
Comparison of Feedback Strategies
for Supporting Programming Learning

in Integrated Development
Environments (IDEs)

Jarno Coenen(&), Sebastian Gross, and Niels Pinkwart

Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
{jarno.coenen,sebastian.gross,

niels.pinkwart}@hu-berlin.de

Abstract. In this paper we investigate whether providing feedback to learners
within an Integrated Development Environment (IDE) helps them write correct
programs. Here, we use two approaches: feedback based on stack trace analysis,
and feedback based on structural comparisons of a learner program and
appropriate sample programs. In order to investigate both approaches, we
developed two prototypical extensions for the Eclipse IDE. In a laboratory
study, we empirically evaluated the impact of the extensions on learners’ per-
formance while they solved programming tasks. The statistical analyses did not
reveal any statistically significant effects of the prototype extensions on the
performance of the learners, however, the results of a qualitative analysis imply
that the provided feedback had at least a marginal impact on the performance of
some learners. Also, feedback from the participants confirmed the benefit of
providing feedback directly within IDEs.

Keywords: Adaptive feedback � Integrated Development Environment � Java
programming

1 Introduction

PROGRAMMING skills are important in both professional and educational contexts.
Computer science education below the university level is encouraged by a number of
governments in Europe [1, 2], as well as in the USA [3]. University level enrolment in
computer science studies is also steadily increasing each year [4]. Learning a program-
ming language can, among other means, be effectively aided by solving smaller pro-
gramming tasks. This learning method can be assisted by teachers (tutors) and/or tools.
Here, the application of computer-supported learning systems can be effective in time and
financially sensitive situations. There are several applications of computer-supported
learning systems. For instance, Intelligent Tutoring Systems (ITSs) simulate the role of
human tutors using models of formalized domain knowledge and student knowledge to
provide feedback to learners when solving a given programming problem [5].

Learners often struggle with identifying and fixing errors in their programs. When a
stack trace is printed in the console, indicating one or more errors, it is often difficult for

© Springer International Publishing AG 2018
N.-T. Le et al. (eds.), Advanced Computational Methods for Knowledge Engineering,
Advances in Intelligent Systems and Computing 629, DOI 10.1007/978-3-319-61911-8_7



novice programmers to understand [6–9]. Integrated Development Environments
(IDEs) are a common approach for support, not only for experienced programmers, but
also for learners to find and fix errors in their programs by implementing a wide range
of features such as syntax highlighting, syntax checks, debugging, and minor semantic
and logical checks. However, even though IDEs provide different features to address
syntactical and semantical issues, not all of them are appropriate for novices. For
instance, debugging a program requires a programmer to have knowledge about the
mistake(s) she made. We therefore propose to extend IDEs by implementing features
which address both logical and semantic mistakes, as well as syntactical errors in
learners’ programs, and thus help them develop correct programs.

The outline of this paper is as follows: In Sect. 2, we review related work in the
domain of learning programming. We introduce our approach and summarize its design
and implementation in Sect. 3. We conducted a lab study where we evaluated the
proposed approach. A description of this study and its results are summarized in
Sect. 4. Section serves as a conclusion and an outlook on future work.

2 Related Work

There are many approaches which aim to support learners of programming in using
computer-supported learning systems. Ample research articles exist which focus on
how to support novice learners in understanding stack traces. HelpMeOut [10] is a
social recommender system for the Java-based IDE called Processing1. This system
offers assistance to learners for one specific stack trace at a time, and recommends a
bug fix based on a database of bug fixes from other peers. DrScheme [7] is an IDE for
the Lisp-based dialect Scheme. Using this system, a learner can select a language level
(e.g., “Beginner Student Language”) and receive support messages for each of these
errors, which serve as reminders for concepts that the learner is expected to know
depending on the selected level. Gauntlet [11], on the other hand, is a pre-processing
program that is only accessible online through a specific website. Learners can enter
their Java programs through a web form after which they can view Gauntlet’s outcome.
In this outcome, possible syntax errors are then explained in pedagogically suitable
phrasing, and some novice level semantic errors are also identified and sufficiently
explained. From the given examples, it seems that Gauntlet simply alters compiler
messages rather than offer additional error description text with examples.

