approach, based on the use of domain specific languages, to
provide formal descriptions of services. Our methodology defines a set of platform
properties that are used to describe the capabilities of a platform, and could be
represented using an approach such as ClassAds, and a decision support system
that uses these properties to help address a user’s requirements.

3 Software Environment

The spectral/hp element method [12], a type of high-order finite element method
(FEM), can be used to solve systems of partial differential equations in order to
carry out modelling of a range of physical mechanisms in a variety of scientific
domains. Nektar++ provides an open source implementation of the spectral/hp
element method and a set of solvers. It is well-documented but the complexity
of such applications means it can still be challenging for end-users to work with.

Work to develop the libhpc framework [7,14], led to the development of a set
of software tools and services to support and simplify running of scientific HPC
codes on different computing resources. In this paper we base our investigations
on two specific libhpc outputs, Nekkloud, and TemPSS (Templates and Pro-
files for Scientific Software). Nekkloud is a web-based user interface for running
Nektar++ computations on different computing platforms and TemPSS is a ser-
vice for managing sets of job configuration parameters for scientific applications.
Figure 1 shows how the services are linked. TemPSS displays an application’s
configuration parameters as an interactive, visual tree. Users can build configu-
rations by entering parameters into the tree nodes. The ability to store subsets

Understanding Resource Selection Requirements 253

Fig. 1. The linking between Nekkloud, TemPSS, their users and computing platforms.

of parameters enables groups of individuals with different expertise to collab-
orate on building complete configurations. TemPSS can be used standalone or
integrated into other applications and it has been built into Nekkloud.

The combination of Nekkloud and TemPSS offers an improved user experi-
ence and significantly simplified approach for running Nektar++ computations
on remote platforms. It also helps to decouple the interactions between the dif-
ferent entities involved in running a computation. Nonetheless, in its current
configuration, Nekkloud still requires that a user manually selects the comput-
ing platform on which they want to run a job, requiring some end-user knowledge
about the pros and cons of running on different platforms and an understanding
of the possible costs or issues of selecting one platform over another.

4 Computing Platforms

We introduce four example computing platforms and our methodology for com-
paring their capabilities. Table 1 shows the result of applying this methodology.

1. Standalone server: A multi-core x86 64 server with 2x16-core processors.
2. HPC cluster using the PBS batch scheduler: A large-scale HPC cluster

consisting of several multi-core nodes interconnected with InfiniBand
TM

low-
latency networking and accessed via the PBS job scheduler.

3. OpenStack private cloud: An OpenStack private cloud IaaS system offer-
ing on-demand provisioning of virtual servers of different specifications.

4. Amazon EC2 public cloud: The Amazon EC2 [3] public cloud platform
that offers on-demand, pay-per-use access to a variety of resources.

Our methodology for comparing the platforms involves the use of eight prop-
erties that are assigned values to rank platforms based on their pros and cons.
The use of these properties to help select a platform under different requirements
forms a type of multiple attribute analysis problem and an overview of various
approaches to such problems is described in [16]. The properties are:

– Cost (purchase and usage): The cost to the end user or their institution
of the initial platform purchase and the costs incurred at the point of use.

254 J. Cohen et al.

– Contention: This is worse where there may be a large number of users or a
long wait for a job to begin processing and better where there are fewer users
or dedicated access to a resource.

– Technical knowledge: The amount of technical knowledge required to use
a platform without the use of additional supporting tools such as Nekkloud.

– Capacity: Specification in terms of CPU cores, disk storage and memory.
– Flexibility: The ease of accessing different types/amounts of computing

capacity and being able to scale requirements up or down on a per-job basis.
– Reliability/maintainability: How likely a platform is to fail or become

unavailable and the potential difficulty of maintaining it.
– Communications: The expected inter-node communication performance.

Assigning numeric values to these properties allows straightforward summa-
tion or application of weights to the parameter values, as used in the “additive
weighting” approach described in [16]. We use a scale of values between 1 and
9 (inclusive) with 1 being the worst and 9 being the best. The size of the scale
was selected to offer flexibility in the assigning of scores for parameters where
there is considered to be similarity between two or more platforms. A smaller scale
would reduce the scope for highlighting small differences between platforms while
a larger scale provides an unnecessarily wide range of options. It is, nonetheless,
accepted that there is an element of subjectiveness in the assigning of the values
but it is still felt that they offer a good representation of platforms’ capabilities and
similarities. At the initial stage of this work we have opted to give all properties
equal weights rather than applying a weighting factor to give values more or less
significance. With the introduction of the decision support system in Sect. 6, there
is the opportunity to introduce weights to the property values and to automate
their selection in order to take user requirements into account.

Table 1. Summary of the pros and cons of different properties of the four example
platforms described in this section. P1 = standalone server; P2 = HPC cluster; P3 =
OpenStack cloud; P4 = Amazon EC2; ‘-’ = Parameter not applicable.

Cost Contention Tech knowledge Capacity Flexibility Reliability Comms Total

Purchase Usage

P1 7 7 7 6 1 2 5 - 35

P2 1 8 5 7 6 7 7 9 50

P3 5 7 7 3 5 6 4 2 39

P4 8 3 8 3 7 8 9 4 50

The values in Table 1 are based on example deployment scenarios for each
platform. These scenarios are considered from the perspective of a researcher
working in fluid dynamics wanting to use the platforms to undertake their
processing jobs. Platform 1 is purchased and operated by the researcher’s own
team. The team needs the expertise to deploy and manage the resource but
the researcher is then likely to have relatively uncontended access to it – it is

Understanding Resource Selection Requirements 255

likely to be shared only with other team members. The limited core count is
an issue and maintenance is the responsibility of the researcher or their team.
Platform 2, the HPC cluster, is designed for large-scale computations and is opti-
mised for performance, providing high-speed, low-latency interconnects between
nodes. Such a platform is very expensive to purchase but it may be supported
through direct institutional funding and made available for researchers to use
free of charge. Jobs are managed by the cluster’s batch scheduling system and on
a busy cluster, a job may be queued and take some time to begin running. The
OpenStack private cloud platform offers much of the flexibility of a standalone
server but with the potential to gain access to larger numbers of resources. A
significant issue is that resources are interconnected using standard gigabit ether-
net networking. This, combined with virtualised network interfaces on the cloud
instances, can result in a significant performance penalty for parallel codes that
undertake lots of inter-node communication. Reliability/maintainability may
be an issue since this is, again, a locally operated platform. Platform 4, the
Amazon EC2 public cloud, is accessed in a similar way to the OpenStack private
cloud. However, EC2 offers a much wider choice of resource types and physical
locations, which can be important if data is available in and must be processed
in a specific geographic location. Access to Amazon EC2 resources is charged
on a per-hour basis with a range of pricing options depending on the planned
usage profile.

5 Usage Scenarios

We now look at three example usage scenarios, providing an initial platform
recommendation for each based on the values in Table 1. The recommendations
are revisited after the decision support system (DSS) is introduced in Sect. 6.

Scenario 1: A researcher is preparing a conference paper presenting analysis
based on a 3-dimensional mesh that they have developed to support a fluid flow
problem for a civil engineering project. The work is a collaboration between
the researcher (a mathematician), and a group of civil engineering researchers.
Around 3,000 CPU hours of computation are required for the analysis and the
paper deadline is in two days. The lead researcher has limited funding for CPU
time on their project which they would ideally like to retain for subsequent mod-
elling tasks. Their institution operates an HPC cluster that is free at the point
of use to researchers needing to undertake computationally intensive analysis.

Discussion: It is clear that the most important aspect here is the speed with
which the job can be completed. From a pure computation perspective, the
researcher would be best to undertake their job on the dedicated HPC cluster,
requesting, say, 1024 or 2048 cores and having their computation completed in
approximately 1.5–3 hours. However, this does not take into account job queuing
time which, depending on the current cluster load, could be substantial. An
alternative option would be to start a number of pay-per-use resources on the
Amazon EC2 public cloud. The main issue with this approach will be the cost
of purchasing around 3,000 CPU hours of compute time from the cloud service.

256 J. Cohen et al.

Platform recommendation: Local HPC cluster.

Scenario 2: An engineering team is developing a model of a gas pipe in a new
structure. To test the correctness of their model and identify any issues with it,
the team need to run a number of small-scale parallel tests. The number of time-
steps to be run will need about 50 CPU hours per test and it will be necessary
to undertake multiple runs with varying input parameters. The team are experts
in their scientific domain but they need to collaborate with a software expert in
order to select a suitable parallel computing environment and correctly configure
their problem parameters to be used in the flow modelling solver.

Discussion: In this situation, the engineering team need the computation results
as soon as possible in order to evaluate them and adjust the input parameters
for the subsequent run. A platform where jobs are delayed by long queuing
times is likely to be impractical, even if the ultimate computation performance
is very quick. A better option could be to use a platform that may be slightly
slower in terms of raw computation but where there is no contention for resource
access. Such a scenario is likely to suit an in-house private cloud platform, or
simply a multi-core standalone server. Software may need to be deployed and
possibly built from source code to suit the target resources. The team are likely to
require support from a computer scientist, if the software needs to be built from
source code, and from the platform operator to identify the most appropriate
parameters to suit the chosen platform when building and running the code.

Platform recommendation: Local, standalone, multi-core server

Scenario 3: A doctor wishes to model blood flow through an artery. They
have collaborated with a CFD expert and a computer scientist and developed a
one-dimensional model on which their computation will be undertaken using a
Navier-Stokes solver. While the doctor understands the scientific problem they
are tackling, their collaborators provide domain-specific knowledge to select or
build a solver suited to the particular task. Computational requirements here are
relatively low when compared to large three-dimensional models but funding is
not available for computing time so low cost is the most important requirement.

Discussion: Time is not a significant constraint in this scenario. The lowest cost
option depends on what resources are locally available to the doctor undertaking
the modelling. We assume that a local server and institutional private cloud are
available but not a cluster. For this computation, a local server offers the most
straightforward option, despite the fact that computations may take some time
to complete. However, a private cloud could offer the opportunity to scale com-
putations and the developer working with the doctor should be equally capable
of deploying their code to a local server or a remote cloud platform. The potential
for complexity or delay that may result from having to work with a third-party
platform is less of an issue with cloud infrastructure where a web based interface
or API are normally available to start/stop and manage resources.

Platform recommendation: Institutionally-operated private IaaS cloud.

Understanding Resource Selection Requirements 257

6 Decision Support System

6.1 System Model

As illustrated in the scenarios, constraints faced by users are heterogenous. While
this means that access to different computing platforms is of critical importance,
it also makes choosing the right platform quite complex, as all platforms have
different properties. As a result, users are facing multi-dimensional trade-offs.
There is obviously the matter of time and money (cost and contention). While
this may, at first, look rather straightforward – there is a budget that cannot be
exceeded and a deadline to be met – even such a trivial matter is actually not that
simple. Indeed, what is the actual opportunity cost of a particular project? How
much extra would a particular user or group of users be willing to pay to obtain
their computation results a bit earlier? Conversely, how much money should they
be offered to accept postponing completion of the computation for some period
of time? In Table 1, property weights were considered to be equal. Yet, as with
the property values assigned in Sect. 4, such weights are highly subjective and
strongly depend on the project at hand. One task of the decision support system
is to compute appropriate values for these weights given a particular scenario.

Previous literature [19] has emphasised the increasing complexity of choices
in an environment when options are numerous and, as a result, the growing
importance of decision support systems. In the case at hand, there is a clear need
for a system that would enable identification of the most relevant option, based
on the opportunity cost of each computational task. This question is particularly
critical because the pricing of computing resources on certain types of computing
platforms is often not stable (e.g. the ‘spot’ prices of computing units on Amazon
EC2 [2] which evolve all the time). Being able to model the actual trade-off
between time and money for a particular project provides the ability to identify
opportunities as the project (and related computation) is being carried out. For
instance, it may be possible to identify potential savings that can be achieved by
delaying some of the computations. For some projects, this will be acceptable,
but not for others. Hence the need to know the opportunity cost profile of the
project. Determining this opportunity cost profile requires the following:

– knowing the ‘super-boundaries’: a maximum budget is sometimes not the
actual maximum that can be spent on a project and even the strictest deadline
might be extended by a small amount. Knowing what it would take for users
to accept to ‘go the extra mile’ is critical to identify the best opportunities.

– knowing the ‘boundary conditions’: conversely, once a budget and time con-
straint have been assigned to a project, under which conditions is it acceptable
to move away from these constraints?

– knowing the general opportunity cost of the project: considering the con-
straints of the project, what is the value of time (in money) for the users?

The first two points above can be determined through asking users a set of
dedicated questions. The third point requires the use of an experimental method-
ology, such as the one used in [17] or described in [22]. When the project is carried

258 J. Cohen et al.

out by a group of users instead of a single user and there are several stakehold-
ers (meaning that the opinion of several users – including some that may not
be interacting directly with the computing environment – has to be taken into
account), it is possible to use methods such as Discrete Choice Experiments [20]
to infer the trade-offs of the group (weighting can also be introduced in case
different stakeholders have different weight in the final decisions).

Another critical aspect of the optimal choice of platform relates to users’
attitude towards risk. Indeed, depending on the project at hand, a failure of
the computing platform can have more or less dramatic consequences. Since one
can reasonably expect reliability and price to be correlated, the attitude towards
risk can have an important impact on expenditure. Evaluating risk aversion is,
however, quite straightforward: users are asked to answer a series of questions
related to lotteries and their answers are used to build their risk profile [10,11].

The methodologies used to evaluate the opportunity cost and the risk aver-
sion can be extended to cover the other properties of platforms. For instance,
a Discrete Choice Experiment (DCE) can be built to encompass the properties
listed in Sect. 4. A shortcoming is that when more parameters are included, users
need to answer more questions for an accurate trade-off profile to be built. When
only one or a few users are involved, this can become quite tedious. A way to
alleviate this issue is to make use of gamification to help make the data collection
process entertaining for participants.

6.2 Application to Scenarios

We now revisit the three scenarios introduced in Sect. 5 and look at how the
application of the decision support system can help to improve on the naive
recommendations made based on the values from Table 1 in Sect. 4.

Scenario 1: Analysis of a fluid flow problem for a civil engineering project.

Initial platform recommendation: Local HPC cluster.

Impact of the Decision Support System: Time and money are clearly con-
flicting in this scenario. knowing the super boundaries (i.e. investigating addi-
tional funding, however limited, that could be used towards the project) would
enable the DSS to offer alternatives to the use of the HPC cluster, in particular
if the job queue is long, e.g. by monitoring spot prices on platforms such as
Amazon EC2 that offer variable or demand-based pricing. Knowing the user’s
boundary conditions would enable the DSS to advise on substituting local HPC
resources for external resources, as the former become available. In this case,
it is essential to estimate the actual ‘exchange rate’ between time and money:
how much money saved makes it worth delaying the obtention of the results?
Finally, risk is, in this case, worth considering. Facing both a nearing deadline
and funding shortage, the user might be willing to consider less reliable, alter-
native options. Assessing risk aversion of the user would enable a DSS to advise
on such options.

Scenario 2: An engineering team modelling a gas pipe in a new structure.

Understanding Resource Selection Requirements 259

Initial platform recommendation: Local, standalone, multi-core server.

Impact of the Decision Support System: In such a scenario, choosing the
right platform is no longer just a matter of time versus money, other charac-
teristics such as contention have to be considered. It is in cases such as this
that a DSS becomes particularly important. Firstly, contention boundaries can
be defined by the team. Then, both super boundaries and boundary conditions
related to contention versus other factors (e.g. time, money) are assessed at the
team level (with each team member undergoing the testing procedure to assess
the various trade-offs). This enables evaluation of each computational option and
identification of the most suitable one. A further interesting aspect is that it may
be the case that not all team members have the same objectives. For instance,
a more suitable option for the engineers may require a significant amount of
additional work for the support team. This is why the decision is based on the
combined trade-offs of each stakeholder in the project and strict boundaries and
property weightings can be set to ensure selection of the most relevant platform.

Scenario 3: A doctor wishes to model blood flow through an artery.

Initial platform recommendation: Institutionally-operated private IaaS
cloud.

Impact of the Decision Support System: In this scenario, the role of the
DSS is essentially to identify cheap substitute alternative options to the local
private cloud as they become available. The issue is, of course, that while local
resources are often free at the point of use, external resources may not be (e.g.
Amazon EC2). In such a case, an optimal solution would most likely make use
of internal and external platforms. A DSS can help determine the right balance
between the two platform types. Indeed, an accurate estimation of the time-
money tradeoff enables a calculation of how much computation can be diverted
towards paid-for external platforms. Furthermore, since time is not a significant
constraint in this case, less reliable (and presumably cheaper) options may be
considered. However, the involvement of a technical team in the project is likely
to impact on the risk profile of the project. Indeed, while the doctor may not bear
the consequences of unreliable sources (since the local server is always available
as a back up), switching between options leads to additional deployment work
for the technical team. Consequently, as time is not of the essence, the trade-offs
made by the technical team are given a greater weight in the project profile.

7 Conclusions

Running complex HPC applications in modern computing environments with
a variety of available hardware platforms presents a number of challenges in
selecting the most suitable resources to address a user’s requirements. We have
observed that one of the key aspects in helping to ensure that users obtain the
most appropriate resources is ensuring that they understand their own require-
ments and risk profile in sufficient detail to make the most suitable choice from

260 J. Cohen et al.

the available options. However, it is clear that correctly identifying these require-
ments is key to obtaining the correct platform choice and to address this we
introduce a decision support system. This system builds on approaches demon-
strated in previous economics literature to help identify a user’s risk aversion and
the opportunity cost of different platform choices. The outputs of the decision
support system can then be used to add weights to platform properties to help
improve on the information provided by the platform feature matrix shown in
Sect. 4 to obtain a platform choice.

In future work we aim to prepare an initial implementation of the decision
support system and a framework for allowing straightforward addition of new
platforms to the feature matrix. We intend to integrate this into the Nekkloud
tool to provide a prototype platform recommendation feature for Nekkloud users.

Acknowledgements. The authors wish to acknowledge the Nektar++ team for their
advice, particularly in relation to the scenarios and solvers. JC and JD acknowledge
Imperial College London for funding the Pathways to Impact project “Simplifying
High Performance Computing Access for the Nektar++ Framework” under Imperial’s
EPSRC Impact Acceleration Account. JC and JD also acknowledge EPSRC for their
support of the completed libhpc (EP/I030239/1) and libhpc Stage II (EP/K038788/1)
projects where Nekkloud and TemPSS were initially developed.

