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Abstract

Some trace elements are essential for plants but become toxic at high

concentration. Remarkably, about 500 plant species worldwide are able to

accumulate tremendous amounts of metals in their leaves and are there-

fore called metal hyperaccumulators. In the context of sustainable devel-

opment, there is a regain of interest for metal hyperaccumulation

mechanisms that may become instrumental for improving metal phyto-

extraction from contaminated soils to produce metals with a lower net

impact on the environment. In addition, studying the molecular mech-

anisms of hyperaccumulation in diverse plant species is necessary in order

to understand the evolution of this extreme and complex adaptation trait.

Our current knowledge of metal hyperaccumulation is mostly based on the

analysis of a few species from the Brassicaceae family, and suggests that

the underlying mechanisms result from an exaggeration of basic mech-

anisms involved in metal homeostasis. However, the development of Next

Generation Sequencing technologies opens today the possibility for study-

ing new hyperaccumulator species that therefore may reveal more diver-

sity in these mechanisms. The goal of this chapter is to provide

background information on metal hyperaccumulation and give a clear

picture of what we know currently about the molecular mechanisms

involved in this trait. We also attempt to outline for the reader the future

scientific challenges that this field of research is facing.
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1 Introduction

Investigating the mechanisms involved in metal

hyperaccumulation allows us to observe extreme

adaptation of metal homeostasis networks in plants

and identify key players in metal distribution and

tolerance in plant tissues. The study of metal hyper-

accumulator species also permits examination of

mechanisms underlying the evolution of this

extreme adaptive trait (Shahzad et al. 2010;

Hanikenne and Nouet 2011; Hanikenne et al.

2013). Several comprehensive reviews have been

published recently on this topic (Verbruggen et al.

2009b; Krämer 2010; Hanikenne and Nouet 2011)

and we refer readers to those reviews. Whereas

hyperaccumulator species typically accumulate

specifically one metal when growing in their natu-

ral environment, some species have the ability to

tolerate and accumulate several metals when

grown ex situ. This is well documented for the

hyperaccumulator species of the Brassicaceae fam-

ily Noccaea caerulescens, in which ultramafic-

adapted accessions such as Puy de Wolf (France),

Monte Prinzera (Italy), or Puente Basadre (Spain)

are able to accumulate Ni but also Zn and Cd

(Assunção et al. 2003; Peer et al. 2003; Escarré

et al. 2013; Gonneau et al. 2014; Callahan et al.

2016). This ability to tolerate and accumulate sev-

eral metals likely reflects the relatively low speci-

ficity of some mechanisms involved in metal

transport and chelation.

Several metals that are accumulated in

hyperaccumulator species (e.g. Zn, Ni, Mn)

are essential nutrients but become toxic at

high concentrations for most plants (i.e. non-

accumulating species). Therefore, all plant spe-

cies have developed mechanisms to regulate

essential metal homeostasis according to their

needs and metal availability in soils (Burkhead

et al. 2009; Palmer and Guerinot 2009; Thomine

and Vert 2013). Our current knowledge suggests

that the molecular mechanisms involved

in metal hyperaccumulation are derived essen-

tially from the mechanisms involved in metal

homeostasis. In several examples, genes invol-

ved in metal homeostasis are differentially

expressed in hyperaccumulators compared to

related non-accumulator species, as a result of

gene duplication and/or changes in promoter

activity (Talke et al. 2006; van de Mortel et al.

2006; Krämer et al. 2007; Hanikenne et al. 2008;

Shahzad et al. 2010). However, specific genes

linked to hyperaccumulation may be discovered

as molecular analysis of hyperaccumulation will

extend in the future to additional non-model spe-

cies from various plant families owing to the

development of high-throughput sequencing

technologies (Verbruggen et al. 2013; Halimaa

et al. 2014b; Merlot et al. 2014). For most metals,

the hyperaccumulation trait appeared indepen-

dently in distant plant families. Therefore, some

of the mechanisms involved in metal hyperaccu-

mulation may be specific to a plant family or a

species, whereas others may be convergent

among distant hyperaccumulators. For instance,

several examples of convergent evolution have

been identified between the Brassicaceae

Arabidopsis halleri and N. caerulescens (see

below and Krämer et al. 2007; Hanikenne et al.

2008; O’Lochlainn et al. 2011; Craciun et al.

2012), suggesting important functional constraints

in the metal homeostasis network.

Because of its singularity, metal hyperaccu-

mulation may appear as an exception having min-

imal relevance. However, from a scientific point

of view, metal hyperaccumulation in plants is

fascinating, and understanding the mechanisms

involved in this trait may provide tools for pro-

ducing metals with lower impact on the environ-

ment in the near future. The goal in this chapter is

to outline our current knowledge about the molec-

ular mechanisms of metal hyperaccumulation in

plants and to highlight possible future develop-

ments in this important field of research.

2 Molecular Physiology of Metal
Hyperaccumulation

2.1 Main Steps of Metal
Hyperaccumulation

When exposed to excess metals, most plant spe-

cies adopt a so-called excluder strategy to pre-

vent metal accumulation in photosynthetically

active shoot tissues (Krämer 2010). This goal
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can be achieved by limiting metal absorption by

roots, increasing metal efflux from root tissues,

and/or increasing metal storage in root cell walls

and vacuoles. In contrast, achieving metal hyper-

accumulation and hypertolerance requires

modifications at specific nodes of the metal

homeostasis network to ensure that the metal

flux in the plant is directed towards shoot tissues

(Fig. 1; Clemens et al. 2002). At the

physiological level, these alterations include

some or all of the following steps:

1. An enhanced metal mobilization and uptake

in roots;

2. An efficient radial metal transport towards the

root vascular tissues; this includes a reduction

of metal storage in root vacuoles;

3. An increased transport of metal from the root

to the shoot, with efficient xylem loading; this

Fig. 1 Model of the physiology of metal hyperaccu-

mulation and hypertolerance. Enhanced metal uptake

and radial transport in roots, xylem loading/unloading

and vacuolar storage in shoots all make major

contributions to the traits. In roots, it is possible that the

metal can travel in the apoplasm up to the endodermis cell

layer before cellular uptake (not represented). Note that

the tissue (epidermis or mesophyll) involved in metal

storage varies depending on the species and the metal

(see text). co cortex, en endodermis, ep epidermis, me
mesophyll, Zinc-NA Zinc-Nicotianamine chelates, pc
pericycle, vac vacuole, xp xylem parenchyma, xy xylem.