Aside from stack trace based approaches, there are other systems that aim to help
the learner learn programming using AI and adaptive techniques. J-LATTE [12] is an
Intelligent Tutoring System (ITS) that provides two modes for teaching a subset of
Java. The first mode is purely conceptual, involving the abstract algorithmic solving of
problems without writing Java code. The second mode is a coding mode that introduces
the use of Java code for the first time within the program. This mode provides
on-demand feedback for constraint violation in the learner’s program. This feedback is

1 Processing is both a Java based IDE, as well as a kind of simplified Java programming language for
educational purposes. The project website is available at http://www.processing.org/.

Comparison of Feedback Strategies for Supporting Programming Learning 73

http://www.processing.org/


designed as text-based note for each violated constraint. JITS [13] is another ITS where
a learner can extend fragments of a given program for a given exercise on her own.
Here, a learner can request feedback on demand, for which the system provides syn-
tactical help with quick fixes. To some extent, feedback for logical errors based on the
exercise specification is also provided. JO-Tutor [14] is an ITS program which focus on
how to handle Java object by providing digital learning materials, such as quizzes and
sample erroneous programs, as well as a Java editor. The learner then receives feedback
if their solution is correct.

All of these approaches have one crucial drawback: the user learns a programming
language in an environment that is typically different from real world usage scenarios.
When a learner moves to a real IDE, she is required to adapt her techniques accord-
ingly. If the program simply alters errors for a learner, she is then also required to
relearn the exceptions of the programming language in question. If instead a real IDE is
used, with error messages compliant to the programming language standard, no tran-
sition to the real world usage is needed. Therefore, it is worth developing features that
are seamlessly integrated into IDEs in order to provide a variety of types of feedback to
learners. These features would be particularly helpful in providing feedback for solving
semantic and logical errors, as even these basic programming skills are often insuffi-
ciently understood by learners [6–9]. This problem stems from the fact that erroneous
but syntactically correct programs can be compiled and partly executed, but not nec-
essarily produce the desired outcome. Here, feedback on semantic and logical errors
could provide meaningful information to assist the learner in overcoming this initial
hurdle.

3 Approach: Design and Implementation

As stated, our goal is to extend IDEs to provide meaningful feedback to learners in
order to help them develop syntactically and semantically correct programs. We chose
Eclipse IDE as the host system above other alternative IDEs (e.g. NetBeans2, and
IntelliJ IDEA3), because it is more widely used among programmers [15], [16]4, [17,
18], Due to its popularity in professional software development and computer science
education at university level, we focused on supporting Java programmers.

In order to help learners find and fix both syntactical and logical/semantical mis-
takes, we developed two extensions for the Eclipse IDE: (i) in order to complete the
programming cycle, a stack trace analysis provides feedback to a learner, and (ii) based
on comparison of learner’s solution and appropriate sample solutions, we highlight and
contrast both the learner’s solution and (steps of) a sample solution. The proposed
design tries to be integrated seamlessly into the IDE, and guide the learner on demand
through the available feedback.

2 NetBeans is an open source IDE supporting, amongst others, Java (see https://netbeans.org/).
3 IntelliJ IDEA is an Apache 2 licensed IDE for non-commercial use supporting, amongst others, Java
(see https://www.jetbrains.com/idea/).

4 In this survey in 2016, Eclipse is ranked second to IntelliJ for the first time in their survey, however
only by a marginal 5%.

74 J. Coenen et al.

https://netbeans.org/
https://www.jetbrains.com/idea/


3.1 Feedback Based on Stack Trace Analysis

The first extension (referred to as EXT_1) is based on analyzing stack trace exceptions
from console output. When an exception occurs while executing a program, the
extension parses the stack trace to retrieve the exception signature and the associated
lines of code. The signature is then matched against the exceptions previously defined in
a database. If the exception has been defined in the database, then the type of exception
is known. In this case, three types of exceptions are possible: a runtime exception, a
syntax exception, or a logic error. Using the information from the database, the
extension then highlights related lines of the code in a window (as illustrated in Fig. 1).
Each type of exception has its own distinctive background color, and unknown
exceptions share one default background color. The code line throwing the exception is
highlighted in a bright color, and subsequent associated code lines in a lighter shade.
Highlighted lines also provide additional tooltips with notes from the database, and a
button to request examples. Clicking on this button produces a pop-up dialog consec-
utively listing all examples defined in the database for this specific exception.