References

1. Adaptive Computing Inc.: TORQUE Resource Manager. http://www.
adaptivecomputing.com/products/open-source/torque/. Accessed 19 July 2016

2. Amazon Web Services Inc.: Amazon EC2 Spot Instances Pricing. https://aws.
amazon.com/ec2/spot/pricing/. Accessed 19 July 2016

3. Amazon Web Services Inc.: Elastic Compute Cloud (EC2) Cloud Server & Hosting
- AWS. https://aws.amazon.com/ec2. Accessed 19 July 2016

4. Botti, S., Hsee, C.K.: Dazed and confused by choice: how the temporal costs of
choice freedom lead to undesirable outcomes. Organ. Behav. Hum. Decis. Process.
112(2), 161–171 (2010). http://dx.doi.org/10.1016/j.obhdp.2010.03.002

5. Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G.,
de Grazia, D., Yakovlev, S., Lombard, J.E., Ekelschot, D., Jordi, B., Xu, H.,
Mohamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C., Kirby, R.M., Sherwin,
S.J.: Nektar++: an open-source spectral/hp element framework. Comput. Phys.
Commun. 192, 205–219 (2015). http://dx.doi.org/10.1016/j.cpc.2015.02.008

6. Cohen, J., Cantwell, C., Moxey, D., Nowell, J., Austing, P., Guo, X., Darlington, J.,
Sherwin, S.: TemPSS: a service providing software parameter templates and profiles
for scientific HPC. In: 11th IEEE International Conference on e-Science (e-Science
2015), pp. 78–87, August 2015. http://dx.doi.org/10.1109/eScience.2015.43

7. Cohen, J., Darlington, J., Fuchs, B., Moxey, D., Cantwell, C., Burovskiy, P., Sher-
win, S., Hong, N.C.: libHPC: software sustainability and reuse through metadata
preservation. In: First Workshop on Maintainable Software Practices in e-Science,
Chicago, IL, USA, position paper, October 2012

http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2
http://dx.doi.org/10.1016/j.obhdp.2010.03.002
http://dx.doi.org/10.1016/j.cpc.2015.02.008
http://dx.doi.org/10.1109/eScience.2015.43

Understanding Resource Selection Requirements 261

8. Cohen, J., Moxey, D., Cantwell, C., Burovskiy, P., Darlington, J., Sherwin, S.J.:
Nekkloud: a software environment for high-order finite element analysis on clus-
ters and clouds. In: 2013 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, Poster paper, September 2013. http://dx.doi.org/http://dx.
doi.org/10.1109/CLUSTER.2013.6702616

9. Costa, P., Napper, J., Pierre, G., van Steen, M.: Autonomous resource selection
for decentralized utility computing. In: 29th IEEE International Conference on
Distributed Computing Systems (ICDCS 2009), pp. 561–570, June 2009. http://
dx.doi.org/10.1109/ICDCS.2009.70

10. Eckel, C.C., Grossman, P.J.: Men, women and risk aversion: experimental evidence.
In: Handbook of Experimental Economics Results, vol. 1, pp. 1061–1073. Elsevier
(2008). http://dx.doi.org/10.1016/S1574-0722(07)00113-8

11. Holt, C.A., Laury, S.K.: Risk aversion and incentive effects. Am. Econ. Rev. 92(5),
1644–1655 (2002). http://dx.doi.org/10.1257/000282802762024700

12. Karniadakis, G., Sherwin, S.: Spectral/HP Element Methods for Computational
Fluid Dynamics, 2nd edn. Oxford University Press, New York (2005)

13. Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and survey of grid resource
management systems for distributed computing. Softw. Pract. Experience 32(2),
135–164 (2002). http://dx.doi.org/10.1002/spe.432

14. libHPC. http://www.imperial.ac.uk/london-e-science/projects/libhpc. Accessed
19 July 2016

15. Liu, C., Yang, L., Foster, I., Angulo, D.: Design and evaluation of a resource selec-
tion framework for grid applications. In: Proceedings of the 11th IEEE Interna-
tional Symposium on High Performance Distributed Computing (HPDC 2002), pp.
63–72, HPDC 2002. IEEE (2002). http://dx.doi.org/10.1109/HPDC.2002.1029904

16. MacCrimmon, K.R.: Decisionmaking among multiple-attribute alternatives: A sur-
vey and consolidated approach. Technical report MEMORANDUM RM-4823-
ARPA, The RAND Corporation, Santa Monica, CA, USA (1968). http://www.
rand.org/pubs/research memoranda/RM4823.html

17. Payne, J.W., Bettman, J.R., Luce, M.F.: When time is money: decision behavior
under opportunity-cost time pressure. Organ. Behav. Hum. Decis. Process. 66(2),
131–152 (1996). http://dx.doi.org/10.1006/obhd.1996.0044

18. Raman, R., Livny, M., Solomon, M.: Matchmaking: distributed resource manage-
ment for high throughput computing. In: Proceedings of the Seventh IEEE Inter-
national Symposium on High Performance Distributed Computing, p. 140, HPDC
1998. IEEE Computer Society, Washington, DC, July 1998. http://dl.acm.org/
citation.cfm?id=822083.823222

19. Rayna, T., Darlington, J., Striukova, L.: Pricing music using personal data: mutu-
ally advantageous first-degree price discrimination. Electron. Mark. 25(2), 139–154
(2015). http://dx.doi.org/10.1007/s12525-014-0165-7

20. Ryan, M., Gerard, K., Amaya-Amaya, M. (eds.): Using Discrete Choice
Experiments to Value Health and Health Care, The Economics of Non-
Market Goods and Resources, vol. 11. Springer, Netherlands (2008).
http://dx.doi.org/10.1007/978-1-4020-5753-3

21. Slawik, M., Küpper, A.: A domain specific language and a pertinent business
vocabulary for cloud service selection. In: Altmann, J., Vanmechelen, K., Rana,
O.F. (eds.) GECON 2014. LNCS, vol. 8914, pp. 172–185. Springer, Cham (2014).
http://dx.doi.org/10.1007/978-3-319-14609-6 12

22. Smith, V.L.: Theory, experiment and economics. J. Econ. Perspect. 3(1), 151–169
(1989). http://dx.doi.org/10.1257/jep.3.1.151

http://dx.doi.org/http://dx.doi.org/10.1109/CLUSTER.2013.6702616
http://dx.doi.org/http://dx.doi.org/10.1109/CLUSTER.2013.6702616
http://dx.doi.org/10.1109/ICDCS.2009.70
http://dx.doi.org/10.1109/ICDCS.2009.70
http://dx.doi.org/10.1016/S1574-0722(07)00113-8
http://dx.doi.org/10.1257/000282802762024700
http://dx.doi.org/10.1002/spe.432
http://www.imperial.ac.uk/london-e-science/projects/libhpc
http://dx.doi.org/10.1109/HPDC.2002.1029904
http://www.rand.org/pubs/research_memoranda/RM4823.html
http://www.rand.org/pubs/research_memoranda/RM4823.html
http://dx.doi.org/10.1006/obhd.1996.0044
http://dl.acm.org/citation.cfm?id=822083.823222
http://dl.acm.org/citation.cfm?id=822083.823222
http://dx.doi.org/10.1007/s12525-014-0165-7
http://dx.doi.org/10.1007/978-1-4020-5753-3
http://dx.doi.org/10.1007/978-3-319-14609-6_12
http://dx.doi.org/10.1257/jep.3.1.151

262 J. Cohen et al.

23. Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Condor: a distributed job
scheduler. In: Sterling, T. (ed.) Beowulf Cluster Computing with Linux, pp. 307–
350. MIT Press, Cambridge (2002). http://dl.acm.org/citation.cfm?id=509876.
509893

24. UnivaR© Corporation: Products Suite (2016). http://www.univa.com/products/.
Accessed 19 July 2016

http://dl.acm.org/citation.cfm?id=509876.509893
http://dl.acm.org/citation.cfm?id=509876.509893
http://www.univa.com/products/

Towards Usage-Based Dynamic Overbooking
in IaaS Clouds

Athanasios Tsitsipas(B), Christopher B. Hauser, Jörg Domaschka,
and Stefan Wesner

Institute of Information Resource Management, Ulm University, Ulm, Germany
{athanasios.tsitsipas,christopher.hauser,joerg.domaschka,

stefan.wesner}@uni-ulm.de

Abstract. IaaS Cloud systems enable the Cloud provider to overbook
his data centre by selling more virtual resources than physical resources
available. This approach works if on average the resource utilisation of
a virtual machine is lower than the virtual machine boundaries. If this
assumption is violated only locally, Cloud users will experience perfor-
mance degradation and poor quality of service. This paper proposes the
introduction of dynamic overbooking in the sense that the overbooking
factors are not equal for all physical resources, but vary dynamically
depending on the resource demands of the virtual resources they host.
It allows new pricing models that are dependent on the overbooking a
Cloud customer is willing to accept. Additionally, we discuss prerequisites
for supporting its realisation in an OpenStack private Cloud, including a
monitoring system, dedicated metrics to be monitored, as well as perfor-
mance models that predict the performance degradation depending on
the overbooking.

Keywords: Cloud computing · Accounting · Dynamic overbooking ·
Monitoring

1 Introduction

Cloud systems have become popular in the last decade, not only for their tech-
nological and non-functional characteristics, but also because of the flexible
accounting of used resources. Commercial cloud offerings (e.g. Amazon AWS,
Google Cloud Platform) as well as private and public offerings based on non-
commercial middleware (e.g. OpenStack), offer virtually unlimited amount of
resources, which customers can acquire and use according to a pay-as-you-go
model. A widely used approach is to access resources on the Infrastructure as
a Service (IaaS) layer which offers access to entities such as virtual machines
(VMs), storage capacity, and virtual networking.

While the customers use virtual resources, mainly VMs, these have to be
mapped to physical resources, i.e. compute nodes (servers), operated by the cloud
provider. When offering a cloud service, the benefit for the cloud provider lies
in the chance to overbook the physical infrastructure to avail of a high amount
c© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 263–274, 2017.
DOI: 10.1007/978-3-319-61920-0 19

264 A. Tsitsipas et al.

of customers—a technique also exercised by airline reservation systems [17]. In
consequence, the total amount of offered and operated virtual resources is higher
than the available physical resources. The overbooking factor denotes the ratio
between virtual and physical resources. It is commonly enforced on the basis of
individual physical machines (PMs).

Cloud data centre operators commonly use a static overbooking factor per
physical resource. Hence, there are different factors for compute (CPU cores),
amount of memory, and disks [7]. When a new VM was created by a user and shall
be placed on a PM by the run-time system, the placement decision is a straight
forward task: The cloud middleware places the VM in a best-effort manner on
a PM such that no overbooking factor on that machine is violated [20].

The resource overbooking is only efficient, when on average VMs need less
resources at run time than what they can access statically [10]. If this is not the
case, overbooking exposes the cloud provider to the risk of resource congestion
and thus to Service Level Agreement (SLA) violations, because application per-
formance degrades [20]. Static overbooking strategies assume widely unchanged
resource demands of each VM and do not consider the fact that workload and
hence, resource demands may change over time due to several reasons such as
periodic changes in use, load spikes, etc. A simultaneous increase in load for
several VMs on the same physical node overloads this node and degrades perfor-
mance and user experience. Thus, under these circumstances, the overbooking
factor has to be lowered and VMs have to be re-distributed over the physical
infrastructure. Optimising the distribution of virtual resources over physical ones
is possible in all non-commercial middleware systems, but only in a manual way.

Hence, what is required is a dynamic overbooking factor per physical node:
If VMs on that PM consume little resources, the overbooking factor can be
increased until the node reaches the desired utilisation, e.g. 70%. When VMs use
more resources, the overbooking factor shall be decreased down to 1 if required.
The decision of the overbooking factor is not only dependent on the resources
consumed by the VMs, but also by the performance degradation the data centre
operator is willing to impose on his customers. Here, different customer types
should be taken into account. While many authors have been working on finding
optimisation algorithms for different scenarios, this paper focuses more on how
to enact such optimisation algorithms in OpenStack and other cloud middleware
and how to seamlessly collect the necessary information.

The remainder of the paper is structured as follows: The following section
lists the requirements to realise our approach. In Sect. 3 our solution for dynamic
overbooking is presented. Section 4 deals with the prototype integration of the
solution in a real OpenStack setup. Section 5, discusses the related work. Finally,
Sect. 6 concludes the paper with an outlook and future work plans.

2 Requirements

Towards an assured dynamic overbooking of a data centre, we distil core require-
ments from the area of monitoring, performance modelling and optimisation
models are being described below.

Towards Usage-Based Dynamic Overbooking in IaaS Clouds 265

In order to be able to take decision on how to reconfigure a data centre
and the mapping of virtual to physical resources, it is necessary to monitor the
system as a whole. Monitoring is a challenging task when consistency and low
latency need to be met [1]. Systems with dynamic overbooking factors have to
quickly adapt to changing workloads in order to ensure that targeted SLAs are
not violated and hence, are depend on low latency. As data centres have grown
large [22], the monitoring system has to be able handle large scale systems. The
measurements required to obtain a comprehensive view on the status of such
systems led to the generation of a large volumes of data. A scalable monitoring
system should be able to efficiently record, transfer and analyse such volume of
data without impairing the normal operations of the cloud. Monitoring data not
only have to be recorded, but also be accessible through a common interface in
a unified manner. Additionally, monitoring has to take place of both physical
and the virtual level for a concise overview and in-depth data analysis.

A VM is not characterised only by its static properties (i.e. number of cores,
size of memory), but also by its footprint in the system [16]. The footprint is
a consequence of the physical resource utilisation. Monitoring a data centre,
enables the performance modelling for individual resource dimensions. The per-
formance models in combination with the system load affect the decision of an
overbooking factor. Additionally, a dynamic overbooking factor allows more flex-
ible pricing models. Different service groups can be exposed to different SLAs
(e.g. Gold, Silver, Bronze) and each group may lead to different pricing.

Finally, performing dynamic overbooking in an infrastructure, implies topol-
ogy aware optimisations. This entails the robust provisioning of information
about the status of the data centre and the execution of corrective actions to
avoid SLA violations. The optimisations performed in a infrastructure must be
transparent to the customers and not impair the normal workload of their appli-
cations. The transparent nature of an optimisation in systems with dynamic
overbooking enabled, is tightly coupled with the migration times of VMs. They
have to be relatively low to enhance the experience of the customer and not
violate the SLAs.

3 Proposed Solution

As highlighted in the previous section, dynamic overbooking in a cloud
infrastructure has several strict requirements. In particular, it relies on robust
monitoring mechanisms. In this section, we propose a solution to enact dynamic
overbooking in cloud data centres. Section 3.1 sketches the features of a monitor-
ing framework while Sect. 3.2 presents the information that needs to be collected
by that framework. Performance modelling taking into account the VMs’ CPU,
memory and disk utilisation is subject to Sect. 3.3. There we also present how
a cloud provider can introduce new SLA models to his customers on a pay-for-
what-you-actually-use basis.

An amalgam of these individual solutions breaks the establishment of the
billed per hour model, which deliver virtual resources of uncertain performance.

266 A. Tsitsipas et al.

3.1 Monitoring Framework

Enabling in-depth monitoring mechanisms in a data centre unleashes the extrac-
tion of meaningful data to lay the ground for further analysis and correlation.

In a cloud infrastructure, monitoring tools have to cope with a varying num-
ber of VMs while maintaining high data collection throughput and respond in
real-time [21]. Since, a plethora of monitoring frameworks exist, in our work we
do not utilise just a framework. We give answers to open questions how such a
framework can fulfil the requirements to enable dynamic overbooking in cloud.

Nowadays, data centres tend to be large. Hence the collection of data can
not be done from a central point, but needs to be distributed. Also, in order to
support dynamic overbooking factors, the data centres have to adapt to changing
workloads no matter their size. Moving monitoring instances closer to the PMs,
has the advantage of reducing latency. Thus, the monitoring system and the
system being monitored are closely located. Despite of the distributed nature of
the monitoring system, the data are accessed through a common interface while
being fault-tolerant and highly available.

To retrieve the required information (cf. Sect. 3.2) a set of probes has to
be installed on each PM with a per-probe runtime configurations (e.g., polling
interval). Interestingly, probes in a VM are non-existent, as per se, they are not
easily controllable. Obviously, only required probes shall be installed to keep the
total amount of monitored data as low as possible.

Finally, the recording of data is not sufficient. Monitored data needs to be
stored for further processing and historical matters. Aggregation mechanisms are
a transparent step of pre-processing for dynamic data (e.g. CPU usage) which
combine multiple metrics into a synthetic one that is inferred and not directly
monitored [1]. Additionally, filtering the data reduces the volume of the collected
data. Both of the aforementioned techniques, propagate the monitoring data at
the storage backend providing meaningful insights(e.g. CPU usage the last hour).

3.2 Monitored Information

In this section, we discuss what kind of data has to be monitored to realise
dynamic overbooking. A pre-dominant goal for our monitoring approach is to
realise it non-invasive for the cloud customer. That is, no monitoring processes
should be visible for the cloud customer and as many metrics as possible shall
be collected from the hypervisor hosting the customer’s VM.

When optimisations on application level shall be supported, monitoring
application specific data, from inside, the VM can not be avoided. Yet, this
feature is orthogonal to our work presented in this paper and is therefore not
considered. Instead, we assume the VM as black-box and only examine the per-
formance models on VM-level, without the networking dimension. Doing so,
we completely disregard possible knowledge of what is running inside the VM.
Incorporating this knowledge as well is subject to ongoing work.

VMs request CPU time, filesystem access and allocation of memory. A cloud
provider depends on these dimensions to perform the overprovisioning. Hence,

Towards Usage-Based Dynamic Overbooking in IaaS Clouds 267

the monitoring framework must obtain data from both virtual and physical level.
Table 1, presents the metrics that need to be collected for each dimension.

Table 1. Dimension metrics collected by the monitoring framework.

Dimension Metrics

Physical CPU cpu cores, cpu usr, cpu sys, cpu wio

Memory mem size, mem free, mem cache, mem buff, mem swpd

Disk total, used, disk readmax, disk writemax, iops, disk reads, disk writes

Virtual CPU cpuCS, cpuIO, cpuVM, cpuPM, cpuST

Memory ram-total, ram-used

Disk disk-read, disk-write, disk-total, disk-used

As a methodology for the definition of the required metrics, a first layer of
categorisation in physical and virtual level exists. Furthermore, a second layer
of categorisation lies on the different dimensions - CPU, Memory and Disk.

On the physical level, we identify for the CPU dimension the need of knowl-
edge about the number of cores in a PM (cpu cores), to correlate what is the
physical restriction in terms of cores and how can we translate them to virtual
cores. Last, the CPU usage on the user mode (cpu usr), on the system mode
(cpu sys) and when the CPU idles and waits for I/O completion(cpu wio), are
metrics needed to cover all the spectrum of CPU usage. With regard to the Mem-
ory dimension, the physical barriers as the memory size (mem size) and the free
memory(mem free), are the simple way to define the allocation of memory. Addi-
tionally, the cached memory (mem cache), the buffered memory (mem buff), as
also the swapped memory (mem swpd), provide information of a possible over-
provisioning on this dimension. Finally, the Disk dimension is described for the
allocated with the used and the total disk capacity of the PM. Moreover, infor-
mation about the operations per second (iops) facilitates if a PM is under a
heavy operated mode. Additional information about the read/write rates and
the read/write bandwidth are also recorded.

Moving to the virtual level, for the CPU dimension, the number of the provi-
sioned virtual cores (cpuCS) is required. Moreover, cpuIO reports the utilisation
needed for I/O operations in the VM. cpuVM reports the VM’s CPU utilisation
value as it is seen from inside the VM. cpuPM provides the VM’s CPU utilisa-
tion value as it is seen from the physical level. cpuST accounts for the CPU time
stolen from this VM. As far as the Memory dimension, the total memory and the
used memory from the VM is sufficient to characterise the memory utilisation.
Finally, the allocation of disk (disk-total, disk-used) for a VM is available and
the reads and writes performed in the VM (disk-read, disk-write).

3.3 Performance Modelling

The monitored information introduced in the previous sections allows the calcula-
tion of performance models for each dimension of the VM from which, determine

268 A. Tsitsipas et al.

the overbooking factor per PM. The multi-level monitoring framework also eases
the correlation and results in the overprovisioning identification.

Overbooking Identification. A customer’s application will only receive a
performance degradation, if the PM is overbooked and the application needs
specific resources for it’s execution while the other VMs on that PM leave fewer
of these resources than required. Monitoring the resources with a multi-level
flavour aids to quickly grasp the overutilisation of VM dimensions.

To identify overbooking on the CPU dimension, the request for processing
time from virtual CPUs is more than can be served by the physical CPU. Since
the physical CPU is loaded with max. 100%, the virtual CPUs get requested
processing time “stolen”, leading to an experience like reducing the processor’s
frequency. As soon as the steal value (cpuST) for any of the VMs hosted on a
PM is >0%, the CPU got overbooked.

Overbooking the memory takes place when the actually requested resident
amount of memory does not fit in the physically available memory. The main
indicator of an overbooked memory on a PM is when the PM’s operating sys-
tem “swaps” out the memory to disk. The mem swpd value should be as low
as possible, since accessing memory from the disk is a costly and performance
decreasing action.

The disk has two ways to be overbooked: (i) the disk allocation, and (ii)
the disk I/O interaction to read and write data. Disk allocation can be safely
overbooked with thin provisioned virtual disks, but should never be harmed to
avoid unpredictable experiences inside the VMs. Additionally, it can be secured
by watching the free disk space available on the PM. The disk I/O overbooking
is a comparably fast changing metric. The bandwidth and the I/O operations
(iops) have to be watched for all the VMs and the PM. Waiting times caused by
disk interactions generally increase the cpu wio and the cpuIO values, yet not
automatically due to overbooking. Instead, the maximum rates possible on the
physical level have to be compared to the requests from the virtual level.

Workload Classification. Workloads that have spikes and bursty behaviour,
are a good target for overbooking, since they only occasionally use all the system
resources their VM provides. Furthermore, applications with period workloads
can be co-located on the same PM with out performance degradation provided
that the phases do not overlap. Moreover, the fact that VMs are multidimen-
sional with respect to resources (CPU, memory, disk), it is also an option to
co-locate applications that utilise resources in different locations [20]. A combi-
nation of different approaches is possible as well.

There is a need to have a wide range of different parameters because appli-
cation types are different. For instance, the behaviour of a scientific application
performing a computation differs from a gaming server. While the former requires
resources in a bursty manner [11] and fluctuates between I/O and CPU bound
phases and can tolerate short periods of under-provisioning, the latter is intoler-
ant to violations of performance as this would harm the experience of the gamers
connected to it.

Towards Usage-Based Dynamic Overbooking in IaaS Clouds 269

Dynamic Overbooking. With dynamic overbooking enabled, a cloud provider
can serve more customers, because the customers can buy some flexibility. Cur-
rently in the state-of-the-art, the only differentiation between the VMs are the
number of virtual cores, the number of virtual memory and the allocated disk.