Figure modified from Hanikenne and Nouet (2011)
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step contributes to metal tolerance by

enabling metal storage (and thus detoxifi-

cation) in shoot tissues;

4. An efficient mechanism for xylem unloading

and metal distribution in shoots together with

a high vacuolar storage capacity.

Processes occurring in both roots and shoots

thus contribute to metal tolerance and hyperaccu-

mulation. Root-based processes play an essential

role in hyperaccumulation whereas shoot-based

processes are required for hypertolerance, as

suggested from grafting experiments between

N. caerulescens and the non-Zn-accumulating

Microthlaspi perfoliatum (Guimarães et al.

2009).

2.2 Metal Distribution in Shoots

Metal distribution in shoot tissues is specific to

both the species and the metal considered. This

topic has been extensively reviewed recently

(Fernando et al. 2013; Leitenmaier and Küpper
2013). Briefly, in most cases, metals (Zn, Cd, Ni

or Se) accumulate at the base of the trichomes

and in the vacuoles of epidermal cells. In con-

trast, mesophyll cells that are the main site of

photosynthesis accumulate lower amounts of

metals (Küpper et al. 1999, 2001; Lombi et al.

2002; Cosio et al. 2005). In the vacuoles of

epidermal cells, metals can reach very high

concentrations (e.g. several hundred mM;

Küpper et al. 1999; Fernando et al. 2006b).

There are, however, exceptions. For instance,

Zn and Cd are stored in the vacuoles of meso-

phyll cells in both Zn- and

Cd-hyperaccumulators A. halleri and Sedum

alfredii, in which Zn is mostly bound to malate

(Küpper et al. 2000; Sarret et al. 2002, 2009;

Tian et al. 2011; Lu et al. 2014; Isaure et al.

2015). In the hyperaccumulator Sedum plumbi-
zincola, Zn accumulates mostly in leaf epidermal

cells, but also in large amounts in mesophyll cells

of young leaves (Cao et al. 2014). In this species,

Cd is mostly bound to cell walls in leaves (Peng

et al. 2017). Accumulation of Mn in mesophyll

cells is also observed in several

Mn-hyperaccumulators (Fernando et al. 2006a,

b, 2013).

3 Identification of Molecular
Processes Involved in Metal
Hyperaccumulation

In the last 15 years, a number of complementary

approaches have been used to identify the mole-

cular actors underlying hyperaccumulation and

hypertolerance. These approaches included:

I. Screens of cDNA libraries in yeast in order

to isolate genes contributing to metal trans-

port and tolerance (e.g. Lasat et al. 2000;

Pence et al. 2000; Bernard et al. 2004;

Papoyan and Kochian 2004);

II. Quantitative genetics analyses aiming to

identify Quantitative Traits Loci (QTLs)

co-segregating with the traits in progenies

of crosses between an hyperaccumulator and

a related non-accumulator species (e.g. Dräger

et al. 2004; Deniau et al. 2006; Filatov et al.

2007; Courbot et al. 2007;Willems et al. 2007,

2010; Frérot et al. 2010; Baliardini et al. 2015).

III. Transcriptomic studies comparing gene

expression levels in hyperaccumulator and

related non-accumulator species (e.g. Becher

et al. 2004; Weber et al. 2004, 2006; Chiang

et al. 2006; Craciun et al. 2006; Filatov et al.

2006; Hammond et al. 2006; Talke et al.

2006; van deMortel et al. 2006; van deMortel

et al. 2008; Gao et al. 2013; Han et al. 2015).

These candidate genes are mostly involved in

metal transport, metal chelator synthesis, or

metal-induced oxidative stress response. Note

that the last is not discussed in this chapter.

Several candidate genes were further character-

ized functionally (e.g. Pence et al. 2000; Persans

et al. 2001; Dräger et al. 2004; Kim et al. 2004;

Hanikenne et al. 2008; Gustin et al. 2009; Lin

et al. 2009; Shahzad et al. 2010; Ueno et al. 2011;

Milner et al. 2012; Deinlein et al. 2012; Merlot

et al. 2014; Baliardini et al. 2015; Nouet et al.

2015; Charlier et al. 2015). However, only a few
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candidates (e.g. HMA4, see below) were con-

firmed by reverse genetics in hyperaccumulator

species as major players in metal hyperaccu-

mulation and tolerance; their functions are

described in detail in the following sections.

A large part of our knowledge on metal

hyperaccumulation comes from the study of

two model Zn and Cd hyperaccumulating species

of the Brassicaceae family, A. halleri and

N. caerulescens, which are related to the sensi-

tive and non-accumulating species A. thaliana

(Yogeeswaran et al. 2005; Clauss and Koch

2006). These two species have been instrumental

in successfully improving our understanding of

the physiological, molecular, and genetic bases

of metal hyperaccumulation and associated

hypertolerance (see Krämer et al. 2007; Milner

and Kochian 2008; Pauwels et al. 2008; Roosens

et al. 2008; Verbruggen et al. 2009b; Krämer

2010; Hanikenne and Nouet 2011). Those

successes relied on availability of the

A. thaliana genome sequence (The Arabidopsis

Genome Initiative 2000), and on dedicated tools

and resources combined with relatively high

gene sequence conservation among Brassicaceae

species (94% and 88% identity with A. thaliana

for A. halleri and N. caerulescens, respectively)
(Talke et al. 2006; van de Mortel et al. 2006). It is

expected that our knowledge will rapidly

broaden with new species becoming accessible

to molecular and genomic analyses (Gao et al.

2013; Verbruggen et al. 2013; Merlot et al.

2014).

4 Mechanisms of Zn and Cd
Hyperaccumulation

As mentioned above, most of our knowledge

about Zn and Cd hyperaccumulation was

acquired using A. halleri and N. caerulescens

(Fig. 2). More recent models include (i) the

Crassulaceae S. alfredii and S. plumbizincola
from Asia, which are the only species reported

to hyperaccumulate Cd other than the Brassi-

caceae (Yang et al. 2004, 2006; Deng et al.

2007; Krämer 2010; Wu et al. 2013; Cao et al.

2014; Ma et al. 2015; Peng et al. 2017); and

(ii) the Amaranthaceae Gomphrena claussenii
from South America, which is highly tolerant to

Zn and Cd and presents indicator levels of Zn and

Cd accumulations (Villafort Carvalho et al. 2013,

2015).

Arabidopsis halleri and N. caerulescens dis-

play constitutive Zn hyperaccumulation and

hypertolerance, although intraspecific variation

for those traits has been reported (Bert et al.