For providing feedback to learners based on stack trace analysis, we composed a
database of typical errors in Java. Since a variety of entries were possible, as Java offers a
vast amount of possible errors and exceptions, we reviewed several papers to identify
those errors which are typicallymade by novice programmers (see [19–25]). Our research
produced five papers (referenced in Table 1) that included enough raw data to compose
the following table, which consolidates each paper’s top 10 most commonlymade errors.
Overall, the literature research revealed 9 errors (see Table 1), which we added to the

Fig. 1. View on stack trace analysis details.

Comparison of Feedback Strategies for Supporting Programming Learning 75



stack trace database. We also added the additional errors ‘NullPointerException’,
‘ArrayIndexOutOfBoundsException’, ‘cannot cast from … to …’, and ‘cannot make a
static reference to the non-static’.

3.2 Feedback Based on Comparisons to Sample Programs

The second extension (referred to as EXT_2) implements the example-based learning
approach and uses feedback strategies whose benefits were evaluated in previous
studies [26, 27]. Technically, this approach is based on the “TCS” toolbox5 which
analyzes Java programs and calculates a dissimilarity score for two Java programs [28].
The toolbox uses advanced machine learning techniques. Although the toolbox iden-
tifies the most similar sample solution, the extension can opt to choose the next
sequential (more advanced) sample solution step for alignment and eventual presen-
tation. If a more advanced sample solution step exists that is similar to both the
originally identified sample solution step and to the learner solution, but not to the final
sample solution, then this more advanced sample solution is used for alignment. This
procedure is meant facilitate the learner in making further progress.

We implemented a view (illustrated in Fig. 2) which displays an instruction mes-
sage prompting a learner to carefully examine highlighted code areas, and a text area
containing the learner’s current Java editor code (see Fig. 2). Below the text area, there

Table 1. Java errors typically made by learners.

Error message Papers

Cannot resolve symbol [19, 20, 22–24]
; expected [19, 20, 22–24]
Illegal start of expression [19, 20, 22–24]
Bracket-expected (i.e. ‘(‘,’)’, ‘{‘,’}’, ‘[‘or’]’) [19]a, [20, 22–24]
Class or interface expected [19, 20, 22]
<identifier> expected [19, 22, 24]
Incompatible types [19, 20, 22]
Unknown-method [20, 22, 23]
Else without if [22, 24]
Not a statement [19, 24]
Reached EOF while parsing [23, 24]
Unknown-class [20, 23]
.class expected [20]
Missing return statement [22]
Method cannot be applied to parameter types [23]
aThese papers offer more detail, i.e., they list the errors separately,
but are listed here only once for better comparability.

5 For more details, see the homepage of the toolbox, available here: https://openresearch.cit-ec.de/
projects/tcs.

76 J. Coenen et al.

https://openresearch.cit-ec.de/projects/tcs
https://openresearch.cit-ec.de/projects/tcs


are the following checkboxes: (1) show insertions, (2) show deletions, (3) show
replacements, and (4) show multiple. These checkboxes resemble the operations from
the toolbox analysis. By selecting a checkbox, the rows in question are highlighted in
different colors (depending on the corresponding operation). ‘Show insertions’ indi-
cates that the highlighted code is missing in the learner solution. ‘Show deletions’
indicates that the highlighted code in the learner solution is possibly redundant (i.e. the
line of learner’s program is missing in the sample solution). ‘Show replacements’
operation indicates that the highlighted code area is marginally different from the
sample solution (i.e. a minor alteration would transfer the learner’s solution to be
exactly the correspondent sample solution code line). ‘Show multiple’ indicates that
two or more operations can be applied to the corresponding code area. Based on the
findings through the toolbox, the extension retrieves lines of code from a sample
program for all insertion operations. These code lines are then inserted into the learner
solution and highlighted when the corresponding checkbox is selected. Additionally,
highlighted code areas contain tooltip notes, which show the corresponding code line
of the sample program.