Our approach employs the resource utilisation to make optimisation deci-
sions, while maintaining the maximum revenue for the provider and not harming
the performance experienced for the customer. We define two types of optimi-
sation actions: (i) use a customisable parameter depending on how risky the
provider wants to be when performing optimisation actions and create SLAs
based on that, and (ii) monitor the resources on physical and virtual level, cor-
relate the values and perform optimisations or initial placement of VMs based
on the overbooking factor that a customer agreed.

In particular, we propose to delegate the customisation of the overbooking
factor to boundaries of the VM dimensions. These boundaries are defined as:

OV BFxthreshold = [OV BFxmin, OV BFxmax] (1)

Here, x denotes availability of CPU, memory, or disk. The definition can vary
based on service groups that the provider offer to the customers.

Each of these service groups can then be associated with different SLAs
with different privileges regarding the overbooking that will receive. When a
new service is provisioned, the service group is associated with the appropriate
SLA based on the customer’s will. For example, a Silver and a Bronze customer
will have more flexibility and will accept an overbooking factor of CPU for
couple of hours during the day. On the other side a Gold customer will accept
no overbooking on the PM or a minimal one. If the provisioned service was not
what was intended to, the customer account can be reassigned to another service
group that has a different QoS parameter defined in its SLA.

3.4 Summary

As a summary, we envision the enactment of dynamic overbooking in the cloud
data centres by the following mechanisms: Enabling monitoring mechanisms to
record the utilisation of the dimensions on both physical and virtual levels.
The overbooking is extracted for the VMs of the customer and based on their
utilisation and the service provider group of the customer, the decision for opti-
misations is taken.

4 Prototype Integration

In our prototype we set up an OpenStack driven private cloud with full root
access to all PMs. The PMs run Centos 7 and use KVM [8]. In the following
subsections we first explain the implemented monitoring system, the integration
into the running OpenStack middleware with the Data Centre Analysis (DCA)
toolkit, which controls the VM placement to enable the dynamic overbooking.

270 A. Tsitsipas et al.

4.1 Monitoring

In our work, we introduce a customised version of Chukwa, an open source data
collection system for monitoring and analysing large distributed systems [13].
Chukwa is built on top of Hadoop Distributed File System (HDFS) [15] and
MapReduce framework [5]. Data is also accessible through HBase1, a scalable,
column-oriented database suitable to store the large amount of data [21].

Chukwa Overview. Chukwa has three main components: (i) The Agent, a
service which run on every PM where data is collected. The agents feature a
range of dynamically-controllable modules called (ii) adaptors. Adaptors act as
source wrappers and enable the agent to collect data from a variety of sources,
such as a file or Unix command line tools. Each Adaptor in an Agent reports
the data that then forwarded to a group of (iii) Collectors. A Collector gathers
the monitored data from several agents and stores them in HBase or sequence
files in HDFS.

Monitoring Architecture. Figure 1 sketches the monitoring framework that
consists of the cloud resources view and the monitoring software available, while
illustrating the actions a user can execute upon the monitored data.

Since we chose KVM as a hypervisor for hosting VMs in our prototype, the
Chukwa Adaptors for retrieving monitoring data have to be aligned accordingly.
The monitoring takes place on the PM’s operating system and hence outside
of the VM, but collects as detailed information about the currently running
physical-virtual setup and its load as possible. Monitoring a Linux based PM is a
well established task, while the virtual level is a more complex one. In KVM, each
virtual CPU core is represented as a process on the PM’s operating system, and
hence can be monitored as a usual application. To calculate the measurements for
each VM, we rely on the Linux kernel’s output and popular tools like virsh2. To
measure the CPU utilisation of VMs with respect to overbooking, we introduced
a new VM monitoring tool for KVM called kvmtop3.

Implementation Details. For this work, Chukwa’s mapping to HBase was
enhanced by a further abstraction layer that allows to control more fine-grained
how monitored data is mapped to HBase tables and rows. In addition, the
enhancement unifies the representation of data and tenders its consistency.

This restructuring allowed to decreased the query time to the database by
one order of magnitude compared to the default mapping of Chukwa mainly
caused by a clear data distinction and isolation. Other dominant features of the
Chukwa extension are: (i) support for storing data in multiple tables; (ii) easy
and flexible specification of data mapping; (iii) definition of different row key
strategies in tables; (iv) provision of an aggregation mechanisms.
1 http://hbase.apache.org/.
2 http://libvirt.org/.
3 https://cha87de.github.io/kvmtop/.

http://hbase.apache.org/
http://libvirt.org/
https://cha87de.github.io/kvmtop/

Towards Usage-Based Dynamic Overbooking in IaaS Clouds 271

Fig. 1. Monitoring system framework.

Moreover, several additional Adaptors were developed that target the collec-
tion of vital health monitoring data of the infrastructure.

4.2 OpenStack Integration

The solution for dynamic overbooking presented in Sect. 3 is integrated as a
prototype in an OpenStack based cloud system. OpenStack, as one of the most
popular open source cloud middleware available, consists of a centralised man-
agement component and a local control unit in each PM, which can serve as
VM hosts. OpenStack users may use a web dashboard, which uses a REST ser-
vice, or may use the REST service directly to create or remove VMs. OpenStack
schedules incoming VM requests to one of the PMs, if none is explicitly specified.

The work of the integration is part of a European project that aims to opti-
mise a cloud data centre from infrastructure to application level for better per-
formance, better utilisation and a higher energy efficiency [12]. To enable our
approach in an OpenStack cloud, the monitoring framework needs to be enabled.
To allow interactions from the OpenStack to the Data Centre Analysis (DCA)
toolkit and back, a bidirectional communication needs to be established. Invoca-
tions to the OpenStack REST API are intercepted by a prototype-aware HTTP
proxy. The proxy delegates calls for creating and deleting VMs synchronously
to the prototype (cf. Fig. 2). Other calls are forwarded to OpenStack directly.

4.3 DCA Toolkit

The DCA toolkit starts with monitoring on each host of the data centre. The
monitoring framework retrieves detailed information from physical and virtual
level. The data is processed and stored in an HBase database. This amount

272 A. Tsitsipas et al.

Fig. 2. Data centre analysis (DCA) toolkit.

of data is then used for creating application behaviour profiles. For periodical
optimisations, access to OpenStack must be established in order to enable VM
migrations. With these integrations there is an impeccable control of the work-
load placement for existing and new VMs.

5 Related Work

The popular public cloud providers like Google or Amazon charge customers
of their IaaS offerings primarily based on time and various other aspects. The
offerings are subject to SLAs that assist the mutual agreement.

Although respectful research works go towards a verifiable and sustainable
resource accounting for cloud computing [3,4], they still lack a unified app-
roach to optimise a data centre. [6] defines a resource-level SLA metric to offer
QoS guarantees regarding the computing capacity of a cloud provider. However,
the solution is single-sided and focuses only on the CPU dimension. In [14],
the authors propose a technique based on capacity planning to support cloud
providers to negotiate the cloud services offered to the customers. The downside
of this approach is the requirement the customer’s application workload as a
precondition, whereas in our approach we do not consider any static precondi-
tions as an input. [19] proposes a cloud computing management framework with
admission control and scheduling mechanisms that are capable of resource over-
booking. Yet, they assume that no SLA violations will occur if the used capacity
is within the bounds of the PM. The dynamic overprovisioning of resources is
synonym with the migration time of a VM during the reconfiguration of the
system. The results of the research work in [2,9,18], will be used for further
reference for the evaluation of our approach.

6 Outlook and Conclusions

IaaS cloud allows the provider to sell more virtual resources than physical
resources available in his data centre. This overbooking works, if on average
the resources required by a VM are less than the hardware specified for the VM.

Towards Usage-Based Dynamic Overbooking in IaaS Clouds 273

On the down-side, VMs will suffer from performance degradation if the assump-
tion is temporarily violated on the PM the VM is being executed.

In this paper, we propose dynamic overbooking to work around the risk of
poor quality of service. We suggest to compute an overbooking factor per physical
resource based on the resource demands of VMs running on. If VMs require little
resources, the overbooking factor will be high; if VMs require many resources,
the overbooking factor will be low.

As a main contribution, this paper investigates preconditions that have to
be enabled in a data centre to support dynamic overbooking. These include
the provisioning of a large-scale, low-latency monitoring and data aggregation
system; the capability to capture distinguished metrics from the physical and vir-
tual infrastructure; performance models that denote the behaviour and resource
demands of particular VMs under dedicated workload patterns.

In addition to that, we present how to build and integrate such a system,
into the open source cloud middleware OpenStack. The ground up monitoring
mechanism we propose is pluggable to any data centre. Similar, the mechanism
for automatic workload and overbooking adaptation is minimal invasive and can
be ported to other cloud middleware with almost no effort.

Concluding, overbooking is equitable for cloud providers and their customers,
economically but also trustworthy and can motivate further cloud adoption.
Monitoring the resource utilisation may result in accounting profiles of applica-
tions running in the VMs and can lead to a fair billing for the customers.

We are currently working on evaluating our prototype system with different
optimisation algorithms from literature. This will lead to valuable insight for
different system parameters such as the time needed to execute an optimisation
action based on the usage. Based on these evaluations, future work will derive
suggestions for overbooking factors in different dimensions. Another extension
to this work is to proceed with a further integration in our OpenStack prototype
by developing a fair pricing and billing model based on the actual resources used.

Acknowledgments. The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7/2007–2013) under
grant agreement no. 610711.

References

1. Aceto, G., Botta, A., De Donato, W., Pescapè, A.: Cloud monitoring: a survey.
Comput. Netw. 57(9), 2093–2115 (2013)

2. de Assuncao, M.D., Cardonha, C.H., Netto, M.A., Cunha, R.L.: Impact of user
patience on auto-scaling resource capacity for cloud services. FGCS 55, 41–50
(2016)

3. Berndt, P., Maier, A.: Towards sustainable IaaS pricing. In: Altmann, J.,
Vanmechelen, K., Rana, O.F. (eds.) GECON 2013. LNCS, vol. 8193, pp. 173–184.
Springer, Cham (2013). doi:10.1007/978-3-319-02414-1 13

4. Chen, C., Maniatis, P., Perrig, A., Vasudevan, A., Sekar, V.: Towards verifiable
resource accounting for outsourced computation. In: VEE 2013. ACM (2013)

http://dx.doi.org/10.1007/978-3-319-02414-1_13

274 A. Tsitsipas et al.

5. Doulkeridis, C., Nørv̊ag, K.: A survey of large-scale analytical query processing in
MapReduce. VLDB J. 23(3), 355–380 (2014)

6. Goiri, Í., Julià, F., Fitó, J.O., Maćıas, M., Guitart, J.: Resource-level QoS metric
for CPU-based guarantees in cloud providers. In: Altmann, J., Rana, O.F. (eds.)
GECON 2010. LNCS, vol. 6296, pp. 34–47. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-15681-6 3

7. Hoeflin, D., Reeser, P.: Quantifying the performance impact of overbooking virtu-
alized resources. In: ICC 2012, pp. 5523–5527. IEEE (2012)

8. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: KVM: the linux virtual
machine monitor. In: OLS 2007 (2007)

9. Lučanin, D., Jrad, F., Brandic, I., Streit, A.: Energy-aware cloud management
through progressive SLA specification. In: Altmann, J., Vanmechelen, K., Rana,
O.F. (eds.) GECON 2014. LNCS, vol. 8914, pp. 83–98. Springer, Cham (2014).
doi:10.1007/978-3-319-14609-6 6

10. Matthews, J.N., Hu, W., Hapuarachchi, M., Deshane, T., Dimatos, D., Hamilton,
G.: Quantifying the performance isolation properties of virtualization systems. In:
Proceedings of the Workshop on Experimental Computer Science, USENIX Assoc.
(2007)

11. Neuer, M., Mosch, C., Salk, J., Siegmund, K., Kushnarenko, V., Kombrink, S., Nau,
T., Wesner, S.: Storage systems for I/O-intensive applications in computational
chemistry. In: Resch, M.M., Bez, W., Focht, E., Kobayashi, H., Qi, J., Roller, S.
(eds.) Sustained Simulation Performance 2015, pp. 51–60. Springer, Cham (2015).
doi:10.1007/978-3-319-20340-9 5

12. Östberg, P.O., et al.: The CACTOS vision of context-aware cloud topology opti-
mization and simulation. In: CloudCom 2014, pp. 26–31. IEEE (2014)

13. Rabkin, A.: Chukwa: a large-scale monitoring system. In: Cloud Computing and
its Applications (2008)

14. Ranaldo, N., Zimeo, E.: Capacity-driven utility model for service level agreement
negotiation of cloud services. FGCS 55, 186–199 (2016)

15. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: MSST 2010, pp. 1–10 (2010)

16. Sonnek, J., Chandra, A.: Virtual putty. In: HotCloud 2009. USENIX Association,
Berkeley (2009)

17. Subramanian, J., Stidham Jr., S., Lautenbacher, C.J.: Airline yield management
with overbooking, cancellations, and no-shows. Trans. Sci. 33(2), 147–167 (1999)

18. Sun, G., Liao, D., Anand, V., Zhao, D., Yu, H.: A new technique for efficient live
migration of multiple virtual machines. FGCS 55, 74–86 (2016)

19. Tomás, L., Tordsson, J.: Improving cloud infrastructure utilization through over-
booking. In: CAC 2013, pp. 5:1–5:10. ACM (2013)

20. Urgaonkar, B., Shenoy, P., Roscoe, T.: Resource overbooking and application pro-
filing in a shared internet hosting platform. TOIT 9(1), 1:1–1:45 (2009)

21. Wlodarczyk, T.W.: Overview of time series storage and processing in a cloud envi-
ronment. In: CloudCom 2012, pp. 625–628 (2012)

22. Yan, G., Ma, J., Han, Y., Li, X.: EcoUp: towards economical datacenter upgrading.
TPDS 27(7), 1968–1981 (2016)

http://dx.doi.org/10.1007/978-3-642-15681-6_3
http://dx.doi.org/10.1007/978-3-642-15681-6_3
http://dx.doi.org/10.1007/978-3-319-14609-6_6
http://dx.doi.org/10.1007/978-3-319-20340-9_5

Cloud Applications

A Privacy-Preserving Top-k Query Processing
Algorithm in the Cloud Computing

Hyeong-Il Kim, Hyeong-Jin Kim, and Jae-Woo Chang(&)

Department of Computer Engineering,
Chonbuk National University, Jeonju, Republic of Korea
{melipion,yeon_hui4,jwchang}@jbnu.ac.kr

Abstract. Cloud computing has emerged as a new platform for storing and
managing databases. As a result, a database outsourcing paradigm has gained
much interests. To prevent the contents of outsourced databases from being
revealed to cloud computing, databases must be encrypted before being out-
sourced to the cloud. Therefore, various Top-k query processing techniques
have been proposed for encrypted databases. However, there is no existing work
that can not only hide data access patterns, but also preserve the privacy of user
query. To solve the problems, in this paper, we propose a new privacy-
preserving Top-k query processing algorithm. Our algorithm protects the user
query from the cloud and conceals data access patterns during query processing.
A performance analysis shows that the proposed scheme provide good scala-
bility without any information leakage.

Keywords: Cloud computing � Database outsourcing � Database encryption �
Privacy-preserving Top-k query processing � Hiding data access patterns

1 Introduction

Cloud computing has emerged as a new platform for storing and managing databases.
As a result, a database outsourcing paradigm has gained much interests from researchers
and entrepreneurs. In database outsourcing paradigm, a data owner outsources his/her
databases to the cloud. Data owners can obtain significant economic benefits by out-
sourcing their data to the cloud. However, in this environment, the outsourced databases
should be protected from the cloud and attackers because the data are private assets of
the data owner and include sensitive information on individual users or organizations.

To tackle this, sensitive data should be encrypted before being outsourced to cloud
servers. In addition, queries sent to the cloud server should be protected because they
may disclose the sensitive information about users. For example, in case of
location-based services, an attacker can obtain information concerning users’ location or
preferences from the queries of the users. Therefore, an important issue related to cloud
computing is the maintenance of both data privacy and query privacy among data owner,
users, and the cloud. By encrypting both data and queries, it is possible to prevent an
attacker from being known about the actual contents of the data and the queries.

However, even if the data and the queries are encrypted, a cloud server can obtain
sensitive information related to data items during query processing, typically by

© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 277–292, 2017.
DOI: 10.1007/978-3-319-61920-0_20

recognizing data access patterns [1]. In addition, privacy-preserving query processing
on the encrypted data without decrypting it is very challenging task. To do this, various
techniques related to query processing over encrypted data have been proposed,
including range queries [2, 3] and kNN queries [4, 5]. However, these techniques are
not applicable or inefficient when used to solve Top-k query. A Top-k query finds the
k number of data which has the highest scores for a score function being given by a
user. The score function usually consists of coefficients each of which is related to how
important the corresponding attribute (or dimension) is for the querying user. The
Top-k query is very useful for various services because it retrieves data by reflecting
the preference of each user. Thus, the Top-k query is widely used in various fields such
as data mining, location-based services, and network monitoring. However, because a
score function is closely related to a user’s preference, Top-k queries should be more
cautiously dealt to preserve the privacy of the users.

Over the past few years, various techniques have been proposed for the
privacy-preserving Top-k query processing techniques (STopk) [6–9]. However, no
existing work considers an encrypted score function that can preserve the privacy of a
user query. Moreover, there is no existing work that can hide data access patterns during
Top-k query processing. Because data access patterns are the good source to derive the
actual data items and the private information of a querying issuer, they should be
concealed. However, the data access patterns can be disclosed even though the encrypted
data and the encrypted query are considered throughout the query processing [1].

To address the issues, we propose a new privacy-preserving Top-k query pro-
cessing algorithm in this paper. Our algorithm basically guarantees the confidentiality
of both the data and the user query by encrypting them. In addition, the algorithm hides
data access patterns. To achieve this, we use an encrypted index search scheme which
performs data filtering without revealing data access patterns [5].

Our contributions can be summarized as follows. First, we design secure protocols
(e.g., SMAX and SMAXn) to support secure Top-k query processing. Second we
propose a new privacy-preserving Top-k query processing algorithm that guarantees
the confidentiality of queries and conceals data access patterns. Finally, we also present
an extensive experimental evaluation of our scheme with various parameter settings.

The rest of this paper is organized as follows. Section 2 introduces existing
privacy-preserving Top-k query processing algorithms. Section 3 presents the system
architecture of the proposed scheme and various secure protocols with their security
proofs. Section 4 proposes the new privacy-preserving Top-k query processing algo-
rithm. We also provide the formal security proof of the proposed Top-k query pro-
cessing algorithm. Section 5 presents the results of a performance analysis of our
privacy-preserving Top-k query processing algorithm. Finally, Sect. 6 concludes this
paper with future research directions.

2 Related Work

In this section, we review existing privacy-preserving Top-k query processing algo-
rithms in outsourced databases and describe the preliminary factors of our work.

278 H.-I. Kim et al.

2.1 Privacy-Preserving Top-k Query Processing Schemes

Most of privacy-preserving Top-k query processing schemes have been studied for
distributed databases. The schemes assume that the databases are partitioned and dis-
tributed among a set of independent, non-colluding parties. In addition, the schemes
usually depend on secure multiparty computation (SMC) techniques that enable mul-
tiple parties to process a protocol or a function using their private inputs without
disclosing the input of one party to the others.

The typical Top-k query processing schemes for distributed databases are described
below. First, L. Xiong et al. [6] proposed a Top-k algorithm for finding the k largest
values among distributed databases. The scheme preserves data privacy in a proba-
bilistic way by randomizing data values before distributing them among parties.
However, this scheme has a limitation that it can deal with data with just one column.

Second, Vaidya et al. [7] studied privacy-preserving top-k queries using Gagin’s A0
algorithm [10] in which the data are vertically partitioned. The scheme uses the fol-
lowing property. If each party reports the scored data being ordered based on the local
score until there are at least k common data in the output of all of the parties, the union
of the reported data includes Top-k results. Then, the scheme determines the actual
Top-k results by identifying an approximate cutoff score separating the k-th item from
those below it. The scheme has an advantage that it does not reveal the score of
individual datum by using a secure comparison technique. However, this scheme
suffers from high computation cost and its query processing time linearly increases as
the total number of data increases. Furthermore, if the number of common data reported
from each party during the local score computation is less than k, the query processing
performance drastically decreases because the scheme should process the query by
considering all of the data. In addition, because the scheme guesses the cutoff score by
using binary search over the range of values, the cutoff score can be estimated. This
information should not be revealed since it can be used as a clue to guess the inclination
of a user. In addition, data access patterns are not protected because the identification of
the Top-k results are disclosed.

Finally, M. Burkhart et al. [8] proposed a Top-k algorithm which utilizes hash
tables and secret sharing technique. The scheme finds the k key-value pairs with largest
aggregate values on the distributed key-value data. To reduce the number of collisions,
the scheme uses multiple hash tables. However, the scheme suffers from three draw-
backs. First, it cannot guarantee the accurate result because the aggregated results are
probabilistic. Second, since the scheme performs a binary search over the range of
values, the intermediate threshold value separating the k-th item from the ðkþ 1Þ-th
item can be estimated. Therefore, the approximate scores of Top-k results can be
estimated. Finally, the scheme cannot conceal data access patterns because the index of
hash table related to the Top-k results is revealed.