2000, 2002; Reeves et al. 2001; Assunção et al.

2003; Molitor et al. 2005; Besnard et al. 2009).

Similarly, hyperaccumulation of Cd shows sub-

stantial intraspecific variation (Escarré et al. 2000;

Bert et al. 2002; Roosens et al. 2003; Verbruggen

et al. 2013; Meyer et al. 2015). Metal hyperaccu-

mulation evolved independently in the two spe-

cies (Krämer 2010). However, both share a set of

alterations of their metal homeostasis networks in

comparison to the non-accumulator A. thaliana,

which is described in detail below.

4.1 Uptake of Zn and Cd

Prior to uptake, it is suggested that metals are

actively mobilized from the soil, by acidification

and/or chelate secretion (Clemens et al. 2002). A

recent report, however, suggested that the roots of

A. halleri secrete elevated levels of nicotianamine

(NA), a metal chelator able to form NA-Zn com-

plexes (Curie et al. 2009; Clemens et al. 2013),

which may reduce root Zn uptake and increase

tolerance (Tsednee et al. 2014). Another report

indicated higher organic acid levels and Znmobil-

ization in the dissolved organic matter within the

rhizosphere of hyperaccumulator compared to

non-accumulator accessions of S. alfredii
(Li et al. 2012).

Several divalent metal transporters of the ZIP

(Zrt-Irt-like Protein) family are highly expressed

in roots and/or shoots of both A. halleri and

N. caerulescens (Talke et al. 2006; Krämer

et al. 2007; Lin et al. 2009, 2016). It presumably

results in enhanced rates of root metal uptake or

mobilization from root storage sites. By contri-

buting to Zn radial transport towards the xylem

in roots, it also may contribute to metal parti-

tioning between root and shoot tissues. Several
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ZIP genes are induced by Zn deficiency under the

control of the bZIP19 and bZIP23 transcription

factors in A. thaliana (Assunção et al. 2010).

Their high expression in A. halleri and

N. caerulescens roots could be the direct

consequence of the high activity of HMA4

(Heavy Metal ATPase 4; see below), which

depletes Zn in roots (Talke et al. 2006;

Hanikenne et al. 2008; Gustin et al. 2009). Note

that several ZIP genes are also highly expressed

Fig. 2 Model for Zn hyperaccumulation and

hypertolerance in the Brassicaceae A. halleri and

N. caerulescens. Enhanced functions of ZIP transporters

in cellular uptake, of the P-type ATPase HMA4 in xylem

loading/unloading and of MTP1 in vacuolar storage all

make major contributions to the traits. The exact

functions and localizations of individual ZIPs are

unknown. In roots, the metal chelator nicotianamine

(NA) possibly favours Zn radial transport towards the

xylem by symplastic inter-cellular mobility of Zn by

either allowing Zn movement through plasmodesmata

and/or preventing vacuolar storage. Vacuolar storage in

shoots occurs in the epidermis in N. caerulescens and in

the mesophyll in A. halleri. Additional metal homeostasis

genes that are highly expressed in both hyperaccu-

mulators are discussed in the text. Note that similar

mechanisms have been identified as more active in a

metal hyperaccumulating population of the Crassulaceae

S. alfredii compared to a non-accumulating population. co
cortex, en endodermis, ep epidermis, memesophyll, Zinc-
NA Zinc-Nicotianamine chelates, pc pericycle, vac vacu-
ole, xp xylem parenchyma, xy xylem. Figure modified

from Hanikenne and Nouet (2011)
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in S. plumbizincola (Peng et al. 2017). Further

work will be required to determine their indi-

vidual function in Zn hyperaccumulation and to

assess whether Cd uptake is determined by spe-

cific mechanisms or via Zn- and/or Fe-transport

mechanisms (Meyer and Verbruggen 2012).

4.2 Root-to-Shoot Transfer of Zn
and Cd

Increased rate of root-to-shoot metal transfer is key

to achieving metal hyperaccumulation in shoots. It

requires enhanced radial transport to xylem,

decreased vacuolar storage in root cells, and effi-

cient xylem loading. Several NAS (nicotianamine

synthase) genes are highly expressed in A. halleri

and N. caerulescens (Weber et al. 2004; van de

Mortel et al. 2006; Deinlein et al. 2012). NAS
transcript levels are also higher in roots of a

hyperaccumulator accession compared to those of

a non-hyperaccumulator accession in S. alfredii
(Liang et al. 2014). Elevated levels of NA have

been measured in roots of A. halleri compared to

A. thaliana (Weber et al. 2004; Deinlein et al.

2012). It was further shown, using A. halleri

RNAi lines, that high expression of the NAS2

gene provides increased NA levels for Zn sym-

plastic mobility towards the xylem and for control-

ling the rate of Zn xylem loading in roots (Deinlein

et al. 2012; Cornu et al. 2015). The amino-acid

histidine (His), whose concentration weakly correl-

ates with Zn content inN. caerulescens, was shown

to enhance Zn xylem loading and thus contribute to

reduce Zn storage in roots (Callahan et al. 2007;

Kozhevnikova et al. 2014).

In A. halleri, Zn and Cd loading into the xylem
is driven by the HMA4 protein (Talke et al. 2006;

Courbot et al. 2007; Hanikenne et al. 2008), which

is a plasma membrane P-Type ATPase pump that

uses the energy released from the hydrolysis of

Adenosine triphosphate (ATP) to transport metal

against the electro-chemical gradient (Hussain

et al. 2004; Wong and Cobbett 2009; Pedersen

et al. 2012; Hanikenne and Baurain 2014). The

HMA4 gene co-segregates with QTLs for Zn and

Cd tolerance and accumulation (Courbot et al.

2007; Willems et al. 2007, 2010; Frérot et al.

2010; Meyer et al. 2016). High expression of

HMA4 is required for both hyperaccumulation

and hypertolerance in A. halleri (Talke et al.

2006; Hanikenne et al. 2008). Increased gene dos-

age ofHMA4was selected during the evolutionary

history of A. halleri and evolved through tandem

triplication and activation in cis of the promoters

of all three copies (Hanikenne et al. 2008, 2013).

The A. halleri HMA4 locus was shaped by positive
selection, resulting in a selective sweep and in

ectopic gene conversion (Hanikenne et al. 2013).