3.3 Feedback Summary Panel

In addition to the two standalone views on feedback details, we also implemented a
panel (illustrated in Fig. 3) which provides a summary of requested feedbacks and
enables users to recover previous views on feedback details.

Fig. 2. View on feedback based on structural comparisons of learner’s program and an
appropriate sample program.

Comparison of Feedback Strategies for Supporting Programming Learning 77



4 Evaluation

In September 2016, we conducted a laboratory study to investigate the impact of the
prototypically implemented feedback features (as described in Sect. 3) on users’ per-
formances. Overall, 23 participants took part in the study. All participants were
required to have some prior Java programming knowledge, the extent of which was
assessed by a pretest. The primary focus and consideration of the study was to
determine the effectiveness of the two feedback features in helping the learner develop
syntactically and semantically correct programs.

4.1 Hypotheses

In order to evaluate the research question of whether providing feedback directly in an
IDE helps learners develop correct programs, we stated the following hypotheses:

1. The extensions positively influence users’ performance in comparison to those
settings where users do not have any kind help beyond Eclipse features. We, thus,
expect a statistically significant difference between performances achieved when
feedback features (as described in Sect. 3) are available in comparison to those
performances learners achieved without using the feedback features.

2. The feedback features based on stack traces (as described in Sect. 3.1), and based
on structural comparisons to sample solutions (as described in Sect. 3.2) differ in
their impact on learners’ performance in solving a programming task. We, thus,
expect a statistically significant difference in performance between these learners
who use feedback feature based on stack trace analysis in comparison to those
learners who use feedback feature based on comparisons to sample programs.

Hypotheses 1 directly addresses the research question. Hypothesis 2 assesses
whether EXT_1 or EXT_2 influences the performance of the learners to a similar or
different extent.

4.2 Study Design

In order to measure the impact of the feedback features (as described in Sect. 3)
independently from each other, we randomly assigned participants to two groups. In
both groups, participants were first asked to solve a programming task (referred to as

Fig. 3. Panel for brief summaries of previous feedback requests.

78 J. Coenen et al.



TASK_1) without any kind of assistance from the Eclipse IDE. Then, participants were
asked to solve another programming task (referred to as TASK_2) using the
Eclipse IDE with one of the proposed feedback features. Here, we randomized the
solving order of the programming tasks in order to lessen the impact of possible
inequalities between the tasks. The first group could use feedback features based on
stack traces (EXT_1), and the second group could use feedback features based on
structural comparisons to sample solutions (EXT_2). As programming problems, we
designed two programming tasks (referred to as FibSum80 and MergeSort, respec-
tively). Programming task FibSum80 required participants to calculate the sum of the
first 80 Fibonacci numbers. Programming task MergeSort required them to sort an
integer array using the recursive merge sort algorithm. In advance, we created sample
programs for both programming tasks, collecting sample solutions from multiple
websites and amending them to fit the exact exercise description, splitting each sample
solution into multiple steps. For each programming task, participants had 40 min for
completion.

To set equal grounds among the participants regarding basic Java syntax, all par-
ticipants were provided with a Java cheat sheet consisting of the basic control flow
elements of Java. Participants were also provided with a hard-copy tutorial demon-
strating the feedback feature (depending on the group they belonged to) and how to use
it. Beyond that, they were not allowed to use any kind of help (e.g., web search
engines).

For analysis purposes, we logged selected types of information while a user is using
the extension. This information included the amount of extension accesses, the time
spent in each extension, the source code at the time of accessing the extension, and the
final programs.

4.3 Results

All of the learners’ final programs were rated on a scale from 0 to 100%, considering
three criteria. The results of a Shapiro-Wilk test of normality for each dataset for
hypothesis 1 indicated that the datasets were not normally distributed. We thus used a
nonparametric Wilcoxon Signed Ranks Test. This test did not reveal any statistically
significant difference between the two extensions (p = .549, Z = −.599 based on
positive ranks). Hence, the hypothesis could not be confirmed by this data.

Table 2. Table of ranks used by the Wilcoxon Signed Ranks Test. Of 13 participants, 6
experienced decreased performance while using EXT_2, 4 did not experience alterations in
performance when using EXT_2, 3 experienced increased performance.