Meanwhile, a Top-k query processing algorithm for encrypted databases was
proposed by M. Kim et al. [9]. To enhance data privacy, the scheme double-encrypts
data and retrieves all of the data over the union of users’ sets which appear more than a
given threshold. Therefore, the goal of the scheme is different from our purpose that is
to retrieve k number of data with highest scores for a given score function.

A Privacy-Preserving Top-k Query Processing Algorithm 279

In conclusion, there is no existing work that hides data access patterns during Top-k
query processing. Besides, the existing works have another common problem that they
cannot preserve the privacy of a user query because they do not consider an encrypted
form of a score function. Therefore, the user’s preference over each attribute or
dimension can be revealed to the server.

2.2 Preliminary Work

Paillier Cryptosystem
The Paillier cryptosystem [11] is an additive homomorphic and probabilistic asym-
metric encryption scheme for public key cryptography. The public key pk for
encryption is given by (N, g), where N is a product of two large prime numbers p and q,
and g is in Z�N2 . The secret key sk for decryption is given by (p, q). Let E() denote the
encryption function and D() denote the decryption function. The Paillier cryptosystem
has the following properties. (i) Homomorphic addition: The product of two ciphertexts
E(m1) and E(m2) results in the encryption of the sum of their plaintexts m1 and m2 (e.g.,
E(m1 + m2) = E(m1)*E(m2) mod N2). (ii) Homomorphic multiplication: The bth power
of ciphertext E(m1) results in the encryption of the product of b and m1 (e.g., E
(m1 � b) = E(m1)

b mod N2). (iii) Semantic security: Encrypting the same plaintexts
with the same public key results in distinct ciphertexts. Therefore, an adversary cannot
infer any information about the plaintexts.

Adversarial Models
There are two main types of adversaries, semi-honest and malicious [12]. In the
semi-honest adversarial model, the clouds correctly follow the protocol specification
but try to use the intermediate data to gain additional information. Meanwhile, in the
malicious adversarial model, the cloud can arbitrarily deviate from the protocol
specification. Protocols associated with semi-honest adversaries are efficient in practice
while protocols against malicious adversaries are too inefficient. Therefore, according
to earlier work [4, 5], we also consider the semi-honest adversarial model in this paper.
A secure protocol under the semi-honest adversarial model can be defined as follows
[13, 14].

Definition 1 (Secure protocol): Let
Q

i pð Þ be an execution image of the protocol p at
the Ci side and let ai and bi be the input and the output of the protocol p, respectively.
Then, p is secure if

Q
i pð Þ is computationally indistinguishable from the simulated

image
Qs

i pð Þ.

In Definition 1, an execution image generally includes not only the input and the output
of p but also the intermediate results during the execution of p. To verify if a protocol is
secure under the semi-honest adversarial model, it is essential to show that the exe-
cution image of the protocol does not leak any information regarding private inputs for
the cloud [14].

280 H.-I. Kim et al.

3 System Architecture and Secure Protocols

The system consists of the data owner (DO), authorized user (AU), and two clouds (CA

and CB). The DO has the original database (T) of n records. A record ti (1 � i � n)
consists of m attributes, and the jth attribute value of ti is denoted as ti,j. To provide
indexing on T, the DO partitions T using a kd-tree. If we retrieve the tree structure in
hierarchical manner, the access pattern can be disclosed. Consequently, we only
consider the leaf nodes of the kd-tree, and all of the leaf nodes are retrieved once during
the query processing step. Let h denote the level of the constructed kd-tree and F be the
fan-out of each leaf node. The total number of leaf nodes is 2 h−1. Henceforth, a node
refers to a leaf node. The region information of each node is represented as the lower
bound lbz,j and the upper bound ubz,j (1 � z � 2 h−1, 1 � j � m). Each node stores
the identifiers (id) of the data located inside the node region.

To preserve data privacy, the DO encrypts T attribute-wise using the public key
(pk) of the Paillier cryptosystem [11] before outsourcing the database. Thus, the DO
generates E(ti,j) for 1 � i � n and 1 � j � m. The DO also encrypts the region
information of all kd-tree nodes to support efficient query processing. Specifically, lb
and ub of each node are encrypted attribute-wise such that E(lbz,j) and E(ubz,j) are
generated with 1 � z � 2 h−1 and 1 � j � m. In addition, the DO finds the max-
imum values for all the attributes and encrypts them as E(maxj) for 1 � j � m,
respectively. These encrypted data are used when determining a node which includes
the data with the highest score for a given score function. We assume that CA and CB

are non-colluding and semi-honest (or honest-but-curious) clouds. Thus, they correctly
perform the given protocols, but may try to obtain additional information from the
intermediate data while executing their own protocols. This assumption, which was
noted in earlier work [4, 5], has been used in related problem domains (e.g., [15]).
Specifically, because most cloud services are provided by well-known IT companies,
collusion between them that would damage their reputations is improbable [4].

To support Top-k query processing over an encrypted database, a secure multiparty
computation (SMC) is required between CA and CB. To do this, the DO outsources the
encrypted database and its encrypted index to CA with pk and E(maxj), but it sends sk to
a different cloud, i.e., CB, in this case. The encrypted index includes the region
information of each node in cipher-text and the ids of data residing inside the node in
plain-text. The DO also sends pk to AUs to enable them to encrypt a query. At query
time, an AU initially encrypts the coefficients of a score function (i.e., coeffj)
attribute-wise. In addition, the AU generates E(wj) for 1 � j � m where E(wj) = E(1)
if the corresponding coefficient is a positive number and E(wj) = E(0) otherwise. Then,
the AU sends the E(coeffj) and E(wj) to CA for 1 � j � m. CA processes the query
with the help of CB and returns the query result to the AU.

For example, assume that an AU has eight data instances in two-dimensional space
(e.g., the x-axis and the y-axis) as depicted in Fig. 1. The data are partitioned into four
nodes for a kd-tree; node1, node2, node3, and node4. To clarify the relationship between
data and the nodes, in this example we assume that there is no data on the boundary of
a node. To outsource the database, the DO encrypts each data instance and the region of
each node attribute-wise. For example, t1 is encrypted as E(t1) = {E(2), E(1)} while the

A Privacy-Preserving Top-k Query Processing Algorithm 281

encrypted index is shown in Table 1. If the AU considers a score function as 3x-y, the
AU sends E(coeff) = {E(3), E(−1)} and E(w) = {E(1), E(0)} to CA for Top-k query
processing.

Our Top-k query processing algorithm is constructed using several secure protocols.
All of the protocols apart from SBN protocol are performed with the SMC technique
between CA and CB. The SBN protocol can be executed by CA alone. Due to space
limitations, first we briefly introduce six protocols found in the literature [4, 5, 16].

First, the SM (Secure Multiplication) protocol [4] computes the encryption of a � b,
i.e., E(a � b), when two encrypted data instances E(a) and E(b) are given as inputs.
Second, the SBD (Secure Bit-Decomposition) protocol [16] computes the encryptions
of the binary representation of the encrypted input E(a). The output is [a] = <E(a1),…,
E(al)>, where a1 and al denote the most and least significant bits of a, respectively. We
use the symbol [a] to denote the binary representation. Third, the SBXOR (Secure
Bit-XOR) protocol [4] undertakes a bit-xor operation when two encrypted bits E(a) and
E(b) are given as input. Fourth, the SBN (Secure Bit-Not) protocol [5] undertakes a
bit-not operation when an encrypted bit E(a) is given as input. Fifth, the SCMP (Secure
Compare) protocol [5] returns E(1) if u � v, and E(0) otherwise when [u] and [v] are
given as inputs. Finally, the SPE (Secure Point Enclosure) protocol [5] returns E(1)
when a point p is inside the region or on a boundary of the region, and E(0) otherwise.
The SPE takes [p] as well as [lb] and [ub] as inputs.

Next, we devise new secure protocols SMAX and SMAXn by modifying the
existing protocols SMIN and SMINn proposed in [4]. Thus, we briefly describe the
SMAX and SMAXn protocols. First, SMAX (Secure Maximum) protocol returns the
[max] encryptions between two inputs [u] and [v].

Fig. 1. An example in two-dimensional space.

Table 1. An example of an encrypted index.

Node id lb (lower
bound)

ub (upper
bound)

Data id

x y x y

node1 E(0) E(0) E(5) E(5) 1, 2
node2 E(0) E(5) E(5) E(10) 3, 4
node3 E(5) E(0) E(10) E(6) 5, 6
node4 E(5) E(6) E(10) E(10) 7, 8

282 H.-I. Kim et al.

The difference between the procedures of SMAX and SMIN is as follows. In step 2.c
of the SMIN algorithm [4], the CB sets a as 1 if data received from the CA contain the
value of 1. Otherwise, a is set as 0. In contrast, in SMAX, the CB sets a as 0 if data
received from the CA contain the value of 1. Otherwise, a is set as 1. Apart from this, all
of the steps of the SMAX are the same with that of the SMIN. Second, the SMAXn

protocol returns [max] among [di] for 1 � i � n. The SMAXn protocol finds the result
by running the SMAX protocol n−1 times in an iterative manner.

To make our Top-k query processing algorithm secure under the semi-honest
adversarial model, the secure protocols used in our scheme and algorithm should be
secure under the semi-honest adversarial model. The security proofs of the existing
secure protocols are given in [4, 5, 16]. Specifically, the detailed security proofs of SM
and SBXOR are provided [4], while that of SBD is also described [16]. The detailed
security proofs of SBN, SCMP and SPE are presented [5]. As mentioned earlier, we
devise our proposed secure protocols, SMAX and SMAXn, by modifying the existing
protocols SMIN and SMINn. The execution images and the simulated images of both
SMAX and SMAXn are identical to those of SMIN and SMINn, respectively. There-
fore, the security proof of SMAX is same with that of SMIN while the security proof of
SMAXn is same with that of SMINn. Because both SMIN and SMINn are proven to be
secure [4], our proposed SMAX and SMAXn are also secure under the semi-honest
adversarial model. Consequently, all of the secure protocols used in our proposed
Top-k query processing algorithm are secure under the semi-honest adversarial model.

4 Secure Top-k Query Processing Algorithm

In this section, we present our secure Top-k query processing algorithm with a secure
index (STopkI). Our STopkI consists of three steps: the encrypted kd-tree search step,
the Top-k retrieval step, and the result verification step. We also provide the security
proof of the proposed STopkI under the semi-honest adversarial model.

4.1 Step 1: Encrypted kd-Tree Search Step

To preserve a query confidentiality, we consider the encrypted coefficients of a score
function as a query. In this step, the CA securely extracts all of the data in a node that
includes data with the highest score for a given score function. To find data with the
highest score in the considered data domain, we use the following properties. If a
coefficient of an attribute is a positive integer, a datum with the maximum value in the
attribute domain has the highest score whereas if a coefficient of an attribute is a
negative integer, a datum with the minimum value has the highest score. For example,
in Fig. 1, the coefficient of x-attribute is a positive integer, i.e., 3, while the coefficient
of y-attribute is negative integer, i.e., −1. Therefore, a datum with the maximum value
in the domain of the x-attribute and the minimum value in the domain of the y-attribute
has the highest score. Assuming that the maximum values for both attributes are 10,
(x, y) = (10, 0) has the highest score. Because all of the data outsourced to the CA are
cipher-text, we can find the data with the highest score by using Eq. (1).

A Privacy-Preserving Top-k Query Processing Algorithm 283

EðqjÞ ¼ SMðEðmaxjÞ;EðwjÞÞ ð1� j�mÞ ð1Þ

Here, E(maxj) is the maximum value in the jth-attribute outsourced by the DO and E
(wj) is a datum sent by the AU when a query is given. As we mentioned earlier, E
(wj) = E(1) for an attribute whose coefficient is a positive integer, E(wj) = E(0)
otherwise. Because the SM protocol multiplies two encrypted input data, the SM
outputs E(maxj) for attributes with positive coefficients and E(0) for attributes with
negative coefficients. In Fig. 1, for example, because E(w) = (E(1), E(0)), E(q) is set as
(E(10), E(0)) by using Eq. (1).

To extract all of the data stored in a node that contains the computed E(q), we should
retrieve the encrypted kd-tree. To do this, we perform the encrypted kd-tree search
algorithm proposed in [5] by using E(q) as an input. We briefly explain the overall
procedure of this algorithm. First, CA computes [qj], [nodez.lbj] and [nodez.ubj] for
1 � z � numnode and 1 � j � m by using SBD. Here, numnode means the total
number of kd-tree leaf nodes. Then, CA executes E(az) = SPE([q], [nodez]) for 1 �
z � numnode to securely find the node relevant to the query. Second, CA generates E(a 0)
by permuting E(a) using a random permutation function p and sends E(a 0) to CB.
Third, CB obtains a 0 by decrypting the E(a 0) and counts the number of a 0 = 1 and stores
it into c. Here, c means the number of nodes that the query is related to. Fourth, CB

creates c number of node groups (e.g., NG). CB assigns to each NG a node with a 0 = 1
and numnode/c−1 nodes with a 0 = 0. Then, CB computes NG 0 by randomly shuffling the
ids of nodes in each NG and sends NG 0 to CA. Fifth, CA obtains NG

* by permuting the
ids of nodes using p−1 in each NG 0. Sixth, CA gets access to one datum in each node for

each NG* and performs E t0i;j
� �

¼ SMðEðnodez:ts;jÞ;EðazÞÞ for 1 � s � F and

1 � j � m where E(az) is the result of SPE corresponding to nodez. If a node has the
less number of data than F, it performs SM by using E(0), instead of using E(nodez.ts,j).
When CA accesses one datum from every node in a NG*, CA performs E candcnt;j

� � Qnum
i¼1 Eðt0i;jÞ where num means the total number of nodes in the selected NG*. By doing

so, a datum in the node related to the query is securely extracted without revealing the
data access patterns. By repeating these steps, all the data in the nodes are safely stored
into the E(candcnt,j) where cnt refers to the total number of data extracted during the
index search. In Fig. 1, for example, E(cand) = {E(t5), E(t6)} because node3 includes E
(q) = {E(10), E(0)}. The advantage of the algorithm is that it does not reveal the
retrieved nodes for query processing while extracting data in the nodes relevant to the
query. Therefore, we can hide the data access patterns during index search.

4.2 Step 2: Top-k Retrieval Step

In the Top-k retrieval step, we retrieve the k number of data which has the highest
scores for the given score function. In this step, we only consider E(candi) for 1 �
i � cnt from step 1. Top-k retrieval step is conducted as follows. First, CA calculates
the scores E(scorei) of E(candi) for 1 � i � cnt. To do this, CA computes
SM(E(coeffj), E(candi,j)) for 1 � j � m and adds these scores together. Then, CA

obtains [scorei] for 1 � i � cnt by computing SBD(E(scorei)). Second, CA conducts

284 H.-I. Kim et al.

SMAXn to find the maximum value [scoremax] among [scorei], where 1 � i � cnt.
Then, CA converts [scoremax] into E(scoremax) by computing E scoremaxð Þ ¼Ql

c¼1 scoremax;c
� �2l�c

. Here, [scoremax,c] denotes each encrypted bit of [scoremax] where
[scoremax,1] means the most significant bits of [scoremax].

Third, CA calculates differences between E(scorei) and E(scoremax) by computing E
(si) = E(scoremax) � E(scorei)

N−1 for 1 � i � cnt. Note that only E(si) correspond-
ing to E(scoremax) has a value of E(0). For example, assuming that E(cand) = {E(t5), E
(t6)} are returned from the step 1, E(score) = {E(17), E(19)} and E(si) = {E(2), E(0)}
because E(scoremax) = E(19). Next, CA adds random numbers to E(si) by computing
E s

0
i

� � ¼ Eðsrii Þ) and generates E(b) by shuffling E(s 0) using a random permutation
function p. Note that the only E(bi) that corresponds to E(si) = E(0) has a value of E(0).
Then, CA sends E(b) to CB.

Fourth, CB sets E(Ui) = E(1) by decrypting E(b) if D(E(bi)) = 0 and it sets E
(Ui) = E(0) otherwise. Then, CB sends E(U) to CA. For example, assuming that E(b) is
permuted in reserve way from E(s 0), CB sets E(U) as {E(1), E(0)} because of b = {0, r}.

Fifth, CA obtains E(V) by permuting E(U) using p−1. By computing E t0s;j
� �

¼
Qcnt

i¼1 SMðEðViÞ;Eðcandi;jÞÞ for 1 � j � m, CA can securely extract the datum cor-
responding to the E(scoremax). By performing SM using E(vi) and E(candi,j), the value
of the only datum corresponding to E(Ui) = E(1) still remains the same. Otherwise, the
value becomes E(0). Therefore, E t

0
s

� �
stores the datum corresponding to the E(scor-

emax). For example, assuming that E(V) = {E(0), E(1)}, CA conducts both SM(E
(cand1), E(V1)) = SM(E(6), E(0)) = E(0) and SM(E(cand2), E(V2)) = SM(E(8), E
(1)) = E(8) for x-attribute. By adding the two values based on the homomorphic
property, the x-attribute value of E(t6), i.e., E(8), is securely extracted. Similarly, by
doing this for the y-attribute, we can extract E(5) which is the y-attribute value of E(t6).
By combining the values, we can store E(t6) into E t

0
1

� �
without revealing data access

patterns. To prevent the result from being selected in a later phase, CA securely updates
the score of the selected result as E(0). To do this, CA conducts [scorei,c] = SM(SBN(E
(Vi)), [scorei,c]) for 1 � i � cnt and 1 � c � ‘. Then, CA performs E(scorei) =Ql

c¼1 scorei;c
� �2l�c

for 1 � i � cnt. As a result, the score corresponding to the result
of the current round becomes E(0). CA finally returns the k number of results, i.e., E(t0),
by repeating this procedure for k rounds to find the Top-k result. For example, in the
first round, E(t6) with score E(19) is securely selected as the result among E(cand) =
{E(t5), E(t6)}. Since the score of E(t6) is updated into E(0), E(t5) with score E(17) is
selected as the result in the second round.

4.3 Step 3: Result Verification Step

The result of step 2 is not accurate because the query is processed with partial data
being extracted in step 1. Therefore, it is necessary to verify whether or not the current
query result is correct. Assuming that the k-th highest score is scorek, the kd-tree nodes
which contain data with higher score than scorek need to be searched. To do this, we
define the max-score point of a node as follows.

A Privacy-Preserving Top-k Query Processing Algorithm 285

Definition 2(max-score point): The max-score point (mp) is a point in a given node
whose score is highest for a given score function as compared with the other points in
the node.

To find a mp in each node, we can utilize the method introduced in the encrypted
kd-tree search step (step 1), which finds the datum with the highest score in the
considered data domain. Specifically, if a coefficient of an attribute is a positive integer,
a datum with the upper bound (ub) of a node has the highest score in the node.
Meanwhile, if a coefficient of an attribute is a negative integer, a datum with the lower
bound (lb) of a node has the highest score in the node. In Fig. 1, for example, the lower
and upper bounds of node1 are (0, 0) and (5, 5), respectively. Therefore, a datum with
the highest score in node1 is mp1 = (5, 0). Formally, a max-score point can be com-
puted by using Eq. (3).

E(nodez:mpjÞ ¼ SMðEðwjÞ; E(nodez:ubjÞÞ � SMðSBNðEðwjÞÞ; E(nodez:lbjÞÞ ð3Þ

Here, E(nodez.mpj) is the jth-attribute value of the datum with the highest score in
nodez. In addition, E(nodez.ubj) and E(nodez.lbj) mean the upper and lower bound of
nodez in jth attribute, respectively. E(wj) is a datum sent by the AU at the query time.

The result verification is conducted as follows. First, among E(cand) from step 2,
CA computes the score of the E(candk), which is the k-th highest score by using
homomorphic properties, and stores it into E(scorek). In addition, CA computes [scorek]
by executing SBD(E(scorek)).

Second, by using Eq. (3), CA computes the mp of each node for 1 � j � m, i.e., E
(nodez.mpj). Then, CA computes E(mpscorez) as the score of E(nodez.mp) for 1 �
z� numnode by using homomorphic properties. For example, E(mp) is computed as
{(E(5), E(0)), (E(5), E(5)), (E(10), E(0)), (E(10), E(6))} for each node in Fig. 1. Thus,
E(mpscore) are calculated as {E(15), E(10), E(30), E(24)}.