The three HMA4 copies are active mainly in vas-

cular tissues of A. halleri, which allows acting in

xylemmetal loading in roots and possibly in metal

distribution in leaves. It also may ensure metal

exclusion from metal-sensitive tissues (e.g. root

tip, cambium). By controlling highly active Zn

xylem loading, HMA4 also acts as a physiological

regulator: it depletes the root Zn pool, which

triggers a Zn-deficiency response resulting in

high expression of several ZIP genes (Hanikenne

et al. 2008). In agreement, modeling of the Zn

supply-dependent spatio-temporal evolution of Zn

concentration in root symplast and apoplast of

A. thaliana predicted that slight changes in

HMA4 transcript levels have a major impact on

the radial distribution of Zn in roots and the root-

to-shoot Zn gradient (Claus et al. 2013). It was

further shown that a certain extent of functional

differentiation exists among the three AhHMA4
copies when expressed in A. thaliana, stemming

from differences in expression levels rather than

in expression profile. Interestingly, AhHMA4 copy
3 was subjected to the strongest, possibly most

recent, positive selection during the evolutionary

history of A. halleri (Hanikenne et al. 2013), thus
linking sequence diversity patterns and function

in vivo (Hanikenne et al. 2013; Nouet et al. 2015).

HMA4 is also highly expressed in

N. caerulescens as well as in Zn- and

Cd-hyperaccumulator accessions of S. alfredii

and S. plumbizincola, where it very likely plays

similar roles to the A. halleri HMA4 (Bernard

et al. 2004; Papoyan and Kochian 2004; van de

Mortel et al. 2006; O’Lochlainn et al. 2011;

Craciun et al. 2012; Zhang et al. 2016; Peng

et al. 2017). Moreover, the gene coding for the

ZIP transporter ZNT1 of N. caerulescens is highly
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expressed in cortex, endodermis, and pericycle

root cells. When expressed in A. thaliana, it

contributes to Zn and Cd tolerance and accumula-

tion. The NcZNT1 gene may therefore be involved

in Zn and Cd influx into cells responsible for

xylem loading, providing metals for transport by

HMA4 (Milner et al. 2012; Lin et al. 2016). The

ortholog of ZNT1 in A. halleri, ZIP4, is also highly

expressed and may contribute to a similar function

(Talke et al. 2006). Note that NRAMP1 (Natural

Resistance-Associated Macrophage Protein 1)

may also play a similar role for Cd in

N. caerulescens (Milner et al. 2014). Moreover,

the vacuolar metal efflux transporters NRAMP3

and NRAMP4 are highly expressed in

N. caerulescens and A. halleri roots and were

proposed to limit vacuolar storage and increase

metal mobility (Weber et al. 2004; Oomen et al.

2009). NRAMP3 is also highly expressed in

S. plumbizincola (Peng et al. 2017).

Once in the xylem sap, metals are transported

to the shoot owing to the evapo-transpiration

stream. In this compartment, Zn is mainly

bound to organic acids such as malate and citrate

(Monsant et al. 2011; Lu et al. 2013; Cornu et al.

2015).

4.3 Storage of Zn and Cd in Leaves

It is suggested that HMA4 and ZIP transporters

play an important role in Zn unloading and dis-

tribution in shoot tissues (Krämer et al. 2007;

Hanikenne and Nouet 2011). However, their

exact contribution, as well as that of metal

ligands or other transporters, to these processes

remains to be detailed. Zn storage in vacuoles is

most likely ensured by the MTP1 (Metal Toler-

ance Protein 1) protein in A. halleri (Dräger et al.

2004; Talke et al. 2006; Shahzad et al. 2010),

although its role remains to be formally esta-

blished through the analysis of knock-down

plants. MTP1 is a vacuolar transporter implicated

in Zn tolerance (Krämer 2005). The MTP1 gene

is constitutively highly expressed in both root

and shoot of A. halleri, and is present in four to

five copies that are located on three distinct link-

age groups in the genome (Dräger et al. 2004;

Talke et al. 2006; Willems et al. 2007; Shahzad

et al. 2010). The two most highly expressed

copies each co-segregate with QTLs for Zn tol-

erance (Dräger et al. 2004; Talke et al. 2006;

Willems et al. 2007; Shahzad et al. 2010).

MTP1 is also highly expressed in Noccaea
(formerly Thlaspi) goesingense, another Zn and

Ni hyperaccumulator, in N. caerulescens, and in

Zn-hyperaccumulating populations of S. alfredii
(Milner and Kochian 2008; Gustin et al. 2009;

Zhang et al. 2011). It likely plays in these species

a similar role as in A. halleri.
Finally, no detailed information is currently

available on the molecular mechanisms of Cd

storage in A. halleri shoot vacuoles (Meyer and

Verbruggen 2012). Indeed, MTP1 is not asso-

ciated with high Cd tolerance or accumulation in

A. halleri (Courbot et al. 2007; Willems et al.

2010), although MTP1-related proteins were

shown to transport Cd in several species, includ-

ing the Ni hyperaccumulator N. goesingense
(Persans et al. 2001; Migocka et al. 2015). In

N. caerulescens, HMA3 (Heavy Metal ATPase

3) may contribute to this process (Ueno et al.

2011). In addition, differential regulation of

MTP1 by Cd in related Noccaea species suggests

that it may contribute to Cd handling (Martos et al.

2016).

4.4 Additional Candidate Genes
for Zn and Cd Accumulation
and Tolerance

A few additional candidate genes for a role in Zn

or Cd tolerance have been functionally character-

ized. In A. halleri, the PDF1.1 (Plant Defensin

1.1) protein was identified through a cDNA screen

in yeast as a contributor to Zn tolerance. It also

confers Zn tolerance when ectopically over-

expressed in A. thaliana and is more highly

expressed in shoots of A. halleri compared to

A. thaliana (Mirouze et al. 2006). It localizes in

intracellular compartments (Oomen et al. 2011).

PDFs were initially known as secreted antifungal

proteins and are characterized by a cysteine-

stabilized, α-helix β-sheet, three-dimensional

structure (De Coninck et al. 2013; van der
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Weerden and Anderson 2013). Family wide com-

parison of A. halleri and A. thaliana PDF1 genes

revealed that the molecular function of the

A. thaliana and A. halleri proteins in Zn tolerance

and antifungal activity is conserved, and that func-

tional differences in the two species may result

from differential expression levels and regulation

(Shahzad et al. 2013; Nguyen et al. 2014).