N Mean rank Sum of ranks

Performance task 2 with extension –

performance task 1 without extension
Negative ranks 6 4.58 27.50
Positive ranks 3 5.83 17.50
Ties 4
Total 13

Comparison of Feedback Strategies for Supporting Programming Learning 79



The dataset used for analyzing hypothesis 2 was not normally distributed. There-
fore, we performed a nonparametric Mann-Whitney U Test. The results did not reveal
any statistically significant difference in performance, regardless of whether partici-
pants used the extension or not (p = .330, Z = −1.099 not corrected for ties). Hence,
we could not reject the null hypothesis “both samples are from the same population”.

The mean rank reveals a moderate, but statistically non-significant tendency
towards decreasing performance with the use of the feedback features (see Table 2).

Measured in qualitative terms, the impact of the extension was low, as the par-
ticipants’ solutions mostly disregarded the provided feedback (see Table 3). The
qualitative analysis was based on the following criteria: (1) if there is no indication of
transferred feedback, then result to ‘no help,’ (2) if there is some indication of trans-
ferred feedback, then result to ‘little help.’ Particularly those with a low pre-test score
and very primitive learner solutions at the point of requesting feedback had difficulties
using the provided feedback effectively in their solutions.

5 Conclusion and Future Work

The data collected from the laboratory study was, in the end, not sufficient enough to
confirm the stated hypotheses. This could possibly be attributed to the relatively small
number of participants, the potentially overshadowing influence of the difference
between the two programming tasks, and, in the case of EXT_2, the additional factor of
the choice of sample solution steps. Concerning the choice of sample solution steps, the
qualitative analysis showed that inexperienced participants accessed feedback, but did

Table 3. Qualitative analysis results of the participants that have used the extension at least
once.

Participant Extension Pre-test
score

Task 2 Score
task 1

Score
task 2

Qualitative
analysis results

1 EXT_1 4.3 FibSum80 0% 0% No help
2 EXT_1 6.7 FibSum80 0% 100% Little help
3 EXT_1 5.7 MergeSort 66% 33% Little help
4 EXT_1 5.4 MergeSort 66% 33% Little Help
5 EXT_2 3.2 FibSum80 33% 66% No help
6 EXT_2 3.7 FibSum80 44% 100% No help
7 EXT_2 6.3 MergeSort 100% 33% No help
8 EXT_2 5.8 MergeSort 100% 0% Little help
9 EXT_2 5 MergeSort 66% 0% No help
10 EXT_2 4.2 MergeSort 33% 0% No help
11 EXT_2 3.2 FibSum80 0% 0% Little help
12 EXT_2 2.4 FibSum80 0% 0% No help
13 EXT_2 4.4 MergeSort 0% 0% No help

80 J. Coenen et al.



not manage to improve their solution with the provided feedback. The analysis
involved the comparison of the learner solution with the presented sample solution
step. In cases where the presented sample solution had a different approach than the
learner’s, no transfer of feedback was noticeable. This implies that the sample solution
steps the feedback was based on missed some approaches and/or may have offered too
little information to be of value to a novice programmer. Here, fine-grained sample
solution steps might be more beneficial for novices.

According to the survey completed by participants at the end of the study, two
participants who used EXT_2 liked the idea/concept of the extension in general. A third
participant reviewing EXT_2 liked its clear structuring and uncomplicated integration
into Eclipse, as well as the fact that his code was directly available in the extension for
analysis. This supports the idea that the participants, in their roles as learners, would
find an IDE extension such as the one created for this project useful for learning
programming. If we consider this feedback in combination with the positive overall
usability rating of the extensions, we can determine the idea behind this research is
valid, and that this paper makes important contributions to a largely unexplored theme.
The main drawback of EXT_2 named by participants was that the feedback was
unspecific and misleading, particularly when the difference between the learner pro-
gram and the sample program was considerable. The claim that the extension is
nonspecific is to some extent true. The extension specifically highlights code areas it
has identified as divergent in some way, but it does not offer a text-based report of the
finding as further feedback. This would require the extension to conduct a far more
comprehensive analysis of each finding, and possibly generate a report for a great
variety of different scenarios.