To prevent the searched node from being reconsidered during index search, CA

computes E(mpscorez) = SM(E(mpscorez), SBN(E(az))) for 1 � z � numnode where
E(az) is the result of SPE in step 1. As a result, the E(mpscorez) of the searched node
becomes E(0) because the value of E(az) of the node is E(1). Thus, we can safely prune
out the searched node from further node expansions. Meanwhile, the E(mpscorez) of
the other nodes are not affected by SM because E(az) of the nodes are E(0). Therefore,
E(mpscore) becomes {E(15), E(10), E(0), E(24)} because the only node3 is retrieved in
the previous example in step 2.

Third, CA computes [mpscorez] by executing SBD(E(mpscorez)) for 1 � z �
numnode. In addition, CA performs E(az) = SCMP([scorek], [mpscorez]) for 1 � z �
numnode. As a result, if a node contains data with higher score than scorek, its E(az) has
E(1); otherwise E(az) has E(0). For example, because E(mpscore4) = E(24) which cor-
responds to node4 is greater than E(scorek) = E(17) in Fig. 1, E(a) is computed as {E(0),
E(0), E(0), E(1)}.

Fourth, CA securely extracts the data stored in the nodes with E(a) = E(1) through
the lines 9–24 of Algorithm 3 in [5] and appends them to E(t 0). Then, CA executes step
2 based on E(t 0) to obtain the final Top-k result E(resulti) for 1 � i � k. Therefore,
the final result becomes {E(t6), E(t8)} because the score of E(t8) is E(18).

286 H.-I. Kim et al.

Fifth, CA returns the decrypted result to AU in cooperation with CB to reduce the
computation overhead at the AU side. However, when the result is decrypted, the data
privacy is threatened. To tackle this problem, CA computes E(ci,j) = E(resulti) � E(ri,j)
for 1 � i � k and 1 � j � m by generating a random value ri,j. Then, CA sends E
(ci,j) to CB and ri,j to AU. Then, CB decrypts E(ci,j) and sends the decrypted value to AU.
Finally, AU computes the actual Top-k result by computing ci,j − ri,j in plaintext.

4.4 Security Proof of the Proposed Top-k Query Processing Algorithm

We prove the security of the proposed Top-k query processing algorithm based on the
standard simulation paradigm [12] as mentioned in Sect. 2.2. We analyze the security
of three steps of the proposed Top-k algorithm separately. Note that the input data of a
step is the output data of a previous step, except the first step. Therefore, if the three
steps are proven to be secure under the semi-honest adversarial model, the proposed
Top-k query processing algorithm is secure under the semi-honest adversarial model,
according to the Definition 1 and the composition theorem [14]. Due to the space
limitations, we only show the security proof of both step 1 and step 3. However, the
execution images of step 2 are similar to those of Algorithm 6 in [4]. For the detailed
security proof of step 2, readers can refer to [4].

Security proof of the encrypted kd-tree search step. We undertake the security
proof of the encrypted kd-tree search step (step 1) by analyzing the security of the
execution images of the CA side and the CB side. First, the execution image of CB isQ

B step1ð Þ ¼ \Eða0 Þ; a0 [� 	
, where E(a 0) from CA can be regarded as the input

data for CB and a 0 is derived by decrypting E(a 0). Without a loss of generality, we
assume that the simulated image of CB is

Qs
B step1ð Þ ¼ \Eðs01Þ; s

0
1 [

� 	
. Here, Eðs01Þ

is randomly generated from ZN2 and s
0
1 is a vector consisting of c number of value 1 and

numnode-c number of value 0. Because the resulting ciphertext size for the encryption
scheme is less than N2 and the encryption scheme provides semantic security, E(a 0) is
computationally indistinguishable from Eðs01Þ. In addition, because a random permu-
tation function p generated by CA is oblivious to CB, a 0 is computationally indistin-
guishable from s

0
1. By counting the number of instances of a 0 = 1, i.e., c, CB can notice

the number of kd-tree’s leaf nodes related to a query. However, it is difficult to deduce
meaningful information using c because most of the cases, c is one. By combining all
of these results, we can conclude that

Q
B step1ð Þ is computationally indistinguishable

from
Qs

B step1ð Þ based on Definition 1.
Meanwhile, the execution image of CA is

Q
A step1ð Þ ¼ NG�f g where each group

of NG* stores ids of nodes. Suppose that the simulated image of CA isQs
A step1ð Þ ¼ s�2

� 	
, where each element of s�2 indicates a distinct id of a node and is

selected in [1, numnode]. For the stronger privacy proof, we assume that s�2 is identical to
NG*. Even though NG* is disclosed to CA, it is impossible for CA to know the actual
node related to the query because the ids are randomly shuffled by CB Furthermore, the
number of nodes related to the query is one in most of the cases. Therefore, the
probability that CA finds out the actual node related to the query is 1/numnode where

A Privacy-Preserving Top-k Query Processing Algorithm 287

numnode is the total number of nodes. In other words, the kd-tree search step (step1)
satisfies the k-anonymity property. The k-anonymity is said to be satisfied if an object
(e.g., data, query and user) cannot be distinguished from k-1 other objects [17]. The k-
anonymity is widely used in various fields to preserve the privacy of data or users, such
as the protection of data in databases [18] and the protection of a user issuing a query in
location-based services [19]. The probability 1/numnode is very low as compared to the
desirable k-anonymity level considered in the earlier works. Therefore, we can conclude
that the kd-tree search step is secure based on the k-anonymity.

Considering all the above results, we can conclude that the step 1 is secure under
the semi-honest adversarial model.

Security proof of the result verification step. During the result verification step, CA

cannot learn any information because all operations are executed on encrypted data.
Therefore, we conduct the security proof of the result verification step (step 3) on the
CB side. The execution image of CB is

Q
B step3ð Þ ¼ \EðcÞ; c[f g, where E(c) is an

input vector and c is obtained by decrypting E(c). We assume that the simulated image
of CB is

Qs
B step3ð Þ ¼ \Eðs1Þ; s1 [f g, where E(s1) is randomly generated from ZN2

and s1 is randomly generated from ZN . For the same reason described in step 1, E(c)
and c are computationally indistinguishable from E(s1) and s1, respectively. Thus, we
can conclude that

Q
B step3ð Þ is computationally indistinguishable from

Qs
B step3ð Þ

based on Definition 1. In addition, all of the protocols used in the result verification step
are secure under the semi-honest adversarial model as described in Sect. 3. Meanwhile,
the result verification step (step 3) uses both the encrypted kd-tree search step and the
Top-k retrieval step. Because both steps are secure, the result verification step is secure
under the semi-honest adversarial model, according to the composition theorem [14].

Considering all the above results, we can conclude that the proposed Top-k query
processing algorithm is secure under the semi-honest adversarial model. Therefore, the
proposed algorithm can guarantee the confidentiality of both the encrypted data and the
user query while hiding data access patterns during the query processing.

5 Performance Analysis

5.1 Performance Environment

There is no existing Top-k query processing scheme that can hide the data access
patterns. Therefore, in this section, we compare the proposed STopkI (secure Top-k
query processing scheme with a secure index) with a baseline algorithm STopkB
scheme. STopkB only performs the Top-k retrieval step (step 2) by considering all the
data without using an index. Therefore, we can analyze the effect of using the index.
We conduct a performance analysis of both schemes in terms of the query processing
times with different parameters. We used the Paillier cryptosystem to encrypt a data-
base for both schemes. We implemented both schemes using C++. Experiments were
performed on a Linux machine with an Intel Xeon E3-1220v3 4-Core 3.10 GHz and
32 GB RAM running Ubuntu 14.04.2. We randomly generated synthetic datasets by

288 H.-I. Kim et al.

considering parameter values. Parameters we used in the performance analysis are
shown in Table 2.

In Fig. 2, we only measure the performance of the proposed STopkI when varying
the level of the kd-tree because STopkB does not use an index. Figure 2(a) shows the
performance of STopkI when varying h and n for K = 512. Regardless of n, as h in-
creases, the query processing time is decreased until a certain point h and is again
increased. This pattern is observed when h is 8 or 9. This result stems from the
following properties. The total number of leaf nodes grows as h increases. Hence, as
h increases, a higher computation cost is required for SPE to find a node related to the
query. However, the number of data instances in a node decreases as h increases.
Accordingly, as h increases, the lower computation cost is required when calculating
the scores of the data instances. The trend is similar to that with K = 1024 as shown in
Fig. 2(b). The query processing time increases by almost a factor of 2.8 with the same
parameter settings when K is doubled from 512 to 1024. We found that this factor is
almost the same regardless of the parameter settings. Therefore, we only show the
performance with K = 512 below.

When varying the level of h, the overall performance of STopkI depends on the
kd-tree level. When h = 9, the best performance is achieved for many cases. For this
reason, we use h = 9 for our performance analysis.

Figure 3 shows the performances of STopkI and STopkB when varying n for
K = 512. As n becomes larger, the query processing time of both STopkI and STopkB
linearly increases because secure protocols are required to use more data instances.

Table 2. Experimental parameters.

Parameters Values Default value

Total number of data (n) 2 k, 4 k, 6 k, 8 k, 10 k 6 k
Level of kd-tree (h) 6, 7, 8, 9, 10 9
Required k (k) 5, 10, 15, 20 10
of attributes (m) 4 4
Domain size 12 12
Encryption key size (K) 512, 1024 512

Fig. 2. Query processing time when h and n varies.

A Privacy-Preserving Top-k Query Processing Algorithm 289

However, STopkI shows better performance than the STopkB by approximately nine
fold and sixteen fold when n = 2 k and n = 10 k, respectively. This implies that we can
achieve good performance for the large amount of data. Overall, the proposed STopkI
shows better performance than STopkB by approximately fourteen fold.

Figure 4 shows the performances of STopkI and STopkB when varying k for
K = 512. As k becomes larger, the query processing times of both schemes increase for
all cases because the schemes must perform more iterations to find Top-k results.
However, the query processing times of the STopkB is much rapidly increased because
it considers all of the data while the proposed STopkI only considers data related to a

query. Overall, the proposed STopkI shows better performance than STopkB by
approximately fourteen fold.

Figure 5 shows the performances of STopkI and STopkB when varying m for
K = 512. As m increases, the query processing time of STopkB linearly increases
because more number of computations needs to be performed. However the query
processing time slightly increases compared to the performance with varying n. This is
because most of the secure protocols are affected by n, rather than m. The query
processing time of STopkI also increases as m increases. When m = 6, the query
processing time of STopkI much increases compared to the other cases because it
retrieves a number of kd-tree nodes during the result verification step. This result
happens because the data distribution is sparse in the datasets with the larger number of
attributes. Therefore the better indexing technique for the high dimensional data needs
to be studied. We will leave this issue to future work. Nonetheless, the proposed

Fig. 3. Query processing time when n varies.

Fig. 4. Query processing time when k varies.

290 H.-I. Kim et al.

STopkI shows about six times better performance than STopkB on average because our
STopkI processes the query by using the relevant data.

6 Conclusion

A database outsourcing paradigm has gained much interests with the growth of cloud
computing. Due to privacy concerns, databases need to be encrypted before being
outsourced to the cloud. Accordingly, various privacy-preserving Top-k query pro-
cessing algorithms have been proposed. However, no existing work considers an
encrypted score function that can preserve the privacy of a user query. Moreover, there
is no existing work that can hide data access patterns during Top-k query processing.
Therefore, we proposed a new privacy-preserving Top-k query processing algorithm
which guarantees the confidentiality of both the data and a user query while hiding data
access patterns. We showed from our performance analysis that the proposed algorithm
provides good scalability without any information leakage.

As a future work, we plan to study other indexing techniques for the encrypted
databases with the high dimensions. In addition, we will compare our work with the
relevant works. We also plan to improve the efficiency of our method by processing
queries in a parallel manner.

Acknowledgements. This work was partly supported by Institute for Information & commu-
nications Technology Promotion (IITP) grant funded by the Korea government (MSIP)
(No. R0113-16-0005, Development of a Unified Data Engineering Technology for Large-scale
Transaction Processing and Real-time Complex Analytics). This work was also supported by the
Human Resource Training Program for Regional Innovation and Creativity through the Ministry
of Education and National Research Foundation of Korea (NRF-2016H1C1A1065816).

References

1. Vimercati, S., Foresti, S., Samarati, P.: Managing and accessing data in the cloud: privacy
risks and approaches. In: Proceedings of the CRiSIS, pp. 1–9 (2012)

2. Shi, E., Bethencourt, J., Chan, T.H., Song, D., Perrig, A.: Multidimensional range query over
encrypted data. In: Symposium on Security and Privacy, pp. 350–364 (2007)

Fig. 5. Query processing time when m varies.

A Privacy-Preserving Top-k Query Processing Algorithm 291

3. Hore, B., Mehrotra, S., Canim, M., Kantarcioglu, M.: Secure multidimensional range queries
over outsourced data. VLDB J 21(3), 333–358 (2012)

4. Elmehdwi, Y., Samanthula, B., Jiang, W.: Secure k-nearest neighbor query over encrypted
data in outsourced environments. In: Proceedings of the ICDE, pp. 664–675 (2014)

5. Kim, H., Kim, H., Chang, J.: A kNN query processing algorithm using a tree index structure
on the encrypted database. In: Proceedings of the Big Data and Smart Computing, pp. 93–
100 (2016)

6. Xiong, L., Chitti, S., Liu, L.: Topk queries across multiple private databases. In: Proceedings
of the Distributed Computing Systems, pp. 145–154 (2005)

7. Vaidya, J., Christopher, W.: Privacy-preserving kth element score over vertically partitioned
data. TKDE 21(2), 253–258 (2009)

8. Burkhart, M., Dimitropoulos, X.: Fast privacy-preserving top-k queries using secret sharing.
In: Proceedings of the Computer Communications and Networks, pp. 1–7 (2010)

9. Kim, M., Mohaisen, A., Cheon, J., Kim, M.: Private over-threshold aggregation protocols.
In: Proceedings of the Information Security and Cryptology, pp. 472–486 (2013)

10. Fagin, R.: Combining fuzzy information from multiple systems. In: Proceedings of the
Principles of Database Systems, pp. 216–226 (1996)

11. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Proceedings of the EUROCRYPT, pp. 223–238 (1999)

12. Carmit, H., Lindell, Y.: Efficient secure two-party protocols: techniques and constructions
(2010)

13. Liu, A., Zheng, K., Li, L., Liu, G., Zhao, L., Zhou, X.: Efficient secure similarity
computation on encrypted trajectory data. In: Proceedings of the ICDE, pp. 66–77 (2015)

14. Goldreich, O.: The Foundations of Cryptography: Encryption Schemes, vol. 2, Cambridge,
U.K., pp. 373–470 (2004). http://www.wisdom.weizmann.ac.il/*oded/PSBookFrag/enc.ps

15. Bugiel, S., Nürnberger, S., Sadeghi, A., Schneider, T.: Twin clouds: secure cloud computing
with low latency. In: Proceedings of the CMS, pp. 32–44 (2011)

16. Samanthula, B., Chun, H., Jiang, W.: An efficient and probabilistic secure
bit-decomposition. In: Proceedings of the ASIACCS, pp. 541–546 (2013)

17. Sweeney, L.: k-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness
Knowl. Based Syst. 10(5), 557–570 (2002)

18. Al-Hussaeni, K., Fung, B., Cheung, W.: Privacy-preserving trajectory stream publishing.
Data Knowl. Eng. 94, 89–109 (2014)

19. Kim, H., Kim, Y., Chang, J.: A grid-based cloaking area creation scheme for continuous
LBS queries in distributed systems. J. Converg. 4(1), 23–30 (2013)

292 H.-I. Kim et al.

http://www.wisdom.weizmann.ac.il/%7eoded/PSBookFrag/enc.ps

A Network Edge Monitoring Approach
for Real-Time Data Streaming Applications

Salman Taherizadeh1,4, Ian Taylor2, Andrew Jones2, Zhiming Zhao3,
and Vlado Stankovski4(&)

1 Faculty of Computer and Information Science, University of Ljubljana,
Ljubljana, Slovenia

Salman.Taherizadeh@fgg.uni-lj.si
2 School of Computer Science and Informatics,

Cardiff University, Cardiff, Wales
{TaylorIJ1,JonesAC}@cardiff.ac.uk

3 Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
Z.Zhao@uva.nl

4 Faculty of Civil and Geodetic Engineering,
University of Ljubljana, Ljubljana, Slovenia
Vlado.Stankovski@fgg.uni-lj.si

Abstract. Renting very high bandwidth or special connection links is neither
affordable nor economical for service providers. As a consequence, ensuring
data streaming systems to be able to guarantee desired service quality experi-
enced by the users has been a challenging issue due to real-time changes in the
network performance of the Internet communications. This paper presents a
network monitoring approach that is broadly applicable in the adaptation of
real-time services running on network edge computing platforms. The approach
identifies runtime variations in the network quality of links between application
servers and end-users. It is shown that by identifying critical conditions, it is
possible to continuously adapt the deployed service for optimal performance.
Adaptation possibilities include reconfiguration by dynamically changing paths
between clients and servers, vertical scaling such as re-allocation of bandwidth
to specific links, horizontal scaling of application servers, and even
live-migration of application components from one edge server to another to
improve the application performance.

Keywords: Edge computing � Network monitoring � Real-time data streaming

1 Introduction

Real-time applications such as online gaming, telemedicine services, environment
monitoring systems, and video conferencing have highly on-demand needs to provide
not only a high-quality result but also deliver the result as early as possible for the best
real-time user experience—such as shorter response time via closer interaction with the
application server or higher resolution via more stable connection. However, using
cloud infrastructure to deploy such real-time applications provides some benefits, such
as reduction of operation costs, on-demand resource allocation should be flexible

© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 293–303, 2017.
DOI: 10.1007/978-3-319-61920-0_21

enough in order to dynamically assign infrastructure according to needs of such
application and hence save the expense.

Since real-time applications may become sensitive to the network quality, such as
latency between clients and running services, the requirements of such applications
could potentially be addressed by emerging edge computing technologies, which allow
computations to be performed at the edge of the network. The rationale of employing
these technologies is that computing should happen at the proximity of data sources—
e.g. cameras or sensors—and closer to where the results are needed [1].

Due to the federated nature of edge computing scenarios, real-time applications can
be deployed on different edge nodes with diverse properties (for instance network
performance, physical location, reliability, connectivity and so on). Hence, the per-
formance of such real-time applications varies significantly depending on the runtime
properties of their infrastructural resources as well as their clients’ network conditions.
To come up with these challenges, implementing effective, transparent and elastic
methods to monitor the Quality of Service (QoS) at the network edge is difficult,
yet also necessary. It is necessary because obtaining such network QoS parameters
makes it possible to take appropriate adaptation decisions at strategic level (e.g. about
the application topology and the selection of one or more physical machines on which
it will be running at geographic locations) and dynamic level (e.g. about the application
reconfiguration, vertical or horizontal scaling, re-location and so on). The edge servers
should continue to monitor these parameters and determine if user experience needs to
be improved. In this way, more dynamic adaptations to the user’s conditions (e.g.
network status) can be accomplished by utilising network edge-specific knowledge [2].
Therefore, particular attention has to be paid to monitoring network links between
end-users’ clients and edge servers.

The goal of the present paper is to implement a network edge monitoring approach
that considers critical QoS metrics including delay, packet loss, throughput and jitter
which are specific to the real-time applications we envisage. Therefore, it can be used
for functionalities such as runtime service adaptations for streaming cases, for example
automatically tuning the network quality by changing network paths to re-route via
other edge servers or dynamically connecting the clients to the best servers based on
their network edge conditions, location, etc. In this way, our proposed system is able to
ensure the best possible Quality of Experience (QoE) for the users.

The rest of the paper is organized as follows. Section 2 presents the related work.
Section 3 describes a real-time data streaming use case. Section 4 presents our network
edge monitoring approach, followed by preliminary results in Sect. 5, and the dis-
cussion and conclusions appear in Sect. 6.

2 Related Work

There have been many research approaches, trying to provide network QoS guarantees
for real-time data streaming services. A new paradigm, called edge computing, is
emerging as an extension of cloud computing to support and meet the QoS require-
ments of real-time applications which are delay and jitter-sensitive [3]. Since edge
computing is deployed at the edge of the network, it provides low latency,

294 S. Taherizadeh et al.

location awareness, and optimizes users’ experience under QoS requirements for
streaming and real-time applications [4].

Chen et al. [5] focused on the users’ perspective in online gaming systems; from
their point of view, the QoS metrics related to network conditions—namely delay,
packet loss, bandwidth—have an important effect on gaming experience. Their results
showed that packet loss and bandwidth limitations impose negative impact on the
frame rates and the graphic quality in these systems. To provide more stable network
performance for real-time services and optimizing the network path and resources,
Jutila [6] presents adaptive edge computing solutions based on different traffic man-
agement methods that monitor and react to network QoS changes. To check the net-
work quality in the context of such applications, the most important metrics to be
analysed for adaptation are network throughput, latency, packet loss and jitter [7].