The fine mapping of a QTL in A. halleri
allowed the identification of CAX1 (cation/

hydrogen exchanger 1) as a candidate gene for

Cd tolerance (Courbot et al. 2007; Baliardini

et al. 2015). CAX1 is localized in the vacuolar

membrane and plays a key role in Ca homeosta-

sis (Conn et al. 2011). CAX1 is more expressed in

the roots of A. halleri compared to those of

A. thaliana, and high expression of CAX1

co-segregated with Cd tolerance in a back-cross

1 population of an A. halleri/A. lyrata cross. The

CAX1 QTL is conditional on Ca supply in the

medium and is detected at low Ca supply only.

The A. thaliana cax1 mutant analysis suggests

that, at low Ca supply, CAX1 may be required to

tolerate Cd-induced oxidative stress (Baliardini

et al. 2015, 2016).

5 Mechanisms of Ni
Hyperaccumulation

Today, more than 400 nickel (Ni) hyper-

accumulator species have been identified world-

wide. These species are scattered in more than

40 plant families, mostly dicotyledons (Krämer

2010; van der Ent et al. 2013; Cappa and Pilon-

Smits 2014). Despite this large diversity and the

interest in understanding the underlying mech-

anisms, as they may be instrumental to improve

Ni phytoextraction, only a limited number of stud-

ies have focused on the molecular mechanisms of

Ni hyperaccumulation. Ni is an essential microele-

ment for plants because it is required for urease

activity (Polacco et al. 2013). Plants have, there-

fore, evolved mechanisms for the regulation of Ni

homeostasis and Ni hyperaccumulation that likely

derive from these mechanisms (Fig. 3). In

A. thaliana, the mechanisms involved in Ni homeo-

stasis are strongly linked to Fe homeostasis (Schaaf

et al. 2006; Morrissey et al. 2009; Nishida et al.

2011). Interestingly, in Ni hyperaccumulators of

the Alyssum genus, it was shown that Mn treatment

reduces Ni accumulation, thus suggesting that in

some species Ni hyperaccumulation may also use

mechanisms primary involved in Mn homeostasis

(Leigh Broadhurst et al. 2009; Ghaderian et al.

2015).

5.1 Uptake of Ni

Efficient uptake of Ni by the roots of hyperaccu-

mulators requires divalent metal importers

(e.g. ZIP, NRAMP) or transporters able to carry

conjugated forms of Ni (e.g. Yellow Stripe-Like

(YSL) family). However, the identity of the

transporters involved in Ni uptake in hyperaccu-

mulators is still not clearly established.

In A. thaliana, the metal transporter IRT1 that

is required for the uptake of Fe from soil was

shown to also be involved in Ni uptake (Vert

et al. 2002; Nishida et al. 2011, 2012). Interest-

ingly, the high expression of the IRT1 ortholog in

the roots of N. caerulescens (NcIRT1) is

correlated with Ni hyperaccumulation in the

Monte Prinzera accession (Halimaa et al.

2014b). In addition, de novo sequencing of

NcIRT1 in Monte Prinzera revealed sequence

polymorphism in the large cytoplasmic loop of

IRT1 that may have a role in transport specificity

and/or regulation (Halimaa et al. 2014a). How-

ever, in other Ni hyperaccumulator accessions

of N. caerulescens (i.e. Puy de Wolf

and Bergenbach), we were unable to detect cor-

relation between NcIRT1 expression and Ni

hyperaccumulation (V. S. Garcia de la Torre,

S. Merlot, unpublished data). These data suggest

that diverse transporters may be involved in

the uptake of Ni in hyperaccumulators. Indeed,

several members of the ZIP and NRAMP

families from Noccaea species have been linked

to Ni transport or accumulation, but further

studies will be required to support their implica-

tion in an efficient uptake of Ni (Mizuno et al.

2005, 2007; Wei et al. 2009; Halimaa et al.

2014b).
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5.2 Root-to-Shoot Transfer of Ni

The long-distance transport of Ni from roots to

shoots requires several steps that involve metal

transporters and chelators that are able to bind Ni

in different pH environments. In hyperaccu-

mulators, a large proportion of Ni is found as

complexes with carboxylic acids including cit-

rate and malate (for reviews see Callahan et al.

2006; Sarret et al. 2013). These organic acid

complexes are stable in acidic compartments

such as vacuoles and xylem. In particular,

citrate-Ni was identified in the xylem sap of the

Ni hyperaccumulator Alyssum serpyllifolium

Fig. 3 Proposed mechanisms of Ni transport in

Hyperaccumulators. Efficient Ni uptake is mediated by

metal transporters (ZIP/IRT, NRAMP. . .) located at the

plasma membrane of root epidermal cells (ep). Ni is then

transported through the cortex (co) and the endodermis

(en) by a combination of Ni export and import transporter

activities. During this step, Ni is chelated [e.g. by

nicotianamine (Ni-NA)] to reduce its reactivity in the cyto-

plasm. Binding to His might prevent vacuolar sequestration

to favor radial transport. In the pericycle (pc), Ni is loaded

in the xylem (xy) together with chelator molecules

(e.g. NA, Citrate. . .) by YSL and MATE transporters and

transported to the shoot. The mechanisms involved in

xylem unloading and transport to the epidermal cell are

not well known but may be similar as the one involved in

Ni transport in roots. In epidermal cell, Ni is transported

and stored in the vacuole (vac) by IREG transporters.

Figure modified from Hanikenne and Nouet (2011)
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(Alves et al. 2011). Interestingly, an ortholog of

the A. thaliana citrate transporter FRD3 of the

Multidrug And Toxic compound Extrusion fam-

ily (MATE) is more expressed in the hyper-

accumulator N. caerulescens than in the related

non-accumulator A. thaliana (van de Mortel et al.

2006). AtFRD3 and its orthologue in rice,

OsFRDL1, are involved in the translocation of

Fe from roots to shoots (Rogers and Guerinot

2002; Yokosho et al. 2009). Therefore, high

expression of MATE transporters in the root

pericycle of hyperaccumulators would increase

the loading of xylem with citrate and therefore

favor the translocation of Ni-citrate complex

from root to shoot. However, to date no direct

correlation has been established between MATE

transporters and Ni hyperaccumulation. It is

interesting to note that FRD3 is also highly

expressed in A. halleri, which hyperaccumulates

Zn. FRD3 transporters may, therefore, have a

general function in metal hyperaccumulation,

favouring long-distance transport of metal from

root to shoot (Talke et al. 2006; Charlier et al.

2015). NA also has a strong affinity for Ni over a

wide pH range and is proposed to bind Ni in more

neutral compartments such as cytoplasm or

phloem (Callahan et al. 2006; Rellan-Alvarez

et al. 2008; Alvarez-Fernandez et al. 2014).