For future usage, the stack trace database for EXT_1 should be extended in this
way, so that a wider range of exceptions are considered. In order to improve the
usability of both extensions, it may be necessary to examine the color scheme applied,
as one participant found it not intuitive. A possible new feature, which was also
suggested by two participants of the study, would be feedback for the Eclipse
debugger. This feedback could include the automated setting of breakpoints, feedback
on the usage of the Eclipse debugger, and additional feedback on specific variable
contents that could have caused errors.

Acknowledgement. This work was supported by the Deutsche Forschungsgemeinschaft
(DFG) under the grant “DynaFIT – Learning Dynamic Feedback in Intelligent Tutoring Systems”
(PI 764/6-2).

References

1. European Commission: Coding - the 21st century skill 6 July 2016. https://ec.europa.eu/
digital-single-market/coding-21st-century-skill. Accessed 4 Nov 2016

2. Balanskat, A., Engelhardt, K.: Computing Our Future - Computer Programming and Coding -
Priorities, School Curricula and Initiatives Across Europe. European Schoolnet, Brussels
(2015)

Comparison of Feedback Strategies for Supporting Programming Learning 81

https://ec.europa.eu/digital-single-market/coding-21st-century-skill
https://ec.europa.eu/digital-single-market/coding-21st-century-skill


3. The White House - Office of the Press Secretary: Remarks of President Barack Obama –

State of the Union Address as Delivered, 13 January 2016. https://www.whitehouse.gov/the-
press-office/2016/01/12/remarks-president-barack-obama-%E2%80%93-prepared-delivery-state-
union-address. Accessed 04 Nov 2016

4. Zweben, S., Bizot, B.: 2015 taulbee survey: continued booming undergraduate CS
enrollment; doctoral degree production dips slightly. Comput. Res. News 28(5), 2–60 (2016)

5. Self, J.: The defining characteristics of intelligent tutoring systems research: ITS care,
precisely. Int. J. Artif. Intell. Educ. (IJAIED) 10, 350–364 (1998)

6. Nienaltowski, M., Pedroni, M., Meyer, B.: Compiler error messages: what can help novices?
In: Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education,
pp. 168–172 (2008)

7. Marceau, G., Fisler, K., Krishnamurthi, S.: Mind your language: on novices’ interactions
with error messages. In: Proceedings of the 10th SIGPLAN Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward! 2011), pp. 3–18 (2011)

8. Hristova, M., Misra, A., Rutter, M., Mercuri, R.: Identifying and correcting Java
programming errors for introductory computer science students. In: Proceedings of the
34th SIGCSE Technical Symposium on Computer Science Education (SIGCSE 2003),
pp. 153–156 (2003)

9. Murphy, C., Kim, E., Kaiser, G., Cannon, A.: Backstop: a tool for debugging runtime errors.
In: Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education
(SIGCSE 2008), pp. 173–177 (2008)

10. Hartmann, B., MacDougall, D., Brandt, J., Klemmer, S.: What would other programmers do:
suggesting solutions to error messages. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI 2010), pp. 1019–1028 (2010)

11. Flowers, T., Carver, C.A., Jackson, J.: Empowering students and building confidence in
novice programmers through Gauntlet. In: 34th Annual Frontiers in Education, FIE 2004,
pp. T3H10–T3H13 (2004)

12. Holland, J., Mitrovic, A., Martin, B.: J-LATTE: a constraint-based tutor for Java. In:
Proceedings of the 17th International Conference on Computers in Education, pp. 142–146
(2009)

13. Sykes, E.: Design, development and evaluation of the Java intelligent tutoring system. Tech.
Inst. Cogn. Learn. 8, 25–65 (2010)

14. Abu-Naser, S., Ahmed, A., Al-Masri, N., Deeb, A., Moshtaha, E., Abu-Lamdy, M.: An
intelligent tutoring system for learning Java objects. Int. J. Artif. Intell. Appl. (IJAIA) 2(2),
68–77 (2011)

15. Codeanywhere Inc.: Most Popular Desktop IDEs & Code Editors in 2014, 13 January 2015.
https://blog.codeanywhere.com/most-popular-ides-code-editors/. Accessed 04 Nov 2016