According to the cited literature, we can conclude that monitoring of these
network-related metrics can help data streaming service providers guarantee QoE to
end-users facing network resources limitations. Furthermore, an investigation of the
recent related work supports the conclusion that a current challenge in this area is to
continuously adjust the deployed environment according to the runtime changes in
network conditions intrinsic to connections of both application servers and also users;
this is the main focus of the research presented in the paper.

For dynamic adaptation of edge-based applications, emphasis should be put on the
importance of scalability, robustness, non-intrusiveness, interoperability and possibil-
ities to support live-migration of the service.

• Scalability: A scalable monitoring system is able to handle huge amounts of
monitoring data across large numbers of resources and services [8].

• Robustness: A robust monitoring system is able to be highly tolerant of many
failure scenarios and detect changes in environment, adapting to a new situation and
continuing its operation [9].

• Non-intrusiveness: A non-intrusive monitoring system is capable of being light-
weight to the normal flows of application and infrastructure [10].

• Interoperability: An interoperable monitoring system is not specific to a given
infrastructure and is able to monitor an application that resides on other cloud
providers’ infrastructure [11].

• Live-migration support: In live-migration, applications migrate from a physical host
to another one at any time without stopping operations [12].

Table 1 presents the analysis of the essential properties for the widely used
multi-cloud monitoring tools. The goal of the comparison is to specify and trade-off the
strengths, drawbacks and challenges which have been encountered in the context of
self-adaptive edge-based applications.

Comparison in Table 1 is upon the reviewed literature and based on conducting
experiments with the tools. These tools are investigated in order to find out an
appropriate base-line technology for the needs of monitoring edge-based applications
and the requirements of automatic adaptation to guarantee the QoS and the QoE
performances which are subjective measure from the users’ viewpoint on the overall
value of the provided service.

A Network Edge Monitoring Approach for Real-Time Data Streaming 295

3 Real-Time Data Streaming Use Case: WebRTC/MCU

Real-time communication plays an increasingly important role for many business
applications, including cooperative working environments and video-conferencing for
instance via WebRTC1 (Web Real-Time-Communications) technology [13]. The
WebRTC use case is explained here as an example of a large range of new potential
real-time applications which need to have very high QoS in regard to their commu-
nication service, detect and respond to network-based urgent events very rapidly and
also operate reliably and robustly throughout their lifetime.

The WebRTC open project enables real-time communications directly in the
browser, and its performance may be influenced by highly fluctuating quality of the
Internet connections. To this end, intermediate devices called Multipoint Control Unit
(MCU) servers, which can be running on different data centers all around the world, are
being used to manage the communication between the clients. The function of these
MCU servers deployed at the edge of the network is to coordinate the distribution of
audio, video, and data streams amongst the multiple participants in a multimedia
session. These data centers allow interconnecting MCU servers in different regions.
Therefore, for every user, there is an opportunity to have more than one MCU server to
provide the service and hence it would be possible to connect a user to the best possible
MCU. Figure 1 shows an example of how to interconnect all MCU servers to each
other.

There are plenty of other applications, similar to MCU servers in a WebRTC
video-conference, in which communication between users is required to pass through

Table 1. Requirement analysis for multi-cloud monitoring systems.

Tool Scalability Robustness Non-intrusiveness Interoperability Live-migration
support

Zenossa Yes No Yes Yes Limited
Gangliab Yes Yes Limited Yes Yes
Zabbixc Yes No Yes Yes Limited
Nagiosd No No Limited Yes No
OpenNebulae Yes Yes Yes No Limited
Latticef Yes Yes Yes Yes No
JCatascopiag Yes Yes Yes Yes Yes
aZenoss monitoring system, http://www.zenoss.org
bGanglia monitoring system, http://ganglia.info/
cZabbix monitoring system, http://www.zabbix.com/
dNagios monitoring system, https://www.nagios.org/
eOpenNebula, http://www.opennebula.org/
fLattice, http://reservoir-fp7.eu/
gJCatascopia monitoring system, http://linc.ucy.ac.cy/CELAR/jcatascopia/

1 WebRTC, https://webrtc.org/.

296 S. Taherizadeh et al.

http://www.zenoss.org
http://ganglia.info/
http://www.zabbix.com/
https://www.nagios.org/
http://www.opennebula.org/
http://reservoir-fp7.eu/
http://linc.ucy.ac.cy/CELAR/jcatascopia/
https://webrtc.org/

intermediate servers. Examples include the Openfire2 server in instant messaging
(IM) group chat, and CipSoft3 servers in online gaming.

4 Design and Implementation of the Monitoring Approach

In our work, we focus on performance indicators from the user perspective; since they
can be used to evaluate the network quality delivered to an end-user, then it is possible
to improve the overall acceptability of the service, as perceived subjectively by each
user. Figure 2 provides the schema of a user’s communication via an MCU server as
intermediary, which has to be monitored and compared with the other alternatives as
potential MCU servers deployed in highly distributed, edge computing infrastructures.
Supported by edge computing platforms such as Docker, the intermediary service can
be deployed on-the-fly or on several running instances in different edge computing
nodes.

Fig. 2. Use and monitoring of MCUs to support real-time streaming.

Fig. 1. A deployment of MCU servers’ interconnection globally running all over the world.

2 Openfire, http://www.igniterealtime.org/projects/openfire/.
3 CipSoft, http://www.cipsoft.com/.

A Network Edge Monitoring Approach for Real-Time Data Streaming 297

http://www.igniterealtime.org/projects/openfire/
http://www.cipsoft.com/

An overview of the proposed monitoring architecture is shown in Fig. 3.

This monitoring system employs a number of distinct components. The light-weight,
scalable, custom-made monitoring system implemented in JCatascopia framework [14]
is responsible for monitoring QoS parameters of connections between the real-time
application edge server and clients at the network layer. The implemented monitoring
system is not limited to operating on specific cloud providers and can be utilized to
monitor federated cloud environments where applications are residing on multiple
infrastructures. As shown in Fig. 4, the network-level monitoring probe could separately
represent a standalone application that runs amongst other running applications.

Different network-level QoS metrics—including throughput, delay, jitter and
packet loss, which have been considered as important parameters for various

Fig. 3. Overview of the proposed model for user-centric network monitoring.

Fig. 4. Network-level monitoring probe running amongst other applications.

298 S. Taherizadeh et al.

video/audio streaming applications—are measured by monitoring probes on top of each
edge node. The pseudocode of the developed algorithm for the monitoring probe is
depicted in Fig. 5.

A monitoring server is responsible for orchestrating and collecting QoS data from
each monitoring probe. The monitoring server consists of two parts: a Time Series

Database (TSDB) and a control agent. The TSDB, implemented by Apache Cassandra
server, is used to store the measured values, while the control agent, implemented in
Java, is responsible for network-based QoS analysis, evaluating relevant policies and
returning decisions consistent with these policies. It analyses the running servers’ status
and provides adaptation plans, for instance, changing network paths to re-route via
other edge servers, or vertical scaling by resizing the resources e.g. to offer more
bandwidth, or application server check-pointing/live-migration, and so forth. The
pseudocode of the developed algorithm for the control agent is depicted in Fig. 6 where
the coefficients C1, C2, C3 and C4 are the weights assigned to each network-level QoS
metric. These weights could be dependent on the use case. For example, for VoIP
applications, jitter is more important than delay. Consequently, jitter should have
bigger weight in this case as it has more influence on user experience.

Considering Fig. 3, when our monitoring solution executes, it proceeds as follows:
(1) A real-time application server (e.g. MCU server implemented by Medooze4 as an
open source conference application in our experiment) typically serves a large number
of users and can be deployed and run on a selected edge computing node. (2) All
relevant QoS metrics are measured at regular intervals by a monitoring probe and then
all measured values will be reported to the monitoring server. (3) The monitoring server

Fig. 5. Pseudocode for the implemented monitoring probe.

4 Medooze, http://www.medooze.com/.

A Network Edge Monitoring Approach for Real-Time Data Streaming 299

http://www.medooze.com/

stores the collected metrics in a TSDB. The collected data can be analysed and used for
capacity planning and strategic analysis like longer-term usage trends. (4) The control
agent checks possible degradation of the required network quality for each edge
computing node, and relates any such information to the current demand. When the
current condition does not satisfy the expected requirements, an adaptation plan to
achieve the desired performance can be launched. Using Docker’s container-based
virtualization, the control agent includes Kubernetes5 technology for dynamically
automating deployment, scaling, and management of containerized applications.

5 Measurements

In order to demonstrate the presented monitoring approach, network QoS is evaluated
through four metrics, namely delay, packet loss, throughput and jitter. Deployed
monitoring probes can measure these network QoS metrics which particularly affect the
application performance. In case of any deterioration of system health, for example due
to the presence of excessive jitter, control agent may trigger an adaptation mechanism
to fix the QoS-related problem. The possible adaptation mechanism could be, for
instance, re-connecting users to a set of the best reliable servers offering fully-qualified
network performance.

For experimentation, we used a WebRTC client with a low-throughput connection
and two MCU servers (A and B) running on infrastructures in different geographical
locations with one Gbps bandwidth and the same processing power and memory—
2397.222 MHz and 2 GB RAM respectively. The monitoring probes use ping results
to periodically measure the QoS metrics via the ICMP (Internet Control Message
Protocol) protocol. The monitoring probes deployed on the two MCU servers send 10

Fig. 6. Pseudocode for the implemented control agent.

5 Kubernetes, http://kubernetes.io/.

300 S. Taherizadeh et al.

http://kubernetes.io/

ICMP packets at an interval of 200 ms to the WebRTC client and then they calculate
the QoS metrics on an average basis. Each ICMP packet includes 500 bytes of data.
The set of measurements are repeated continuously at a frequency of 15 times per
minute which means every 4 seconds.

The implemented network edge monitoring technique takes into account two types
of conditions, shown in Fig. 7: when ICMP packet filtering is (a) disabled or (b) en-
abled, inside a private network which is depicted by a rectangle. It is not unusual that
ICMP traffic is filtered in private administrative domains due to various security
concerns. In such case, the ping command returns no response and the packet loss is
100%; hence, the monitoring probe changes its mode of operation and uses traceroute
to identify the path to the edge router. With this information available, the monitoring
probe measures the QoS metrics between the edge server and the edge router (instead
of the client). This measurement is an appropriate approximation of network-based
QoS between the server and the client; since our main target is to compare the QoS of
different routes from the MCU servers to the edge router.

The measurements presented in Fig. 8 show how this tradeoff helps the system
monitor the network-level QoS metrics related to two different connections with the

same destination, the first connection between edge server A and a client, the second
one between edge server B and the same client.

Figure 8(a) shows that according to the delay, the performance of edge server A is
better than that of edge server B for a certain period of time. Since jitter is calculated as
the magnitude of the delay variation, it will always be a positive number with zero
indicating that no jitter is present. The standard deviation of delay was computed to
measure jitter. Server A, as depicted in Fig. 8(b), provides better QoS in terms of jitter

Fig. 7. Path between an edge server and a client with different administrative domains.

Fig. 8. Experimental results related to two different connections with the same destination.

A Network Edge Monitoring Approach for Real-Time Data Streaming 301

on the average than the server B. Besides, throughput belonging to the both MCU
servers was almost steady in the conducted experiment, whereas in real-time systems,
continuous fluctuation is significant to be considered as an issue. Also, the system
showed that packet loss ratio is zero, which indicates efficient packet transmission in
both connections related to server A and server B.

A running monitoring probe does not provoke a meaningful network overhead for
one user as we investigated the output of nethogs tool to compute its bandwidth
overhead. We discovered that the implemented monitoring probe transmits *1714 and
receives *1397 bytes per second for every user in average. Furthermore, in our
experiment, it consumes only 0.7% of the whole CPU time and 2.28% of the whole
memory usage in average.

6 Discussion and Conclusions

Cost issues and other associated network-related parameters such as bandwidth
capacity and data transfer are outstanding issues for multi-cloud service providers [15].
Therefore, effective usage of network resources plays a significant role in the dis-
tributed interoperable environment to save the expense. To this end, our study showed
how edge services for time-critical applications could be used to automatically optimize
the process of allocating and choosing the best infrastructure, which is responsible for
offering acceptable network QoS and QoE.

This research paper presented a network monitoring approach that is particularly
suitable in the adaptation of real-time data streaming applications running on edge
computing platforms. Adaptation approaches could be, for instance, re-configuration of
connections among running application servers and users, or vertical scaling by
resizing the network resources e.g. to offer more bandwidth, or even live-service
migration by moving running application servers from the current infrastructure to
another one. One of the goals of this paper was also to investigate those network-level
metrics that are particularly important for the development and adaptation of
time-critical applications. Because these network-based measures can vary greatly and
have significant effects on the system’s performance and users’ satisfaction. One
important aspect is the design of adaptation mechanisms that can help the real-time
services to react to environmental conditions and events, such as sudden increase in
workload or in the number of users.

Due to the distributed nature of edge computing, companies can run their real-time
applications in different edge nodes, connecting each one with the users that are using
the service in each region. We applied this method in a novel manner within an edge
computing platform, such that this extensible architecture can be combined with
monitoring information that is only available at the edge of the network. As the major
finding, more dynamic adaptation to the user’s conditions (e.g. network status and
user’s geographical location) can also be accomplished with network edge specific
knowledge. Our future work includes applying more optimisation algorithms (e.g.
Pareto-based multi-objective optimisation approach [16]) and comparing the feasibility
of these approaches in the edge computing environment.

302 S. Taherizadeh et al.

Acknowledgements. This project has received funding from the European Union’s Horizon
2020 Research and Innovation Programme under grant agreement No. 643963 (SWITCH project:
Software Workbench for Interactive, Time Critical and Highly self-adaptive cloud applications).

References

1. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing - vision and challenges.
Technical report MIST-TR, Wayne State University (2016)

2. Zhu, J., Chan, D., Prabhu, M., Natarajan, P., Hu, H., Bonomi, F.: Improving web sites
performance using edge servers in fog computing architecture. In: IEEE 7th International
Symposium on Service Oriented System Engineering (SOSE), pp. 320–323 (2013)

3. Shojafar, M., Cordeschi, N., Baccarelli, E.: Energy-efficient adaptive resource management
for real-time vehicular cloud services. IEEE Trans. Cloud Comput. PP(99), 1–14 (2016)

4. Stojmenovic, I., Wen, S.: The fog computing paradigm - scenarios and security issues. In:
Conference on Computer Science and Information Systems (FedCSIS) (2014)

5. Chen, K.T., Chang, Y.C., Hsu, H.J., Chen, D.Y., Huang, C.Y., Hsu, C.H.: On the quality of
service of cloud gaming systems. IEEE Trans. Multimedia 16(2), 480–495 (2014)

6. Jutila, M.: An adaptive edge router enabling internet of things. IEEE Internet Things J. 3(6),
1061–1069 (2016)

7. Cervino, A.J.: Contribution to multiuser videoconferencing systems based on cloud
computing. Doctoral thesis, Technical University of Madrid (2012)

8. Clayman, S., Galis, A., Mamatas, L.: Monitoring virtual networks with lattice. In:
Proceedings of 2010 IEEE/IFIP Network Operations and Management Symposium
Workshops (NOMS Wksps), Osaka, pp. 239–246. IEEE (2010)

9. Fatema, K., Emeakaroha, V.C., Healy, P.D., Morrison, J.P., Lynn, T.: A survey of cloud
monitoring tools: taxonomy, capabilities and objectives. J. Parallel Distrib. Comput. 74(10),
2918–2933 (2014)

10. Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Martin, P., Stankovski, V.: Runtime
network-level monitoring framework in the adaptation of distributed time-critical cloud
applications. In: Proceedings of the 22nd International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA 2016), Las Vegas, 6
pp. ACM (2016)

11. Alhamazani, K., Ranjan, R., Mitra, K., Rabhi, F., Jayaraman, P.P., Ullah-Khan, S., Guabtni,
A., Bhatnagar, V.: An overview of the commercial cloud monitoring tools: research
dimensions, design issues, and state-of-the-art. Computing 97(4), 357–377 (2015)

12. Nadjaran-Toosi, A., Calheiros, R.N., Buyya, R.: Interconnected cloud computing environ-
ments: challenges, taxonomy, and survey. ACM Comput. Surv. (CSUR) 47(1), 1–47 (2014)

13. Perkins, C., Westerlund, M., Ott, J.: Web Real-Time Communication (WebRTC) media
transport and use of RTP. IETF active internet draft (2012)

14. Trihinas, D., Pallis, G., Dikaiakos, M.D.: JCatascopia - monitoring elastically adaptive
applications in the cloud. In: 14th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (2014)

15. Sookhak, M., Gani, A., Talebian, H., Akhunzada, A., Khan, S.U., Buyya, R., Zomaya, A.Y.:
Remote data auditing in cloud computing environments: a survey, taxonomy, and open
issues. ACM Comput. Surv. (CSUR) 47(4), 1–34 (2015)

16. Al-Jubouri, B., Gabrys, B.: Multicriteria approaches for predictive model generation: a
comparative experimental study. In: 2014 IEEE Symposium on Computational Intelligence
in Multi-Criteria Decision-Making (MCDM), pp. 64–71. IEEE (2014)

A Network Edge Monitoring Approach for Real-Time Data Streaming 303

Distributed Simulation of Complex and Scalable
Systems: From Models to the Cloud

Victor Medel(B), Unai Arronategui, José Ángel Bañares,
and José-Manuel Colom

Aragon Institute of Engineering Research, Universiy of Zaragoza, Zaragoza, Spain
{vmedel,unai,banares,jm}@unizar.es

Abstract. Simulation is a standard technique to understand or to ana-
lyze complex Discrete Event Systems (DES). Distributed simulation
techniques try to improve the elapsed time of sequential simulations for
large DES models by dividing a monolithic simulation application into
communicating concurrent Logical Processes. The performance of the
simulator is usually evaluated on the basis of the time needed and the
involved resources to complete a simulation run. Additionally, cloud com-
puting, under a pay-per-use model, introduces the costs of the resources
that must be allocated to run the simulation. In this paper, a Petri Net
based modeling methodology for complex systems is presented produc-
ing hierarchical and modular models. From this model, an elaboration
process produces a heterarchical model for efficient execution of the sim-
ulation over cloud platforms using well known techniques. The required
partitioning of the model may be subject to different criteria such as
cost, elapsed time, and synchronization constraints, where the structural
properties of the Petri Nets can aid in this task.

Keywords: Distributed simulation · Cloud · Petri nets

1 Introduction

The Internet of Things (IoT) and cyber-physical systems (CPS) allow tightly
interconnected and coordinated physical and computational processes to work
together effectively. As environments become more complex, it is not anymore
viable to engineer individual self-contained systems but rather integrate large-
scale Systems of Systems (SoS) involving several domains, e.g. Smart Factories,
Smart Cities, Smart Power Grid, Intelligent Transportation Systems, etc. [2].

A fundamental challenge arisen by the IoT and CPS, and resulting large-scale
SoS, is the need of models to cope with the complexity of todays techno-socio-
economic systems, describing physical and computational interactions, integrat-
ing human behaviour into the processes and with sustainability and econom-
ical requirements. Separation of concepts and lifting the level of abstraction
have proven to be effective software engineering strategies to afford complexity.
However, the interrelationship of these separate models is part of the essential
c© Springer International Publishing AG 2017
J.Á. Bañares et al. (Eds.): GECON 2016, LNCS 10382, pp. 304–318, 2017.
DOI: 10.1007/978-3-319-61920-0 22

Distributed Simulation of Complex and Scalable Systems 305

complexity of the problem domain, and an early separation between different
facets of the system design makes difficult to assess the impacts and tradeoffs of
alternatives that affects all involved processes in complex domains [11].

In addition to the modeling of different facets and the interplay between
them, a rigorous model-based approach is required to use them in a formal veri-
fication of design, coding and testing phases for detecting defects in the require-
ments compliance. However, formal-model based analysis tools are only useful
under certain assumptions or are insufficient to afford the study of even sim-
ple software systems. On the other hand, simulation may be useful to discover
some (un)desirable behaviours, but in general it does not allow to proof the
(in)existence of some properties. Therefore, the synergic combination of simula-
tion and formal models for functional, performance, and economical analysis are
necessary for efficient an reliable design and/or optimization. We give a central
role in our approach to Petri Net models describing the behaviour of the system
including timing and cost information. The goal is to use these models in an
intensive way for analysis and simulation purposes.

Independently of the formal model, as systems become increasingly sophisti-
cated, the state space of the system becomes larger and the use of analysis and
simulation techniques becomes impossible by a single-processor machine. Dis-
tributed simulation and cloud computing to scale to a huge amount of resources
that can be rented (and disposed) in every moment seems the natural way to
afford this scalability problem [5]. The intention of a cloud-based simulation ser-
vice is to migrate the simulation software into the cloud, providing users with
appropriate tools to hide the modeler low level details of this migration process
considering cost and performance requirements.