Accordingly, over-expression of NA synthase in

transgenic A. thaliana increases Ni tolerance but

is not sufficient to improve Ni accumulation

(Pianelli et al. 2005). The NA-Ni complex was

identified in the xylem sap of N. caerulescens
(Mari et al. 2006), in the latex of the Ni hyper-

accumulator Pycnandra acuminata

(Schaum€olffel et al. 2003), and in extracts of

several hyperaccumulator species (Callahan

et al. 2012). Transporters of the YSL family

have been shown to transport NA-metal

complexes (Curie et al. 2009; Conte and Walker

2012). Several genes coding for YSL transporters

are more expressed in the hyperaccumulator

N. caerulescens than in the related

non-accumulator A. thaliana (Gendre et al.

2007). Among these transporters, NcYSL3 that

is able to transport the NA-Ni complex is

expressed in the vasculature of roots and leaves,

suggesting a role in long-distance Ni transport.

Finally, the amino acid histidine (His), whose

concentration in some hyperaccumulators of the

Alyssum and Noccaea genera correlates with Ni

accumulation, is proposed to play a role in the

radial transport of Ni (Krämer et al. 1996; Richau

et al. 2009). His has a strong affinity for Ni and

the Ni-His complex, and has been identified in

samples from Alyssum and Noccaea hyperaccu-

mulators (Krämer et al. 1996; Persans et al. 1999;

Callahan et al. 2006; McNear et al. 2010). In the

Ni hyperaccumulator A. lesbiacum, genes

involved in His biosynthesis are constitutively

and highly expressed compared to the

non-accumulator A. montanum. The over-

expression of the first enzyme of the His biosyn-

thetic pathway, ATP-phosphoribosyltransferase,

in Arabidopsis thaliana increases Ni tolerance

but not Ni content, thus suggesting that other

mechanisms are necessary for accumulation of

this metal (Wycisk et al. 2004; Ingle et al. 2005).

Treatment of plants with Ni-His increases xylem

loading and inhibits Ni uptake from root

vacuoles (Richau et al. 2009). It was therefore

proposed that the high concentration of His in

roots of Ni hyperaccumulators prevents vacuolar

storage, favoring radial transport and xylem

loading (Kerkeb and Krämer 2003; Richau et al.

2009). However, the mechanisms responsible for

the inhibition of Ni vacuolar sequestration by His

are still unknown. Moreover, it is currently not

known if this strategy is widely conserved in Ni

hyperaccumulators and if this is relevant in natu-

ral environments (e.g. ultramafic-derived soil),

where N is limiting (Alves et al. 2011; Centofanti

et al. 2013).

5.3 Storage of Ni in Leaves

In most hyperaccumulators that have been stud-

ied, Ni is stored in the vacuole of leaf epidermal

cells (for review see Sarret et al. 2013). Several

lines of evidence indicate that Ferroportin (FPN)/

Iron Regulated (IREG) transporters play an

essential role in the sequestration of Ni in

vacuoles.

In A. thaliana, AtIREG2 is expressed in roots in

response to Fe-starvation and the AtIREG2
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protein localization on the vacuole. The analysis

of the ireg2 mutant indicated that AtIREG2 is

involved in the storage of Ni excess in the vacuole

of root cells (Schaaf et al. 2006; Morrissey et al.

2009). On the contrary, a second IREG transporter

in A. thaliana, named FPN1/IREG1, is localized

on the plasma membrane and is proposed to play a

role in xylem loading of metals in roots

(Morrissey et al. 2009). Interestingly, the ortholog

of AtIREG2 in A. lyrata is genetically linked to

ultramafic adaptation (Turner et al. 2010). Recent

comparative transcriptomic analysis using

RNA-Seq technology revealed that a high expres-

sion of the ortholog of AtIREG2 in roots of

N. caerulescens Monte Prinzera is linked to Ni

accumulation (Halimaa et al. 2014b). Independent

RNA-Seq analyses also indicate that NcIREG2 is

strongly and constitutively expressed in leaves of

the N. caerulescens accessions Puy de Wolf and

Bergenbach (V. S. Garcia de la Torre, S. Merlot,

unpublished results).

The PgIREG1 transporter from the Ni

hyperaccumulator Psychotria gabriellae

(Rubiaceae) localizes in the vacuolar membrane

and is able to transport Ni when expressed in

yeast. PgIREG1 therefore seems to be the func-

tional homolog of AtIREG2. Interestingly,

PgIREG1 is highly expressed in leaves of

P. gabriellae in environmental conditions and is

more expressed than in the closely related,

non-accumulator P. semperflorens (Merlot et al.

2014). These data further suggest that the high

expression of IREG transporters in leaves is a

convergent mechanism for Ni hyperaccumulation.

However, whereas over-expression of AtIREG2

and PgIREG1 in transgenic Arabidopsis plants

significantly increases Ni tolerance, it does not

increase Ni accumulation, further supporting the

hypothesis that other mechanisms are required for

hyperaccumulation (Schaaf et al. 2006; Merlot

et al. 2014). Other families of divalent metal

exporters such as MTP transporters could mediate

the transport of Ni in vacuoles, but their role in

hyperaccumulation needs to be further supported

(Persans et al. 2001).

6 Hyperaccumulation of Other
Trace Elements

Species that are able to hyperaccumulate Mn have

been identified in more than 10 genera mostly in

the Myrtaceae (e.g. Gossia) and Proteaceae

(e.g. Virotia) families (Fernando et al. 2013;

Losfeld et al. 2015). As for other metals, Mn

hyperaccumulation likely evolved from basic

mechanisms involved in Mn homeostasis; how-

ever, these mechanisms are poorly investigated to

date in Mn hyperaccumulators (Pittman 2005;

Fernando et al. 2013; Socha and Guerinot 2014).

In hyperaccumulators, Mn was found to accumu-

late in the vacuole of non-photosynthetic epider-

mal cells, but also more surprisingly in

photosynthetic palisade mesophyll cells in the

hyperaccumulator Virotia neurophylla (Fernando

et al. 2012). These differences in Mn localization

suggest that some mechanisms involved in Mn

accumulation and detoxification might be diver-

gent among hyperaccumulators. The high concen-

tration of Mn found in leaves of several species is

linked to their strategy to acquire P. For example,

Proteaceae species excrete carboxylates in their

rhizosphere that solubilize not only P but also

micronutrients including Mn (Lambers et al.