16. Maple, S.: Java Tools and Technologies Landscape Report 2016, 14 July 2016. http://
zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/. Accessed 4 Nov
2016

17. Biradar, M.: Popularity of Programming Languages, 28 July 2015. https://maheshbiradar.
wordpress.com/2015/07/28/popularity-of-programming-language/. Accessed 4 Nov 2016

18. Stack Exchange Inc.: Developer Survey Results 2016, March 2016. http://stackoverflow.com/
research/developer-survey-2016#technology-development-environments. Accessed 5 Nov
2016

19. Jackson, J., Cobb, M., Carver, C.: Identifying top Java errors for novice programmers. In:
Proceedings - Frontiers in Education Conference, p. T4C (2005)

20. Jadud, J.: A first look at novice compilation behaviour using BlueJ. Comput. Sci. Educ. 15,
25–40 (2005)

82 J. Coenen et al.

https://www.whitehouse.gov/the-press-office/2016/01/12/remarks-president-barack-obama-%25E2%2580%2593-prepared-delivery-state-union-address
https://www.whitehouse.gov/the-press-office/2016/01/12/remarks-president-barack-obama-%25E2%2580%2593-prepared-delivery-state-union-address
https://www.whitehouse.gov/the-press-office/2016/01/12/remarks-president-barack-obama-%25E2%2580%2593-prepared-delivery-state-union-address
https://blog.codeanywhere.com/most-popular-ides-code-editors/
http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/
http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/
https://maheshbiradar.wordpress.com/2015/07/28/popularity-of-programming-language/
https://maheshbiradar.wordpress.com/2015/07/28/popularity-of-programming-language/
http://stackoverflow.com/research/developer-survey-2016#technology-development-environments
http://stackoverflow.com/research/developer-survey-2016#technology-development-environments


21. Altadmri, A., Brown, N.: 37 million compilations: investigating novice programming
mistakes in large-scale student data. In: Proceedings of the 46th ACM Technical Symposium
on Computer Science Education, pp. 522–527 (2015)

22. Tabanao, E., Rodrigo, M., Jadud, M.: Predicting at-risk novice Java programmers through
the analysis of online protocols. In: Proceedings of the Seventh International Workshop on
Computing Education Research (ICER 2011), pp. 85–92 (2011)

23. McCall, D., Kölling, M.: Meaningful categorisation of novice programmer errors. In:
Frontiers in Education Conference, pp. 2589–2596 (2014)

24. Becker, B.: An effective approach to enhancing compiler error messages. In: Proceedings of
the 47th ACM Technical Symposium on Computing Science Education (SIGCSE 2016),
pp. 126–131 (2016)

25. Denny, P., Luxton-Reilly, A., Tempero, E.: All syntax errors are not equal. In: Proceedings
of the 17th ACM Annual Conference on Innovation and Technology in Computer Science
Education (ITiCSE 2012), pp. 75–80 (2012)

26. Gross, S., Mokbel, B., Hammer, B., Pinkwart, N.: Learning feedback in intelligent tutoring
systems. KI - Künstliche Intell. 29(4), 413–418 (2015)

27. Gross, S., Pinkwart, N.: How do learners behave in help-seeking when given a choice? Int.
J. Artif. Intell. Educ. 9112, 600–603 (2015)

28. Mokbel, B., Gross, S., Paassen, B., Pinkwart, N., Hammer, B.: Domain-independent
proximity measures in intelligent tutoring systems. In: Proceedings of the 6th International
Conference on Educational Data Mining (EDM), pp. 334–335 (2013)

Comparison of Feedback Strategies for Supporting Programming Learning 83


	Comparison of Feedback Strategies for Supporting Programming Learning in Integrated Development Environments (IDEs)
	Abstract
	1 Introduction
	2 Related Work
	3 Approach: Design and Implementation
	3.1 Feedback Based on Stack Trace Analysis
	3.2 Feedback Based on Comparisons to Sample Programs
	3.3 Feedback Summary Panel

	4 Evaluation
	4.1 Hypotheses
	4.2 Study Design
	4.3 Results

	5 Conclusion and Future Work
	Acknowledgement
	References