The main challenges of translating a simulation to the cloud come from the
nature of the models of SoS. Each model view can represent a facet/subsystems
describing, in a precise way, some behaviour. However, models resulting from the
composition of different subsystems and facets trend to become an spaghetti-like
specification. This model characteristic is a serious handicap because parallel
abstractions are based on exploiting some regular structures and declarative
specifications that may be materialized on distributed systems [14]. Additionally
to this difficulty for finding the maximum concurrency to scale the model, the
partitioning of the model must preserve its original semantic taking into account
low level details (e.g. synchronisation and state-management) [7], and must be
a trade-off between performance and cost of resources.

The paper is structured as follows. Section 2 presents basic notions of distrib-
uted simulation of timed Petri nets. Section 3 describes the adopted approach
for modeling complex systems. Then, the elaboration process to obtain a sim-
ulation model in the cloud is illustrated in Sect. 4. Finally, concluding remarks
are discussed in Sect. 5.

2 Distributed Event Simulation of Complex Systems

Complex and scalable Discrete Event Systems (DES) require simulation and
verification techniques during the design process, to prevent bad behaviors, to

306 V. Medel et al.

ensure that certain good properties hold, and to evaluate performance. Petri Nets
(PNs) have been pointed out as a good modeling tool, since many properties may
be easily analyzed in a great number of cases. Moreover, when formal analysis
becomes impracticable, the model may be simulated. As simulation tool, PNs
allow the formulation of models with realistic features (as the competition for
resources) absent in other paradigms (as nude queueing networks).

Given a PN model of a DES, we simulate the system by playing the token
game on that PN, i.e. by firing transitions as a result of the available tokens. This
is also referred as implementing the PN. If a deterministic or stochastic time
interpretation is associated to transitions – Timed PNs (TPNs) or Stochastic
PNs (SPNs) –, the implementation of the TPN or SPN yields, actually, a Discrete
Event Simulation system. In fact, SPNs have been proposed as the minimal
discrete event notation, and both TPNs and SPNs are in the scope of works
on DESs and Parallel and Distributed DES (PDES) simulation [3,10]. Observe
that tokens in places represent the state, transition firings represent events, and
timed transitions represent the duration of activities.

The construction of an application to simulate PNs requires: (1) a repre-
sentation of the net structure plus the marking (state of the system that will
be updated during the simulation); and (2) the simulation engine (Simulation
Machine). The simulation engine follows a repetitive cycle that involves three
stages: a) to test the enabling of transitions; b) to fire some enabled transitions
(simulating, maybe, some associated activity), and c) to update the marking
(the state) of the PN (taking tokens out of the input places and putting new
tokens in the output places of each fired transition). The first stage –the enabling
test of transitions– may be a rather time-consuming operation that it is worth
being lightweighted. To reduce the costs of the enabling test there exist two main
approaches: (1) Place-driven approaches. Only the output transitions of some
representative marked places are tested for firability. This gives a characteriza-
tion of the partial enabling of transitions; (2) Transition-driven approaches.
A characterization of the enabling of transitions is supplied, and only enabled
transitions are considered. The firing of a given transition modifies the enabling
conditions of the transitions connected to its input and output places. In general,
it is not necessary an explicit representation of the marking.

Distributed simulations of general DES requires the decomposition of a
sequential simulation into a set of logical processes (LPs) that interact exchang-
ing time-stamped messages. Each LP ensures that all its internal events are
processed in time stamp order. It is easy for each LP to process internal events
in time stamp order; however, due to the mapping of LPs to different processes
or machines, errors resulting from out-of-order event processing are referred to
as causality errors, and this problem is called the synchronsation problem [7].
An overview of the extensive literature about the synchronization problem can
be found in [6]. Two classical approach have been proposed to guarantee causal
safety: conservative and optimistic approaches.

Distributed simulation of Petri Nets will be based on many identical simula-
tion engines (Simulation Machines) distributed over the execution platform, and

Distributed Simulation of Complex and Scalable Systems 307

each one devoted to the simulation of a subnet of the original one. Each subnet
is represented in the corresponding simulation engine as a data structure and a
set of variables for the local state. Therefore, each simulation engine play the
role of a LP in the context of Discrete Event Simulation, and the time stamped
messages will be the tokens generated by the firing of a transition that must
update its output places belonging to other simulation engines. This means that
the previous considerations about conservative/optimistic approaches must be
taken into account in the context of simulation of PNs.

The efficiency of the distributed simulation of a PN is strongly dependent
on the partition of the original model into subnets, each of which is assigned to
identical simulation engines composing the distributed application. Partitioning
requires to proceed, a priori, identifying the good subnets in which the original
one is divided. In this sense strategies based into the identification of sequential
state machines (computing for example p-semiflows in an incremental way), or
minimizing the number of tokens to be interchanged between subnets is necessary
to obtain efficient applications to simulate the PN. Nevertheless, during execu-
tion is possible to observe congestion in the flow of messages between simulation
engines, or mutual exclusions in the execution of several simulation engines,
or other kind of phenomena against the efficiency because the interchange of
messages. In this cases, thanks to a simulation based on identical simulation
engines working on data structures and variables representing PNs, it is possible
to realize a dynamic reconfiguration of the initial partition: (1) by fusion of the
data structures of two simulation engines in only one; or (2) by splitting the
data structure of a simulation engine into two separated data structures over
two distinct simulation engines. This dynamic reconfiguration is not possible in
simulation contexts where the system to be simulated is not a data structure
(e.g. the system is a program that must be compiled).

Furthemore, the use of ordinary Timed PN in the modeling of large complex
DESs can lead to models of unmanageable size. This drawback has been reduced
by using Object PNs which provide more compact and manageable descriptions.
Nevertheless, this high level models introduce two additional characteristics to
the simulation of Place/Transition nets that are: modularity and hierarchy. In
order to obtain an efficient simulation, instead of the direct emulation of the high
level model, we propose transform the original model to be simulated into a flat
model composed by sequential state machines, each one simulated into a sim-
ulation engine, and interchanging tokens. This transformation process is called
elaboration of the simulation model. It will be illustrated with the elaboration
of an Object PN to the flat model of sequential state machines, but it can be
developed from languages as that presented in [9,12] with a semantics based on
Object PNs.

3 A PN Modeling Methodology for Complex Systems

We propose an example in order to illustrate the kind of applications that can
be modeled with the methodology presented in [9,12]. The presentation will be

308 V. Medel et al.

focussed in the construction of an Object PN, but for the lack of space, this
methodology for the modeling of large and complex systems, is not illustrated
by using the modeling language designed to support modularity and hierarchy
in a component oriented methodology [9].

Let us consider an Electric Vehicle (EV) hiring service to travel in the city
without air and noise pollution (like London, Paris or Madrid). Users of the
service take a vehicle in a so called EV station, and they travel in the city
until they leave the vehicle in other EV station. This basic scheme can lead
to an unbalanced number of available vehicles in the EV stations which can
reduce the quality of service to customers of EVs in certain service stations or,
worse, refusing to supply EVs in some station causing a denial of service. The
parking of the EV station has a limited capacity that cannot change. A control
strategy which distributes the vehicles among the parkings is needed to solve
the unbalance problem.

The aim is to analyze the behaviour of this system of EV service and the
control policies to guarantee the quality of service for a given interval time (for
example, a day). To do that, it is necessary to known a priori what is the pro-
gram of scheduled activities of the customer that rent an EV for that interval.
For instance, when and which places the user wants to visit. This abstraction
will be called agenda. The nature of this program of activities is strictly sequen-
tial because there is only one user following a sequence of activities, but the
agenda can contain flexible adaptations in the sense that the user can program
alternative behaviors that are taken depending on the availability of resources,
or simply, depending on internal decisions of the driver that are taken with a
certain probability.

Fig. 1. Topology of the city represented as a set of streets and the sense of traffic.

The considered example throughout the paper first requires the definition of
the topology of the city that is presented in Fig. 1. This definition is composed

Distributed Simulation of Complex and Scalable Systems 309

by a set of connected streets represented in the figure where the arrows represent
the sense of the traffic. For traffic in each direction there is only one lane. If the
street is one way, then the traffic lane is designated by the letter shown in the
drawing. If the road is two-way, the traffic in one direction will be designated
with the letter that appears in the drawing and the oncoming traffic with the
same letter with the prime notation. There are EV stations in the streets A and
E that are identified with the name of the street. These two parkings have a
limited capacity, where customers can find parked EVs that can be rented for
their displacement, or leave the EV at the end of its travel whenever there is
space in the parking station for it. The number of available EVs depends on
the behaviour of the users over the time and on the balance strategy between
stations.

Observe that the model to be constructed is hierarchical in the sense that
we have a first level where we have a set of EVs, each one represented by means
of its agenda of activities, and a second level corresponding to the urban space
where the EVs move, interact, realize activities and so on. Therefore, a good
choice for the construction of the model is the formalism of Object PNs [13]. In
this model, the Object Nets (the nets that are tokens inside a global Petri Net,
of a higher level, named System Net) are the agendas corresponding to the EVs
moving in the urban space of streets and EVs stations. The System Net will
represent the set of connected streets and EV stations throughout the EVs can
move. The Object Nets corresponding to agendas can be modeled directly by
means of a state machine (in essence an automata representing the sequential
program of activities to be realized for a user renting the EV). The System Net
will be constructed in a modular way from elementary modules representing the
streets of the urban space and modules representing the EVs stations.

Fig. 2. Module corresponding to a model of a street.

The module representing the street model is depicted in Fig. 2. We begin
modeling a conservative resource (with a get and a release transition) and we use
it to build the street. The place street represents the state of a user (conceptually
an agenda a) going through the street by the EV v. In other words, this place
will contain a token corresponding to the object net representing the agenda of
the user of the EV v when this vehicle is traversing the street. The model of a

310 V. Medel et al.

street could be refined including the parking space in each street or additional
parkings, but for legibility and illustrative issues we present the unrefined model.

Instantiation of this basic module for each one of the streets of the urban
topology, and a further connection of the instances according to the topology,
allows to build the entire topology net where the nets representing the agendas
of the EVs move. Figure 3 shows, for example, the composition of modules for
the street A. The getA’fromA transition represents to entering in street A′ from
street A. Each transition is synchronised with the agenda through an interaction,
in this case getA′A. The number of nodes of the connectivity graph is the number
of resources in the topology net; and the number of edges is the number of
transitions between streets. For illustrative purpose, we have not shown the
interaction with the EV; however, with the proposed metodology it is straight
forward. We would have to include the battery consumption in each transition,
and to synchronize them with the EV model.

Fig. 3. Model of the urban topology presented in Fig. 1 connecting instances of the
module of Fig. 2.

Figure 4 depicts the module corresponding to the model of the EV stations,
with the corresponding resources (parking space and available EVs) and the
output street. When a user takes an EV, the user releases a parking space and
he/she takes an EV resource. The fusion between transitions is shown in Fig. 4.
For simplicity, the figure only shows the station A. The enterA transition repre-
sents entering in the EV station and the leaveA transition represents leaving the

Distributed Simulation of Complex and Scalable Systems 311

station. The enter and leave transitions are synchronized with the user’s agenda
through inscriptions in the transitions.

Fig. 4. Module corresponding to the model of the EV station in street A.

The previous rules allow to construct the System Net of the full model of the
system. The last part of the modeling task corresponds to the construction of
the PNs representing the agendas. These PNs will be the Object Nets that will
act as tokens inside the System Net previously described in a succinct way. A
user, throughout its agenda, appears in the system in the station place and its
aim is to travel from that place to other station. However, during its route, the
user may do some activities. A user’s agenda represents sequential program of
activities that a user of the service has planned to do and the route that he/she
follows. When a user begins his agenda, he/she takes an EV in a certain station
and, when the agenda is finished, he leaves the EV in the same or in another
station. The correspondence between the agenda and the EV is the token that
is moving through the net (the <a, v> token in Figs. 2 and 4).

Fig. 5. A user’s agenda with two routes and one activity.

In Fig. 5, we illustrate a user’s agenda. In the example, the user starts in EV
station A and he travels to street C to do an activity; then, he travels to EV

312 V. Medel et al.

station E and he leaves the EV. As he leaves the EV, we are not interested in the
activity that the user does in that place or what he does next. The agenda nets
are syncronized with the topology that we have presented before, through the
inscriptions in the transitions (e.g. with the inscription enterD or getA). More
sophisticated routes and activities can be modelled with this methodology.

With this approach, we have to model every agenda that is going to happen
in the simulation. If we suppose that users only travel between stations, the
possible number of agendas depends on the number of stations (in our example,
three stations and six agendas). In this case, the token inside each agenda is the
EV, and an agenda could be followed by more than one user. In any case, when
we deploy the entire model the total number of agendas deployed is the same,
because we have to represent every possible combination. The composition of
routes and agendas could be done automatically.

Finally, we model the control scheme as it is presented in Fig. 6. Conceptually,
it has three separate components: the controller, the set of control agendas and
the resources.

Fig. 6. Model of the controller to balance the EVs in stations.

The controller evaluates an assertion f . If the assertion is true, the controller
will produce a message to the outMsg place. The message is produced by a
function g which encapsulates the balance algorithm. The g function should
return the pair <src, dst>, where src is where an EV should be taken and
dst is the station where the EV should be left. The assertion might depend on
external events or on the current state of the simulation, among others. The way
this information is obtained is implementation dependant; for example, the state
of the simulation could be in a shared memory or the communication could be
made through a dedicated point-to-point channel. The controller is continuously
iterating the previous steps. The set of control agendas represents the activity

Distributed Simulation of Complex and Scalable Systems 313

to travel from an EV station to another. They are used to move vehicles among
the stations. Additionally, in our example, the resources in the control algorithm
are the operators which move the vehicles.

The communication between the controller and agendas is made by message
passing. The controller puts in a place the pair <src, dst> and, if there is enough
resources, the place in the agenda which is waiting that pair will take the mes-
sage and the agenda starts. The scheme presented is very simple and general.
Other complex solutions can be implemented; for example, there could be some
operators reserved to some plans to establish a priority policy.

4 Elaboration Process of Modular and Hierarchical Petri
Net Models for Simulation in the Cloud

The result of the modeling process is an Object Petri Net as in the example
of the previous section. The obtaining of this PN can be done directly (as in
this article) or may be the result of the deployment of a component-based model
that has been described in a textual language as presented in [9]. The simulation
of this model will consist in playing the token game on that Object Petri Net.
Proceeding in this way give rise to several drawbacks that are related to the
particular semantics of this kind of PNs. This is because the necessary simulation
engine is a very particular algorithm that requires to be carefully analyzed in
order to be distributed in, for example, a cloud platform. This task is not trivial
because the simulation engine must cope to modularity and hierarchy properties
of the model that are not very well-adapted for distributed programming.

Instead of the direct emulation of the high level model, a transformation of
the original model is proposed trying to obtain a model well-adapted for dis-
tributed execution, by only using primitive concepts that can be easily adapted
to changes in the execution platform. We consider as primitive concepts those
of sequential processes that communicate/synchronize by message passing. This
transformation process will be called elaboration of the simulation model, and
the transformed model will be called elaborated model, composed by sequen-
tial state machines and interchanging tokens by message passing mechanisms.
Therefore, the elaboration process will be realized by: (1) Transformation of
each synchronization transition between a token net and its system net into a
subnet implementing a protocol for this synchronization but based on message
passing mechanisms; (2) Algorithms that identify and extract sequential state
machines from the original Object Petri Net covering all transitions of this net,
i.e. every transition of a token net or system net must belong to one and only
one sequential state machine; (3) algorithms for the identification of places such
that its set of connected transitions belong to more than one sequential state
machine previously identified, because the flow of tokens throughout these places
will be implemented by the message passing mechanism (the messages will be
the tokens) in the distributed platform of execution.

In the sequel, the elaboration process is briefly illustrated throughout the
example presented in the previous section. The first step is the elaboration of

314 V. Medel et al.

Fig. 7. Elaboration of the synchronization of transition getA of the agenda in Fig. 5
and transition getAfromA’ of the system net in Fig. 2, through the label getAA’.

the synchronization transitions between the token nets and the system net. Each
synchronization transition in a token net has a label used to identify the transi-
tions to be synchronized (i.e. a transition of the system net and a transition of
the object net sharing the same label). For example, let us consider the transition
getA of the agenda (token net) depicted in Fig. 5. This transition is synchro-
nized with transitions of the system net sharing the label getAA’, for example,
the transition getAfromA’ of the system net depicted in Fig. 3. The elaboration
of this synchronization give rise to the transformations shown in Fig. 7. In the
elaborated model appears three new places associated to the label for the syn-
chronization: (1) Place getAA’: A token in this place represents a request from
the transition getA of the agenda to synchronize with a transition in the system
net with the label getAA’. Initially, it is empty, and it has as output transitions
all transitions of the system net sharing the same label and an special transition
representing the denial of synchronization; (2) Places negACK getAA’ and
ACK getAA’ represents the answer of some transition of the system net for
denial or approval the synchronization over the label. The next transformation
(see Fig. 7) is based on the substitution of the transition getA in the token net
by a polling algorithm that sends requests of synchronization with some transi-
tion of the system net while receives denials of synchronization. The timing of
this new transitions is implementation dependent but the value must be much
lower than the time of the original transitions.

After the elaboration of the synchronization transitions, the next step will be
the identification of state machines in the Object PN. The goal is to identify a
set of state machines covering all transitions of the token nets and system net, in
such a way that a transition belongs to one and only one of the identified state
machines. In the example of the previous section, the reader can observe that
the token nets are agendas of the users and therefore they are state machines as
the example depicted in Fig. 5 shows. Therefore, the first set of state machines
is composed for the nets corresponding to the token nets, and so all transitions

Distributed Simulation of Complex and Scalable Systems 315

in the token nets are covered by this set. State machines of this first set are not
connected to each other by message passing. However, there may be communica-
tion between these state machines and the system net because of the transitions
synchronized by label as in the example of Fig. 7.

The same process of state machine identification must be applied to the
system net. In this case, observing the net in Fig. 3, it is easy to see that this net
is not a state machine and then general methods for state machine decomposition
must be applied. For example, in [8] an algorithm based on OBDDs is used to
decompose a general place transition net into a set of state machines. It is also
possible to use algorithms based on linear algebra [4] that compute minimal
marking linear invariants that in many cases are associated to state machines.
There exist many other methods to realize this identification operation, and all
exploit the structure of the net using different strategies.

The last step, to obtain the elaborated model, is the identification of the
messages that must be interchanged by the different state machines distributed
in the execution platform. Messages are the tokens generated by the occurrence
of a transition, that must be added to a place that does not belong to the state
machine of the fired transition. This place will be called communicating place. If
the input and output transitions of a communicating place belong to the same
state machine the messages will be internal, but if this place is connected to at
least two state machines then two things happen: (1) All state machines contain-
ing at least one output transition of the communicating place will be grouped in
the same simulation engine in order to avoid the distribution of a conflict between
the output transitions of the communicating place; (2) The firing of an input
transition of a communicating place leads to send the produced tokens from the
state machine containing this transition, to all the state machines where this
communicating place has an output transition throughout the message passing
mechanism of the platform. The tokens to be sent as a message can be of two
types: (1) Black tokens, that only requires to include in the message the name
of the destination place of the token and the identification of the state machine
where the place must be present; (2) Colored tokens, that require to include in
the message, in addition to the information included for tokens black, the iden-
tifier of the token net to which refers the transmitted token (because the colored
tokens only appear in the system net and they are references to token nets that
have been deployed somewhere in the distributed platform).

The heterarchy of processes resulting from the elaboration of our specification
is the starting point providing a raw description for a cloudificable model. Par-
tition schemes over the flattened model pursue a trade off between performance
and cost of resources for the distributed execution of simulations in cloud envi-
ronments. The TPN formalism impose some partitioning constrains. Arbitrary
arc cutting can decrease performance due to the overhead of involved messages
in the required protocols between LP with distributed conflict resolutions, e.i,
transitions sharing input places. This overhead of messages can ruin the poten-
tial advantages of a distributed simulation. In the following, we will assume
that a Virtual Machine is assigned to each LP. A LP consists of a TPN region,

316 V. Medel et al.

an interpreter engine that simulates the token game of the region and preserve
causality with events simulated in other LPs, and an interface. Some solutions
of petri net partitions [3,10] have improved the arbitrary strategy of cutting
of arcs, with methods and rules for minimum region extraction, aggregation of
suitable regions and automated mapping of regions to nodes.

The LP interface is defined by the arcs from LPk to LPi. Therefore, the
input interface is defined by means of places and the output interface by means
of transitions of adjacent LPs. The first idea to develop the partitioning is to
minimize the number of tokens (messages) to be interchanged between subnets.
In this way, all tokens transferred from LPk to LPi are sent over the same
channel, and communication complexity is reduced considerably. Additionally,
we will use the idea of coupled conflict, which can be inferred from structure of
the TPN for defining the minimal region assigned to a LP. Two transitions ti, tj
are in coupled conflict, tiCCtj ⇔ •t∩ t• �= ∅ or ∃tR such that tiCCtR ∧ tRCCtj .
The CC relationship is an equivalence relation that defines a partitioning in a
set of distinct equivalence class called CCC (coupled conflict class). The set of
distinct CCC defines a partition with the minimal possible regions.