2015). Several families of metal transporters,

such as NRAMP, ZIP, YSL, and MTP have been

shown to be able to transport Mn in plants, but

their role in hyperaccumulation is not clearly

established (Fernando et al. 2013; Socha and

Guerinot 2014). Most NRAMP transporters are

able to transport Mn in the cytoplasm, either

from the external medium or the vacuole, and

therefore could participate in several steps of Mn

hyperaccumulation. In particular, the NRAMP1

transporter from A. thaliana was shown to be the

main transporter involved in Mn uptake in roots

(Cailliatte et al. 2010). The ShMTP8 transporter

(previously known as ShMTP1) was isolated from

the Mn-tolerant species Stylosanthes hamata

(Fabaceae) as a transporter that confers Mn resis-

tance when expressed in yeast, and was proposed

to mediate accumulation of Mn in the vacuoles of

plant cells (Delhaize et al. 2003). Further mole-

cular studies on Mn hyperaccumulators will be
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required to identify those mechanisms that are key

to Mn hyperaccumulation.

In addition to the above-mentioned metals,

mechanisms involved in the hyperaccumulation

of the metalloid element Se in plants are exten-

sively studied because of their relevance

for improving Se phytoremediation and bioforti-

fication. We only briefly address Se hyperaccu-

mulation here and refer interested readers to

thorough reviews on Se homeostasis and hyper-

accumulation (Zhu et al. 2009; Barillas et al.

2011; Schiavon and Pilon-Smits 2016; White

2016). Selenium hyperaccumulation has been

described for 45 taxa scattered among six

families. More than half of Se hyperaccu-

mulators have been described in the genus

Astragalus (Fabaceae), but other well-described

Se hyperaccumulators have been found in the

genera Stanleya (Brassicaceae), Oonopsis, and

Xylorhiza (Asteraceae). The distribution of Se

hyperaccumulators among plant families

suggests that Se hyperaccumulation likely

evolved independently at least six times (Cappa

and Pilon-Smits 2014). Selenium is available to

plants mostly as selenate (SeO4
2�), a structural

homologue of sulphate, or selenite (SeO3
2�),

depending on the nature of the soil (Elrashidi

et al. 1987). In cultivated soils, selenate uptake

by root cells is catalyzed by high-affinity

sulphate transporters of the SULTR family

(Shibagaki et al. 2002; El Kassis et al. 2007;

Barberon et al. 2008). Transporters of this family

are highly and constitutively expressed in Se

hyperaccumulators of the Astragalus and

Stanleya genera (Freeman et al. 2010; Cabannes

et al. 2011; Schiavon et al. 2015). The Se

hyperaccumulation trait is also linked to the

capacity of Se hyperaccumulators to preferen-

tially take up selenate over sulphate. Sequence

analysis of SULTR1 transporters from Astra-

galus identified a Gly to Ala polymorphism

linked to the hyperaccumulation trait; however,

it is not demonstrated yet if this difference

explains the preferential uptake of selenate over

sulphate (Cabannes et al. 2011). In rice growing

in anaerobic soils (e.g. paddy fields), selenite

forms are transported in root cells by the phos-

phate transporters OsPT2 (Zhang et al. 2014) and

by aquaporins (Zhao et al. 2010). Long-distance

transport of selenate to the shoot is also proposed

to be mediated by SULTR transporters

(Takahashi et al. 2000). In shoots, the main frac-

tion of selenate is metabolized into organo-

selenium compounds (SeCys and SeMet) in

chloroplast (Zhu et al. 2009; Barillas et al.

2011; White 2016). In hyperaccumulator species,

genes involved in the synthesis of organo-

selenium compounds and in the methylation of

SeCys to produce the non-toxic form MeSeCys

were shown to be constitutively more expressed

than in non-accumulator species (Pickering et al.

2003; Freeman et al. 2010; Schiavon et al. 2015),

indicating that the metabolism of Se is key for its

hyperaccumulation.

7 Perspectives and Conclusions

7.1 Interaction
of Hyperaccumulators
with Biotic Environment

The so-called ‘elemental defense’ hypothesis

proposes that metal hyperaccumulation provides

a defense against pathogens and/or herbivores by

direct toxicity (Boyd and Martens 1992; H€orger
et al. 2013). Indeed, it has been shown that Ni

and Zn accumulation can protect different

Brassicaceae species from bacterial and fungal

infection (Boyd et al. 1994; Ghaderian et al.

2000; Fones et al. 2010). However, it is also

well documented that in environmental condi-

tions, specific populations of bacteria are

associated with the root system of metal hyper-

accumulators (Aboudrar et al. 2012; Cabello-

Conejo et al. 2014; Lucisine et al. 2014; Muehe

et al. 2015). Endophytic bacteria have also been

identified in the shoots and roots of metal

hyperaccumulators (Idris et al. 2004; Mengoni

et al. 2009a; Nonnoi et al. 2012). However,

since the majority of these bacteria are not culti-

vable, current studies mostly describe endophytic

populations using metagenomics approaches

(Chen et al. 2014; Luo et al. 2011; Sessitsch

et al. 2012; Visioli et al. 2014). Interestingly, it

was shown that the inoculation of
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N. caerulescens and A. serpyllifolium with culti-

vable endophytic bacteria increases Ni transloca-

tion to shoots (Ma et al. 2011b; Visioli et al.

2015). Little is known about the interactions

between metal hyperaccumulators and associated

bacteria. Metal hyperaccumulators represent an

extreme niche for metal-tolerant bacteria

(Mengoni et al. 2009b). On the other hand,

metal-tolerant bacteria can improve plant growth

and confer protection against abiotic stress by the

production of hormones (auxins, cytokinins,

etc.), or protect the host plant against other

pathogens by the production of antagonistic

substances or by competition for space and

nutrients (Ma et al. 2011b; Reinhold-Hurek and

Hurek 2011). Metal-tolerant bacteria can also

produce organic acids and metal chelators that

can favor metal solubility, transport, and toler-

ance (Idris et al. 2006; Ma et al. 2011a; Visioli

et al. 2015). These observations suggest intimate

interactions between hyperaccumulators and

associated bacteria; however, mechanisms and

genes involved in these interactions are mostly

unknown. The development of next-generation

sequencing technologies and associated meta-

transcriptomic (or dual-transcriptomics) analyses

will uncover those genes expressed by plants and

associated bacteria involved in their interaction

(Camilios-Neto et al. 2014; Pankievicz et al.

2016). Understanding these mechanisms will be

instrumental to improving metal phytoextraction

or to producing secondary metabolites such as

metal chelators of bacterial origin that can be

used in metal-based therapies (Franz 2013).

7.2 Evolution of Hyperaccumulation
Mechanisms

After this brief review of our current knowledge

of the molecular mechanisms of Zn, Cd, or Ni

hyperaccumulation, it is apparent that several

candidate genes involved in these processes are

involved in the control of metal homeostasis in

non-accumulator plants. These genes display an

enhanced function in hyperaccumulators,

through gene-copy number amplification and/or

altered regulation, which profoundly modifies

the metal flux in the plants towards shoot accu-

mulation. Many examples have also been

presented that highlight the high level of conver-

gent evolution between A. halleri,

N. caerulescens, and S. alfredii. This convergent

evolution likely reflects—and sheds light on—

functional constraints of the metal homeostasis

network (Krämer et al. 2007; Krämer 2010;

Verbruggen et al. 2009a; Hanikenne and Nouet

2011). The key function of HMA4 in several

hyperaccumulator species represents a potent

example of this convergent evolution

(Hanikenne et al. 2008; O’Lochlainn et al.

2011; Craciun et al. 2012).

Metal hyperaccumulation and associated tol-

erance in plants are complex traits that have

required the fine-tuning of multiple mechanisms

during the course of evolution. If several key

players have now been identified, how tolerance

and hyperaccumulation traits evolved remains an

open ‘chicken or egg’ question. Hence, Bayesian

inference suggested that speciation between

A. halleri and A. lyrata closely coincided with

HMA4 duplication (Roux et al. 2011). The com-

plex signature of selection detected at the HMA4

locus of A. halleri further supports the key role of

this gene in the evolution of the hyperaccu-

mulation trait (Hanikenne et al. 2013). Recent

adaptations to anthropogenic metal-polluted

sites possibly occurred independently within dis-

tinct phylogeographic units of the A. halleri

European distribution (Pauwels et al. 2012).

Hypertolerance of metallicolous populations

thus potentially evolved using a variety of

genetic mechanisms (Meyer et al. 2009, 2010;

Pauwels et al. 2012). Moreover, the recent study

by Meyer et al. (2016) suggests that, if HMA4

contributes to Zn tolerance in both metallicolous

and non-metallicolous populations of A. halleri
(Hanikenne et al. 2013), the function of MTP1 in

Zn tolerance may have evolved later in metalli-

colous populations that colonized recently pol-

luted soils. Indeed, the co-segregation of MTP1

with Zn tolerance is only observed in a back-

cross 1 population of a cross between a French

metallicolous individual (i.e. living on metal-

polluted soil) of A. halleri and A. lyrata, and is

lost when a Slovakian non-metallicolous
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(i.e. living on non-polluted soil) A. halleri indi-
vidual is used as parent (Meyer et al. 2016). In

contrast, the co-segregation of HMA4 with Zn

tolerance is independent of the edaphic origin

of the A. halleri populations used in the analysis

(Willems et al. 2007; Meyer et al. 2016). This

interpretation partially contradicts the hypothesis

that MTP1 is required for metal detoxification

accommodating the high HMA4-dependent

metal flux into A. halleri shoots, which was pro-

posed based on the observation that expression of

AhHMA4 in non-accumulator plants resulted in

increased sensitivity to excess Zn (Hanikenne

et al. 2008; Barabasz et al. 2010).

The study of metal hyperaccumulation in dis-

tant plant families combined with the compari-

son of distinct accessions with contrasting

accumulation capabilities within a species will

likely shed light on the evolution of the hyper-

accumulation and hypertolerance traits. Such

study may indeed reveal the commonalities and

differences in the mechanisms underlying these

traits, highlighting evolutionary divergence and

convergence. It also may reveal evolutionary

‘intermediates’ (i.e. genotypes that do not display

the full extent of hyperaccumulation or toler-

ance), which may allow ordering the evolution-

ary events that took place during the adaptation

of the metal homeostasis network.

7.3 How Can Phytoextraction
Technologies Benefit from
Molecular Knowledge?

To date, most of our knowledge on metal hyper-

accumulation arises from studies on a few model

hyperaccumulator species (i.e. A. halleri and

N. caerulescens) of the Brassicaceae family. In

the future, it will be necessary to pursue mole-

cular studies and improve genetic manipulation

of these species, in order to identify and demon-

strate the role of key mechanisms involved in

metal hyperaccumulation. However, these spe-

cies have a low biomass and a relatively

restricted distribution worldwide. Therefore,

one of the coming challenges for the develop-

ment of agromining/phytoextraction will be to

transfer knowledge of the mechanisms involved

in metal hyperaccumulation to species having a

high potential for phytoextraction. As mentioned

above, the development of Next Generation

Sequencing technologies opens the possibility

for study of ‘non-model’ species at the

genomic and transcriptomic levels.

As for other crop plants, this molecular know-

ledge will be instrumental for the selection of

genotypes having the best potential for metal

phytoextraction. The level of expression of key

genes involved in metal hyperaccumulation can

be used as markers to predict metal accumulation

capacities. These marker genes can also be used

to study the interaction between metal accumu-

lation and agricultural practices

(e.g. fertilization), for improving biomass pro-

duction while maintaining efficient metal

accumulation.

Finally, genome-editing technologies such as

CRISPR-CAS9 are currently implemented in

plants to specifically modify the sequence of

target genes (Doudna and Charpentier 2014).

This technology offers several advantages com-

pared to traditional transformation technologies

used to produce Genetically Modified Organ-

isms (GMO), and therefore could be better

accepted by the civil society and political

stakeholders to engineer crop plants for metal

phytoextraction. Using this recent technology,

we can, for example, imagine specifically

introducing point mutations in the sequence of

genes involved in metal accumulation in order to

increase their activity, improve specificity, or

modify selectivity towards metals of interest

(Rogers et al. 2000; Menguer et al. 2013;

Pottier et al. 2015).

Acknowledgments We thank members of our labo-

ratories for critical reading of the manuscript. The research

of SM and VSGT is supported by the French National

Research Agency (ANR-13-ADAP-0004) and by CNRS

(Defi Enviromics Gene-4-Chem). Funding to MH is

from the “Fonds de la Recherche Scientifique–FNRS”

(FRFC-2.4583.08, PDR-T.0206.13, MIS-F.4511.16, CDR

J.0009.17), the University of Liège (SFRD-12/03) and the
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(1999) Molecular dissection of the role of histidine

in nickel hyperaccumulation in Thlaspi goesingense
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