Depending on the communications overhead, this partition on minimal
regions may be too fine grained. The size and elements included in regions
shape execution and communication results. Too small regions entail too many
nodes, with high communication and short execution of LPs, that can hurt over-
all performance and economic cost. Big regions need few nodes that can help
to curve cost, but also reduce performance. The computation/communication
threshold gives the upper bound for the maximum number of compute nodes to
maximises the speed up. The second idea to afford this trade-off is to cover
with sequential state machines the partition defined by transitions in con-
flict. Therefore, the problem is a graph partition problem, where the set of
logical processes (LP = ∪iLPi) together with the directed communications
channels (CH = Ui,j(LPi, LPj)) constitutes the graph of logical processes
GLP = (LP,CH). The coverture that defines the partition is produced tak-
ing into account the objective function to minimise, which is the cost given a
simulation time ts.

Formally, if P is a partition of GLP with N logical processes (LPi), and
R(LPi) is the set of sequential processes included in LPi, we can estimate the
economical cost associated to the partition P: Ĉ(P) = N ∗ T̂wc where T̂wc rep-
resents the estimated wallclock time. T̂wc is defined by the maximum bottleneck
estimated wallclock time of all LPi (T̂wci):

max1≤k≤N

⎧
⎨

⎩
T̂wci(

∑

j∈R(LPi)

(ej),
∑

j∈R(LPi),k/∈R(LPi)

wjk, γ, ts)

⎫
⎬

⎭

We need to associate an execution weight ei to each LPi (by the addition of all
ej corresponding to the sequential processes included in LPi), which represents
the amount of computation time per simulation time unit, and a communication
weight wij between every pair of LPs. In [3] it is proposed to define ei as the

Distributed Simulation of Complex and Scalable Systems 317

number of places and transitions in LPi; and equal wij to the number of arcs
crossing between LPs i and j. In our case, we propose to estimate T̂wci in a
similar way as a function of ei, wik, the execution and communication relation
in the cloud γ, and the simulated time.

Initially, T̂wci values can be approximated by simulations to get computing
and communication values. These values can be grossly approximated with a
partition requiring the minimum number of VMs to store the biggest admisible
regions in memory of each VM, or the maximum number of VMs allowed with an
initial budget for estimating these values. The objective function is to minimise
the cost considering initial constraints, budget and quality of simulation,

Graph partitioning is a fundamental problem in many domains in computer
science. Important applications of graph partitioning include scientific comput-
ing, partitioning various stages of a VLSI design circuit and task scheduling in
multi-processor system. There is a vast literature about graph partition (see
for a recent review [1]). The most promising partitions divide the graph in
equal sets while minimising edges between the sets. In the case of TPN par-
titions, structural information and time labels can also be exploited to define
balanced lookahead values in all logical processes. More information about the
cloud infrastructure, such as the coefficient of variation of execution time and
communication, can also be included in the objective function to improve the
estimated cost of a partition (Ĉ(P)).

5 Conclusions and Future Work

Distributed simulation allows to understand and analyse complex and scalable
systems. In this paper we have proposed a PN based modeling methodology for
complex DESs and a way to automatically translate the high level specification to
an executable model suited to be partitioned on the cloud. The high level model
provides an specification language suited for the designer of the system that
allows a formal description of different facets of the system, and a hierarchical
and component decomposition. On the other hand, we use the TPN formalism,
as a low level model, to simulate the system. This low level model for simulation
can be automatically generated, distributed and executed in an efficient and
cost effective way. An elaboration process translates the high level specification
in a flat TPN model. Finally, a partitioning step is proposed to deal with the
decomposition of the flat low level model in regions to be distributed in cloud
nodes. The regions obtained are evaluated in respect of the economic cost of
their execution to decide the effective distributed deployment on the cloud.

Future work will enhance this proposal with the development of a platform
as a service to support the modeling and distributed simulation of large complex
systems. Involved tasks are to implement the elaboration process, the adapta-
tion of current PN structural analysis tools for large TPNs, the refinement of
objective functions to define balanced partitions attending to different criteria
(size, lookahead values, etc.) and the use of graph processing frameworks.

318 V. Medel et al.

Acknowledgments. This work was co-financed by the Industry and Innovation
department of the Aragonese Government and European Social Funds (COSMOS
research group, ref. T93); and by the Spanish Ministry of Economy under the program
“Programa de I+D+i Estatal de Investigación, Desarrollo e innovación Orientada a los
Retos de la Sociedad”, project id TIN2013-40809-R. V. Medel was the recipient of a
fellowship from the Spanish Ministry of Economy.

References

1. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in
graph partitioning. CoRR abs/1311.3144 (2013). http://arxiv.org/abs/1311.3144

2. Carbone, A., Ajmone-Marsan, M., Axhausen, K.W., Batty, M., Masera, M., Rome,
E.: Complexity aided design. Eur. Phys. J. Spec. Top. 214(1), 435–459 (2012)

3. Chiola, G., Ferscha, A.: Distributed simulation of petri nets. IEEE Concurrency
3, 33–50 (1993)

4. Colom, J.-M., Silva, M., Villarroel, J.: On software implementation of petri nets
and colored petri nets using high-level concurrent languages. In: 7th International
Workshop on Application and Theory of Petri Nets, pp. 207–222 (1986)

5. D’Angelo, G., Marzolla, M.: New trends in parallel and distributed simulation:
from many-cores to cloud computing. Simul. Model. Pract. Theory 49, 320–335
(2014)

6. Fujimoto, R.: Parallel and distributed simulation. In: Proceedings of the 2015 Win-
ter Simulation Conference, pp. 45–59 (2015)

7. Fujimoto, R.M.: Parallel and Distributed Simulation Systems, vol. 300. Wiley, New
York (2000)

8. Garćıa-Vallés, F., Colom J.-M.: A Boolean approach to the state machine decom-
position of Petri nets with OBDD’s. In: Intelligent Systems for the 21st Century,
IEEE International Conference on Systems, Man and Cybernetics, 1995, vol. 4,
pp. 3451–3456, October 1995

9. Merino, A., Tolosana-Calasanz, R., Bañares, J.Á., Colom, J.-M.: A specification
language for performance and economical analysis of short term data intensive
energy management services. In: Altmann, J., Silaghi, G.C., Rana, O.F. (eds.)
GECON 2015. LNCS, vol. 9512, pp. 147–163. Springer, Cham (2016). doi:10.1007/
978-3-319-43177-2 10

10. Nicol, D.M., Mao, W.: Automated parallelization of timed petri-net simulations.
J. Parallel Distrib. Comput. 29(1), 60–74 (1995)

11. Rajhans, A., Cheng, S.W., Schmerl, B., Garlan, D., Krogh, B.H., Agbi, C., Bhave,
A.: An architectural approach to the design and analysis of cyber-physical systems.
Electron. Commun. EASST 21, 10 (2009)

12. Tolosana-Calasanz, R., Bañares, J.Á., Colom, J.-M.: Towards petri net-based eco-
nomical analysis for streaming applications executed over cloud infrastructures. In:
Altmann, J., Vanmechelen, K., Rana, O.F. (eds.) GECON 2014. LNCS, vol. 8914,
pp. 189–205. Springer, Cham (2014). doi:10.1007/978-3-319-14609-6 13

13. Valk, R.: Object petri nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN
2003. LNCS, vol. 3098, pp. 819–848. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-27755-2 23

14. Yu, L., Moretti, C., Thrasher, A., Emrich, S.J., Judd, K., Thain, D.: Harness-
ing parallelism in multicore clusters with the All-Pairs, Wavefront, and Makeflow
abstractions. Cluster Comput. 13(3), 243–256 (2010)

http://arxiv.org/abs/1311.3144
http://dx.doi.org/10.1007/978-3-319-43177-2_10
http://dx.doi.org/10.1007/978-3-319-43177-2_10
http://dx.doi.org/10.1007/978-3-319-14609-6_13
http://dx.doi.org/10.1007/978-3-540-27755-2_23
http://dx.doi.org/10.1007/978-3-540-27755-2_23

Author Index

Agiatzidou, Eleni 144
Aisopos, Fotis 102
Alexandrou, Vassilios 35
Altmann, Jörn 225
Álvarez, Pedro 208
Alzamil, Ibrahim 160
Anagnostopoulos, Dimosthenis 62
Armstrong, Django 129
Arronategui, Unai 304

Badia, Rosa M. 129
Bañares, José Ángel 304
Blanchet, Christophe 89
Borges, Maria C. 115
Butoi, Alexandru 74

Chang, Jae-Woo 277
Cohen, Jeremy 250
Colom, José-Manuel 304

Darlington, John 250
Demchenko, Yuri 89
Dimakis, Antonis 144
Djemame, Karim 129, 160
Domaschka, Jörg 263

Ejarque, Jorge 129
Ezpeleta, Joaquín 208

Fabra, Javier 208
Filiopoulou, Evangelia 19

Gao, Xuesong 3
Ghumman, Waheed Aslam 49
Gibrat, Jean-François 89
Gillam, Lee 175
Gogouvitis, Spyridon 35
Guitart, Jordi 129

Hauser, Christopher B. 263
Hernández, Sergio 208

Jansen, Slinger 3
Jones, Andrew 293

Kavanagh, Richard 129
Kim, Hyeong-Il 277
Kim, Hyeong-Jin 277
Kostopoulos, Alexandros 144
Küpper, Axel 89

Lordan, Francesc 129

Mach, Werner 237
Macias, Mario 129
Makris, Antonios 62
Martínez, Ana 208
Mavrogeorgi, Nikoletta 35
Medel, Victor 304
Menychtas, Andreas 102
Michalakelis, Christos 19
Mitropoulou, Persefoni 19

Nikolaidou, Mara 19

Pallas, Frank 115
Pittl, Benedikt 237
Poullie, Patrick 193
Psychas, Alexandros 102

Rayna, Thierry 250
Recuenco, Álvaro 208

Schikuta, Erich 237
Schill, Alexander 49
Silaghi, Gheorghe Cosmin 74
Sirvent, Raül 129
Slawik, Mathias 89
Stankovski, Vlado 293
Stiller, Burkhard 193

Taherizadeh, Salman 293
Taylor, Ian 293
Tserpes, Konstantinos 62

Tsitsipas, Athanasios 263
Turkmen, Fatih 89

Ulbricht, Max-R. 115
Uzbekov, Azamat 225

Valsamis, Angelos 102
Varvarigou, Theodora 35, 102
Voulodimos, Athanasios 35

Wesner, Stefan 263

Yang, Zherui 3

Zakarya, Muhammad 175
Zhang, Dong 3
Zhao, Zhiming 293
Zilci, Begüm Ilke 89

320 Author Index

	Preface
	Organization
	Contents
	Business Models
	On the Future of Solution Composition in Software Ecosystems
	1 Introduction
	2 Research Method
	3 The Limits of AppStores
	4 Solution Composers
	4.1 State of the Practice
	4.2 The Solution Composer Framework
	4.3 Implementations of the Solution Composer Framework in Industry

	5 Evaluation
	6 Discussion
	7 Conclusion
	References

	The Rise of Cloud Brokerage: Business Model, Profit Making and Cost Savings
	Abstract
	1 Introduction
	2 Cloud Broker and Services
	3 Cloud Broker Benefits
	4 Overview of Brokering Methods
	4.1 Financial Brokering Method Based on Derivative Contracts
	4.2 A Cloud Computing Broker Model for IaaS Resources
	4.3 Dynamic Cloud Resource Reservation via Cloud Brokerage
	4.4 Dynamic Pricing Based on Quantized Billing Cycles and the Ski-Rental Problem

	5 Discussion
	6 Conclusions
	References

	Work in Progress on Quality of Services and Service Level Agreements
	Robust Content-Centric SLA Enforcement in Federated Cloud Environments
	Abstract
	1 Introduction
	2 Cloud Models and Enriched SLA
	3 SLA Management and Enforcement
	4 Evaluation
	5 Conclusion
	References

	Structural Specification for the SLAs in Cloud Computing (S3LACC)
	1 Introduction
	2 S3LACC Design and Specification
	2.1 Service Description
	2.2 Service Level Objectives (SLOs)
	2.3 Metrics
	2.4 Guarantees/Obligations

	3 S3LACC Framework
	4 Use Case
	5 Related Work and Analysis
	6 Conclusions and Future Work
	References

	Load Balancing in In-Memory Key-Value Stores for Response Time Minimization
	Abstract
	1 Introduction
	2 Related Work
	2.1 Load Balancing Based on Key Distribution
	2.2 Load Balancing Based on Key Popularity
	2.3 Load Balancing Based on Query Volume
	2.4 Adaptable Load Balancing Approaches
	2.5 External Factors Affecting Load Balancing Based on Key Popularity

	3 Approach
	3.1 IMKVS Infrastructure Setup
	3.2 Key Distribution Load Balancing Algorithm

	4 Experiments
	5 Conclusion and Future Work
	References

	Fault-Tree-Based Service Availability Model in Cloud Environments: A Failure Trace Archive Approach
	1 Introduction
	2 Background
	3 The Enhanced Fault Tree Model
	4 Methodology and Experimental Setup
	5 Experimental Results for LANL Traces
	6 Related Work
	7 Conclusions
	References

	Work in Progress on Cloud Economics
	An Economical Security Architecture for Multi-cloud Application Deployments in Federated Environments
	1 Introduction
	2 Stakeholders and Requirements
	3 Related Technologies
	4 Security Architecture and Security Functionalities
	4.1 Security Functionality

	5 Evaluation
	5.1 Securing the CYCLONE Bioinformatics Use Case
	5.2 Economic Benefits
	5.3 Security Analysis of the Federation Provider

	6 Extensions and Open Issues
	7 Summary and Outlook
	References

	Efficient Context Management and Personalized User Recommendations in a Smart Social TV Environment
	Abstract
	1 Introduction
	2 Related Work
	3 SAM Context Management Approach
	3.1 Platform Architecture and Data Collected
	3.2 SAM’s Graph Database

	4 Context Analysis and Recommendations
	4.1 Graph Analysis
	4.2 Collaborative Filtering Analysis
	4.3 Personalised Recommendations

	5 Experiments and Evaluation
	5.1 Dataset and Configuration
	5.2 Experimental Results

	6 Conclusions
	Acknowledgements
	References

	When Culture Trumps Economic Laws: Persistent Segmentation of the Mobile Instant Messaging Market
	Abstract
	1 Introduction
	2 Networks Effects in Instant Messaging
	2.1 Direct Network Effects
	2.2 Indirect Network Effects
	2.3 Switching Costs and Lock-in

	3 Applications
	3.1 WhatsApp
	3.2 Facebook Messenger
	3.3 WeChat
	3.4 LINE
	3.5 Kakao Talk

	4 Local Markets and the Global Instant Messaging Landscape
	5 Explanation Approaches
	6 Strategies and Implications
	6.1 Globalization
	6.2 Localization

	7 Conclusion
	References

	Energy Consumption
	Energy Efficiency Support Through Intra-layer Cloud Stack Adaptation
	1 Introduction
	2 Energy Efficient Cloud Architecture
	3 Intra-layer Self-adaptation
	3.1 SaaS Layer
	3.2 PaaS Layer
	3.3 IaaS Layer

	4 Experimental Design
	5 Results
	5.1 SaaS Layer
	5.2 PaaS Layer
	5.3 IaaS Layer

	6 Related Work
	7 Conclusion
	References

	Energy-Aware Pricing Within Cloud Environments
	Abstract
	1 Introduction
	2 ASCETiC Architecture
	3 Adopted Pricing Schemes
	4 Energy-Aware Pricing
	4.1 Why Energy-Based Pricing?
	4.2 Energy-Aware Pricing Schemes
	4.2.1 Two-Part Tariff Pricing
	4.2.2 Two-Part Tariff with Energy Saving Discounts

	4.3 Linearly Increasing Energy-Based Pricing
	4.4 95th Percentile Rule

	5 Service Plans
	6 Conclusions and Future Work
	Acknowledgements
	References

	Energy Prediction for Cloud Workload Patterns
	Abstract
	1 Introduction
	2 Related Work
	3 Energy-Aware Profiling and Prediction
	3.1 System Architecture
	3.2 Energy-Aware Profiling Model
	3.3 Energy-Aware Prediction Framework

	4 Experimental Set up
	5 Results Discussion and Evaluation
	6 Conclusion and Future Work
	References

	An Energy Aware Cost Recovery Approach for Virtual Machine Migration
	1 Introduction
	2 Background
	2.1 Comparing Hosts Efficiencies
	2.2 The Migration Model

	3 Problem Description
	3.1 CMCR

	4 Performance Evaluation
	4.1 Experimental Setting
	4.2 Experimental Results

	5 Related Work
	6 Conclusion and Future Work
	References

	Resource Allocation
	The Design and Evaluation of a Heaviness Metric for Cloud Fairness and Correct Virtual Machine Configurations
	1 Introduction
	2 Related Work and Problem
	2.1 Previous Work
	2.2 Basics
	2.3 Problem Statement

	3 Greediness
	3.1 User Greediness
	3.2 VM Greediness
	3.3 Choosing and to Provide Appropriate Incentives
	3.4 Determining Concrete Values for and
	3.5 GM Filling

	4 Evaluation
	4.1 Incentives
	4.2 Effects of and
	4.3 Properties Achieved
	4.4 Assumptions and Practice

	5 Summary and Conclusions
	References

	A History-Based Model for Provisioning EC2 Spot Instances with Cost Constraints
	1 Introduction
	2 Related Work
	3 A Framework for the Analysis of the EC2 SI Infrastructure
	4 Generation of a Provisioning Plan
	4.1 Analysis of the Lowest SI Price

	5 Conclusions
	References

	Work in Progress on Resource Allocation
	Enabling Business-Preference-Based Scheduling of Cloud Computing Resources
	Abstract
	1 Introduction
	2 Background
	2.1 Cloud Computing Resource Allocation
	2.2 Yield Management
	2.3 Demand Estimation

	3 Techno-Economic System Architecture
	3.1 Proposed System Architecture
	3.2 Resource Allocation Process Between User and Cloud Service Provider
	3.3 Comparison with Existing System Architectures

	4 Architecture Validation
	4.1 Simulation Scenario
	4.2 Simulation Results

	5 Conclusion
	Acknowledgements
	References

	Bazaar-Score: A Key Figure Measuring Market Efficiency in IaaS-Markets
	1 Introduction
	2 Background and Assumptions
	3 Genetic Algorithm Based Negotiation
	4 Bazaar-Score
	5 Simulation Scenario
	6 Conclusion
	References

	Understanding Resource Selection Requirements for Computationally Intensive Tasks on Heterogeneous Computing Infrastructure
	1 Introduction
	2 Related Work
	3 Software Environment
	4 Computing Platforms
	5 Usage Scenarios
	6 Decision Support System
	6.1 System Model
	6.2 Application to Scenarios

	7 Conclusions
	References

	Towards Usage-Based Dynamic Overbooking in IaaS Clouds
	1 Introduction
	2 Requirements
	3 Proposed Solution
	3.1 Monitoring Framework
	3.2 Monitored Information
	3.3 Performance Modelling
	3.4 Summary

	4 Prototype Integration
	4.1 Monitoring
	4.2 OpenStack Integration
	4.3 DCA Toolkit

	5 Related Work
	6 Outlook and Conclusions
	References

	Cloud Applications
	A Privacy-Preserving Top-k Query Processing Algorithm in the Cloud Computing
	Abstract
	1 Introduction
	2 Related Work
	2.1 Privacy-Preserving Top-k Query Processing Schemes
	2.2 Preliminary Work

	3 System Architecture and Secure Protocols
	4 Secure Top-k Query Processing Algorithm
	4.1 Step 1: Encrypted kd-Tree Search Step
	4.2 Step 2: Top-k Retrieval Step
	4.3 Step 3: Result Verification Step
	4.4 Security Proof of the Proposed Top-k Query Processing Algorithm

	5 Performance Analysis
	5.1 Performance Environment

	6 Conclusion
	Acknowledgements
	References

	A Network Edge Monitoring Approach for Real-Time Data Streaming Applications
	Abstract
	1 Introduction
	2 Related Work
	3 Real-Time Data Streaming Use Case: WebRTC/MCU
	4 Design and Implementation of the Monitoring Approach
	5 Measurements
	6 Discussion and Conclusions
	Acknowledgements
	References

	Distributed Simulation of Complex and Scalable Systems: From Models to the Cloud
	1 Introduction
	2 Distributed Event Simulation of Complex Systems
	3 A PN Modeling Methodology for Complex Systems
	4 Elaboration Process of Modular and Hierarchical Petri Net Models for Simulation in the Cloud
	5 Conclusions and Future Work
	References

	Author Index

